WO2021005960A1 - 耐硫酸露点腐食性に優れる継目無鋼管およびその製造方法 - Google Patents

耐硫酸露点腐食性に優れる継目無鋼管およびその製造方法 Download PDF

Info

Publication number
WO2021005960A1
WO2021005960A1 PCT/JP2020/023144 JP2020023144W WO2021005960A1 WO 2021005960 A1 WO2021005960 A1 WO 2021005960A1 JP 2020023144 W JP2020023144 W JP 2020023144W WO 2021005960 A1 WO2021005960 A1 WO 2021005960A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
seamless steel
sulfuric acid
mass
dew point
Prior art date
Application number
PCT/JP2020/023144
Other languages
English (en)
French (fr)
Inventor
正雄 柚賀
宏之 ▲高▼井
竹村 泰昌
岡津 光浩
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2022000386A priority Critical patent/MX2022000386A/es
Priority to CN202080049959.8A priority patent/CN114096692A/zh
Priority to US17/623,919 priority patent/US20220411890A1/en
Priority to EP20835991.9A priority patent/EP3998356A4/en
Priority to BR112022000052A priority patent/BR112022000052A2/pt
Priority to JP2020553562A priority patent/JP6822623B1/ja
Priority to KR1020227000341A priority patent/KR102654713B1/ko
Publication of WO2021005960A1 publication Critical patent/WO2021005960A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a seamless steel pipe having excellent sulfuric acid dew point corrosion resistance and a method for manufacturing the same. More specifically, the present invention is a seamless steel pipe suitable for piping used in a sulfuric acid dew point corrosion environment generated by combustion exhaust gas of a boiler, a gasification melting furnace, etc., and particularly in an exhaust heat recovery boiler.
  • the present invention relates to a seamless steel pipe for piping, which is useful for preventing scattering of corrosion products caused by dew point corrosion and has excellent corrosion resistance to dew point corrosion, and a method for manufacturing the same.
  • Patent Document 2 W, Sn, and Cr are added to steel having C: 0.01 to 0.12 mass%, Cu: 0.03 to 1.0 mass%, and Sb: 0.002 to 0.7 mass%.
  • C, Sb, and W so as to satisfy a specific relationship, a sulfuric acid dew point corrosive steel having improved sulfuric acid dew point corrosiveness as well as hydrochloric acid dew point corrosive property is disclosed.
  • Patent Documents 1 and 2 reduce the dew point corrosion rate of sulfuric acid or the dew point corrosion rate of hydrochloric acid, which is a problem in exhaust heat recovery boilers and the like. It is considered to be effective in suppressing the occurrence. However, in a harsher environment where the sulfuric acid concentration is 70% by mass, it is difficult to sufficiently suppress the sulfuric acid dew point corrosion. Furthermore, no mention is made of exfoliation of corrosion products generated in the environment. Furthermore, there is no detailed description regarding the production of seamless steel pipes suitable for exhaust heat recovery boiler piping, and it is not possible to find the optimum conditions for achieving both sulfuric acid dew point corrosiveness and seamless steel pipe manufacturability.
  • the present invention has been made in view of the above circumstances, is excellent in sulfuric acid dew point corrosion resistance, is suitable for piping used in a sulfuric acid dew point corrosion environment such as an exhaust heat recovery boiler, and has excellent manufacturability.
  • the purpose is to provide steel-free pipes.
  • Another object of the present invention is to provide a suitable manufacturing method for the above-mentioned seamless steel pipe.
  • the present inventors first diligently studied the exfoliation property of the corrosion product generated in the sulfuric acid dew point corrosion environment.
  • the basic chemical composition is C: 0.04%, Si: 0.2%, Mn: 1.4%, Al: 0.02% in mass%, which is further effective for acid resistance.
  • a seamless steel pipe having an outer diameter of 138.9 mm and a wall thickness of 10.8 mm is obtained from a base steel pipe material having a component composition in which Cu and Sb are added, and further from a steel pipe material having a component composition in which Sn, W, and Cr are appropriately added.
