WO2021007848A1 - 一种泡孔与微通道相互连通的发泡微通道薄膜及其制备方法 - Google Patents

一种泡孔与微通道相互连通的发泡微通道薄膜及其制备方法 Download PDF

Info

Publication number
WO2021007848A1
WO2021007848A1 PCT/CN2019/096518 CN2019096518W WO2021007848A1 WO 2021007848 A1 WO2021007848 A1 WO 2021007848A1 CN 2019096518 W CN2019096518 W CN 2019096518W WO 2021007848 A1 WO2021007848 A1 WO 2021007848A1
Authority
WO
WIPO (PCT)
Prior art keywords
foamed
microchannel
microchannel film
microchannels
film
Prior art date
Application number
PCT/CN2019/096518
Other languages
English (en)
French (fr)
Inventor
许忠斌
赵健翔
郑素霞
徐宁涛
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to PCT/CN2019/096518 priority Critical patent/WO2021007848A1/zh
Publication of WO2021007848A1 publication Critical patent/WO2021007848A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent

Definitions

  • the invention belongs to the fields of polymer material processing and tissue engineering material processing, and relates to methods for extruding and physical foaming of biodegradable material microchannel films, in particular to a foaming microchannel film in which cells and microchannels communicate with each other and the same Preparation.
  • tissue and organ repair has been the ultimate goal of surgery; the use of gold to repair skull defects can be traced back to 2000 BC; tissue transplantation has been practiced since at least the 1760s.
  • Tissue engineering appeared in the early 1990s with the purpose of solving the limitations of tissue transplantation and allogeneic tissue repair; tissue engineering scaffold is a suitable substrate for tissue engineering, which can provide temporary support for cell proliferation, differentiation and tissue growth. template.
  • the ideal tissue engineering scaffold material should have the following characteristics: (1) It has a three-dimensional composite space, a suitable cell size, interconnected pore structure with high porosity; (2) Good biocompatibility; (3) Continuous The interconnected double pore structure can provide space for tissue cell growth and nutrient and metabolic waste transmission; (4) It is biodegradable to avoid surgical removal.
  • tissue engineering scaffolds have been one of the key research directions in the field of tissue engineering in recent years, existing tissue engineering scaffolds are still difficult to meet the above requirements at the same time.
  • polylactic acid and polybutylene succinate (PBS) have the advantages of good biocompatibility and good degradability.
  • polylactic acid has been widely used in the field of clinical medicine; Yu Peng of South China University of Technology, etc.
  • the two polymers are blended and supercritical carbon dioxide is used as a foaming agent to prepare a foaming material with high open-cell ratio (cells are interconnected).
  • the foamed material prepared by this method has a single cell structure, and it is difficult to obtain a second-fold pore structure similar to the cell size (10-500 ⁇ m) of the foamed material, and its application advantages in tissue engineering and other fields are not obvious.
  • Microchannel film (MCF) material is a thin film material embedded with multiple long straight microchannels.
  • Our research group has studied the physical foaming agent injection plastic extrusion microchannel molding device and method, and the Chinese invention patent publication numbers are CN101905535A.
  • CN101905535A due to the characteristics of non-connected cells, disconnected cells and microchannels, and low porosity of the prepared product, it is difficult to apply to tissue engineering and other fields.
  • the present invention proposes a foamed microchannel film with interconnected cells and microchannels and a preparation method thereof.
  • the specific technical solutions are as follows:
  • the method is as follows:
  • microchannel film is placed in a carbon dioxide environment of 50 ⁇ 100°C and 0.1 ⁇ 3Mpa for a period of time until it is saturated;
  • the pressure in the supercritical carbon dioxide environment in the S2 is preferably 0.1-1.5Mpa.
  • the foaming temperature in S3 is preferably 118-127°C.
  • the foaming pressure in S3 is preferably 13-17Mpa.
  • the pressure relief time in S4 is preferably 3 to 9 seconds.
  • the mass fraction of polybutylene succinate in the microchannel film is 5% to 35%.
  • a foamed microchannel film made by any of the above preparation methods characterized in that the foamed microchannel film comprises a plurality of long straight microchannels and foamed pores interconnected with the microchannels
  • the diameter of the microchannel is 10 to 500 ⁇ m
  • the diameter of the foamed pore is 3 to 200 ⁇ m
  • the open porosity is greater than 75%
  • the diameter of the foamed pore is uniform.
  • the long straight microchannel structure and the foamed pores are connected to each other, which can provide a channel for rapid transmission of nutrients and metabolic waste, and the diameter of the microchannel can pass through the first stage carbon dioxide Saturation pressure is adjusted;
  • the present invention has a higher opening rate, the size of the foamed pores can be adjusted within a certain range, and it can provide a suitable attachment and growth environment for tissue cells.
  • the present invention adopts PLA/PBS blend material, the processing process does not involve any chemicals except carbon dioxide, is green and non-toxic, has good biocompatibility and degradability; ideally, when the present invention is used for tissue engineering It can be completely degraded in the body, eliminating the need for secondary surgery to remove it.
  • Figure 1 is a schematic cross-sectional view of the foamed microchannel film of the present invention.
  • Figure 2 shows the macroscopic appearance and cross-sectional microscope diagrams of the microchannel film before and after foaming, where a is the macroscopic appearance of the unfoamed (left) and foamed (right) microchannel film; b is the microchannel film after foaming Sectional microscope image; c is the sectional microscope image of the unfoamed microchannel film;
  • Figure 3 is an SEM image of a microchannel cross-section of the foamed microchannel film prepared in Example 1;
  • Example 4 is a microchannel cross-sectional SEM image of the foamed microchannel film prepared in Example 2;
  • Fig. 5 is a microchannel cross-sectional SEM image of the foamed microchannel film prepared in Comparative Example 1;
  • the foamed microchannel film of the present invention uses PLA/PBS blend as the matrix, the preparation process does not involve any toxic substances, has good biocompatibility and degradability; the cells have a three-dimensional composite space structure, and the cell size is appropriate And can be adjusted within a certain range according to needs, the cells are interconnected and have high porosity pores; and have a continuous interconnected double pore structure (microchannels and foamed pores), and the diameter of the microchannels can be adjusted within a certain range Etc. It can be applied and promoted as an ideal tissue engineering scaffold material.
  • the technical problems to be solved by the present invention are: (1) Obtain a cell structure with high connectivity and high porosity under the premise of not destroying the microchannel film structure; (2) Avoid the generation of the surface skin layer of the microchannel, and realize the microchannel and The foam cells communicate with each other; (3) the adjustment of cell size and microchannel diameter.
  • the microchannel film is a microchannel film made of polylactic acid/polybutylene succinate blend. The method is specifically as follows:
  • microchannel film is placed in a carbon dioxide environment of 50 ⁇ 100°C and 0.1 ⁇ 3Mpa for a period of time until it is saturated;
  • the pressure in the supercritical carbon dioxide environment in the S2 is preferably 0.1-1.5Mpa.
  • the foaming temperature in S3 is preferably 118-127°C.
  • the foaming pressure in S3 is preferably 13-17Mpa.
  • the pressure relief time in S4 is preferably 3 to 9 seconds.
  • the mass fraction of polybutylene succinate in the microchannel film is 5% to 35%.
  • the foamed microchannel film made by any of the above preparation methods.
  • the foamed microchannel film includes a plurality of long straight microchannels and interconnected microchannels. Foamed pores, the diameter of the microchannels is 10-500 ⁇ m, the diameter of the foamed pores is 3 to 200 ⁇ m, the opening rate is greater than 75%, and the diameter of the foamed pores is uniform.
  • microchannel film is abbreviated as MCF
  • polybutylene succinate is denoted as PBS
  • polylactic acid is denoted as PLA
  • the MCF prepared from the PLA/PBS blend material (PBS accounts for 5 wt%) is cut into a length of 50 mm, and the two ends of the melted PLA/PBS blend material in the same proportion are used as the plugging material.
  • pressure relief foaming is performed, and the pressure relief time is 6s. After the pressure is released, cooling water is passed into the container to cool and shape.
  • Table 1 The characteristic parameters of the foamed microchannel film material are shown in Table 1, and the SEM image of the microchannel cross-section is shown in Figure 3.
  • MCF made of PLA/PBS blend material (PBS accounts for 15wt%) into lengths of 50mm, and use molten PLA/PBS blend material in the same proportion as the plugging material to completely block both ends of the MCF.
  • MCF is placed in a carbon dioxide foaming device for dissolution and saturation. First, let it stand at 80°C and 1.2Mpa until it is saturated, and then increase the temperature and pressure to the foaming temperature of 123°C and the foaming pressure of 15Mpa, and let it stand until it is saturated. Finally, the pressure relief foaming is performed, and the pressure relief time is 3s. After the pressure is released, cooling water is passed into the container to cool and shape.
  • Table 2 The characteristic parameters of the foamed microchannel film material are shown in Table 2, and the SEM image of the microchannel cross-section is shown in Figure 4.
  • MCF made of PLA/PBS blend material (PBS accounts for 35wt%) into lengths of 50mm, and use molten PLA/PBS blend material in the same proportion as the plugging material to completely block its two ends.