  • Manufactured After normalizing heat treatment of these seamless steel pipes at a normalizing temperature of 950 ° C., corrosion test pieces were collected from the outer surface side of the steel pipes.
  • a corrosion test piece (length) is collected from the outer surface side of the steel pipe so as to include the outer surface of the steel pipe, and the surface corresponding to the outer surface side of the steel pipe is ground by 0.5 mm to remove scale and the like. 30 mm in width ⁇ 20 mm in width ⁇ 5 mm in thickness) was prepared. Subsequently, a sulfuric acid dew point corrosion test was carried out according to the procedure schematically shown in FIG. 1, and the peelability of the corrosion product produced in the corrosion test was evaluated.
  • a sulfuric acid aqueous solution adjusted to a concentration of 70% by mass is injected into a container, the liquid temperature is kept heated to 50 ° C. by an external constant temperature bath, and then a corrosion test piece (test piece in FIG. 1). 1) was immersed. The immersion time was 96 hours. After immersion for 96 hours, the sulfuric acid aqueous solution was discharged from the container, the corrosion test piece 1 was dried, carefully taken out, and the corrosion product generated on the surface of the corrosion test piece was photographed with a digital camera 2 on a photographing table. The imaging surface was the surface that was on the outer surface side of the steel pipe when the corrosion test piece was processed.
  • Photographed image analysis performing appropriate image processing on the image by (NIH using the development of the Image J software) to calculate the area S I of the resulting corrosion product (mm 2).
  • a transparent adhesive film manufactured by NICHIBAN, cellophane tape (registered trademark), product number CT-24, width 24 mm
  • the corrosion products produced by peeling the film were peeled off.
  • Corrosion products that are easily affected were collected on the adhesive surface of the adhesive film.
  • the corrosion product collected on the adhesive surface of the adhesive film is photographed with a digital camera 2, the image is analyzed, the area of the corrosion product collected on the adhesive surface of the adhesive film is calculated, and this is calculated from the corrosion test piece.
  • the area of the peeled corrosion product was defined as S II (mm 2 ).
  • the generated corrode ratio [(S II / S I) ⁇ 100] of the area of corrosion products were stripped from the corrosion test piece to an area of the corrosion products formed corrode the test piece surface (S I) (S II) It was defined as the peeling rate (%).
  • FIG. 2 shows a comparison of corrosion product peeling rates after the sulfuric acid dew point corrosion test of seamless steel pipes with different amounts of Cu, Sb, Sn, W, and Cr used in the experiment.
  • the basic chemical components 0.04% C-0.2% Si-1.4% Mn-0.02% Al
  • Cu 0.3%
  • Sb 0.1
  • the amount of Sb added was increased to “0.3% Cu-0.2% Sb”.
  • No significant difference was observed in the corrosion product peeling rate of the "0.3% Cu-0.1% Sb-0.05% Sn" material to which the "material” and Sn were added.
  • the corrosion product peeling rate changes depending on the manufacturing method of the steel pipe material even with the same composition.
  • the steel pipe material obtained by continuously casting directly into a slab having a circular cross section (hereinafter, also referred to as “directly cast steel pipe material”) is formed and heat-treated to form a seam.
  • directly cast steel pipe material a steel pipe obtained by melting steel in a rotary furnace, once continuously casting it into a slab having a rectangular cross section, and then heating and hot rolling it to form a circular cross section.
  • the material hereinafter also referred to as "steel piece rolled steel pipe material” had a better corrosion product peeling rate.
  • the present inventors have conducted extensive research in order to clarify the difference in the corrosion product peeling rate between the above steel pipe materials (straight-cast steel pipe material, steel piece rolled steel pipe material). As a result, it was found that the difference was in the concentration of alloying elements on the outer surface of the seamless steel pipe. Specifically, in the seamless steel pipe of the "0.3% Cu-0.1% Sb-0.6% Cr" material used for measuring the corrosion product peeling rate, the adjacent portion of the region where the corrosion test piece was collected. A sample was taken and the cross section orthogonal to the longitudinal direction of the steel pipe was mirror-polished. Next, a quantitative ray analysis of Cr was performed by an electron probe microanalyzer (EPMA).