  • MCF is placed in a carbon dioxide foaming device for dissolution and saturation. First, let it stand at 50°C and 1.5Mpa until it is saturated, and then increase the temperature and pressure to the foaming temperature of 118°C and the foaming pressure to 17Mpa and let it stand until it is saturated. Perform pressure relief foaming, and the pressure relief time is 9s. After the pressure is released, cooling water is passed into the container to cool and shape.
  • MCF made of PLA/PBS blend material (PBS accounts for 15wt%) into lengths of 50mm, and use molten PLA/PBS blend material in the same proportion as the plugging material to completely block both ends of the MCF.
  • MCF is placed in a carbon dioxide foaming device for dissolution and saturation. First, let it stand at 50°C and 3Mpa until it is saturated, and then increase the temperature and pressure to the foaming temperature of 110°C and the foaming pressure to 20Mpa, and then stand until it is saturated. Perform pressure relief foaming, and the pressure relief time is 30s. After the pressure is released, cooling water is passed into the container to cool and shape.
  • Table 2 The characteristic parameters of the foamed microchannel film material are shown in Table 2.
  • MCF made of PLA/PBS blend material (PBS accounts for 25wt%) into lengths of 50mm, use molten PLA/PBS blend material in the same proportion as the plugging material to completely block both ends of the MCF.
  • MCF is placed in a carbon dioxide foaming device for dissolution and saturation. First, let it stand at 80°C and 1.2Mpa until it is saturated, and then increase the temperature and pressure to the foaming temperature of 135°C and the foaming pressure of 10Mpa, and let it stand until it is saturated. Finally, the pressure relief foaming is performed, and the pressure relief time is 1s. After the pressure is released, cooling water is passed into the container to cool and shape.
  • Table 5 The characteristic parameters of the foamed microchannel film material are shown in Table 5.
  • the MCF made of PLA/PBS blend material (PBS accounts for 15% by weight) is cut into a length of 50 mm, and both ends of the MCF are not blocked. Put the unplugged MCF into the carbon dioxide foaming device to dissolve and saturate. Firstly, let it stand at 80°C and 1.2Mpa until it is saturated; then increase the temperature and pressure to the foaming temperature of 123°C and the foaming pressure of 15Mpa, and let it stand still To its saturation. Finally, pressure relief foaming is performed, and the pressure relief time is 6s. After the pressure is released, cooling water is passed into the container to cool and shape.
  • Table 6 The characteristic parameters of the foamed microchannel film material are shown in Table 6, and the SEM image of the microchannel cross-section is shown in Fig. 5.
  • the MCF prepared from the PLA/PBS blend material (PBS accounts for 5 wt%) is cut into a length of 50 mm, and the two ends of the melted PLA/PBS blend material in the same proportion are used as the plugging material.
  • Table 7 The characteristic parameters of the foamed microchannel film material are shown in Table 7, and the SEM image of the microchannel cross-section is shown in Figure 6.
  • MCF made of PLA/PBS blend material (PBS accounts for 35wt%) into lengths of 50mm, and use molten PLA/PBS blend material in the same proportion as the plugging material to completely block its two ends.
  • MCF is placed in a carbon dioxide foaming device for dissolution and saturation. First, let it stand at 50°C and 1.5Mpa until it is saturated, and then increase the temperature and pressure to the foaming temperature of 118°C and the foaming pressure to 17Mpa, and then stand until it is saturated. Perform pressure relief foaming, and the pressure relief time is 3s. After the pressure is released, cooling water is passed into the container to cool and shape.
  • Table 8 The characteristic parameters of the foamed microchannel film material are shown in Table 8.
  • Figure 2 shows the macroscopic appearance and cross-sectional microscope pictures of the microchannel film before and after foaming, where a is the macroscopic appearance of the unfoamed (left) and foamed (right) microchannel film; b is the microchannel film after foaming The cross-sectional microscope image of the channel film; c is the cross-sectional microscope image of the unfoamed microchannel film.
  • Figure 2-6 the microchannel structure of the MCF remains intact after foaming.
  • Figures 3, 4, and 6 that in the foamed microchannel films prepared in Examples 1, 2 and Comparative Example 2, the microchannels and the foamed cells communicate with each other. It can be seen from Figure 5 that the cells and microchannels in Comparative Example 1 are not connected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一种泡孔与微通道相互连通的发泡微通道薄膜制备方法,微通道薄膜为聚乳酸/聚丁二酸丁二醇酯共混制成的微通道薄膜,该方法具体如下:S1:微通道薄膜切割成所需要的长度后,将其两端完全封堵;S2:微通道薄膜置于50~100℃、0.1~3Mpa的二氧化碳环境下一段时间至其饱和;S3:将温度提升至发泡温度110~135℃,压力提升至发泡压力10~20Mpa,保持一段时间,使其饱和;S4:经1~30s泄压后,冷却,即可得到具有与微通道相互连通的发泡泡孔的微通道薄膜。还涉及一种采用该制备方法制成的微通道薄膜。该发泡微通道薄膜成型加工工艺简单、成本低廉、性能优良,在组织工程支架、生物医学及仿生工程等领域具有广阔的应用前景。