  • EPMA electron probe microanalyzer
  • the measurement conditions for EPMA are an acceleration voltage of 20 kV, a beam current of 0.5 ⁇ A, and a beam diameter of 10 ⁇ m. Using a calibration curve prepared in advance from the X-ray intensity, it was converted to Cr concentration (mass%).
  • FIG. 3 shows EPMA of a sample collected from a seamless steel pipe produced by forming and heat-treating a steel pipe material as it is directly cast, and a sample collected from a seamless steel pipe produced by forming and heat-treating a rolled steel pipe material.
  • the line analysis results are compared and shown.
  • the sample collected from the seamless steel pipe produced by forming and heat-treating the steel pipe material as it is directly cast has almost the same Cr in the region from the outer surface of the steel pipe to 4 mm in the wall thickness center direction. The concentration was shown.
  • the steel pipe material subjected to the same heat treatment as the heat treatment applied when the slab having a rectangular cross section is converted into the steel piece rolled steel pipe material from the straight cast steel pipe material (hereinafter, also referred to as "slab heat-treated steel pipe material").
  • the sample collected from the seamless steel pipe manufactured by forming and heat-treating the steel piece can obtain the same increase in Cr concentration as the sample collected from the seamless steel pipe produced by forming and heat-treating the steel piece rolled steel pipe material. I understood.
  • the present inventors performed the same EPMA measurement for alloying elements other than Cr.
  • the relationship with the corrosion product peeling rate of the corrosion test was investigated diligently. As a result, the alloying elements that affect the peeling rate of corrosion products were narrowed down when Cu, Cr, and Sb were added and when W was added together with Cu, Cr, and Sb, and the seamless steel pipe obtained by EPMA measurement was narrowed down.
  • the present invention has been completed based on these findings, and has the following gist.
  • the average Cu concentration (mass%), average Cr concentration (mass%), and average Sb concentration (mass%) in the region of 0.5 to 2.0 mm from the outer surface of the steel pipe toward the center of the wall thickness are Cu * and Cr, respectively.
  • Cu * , Cr * , and Sb * satisfy the following equation (1).
  • the cooled steel pipe material is heated to 1100 to 1300 ° C. and then hot-rolled at 800 ° C. or higher to obtain a seamless steel pipe having a predetermined shape, cooled, and then cooled.
  • a method for producing a seamless steel pipe having excellent sulfuric acid dew point corrosion resistance which is subjected to normalizing heat treatment by heating at a normalizing temperature of 850 to 1050 ° C.
  • a method for manufacturing a seamless steel pipe with excellent sulfuric acid dew point corrosiveness is a method for manufacturing a seamless steel pipe with excellent sulfuric acid dew point corrosiveness.
  • a method for producing a seamless steel pipe having excellent sulfuric acid dew point corrosion resistance which is subjected to normalizing heat treatment by heating at a normalizing temperature of 850 to 1050 ° C.
  • the resistance according to [6] wherein when a slab having a circular cross section is heated to a heating temperature in a temperature range of 1000 to 1200 ° C., the heating time from 900 ° C. to the heating temperature is 1.5 hours or more.
  • the present invention it is possible to provide a seamless steel pipe having excellent sulfuric acid dew point corrosion resistance, suitable for piping used in a sulfuric acid dew point corrosion environment such as an exhaust heat recovery boiler, and excellent in manufacturability. Further, according to the present invention, it is possible to provide a suitable manufacturing method for the seamless steel pipe.
  • the seamless steel pipe of the present invention is excellent in sulfuric acid dew point corrosion resistance, and is excellent in the effect of suppressing peeling of corrosion products generated in a harsher environment where the sulfuric acid concentration is 70% by mass in an exhaust heat recovery boiler or the like. Further, the seamless steel pipe of the present invention has a predetermined yield strength and tensile strength and is suitable for piping. Further, the seamless steel pipe of the present invention is excellent in the effect of suppressing defects generated in the manufacturing process thereof and is excellent in manufacturability.