Description

一种泡孔与微通道相互连通的发泡微通道薄膜及其制备方法 技术领域
本发明属于高分子材料加工、组织工程材料加工领域,涉及可生物降解材料微通道薄膜的挤出及物理发泡方法,尤其涉及一种泡孔与微通道相互连通的发泡微通道薄膜及其制备方法。
背景技术
自古至今,组织器官修复一直是外科手术的终极目标;用黄金修复颅骨缺损可以追溯到公元前2000年;组织移植至少从十七世纪六十年代就开始有所实践。组织工程出现于20世纪90年代初,目的是解决组织移植和异体组织修复的局限性;组织工程支架是一种用于组织工程的合适的底物,可为细胞增殖、分化和组织生长提供临时模板。
理想的组织工程支架材料应具有以下特点:(1)具有三维复合空间、泡孔大小合适、相互连通且孔隙率高的孔隙结构;(2)良好的生物相容性;(3)具有连续的互通的双重孔隙结构,可分别提供组织细胞生长以及营养、代谢废物传输的空间;(4)可生物降解,以期免除手术移除。尽管近年来组织工程支架是组织工程领域重点研究方向之一,但现有组织工程支架仍很难同时满足以上要求。
聚乳酸(PLA)与聚丁二酸丁二醇酯(PBS)均具有生物相容性好、降解性好的优点,其中聚乳酸已被广泛应用于临床医学领域;华南理工大学的于鹏等采用此二种聚合物共混,并用超临界二氧化碳作发泡剂制备了具有高开孔率(泡孔相互连通)的发泡材料。然而,单纯采用此种方法制备的发泡材料泡孔结构单一,难以获得与发泡泡孔尺寸相近(10~500μm)的第二重孔隙结构,在组织工程等领域应用优势不明显。
微通道薄膜(MCF)材料是一种内嵌有多条长直微通道的薄膜材料。本课题组曾研究了物理发泡剂注入塑料挤出微通道成型装置及方法,中国发明专利公开号分别为CN101905535A。但由于制得产品泡孔相互不连通、泡孔与微通道间不连通、孔隙率低等特征,难以应用于组织工程等领域。
发明内容
针对现有技术的不足,本发明提出一种泡孔与微通道相互连通的发泡微通道薄膜及其制备方法,具体技术方案如下:
一种泡孔与微通道相互连通的发泡微通道薄膜制备方法,其特征在于,所述的微通道薄膜为聚乳酸/聚丁二酸丁二醇酯共混制成的微通道薄膜,该方法具体如下:
S1:微通道薄膜切割成所需要的长度后,将其两端完全封堵;
S2:微通道薄膜置于50~100℃、0.1~3Mpa的二氧化碳环境下一段时间至其饱和;
S3:将温度提升至发泡温度110~135℃,压力提升至发泡压力10~20Mpa,保持一段时间,使其饱和;
S4:经1-30s泄压后,冷却,即可得到具有与微通道相互连通的发泡泡孔的微通道薄膜。
进一步地,所述的S2中的超临界二氧化碳环境下的压力优选0.1~1.5Mpa。
进一步地,所述的S3中的发泡温度优选118~127℃。
进一步地,所述的S3中的发泡压力优选13~17Mpa。
进一步地,所述的S4中的泄压时间优选3~9s。
进一步地,所述的微通道薄膜中聚丁二酸丁二醇酯的质量分数为5%~35%。
一种由上述任一制备方法制成的发泡微通道薄膜,其特征在于,所述的发泡微通道薄膜包括多条长直微通道以及与所述的微通道相互连通的发泡泡孔,所述的微通道的直径为10~500μm,所述的发泡泡孔的直径为3~200μm,开孔率大于75%,且所述的发泡泡孔直径均匀。
本发明的有益效果为:
(1)本发明的发泡微通道薄膜中,长直微通道结构与发泡泡孔间相互连通,可为营养物质及代谢废物提供快速传输的通道,且微通道直径可通过第一阶段二氧化碳饱和压力进行调节;
(2)本发明开孔率较高,发泡泡孔尺寸可在一定范围内调节,可为组织细胞提供适宜的附着、生长环境。
(3)本发明采用PLA/PBS共混材料,加工过程除二氧化碳外不涉及任何化学品,绿色无毒,具有良好的生物相容性及可降解性;理想状况下本发明用于组织工程时,可在体内完全降解,免除二次手术取出。
附图说明
图1本发明的发泡微通道薄膜截面示意图;
图2为发泡前后微通道薄膜的宏观外形图以及截面显微镜图,其中,a为未发泡(左)与发泡后(右)微通道薄膜宏观外形图;b为发泡后微通道薄膜截面显微镜图;c为未发泡微通道薄膜截面显微镜图;
图3为实施例1制得的发泡微通道薄膜的微通道剖面SEM图;
图4为实施例2制得的发泡微通道薄膜的微通道剖面SEM图;
图5为对比例1制得的发泡微通道薄膜的微通道剖面SEM图;
图6为对比例2制得的发泡微通道薄膜的微通道剖面SEM图。
具体实施方式
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白,应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的发泡微通道薄膜以PLA/PBS共混物为基体,制备过程不涉及任何有毒物质,具有良好的生物相容性及可降解性;泡孔具有三维复合空间结构,泡孔大小合适且可根据需要在一定范围内调节,泡孔相互连通且孔隙率高的孔隙;并具有连续的互通的双重孔隙结构(微通道及发泡泡孔),且微通道直径可在一定范围内调节等优点。可以作为一种较为理想的组织工程支架材料加以应用推广。
本发明所要解决的技术问题是:(1)在不破坏微通道薄膜结构的前提下获得高连通率高孔隙率的泡孔结构;(2)避免微通道表面表皮层的产生,实现微通道与发泡泡孔间相互连通;(3)泡孔大小及微通道直径的调节。
一种泡孔与微通道相互连通的发泡微通道薄膜制备方法,所述的微通道薄膜为聚乳酸/聚丁二酸丁二醇酯共混制成的微通道薄膜,该方法具体如下:
S1:微通道薄膜切割成所需要的长度后,将其两端完全封堵;
S2:微通道薄膜置于50~100℃、0.1~3Mpa的二氧化碳环境下一段时间至其饱和;
S3:将温度提升至发泡温度110~135℃,压力提升至发泡压力10~20Mpa,保持一段时间,使其饱和;
S4:经1-30s泄压后,冷却,即可得到具有与微通道相互连通的发泡泡孔的微通道薄膜。
优选地,所述的S2中的超临界二氧化碳环境下的压力优选0.1~1.5Mpa。
优选地,所述的S3中的发泡温度优选118~127℃。
优选地,所述的S3中的发泡压力优选13~17Mpa。
优选地,所述的S4中的泄压时间优选3~9s。
优选地,所述的微通道薄膜中聚丁二酸丁二醇酯的质量分数为5%~35%。
一种由上述任一一种制备方法制成的发泡微通道薄膜,如图1所示,所述的发泡微通道薄膜包括多条长直微通道以及与所述的微通道相互连通的发泡泡孔,所述的微通道的直径为10~500μm,所述的发泡泡孔的直径为3~200μm,开孔率大于75%,且所述的发泡泡孔直径均匀。
以下实施例中,微通道薄膜简称MCF,聚丁二酸丁二醇酯表示为PBS,聚乳酸表示为PLA。
实施例1
将的PLA/PBS共混材料(PBS占比5wt%)制得的MCF切割为长度50mm,使用熔融的同比例PLA/PBS共混材料作封堵材料将其两端完全封堵。将封堵后MCF置入二氧化碳发泡装置中进行溶解饱和,先于100℃,0.1Mpa静置至其饱和;后将温度压力分别提升至发泡温度127℃与发泡压力13Mpa,并静置至其饱和。最终进行泄压发泡,泄压时间为6s。泄压后向容器内通入冷却水冷却定型。制得发泡微通道薄膜材料特征参数如表1所示,微通道剖面SEM图如图3所示。
表1 实施例1制得发泡微通道薄膜材料特征参数
体积膨胀率 泡孔密度 平均泡孔直径 开孔率 平均微通道直径
6 0.43×10 6cells/cm 3 140±12μm 79% 110±23μm
实施例2
将PLA/PBS共混材料(PBS占比15wt%)制得的MCF切割为长度50mm,使用熔融的同比例PLA/PBS共混材料作封堵材料将其两端完全封堵,将封堵后MCF置入二氧化碳发泡装置中进行溶解饱和,先于80℃,1.2Mpa静置至其饱和,后将温度压力分别提升至发泡温度123℃与发泡压力15Mpa,并静置至其饱和,最终进行泄压发泡,泄压时间为3s。泄压后向容器内通入冷却水冷却定型。制得发泡微通道薄膜材料特征参数如表2所示,微通道剖面SEM图如图4所示。
表2 实施例2制得发泡微通道薄膜材料特征参数
体积膨胀率 泡孔密度 平均泡孔直径 开孔率 平均微通道直径
6.3 10.4×10 6cells/cm 3 45±4μm 83% 230±31μm
实施例3
将PLA/PBS共混材料(PBS占比35wt%)制得的MCF切割为长度50mm,使用熔融的同比例PLA/PBS共混材料作封堵材料将其两端完全封堵,将封堵后MCF置入二氧化碳发泡装置中进行溶解饱和,先于50℃,1.5Mpa静置至其饱和,后将温度压力分别提升至发泡温度118℃与发泡压力17Mpa并静置至其饱和,最终进行泄压发泡,泄压时间为9s。泄压后向容器内通入冷却水冷却定型。
表3 实施例3制得发泡微通道薄膜材料特征参数
体积膨胀率 泡孔密度 平均泡孔直径 开孔率 平均微通道直径
4.8 0.23×10 6cells/cm 3 194±17μm 81% 301±31μm
实施例4
将PLA/PBS共混材料(PBS占比15wt%)制得的MCF切割为长度50mm,使用熔融的同比例PLA/PBS共混材料作封堵材料将其两端完全封堵,将封堵后MCF置入二氧化碳发泡装置中进行溶解饱和,先于50℃,3Mpa静置至其饱和,后将温度压力分别提升至发泡温度110℃与发泡压力20Mpa,并静置至其饱和,最终进行泄压发泡,泄压时间为30s。泄压后向容器内通入冷却水冷却定型。制得发泡微通道薄膜材料特征参数如表2所示。