  • FIG. 1 is a schematic view illustrating a method for measuring a corrosion product peeling rate.
  • FIG. 2 is a graph showing the results of investigation of the corrosion product peeling rate of the seamless steel pipe experimental materials having different amounts of Cu, Sb, Sn, W, and Cr added.
  • FIG. 3 is a graph showing the results of EPMA line analysis of a region of the outer surface to 4 mm of a seamless steel pipe manufactured from different steel pipe materials.
  • FIG. 4 is a graph showing the correlation between the regression equation of Cu, Cr, Sb, and W concentrations (Cu * , Cr * , Sb * , W * ) near the outer surface of the seamless steel pipe and the corrosion product exfoliation rate. is there.
  • the seamless steel pipe having excellent sulfuric acid dew point corrosion resistance of the present invention is also simply referred to as the seamless steel pipe of the present invention.
  • C 0.02 to 0.12% C is an element that enhances the strength of steel, and in the present invention, the content of C is required to be 0.02% or more in order to satisfy the yield strength and tensile strength particularly required for seamless steel pipes for piping. Therefore, the C content is set to 0.02% or more.
  • the C content is preferably 0.021% or more, more preferably 0.022% or more.
  • the content of C exceeding 0.12% adversely affects the hot ductility at high temperature. Specifically, it causes surface defects during hot rolling of seamless steel pipes. Therefore, the upper limit of the C content is set to 0.12%. From the viewpoint of preventing surface defects, the C content is preferably 0.08% or less, more preferably 0.04% or less.
  • Si 0.010 to 1.00%
  • Si is an element that acts as a deoxidizer and dissolves in steel to increase the strength of steel.
  • 0.010% or more of Si content is required. Therefore, the Si content is 0.010% or more.
  • the Si content is preferably 0.05% or more, more preferably 0.20% or more.
  • the content of Si exceeding 1.00% adversely affects the hot ductility at high temperature. Therefore, the upper limit of the Si content is set to 1.00%.
  • the Si content is preferably 0.80% or less, more preferably 0.60% or less.
  • Mn 0.10 to 2.00%
  • Mn is an element that enhances the strength of steel by improving hardenability, and in the present invention, in order to satisfy the yield strength and tensile strength particularly required for seamless steel pipes for piping, 0.10% or more.
  • Mn content is required. Therefore, the Mn content is set to 0.10% or more.
  • the Mn content is preferably 0.50% or more, more preferably 1.10% or more.
  • the upper limit of the Mn content is set to 2.00%.
  • the Mn content is preferably 1.80% or less, more preferably 1.40% or less.
  • P 0.050% or less P causes significant central segregation during continuous casting and causes internal defects during drilling during hot rolling of seamless steel pipes. Therefore, in the present invention, it is desirable to reduce as much as possible, but up to 0.050% is acceptable. Therefore, the P content is set to 0.050% or less.
  • the P content is preferably 0.030% or less, more preferably 0.015% or less.
  • the lower limit of the P content is not particularly limited, but since excessive de-P causes an increase in manufacturing cost, it is preferable that the lower limit of the P content is about 0.004%.
  • S 0.004% or less S also has a remarkable central segregation during continuous casting, which causes internal defects during drilling in hot rolling of seamless steel pipes. Therefore, in the present invention, it is desirable to reduce as much as possible, but up to 0.004% is acceptable. Therefore, the S content is set to 0.004% or less.
  • the S content is preferably 0.003% or less, more preferably 0.002% or less.
  • the lower limit of the S content is not particularly limited, but since excessive removal of S causes an increase in manufacturing cost, it is preferable that the lower limit of the S content is about 0.0004%.
  • Al 0.010 to 0.100%
  • Al is an element that acts as a deoxidizing material. In order to reduce solid solution oxygen and prevent a decrease in the amount of effective Cr due to Cr oxide formation when Cr is contained, 0.010% or more is required. Therefore, the Al content is set to 0.010% or more.
  • the Al content is preferably 0.015% or more, more preferably 0.020% or more.
  • the upper limit of the Al content is set to 0.100%.