表4 实施例4制得发泡微通道薄膜材料特征参数
体积膨胀率 泡孔密度 平均泡孔直径 开孔率 平均微通道直径
5.5 0.11×10 6cells/cm 3 245±27μm 76% 345±27μm
实施例5
将PLA/PBS共混材料(PBS占比25wt%)制得的MCF切割为长度50mm,使用熔融的同比例PLA/PBS共混材料作封堵材料将其两端完全封堵,将封堵后MCF置入二氧化碳发泡装置中进行溶解饱和,先于80℃,1.2Mpa静置至其饱和,后将温度压力分别提升至发泡温度135℃与发泡压力10Mpa,并静置至其饱和,最终进行泄压发泡,泄压时间为1s。泄压后向容器内通入冷却水冷却定型。制得发泡微通道薄膜材料特征参数如表5所示。
表5 实施例5制得发泡微通道薄膜材料特征参数
体积膨胀率 泡孔密度 平均泡孔直径 开孔率 平均微通道直径
4.5 3.1×10 6cells/cm 3 31±4μm 80% 208±19μm
对比例1
将PLA/PBS共混材料(PBS占比15wt%)制得的MCF切割为长度50mm,MCF两端不进行封堵。将未封堵MCF置入二氧化碳发泡装置中进行溶解饱和,先于80℃,1.2Mpa静置至其饱和;后将温度压力分别提升至发泡温度123℃与发泡压力15Mpa,并静置至其饱和。最终进行泄压发泡,泄压时间为6s。泄压后向容器内通入冷却水冷却定型。制得发泡微通道薄膜材料特征参数如表6所示,微通道剖面SEM图如图5所示。
表6 对比例1制得发泡微通道薄膜材料特征参数
体积膨胀率 泡孔密度 平均泡孔直径 开孔率 平均微通道直径
5.2 0.45×10 6cells/cm 3 134±13μm 78% 130±15μm
对比例2
将的PLA/PBS共混材料(PBS占比5wt%)制得的MCF切割为长度50mm,使用熔融的同比例PLA/PBS共混材料作封堵材料将其两端完全封堵。将封堵后MCF置入二氧化碳发泡装置中进行溶解饱和,先于50℃,1.5Mpa静置至其饱和;后将温度压力分别提升至发泡温度127℃与发泡压力13Mpa,并静置至其饱和。最终进行泄压发泡,泄压时间为6s。 泄压后向容器内通入冷却水冷却定型。制得发泡微通道薄膜材料特征参数如表7所示,微通道剖面SEM图如图6所示。
表7 对比例2制得发泡微通道薄膜材料特征参数
体积膨胀率 泡孔密度 平均泡孔直径 开孔率 平均微通道直径
5.8 0.38×10 6cells/cm 3 152±14μm 81% 310±36μm
对比例3
将PLA/PBS共混材料(PBS占比35wt%)制得的MCF切割为长度50mm,使用熔融的同比例PLA/PBS共混材料作封堵材料将其两端完全封堵,将封堵后MCF置入二氧化碳发泡装置中进行溶解饱和,先于50℃,1.5Mpa静置至其饱和,后将温度压力分别提升至发泡温度118℃与发泡压力17Mpa并静置至其饱和,最终进行泄压发泡,泄压时间为3s。泄压后向容器内通入冷却水冷却定型。制得发泡微通道薄膜材料特征参数如表8所示。
表8 实施例3制得发泡微通道薄膜材料特征参数
体积膨胀率 泡孔密度 平均泡孔直径 开孔率 平均微通道直径
5.3 0.34×10 6cells/cm 3 51±7μm 83% 297±25μm
图2给出了发泡前后微通道薄膜的宏观外形图以及截面显微镜图,其中,a为未发泡(左)与发泡后(右)微通道薄膜宏观外形图;b为发泡后微通道薄膜截面显微镜图;c为未发泡微通道薄膜截面显微镜图,从图2-6可以看出,发泡后MCF的微通道结构保留完整。从图3、4、6可以看出,实施例1、2以及对比例2制得的发泡微通道薄膜中,微通道与发泡泡孔间互相连通。而从图5可以看出,对比例1中的泡孔和微通道则没有连通。通过表1-3的参数可以看出,泡孔的直径均匀,偏差较小,开孔率高。通过比较对比例2的图6、表7与实施例1的图3、表1可以看出,通过调节阶梯式二氧化碳饱和第一阶段饱和调节,可以调节微通道直径。通过比较对比例3与实施例3可以看出,通过调节泄压时间可以调节泡孔密度及泡孔平均直径。另外,调节发泡温度、发泡压力、泄压时间以及PLA/PBS共混比例,亦可起到对泡孔的尺寸、泡孔密度、开孔率、体积膨胀率等参数的调节作用。
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。

Claims (7)

  1. 一种泡孔与微通道相互连通的发泡微通道薄膜制备方法,其特征在于,所述的微通道薄膜为聚乳酸/聚丁二酸丁二醇酯共混制成的微通道薄膜,该方法具体如下:
    S1:微通道薄膜切割成所需要的长度后,将其两端完全封堵;
    S2:微通道薄膜置于50~100℃、0.1~3Mpa的二氧化碳环境下一段时间至其饱和;
    S3:将温度提升至发泡温度110~135℃,压力提升至发泡压力10~20Mpa,保持一段时间,使其饱和;
    S4:经1~30s泄压后,冷却,即可得到具有与微通道相互连通的发泡泡孔的微通道薄膜。
  2. 根据权利要求1所述的泡孔与微通道相互连通的发泡微通道薄膜制备方法,其特征在于,所述的S2中的超临界二氧化碳环境下的压力优选0.1~1.5Mpa。
  3. 根据权利要求1所述的泡孔与微通道相互连通的发泡微通道薄膜制备方法,其特征在于,所述的S3中的发泡温度优选118~127℃。
  4. 根据权利要求1所述的泡孔与微通道相互连通的发泡微通道薄膜制备方法,其特征在于,所述的S3中的发泡压力优选13~17Mpa。
  5. 根据权利要求1所述的泡孔与微通道相互连通的发泡微通道薄膜制备方法,其特征在于,所述的S4中的泄压时间优选3~9s。
  6. 根据权利要求1所述的泡孔与微通道相互连通的发泡微通道薄膜制备方法,其特征在于,所述的微通道薄膜中聚丁二酸丁二醇酯的质量分数为5%~35%。
  7. 一种由上述任一一种制备方法制成的发泡微通道薄膜,其特征在于,所述的发泡微通道薄膜包括多条长直微通道以及与所述的微通道相互连通的发泡泡孔,所述的微通道的直径为10~500μm,所述的发泡泡孔的直径为3~200μm,开孔率大于75%,且所述的发泡泡孔直径均匀。
PCT/CN2019/096518 2019-07-18 2019-07-18 一种泡孔与微通道相互连通的发泡微通道薄膜及其制备方法 WO2021007848A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096518 WO2021007848A1 (zh) 2019-07-18 2019-07-18 一种泡孔与微通道相互连通的发泡微通道薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096518 WO2021007848A1 (zh) 2019-07-18 2019-07-18 一种泡孔与微通道相互连通的发泡微通道薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2021007848A1 true WO2021007848A1 (zh) 2021-01-21

Family

ID=74209612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096518 WO2021007848A1 (zh) 2019-07-18 2019-07-18 一种泡孔与微通道相互连通的发泡微通道薄膜及其制备方法

Country Status (1)

Country Link
WO (1) WO2021007848A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040020853A1 (en) * 2000-07-08 2004-02-05 Bernd Krause Membrane and the use thereof
RU2323047C1 (ru) * 2006-06-29 2008-04-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Каталитические микроканальные пластины и способ их приготовления
CN101905535A (zh) * 2010-07-20 2010-12-08 浙江大学 物理发泡剂注入塑料挤出微通道成型装置及方法
CN102618001A (zh) * 2012-03-29 2012-08-01 浙江大学宁波理工学院 含纳米纤维素的聚脂肪酸酯微孔发泡材料及其制备方法
CN107738396A (zh) * 2017-09-01 2018-02-27 顺德职业技术学院 用于热电半导体充注的改性聚氨酯及使用该改性聚氨酯的热电半导体充注模具、发泡工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040020853A1 (en) * 2000-07-08 2004-02-05 Bernd Krause Membrane and the use thereof
RU2323047C1 (ru) * 2006-06-29 2008-04-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Каталитические микроканальные пластины и способ их приготовления
CN101905535A (zh) * 2010-07-20 2010-12-08 浙江大学 物理发泡剂注入塑料挤出微通道成型装置及方法
CN102618001A (zh) * 2012-03-29 2012-08-01 浙江大学宁波理工学院 含纳米纤维素的聚脂肪酸酯微孔发泡材料及其制备方法
CN107738396A (zh) * 2017-09-01 2018-02-27 顺德职业技术学院 用于热电半导体充注的改性聚氨酯及使用该改性聚氨酯的热电半导体充注模具、发泡工艺

Similar Documents

Publication Publication Date Title
US11286364B2 (en) Method for preparing polymer mould-free stereostructure foamed product from supercritical fluid
CN102796277B (zh) 具有开孔结构的梯度生物相容性聚合物发泡材料及其制备方法
WO2020259125A1 (zh) 一种聚丙烯材料的超临界流体发泡方法
CA2833949C (en) Method for producing microcellular foam polypropylene thick board
CN103611184A (zh) 一种复合半透膜的水凝胶及其制备方法
CN107177052B (zh) 一种不同结晶度的轻质聚醚醚酮或其复合材料板材及制备方法
CN105311683A (zh) 一种含内通道网络和定向孔隙结构的仿生组织工程支架及其制备方法与应用
CN111978588B (zh) 一种大孔水凝胶及其制备方法和应用
KR102012709B1 (ko) Fdm 3d 프린팅을 이용한 의료용 이중 기공 스캐폴드의 제조방법
KR101889984B1 (ko) 하이드로겔 시트 제품의 제조방법
CN109825046A (zh) 一种生物可降解聚乳酸发泡粒子及其制备方法
CN112999428B (zh) 用于耳廓重建载细胞聚合物多孔微球三维生物打印墨水及其制造方法与应用
Chen et al. Preparation of polymer scaffolds by ice particulate method for tissue engineering
WO2021007848A1 (zh) 一种泡孔与微通道相互连通的发泡微通道薄膜及其制备方法
CN106552286B (zh) 人工软骨的制备方法
JPH0310674A (ja) 細胞培養用多孔質膜およびそれを用いた細胞培養器
CN105522675A (zh) 一种基于微孔发泡注射成型制备无皮层发泡材料的方法
CN105694066A (zh) 一种具有优异机械性能的自愈性生物友好水凝胶
EP2455113A2 (en) Process for forming a porous pva scaffold using a pore-forming agent
US20220145014A1 (en) Polyvinyl alcohol hydrogel having asymmetric pore size
CN103948963A (zh) 一种适用于人体脏器构建用的组织工程支架及其制备方法
CN108659251A (zh) 聚醚酰亚胺发泡粒子的制备方法
CN108912380A (zh) 一种低压条件下利用pmma/pvdf共混物制备大倍率聚合物泡沫的方法
KR102166991B1 (ko) Fdm 3d 프린팅을 이용한 다공성 스캐폴드의 제조방법에 있어서의 기공 조절 방법
CN106255511A (zh) 熔融加工聚合物细胞状剂型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938058

Country of ref document: EP

Kind code of ref document: A1