  • the Al content is preferably 0.080% or less, more preferably 0.040% or less.
  • Cu 0.03 to 0.80% Cu is an element effective in preventing corrosion of steel in a sulfuric acid dew point environment. Further, when it is concentrated on the outer surface of the steel pipe by the combined addition with Cr, it works to improve the peelability of the corrosion product. In order to obtain such an effect, Cu needs to be contained in an amount of 0.03% or more. Therefore, the Cu content is set to 0.03% or more.
  • the Cu content is preferably 0.10% or more, more preferably 0.20% or more.
  • Cu lowers the high temperature ductility of steel, and when it is contained in excess of 0.80%, outer surface defects occur significantly during hot rolling, so the upper limit of the Cu content is high. Is 0.80%.
  • the Cu content is preferably 0.60% or less, more preferably 0.40% or less.
  • Ni 0.02 to 0.50%
  • Ni is an element that suppresses a decrease in high-temperature ductility of Cu when compoundly added to Cu-containing steel. In order to obtain such an effect, a content of 0.02% or more is required. Therefore, the Ni content is set to 0.02% or more.
  • the Ni content is preferably 0.08% or more, more preferably 0.10% or more.
  • the upper limit of the Ni content is set to 0.50%.
  • the Ni content is preferably 0.45% or less, and more preferably 0.30% or less.
  • Cr 0.55 to 1.00% Cr does not contribute significantly to the prevention of corrosion in a sulfuric acid dew point environment, but as shown in FIG. 2, it is an important element that contributes to the improvement of the peelability of corrosion products by the combined addition of Cu and Sb. .. In order to obtain such an effect, a content of 0.55% or more is required. Therefore, the Cr content is set to 0.55% or more.
  • the Cr content is preferably 0.57% or more, more preferably 0.60% or more.
  • the upper limit of the Cr content is set to 1.00%.
  • the Cr content is preferably 0.90% or less, and more preferably 0.80% or less.
  • Sb 0.005 to 0.20%
  • Sb is an element effective in preventing steel corrosion in a sulfuric acid dew point corrosion environment. Further, when it is concentrated on the outer surface of the steel pipe by the combined addition with Cr, it works to improve the peelability of the corrosion product. In order to obtain such an effect, Sb needs to be contained in an amount of 0.005% or more. Therefore, the Sb content is set to 0.005% or more.
  • the Sb content is preferably 0.02% or more, more preferably 0.05% or more.
  • the upper limit of the Sb content is set to 0.20%.
  • the Sb content is preferably 0.15% or less, more preferably 0.09% or less.
  • W 0.003 to 0.040%
  • Sn 0.005 to 0.5%
  • W 0.003 to 0.040%
  • W like Cr
  • W improves the exfoliation property of corrosion products produced in a sulfuric acid dew point environment.
  • it since it is an expensive element unlike Cr, it may be contained for the purpose of further improving the exfoliation property of the corrosion product by adding it in combination with Cr.
  • W needs to be contained in an amount of 0.003% or more. Therefore, when W is contained, the W content is set to 0.003% or more.
  • the W content is preferably 0.005% or more, more preferably 0.008% or more.
  • the content exceeds 0.040%, the occurrence of internal defects during drilling in hot rolling of seamless steel pipes is promoted, especially in the central segregation portion during continuous casting. Therefore, when W is contained, the upper limit of the W content is set to 0.040%.
  • the W content is preferably 0.030% or less, and more preferably 0.015% or less.
  • Sn 0.005 to 0.5%
  • Sn does not significantly affect the improvement of the peeling rate of the corrosion product generated in the sulfuric acid dew point environment, but may be contained for the purpose of reducing the corrosion itself in the sulfuric acid dew point corrosion environment. ..
  • Sn needs to be contained in an amount of 0.005% or more. Therefore, when Sn is contained, the Sn content is set to 0.005% or more.
  • the Sn content is preferably 0.02% or more.
  • the upper limit of the Sn content is set to 0.5%.
  • the Sn content is preferably 0.05% or less.
  • the rest other than the above components are Fe and unavoidable impurities.
  • Specific unavoidable impurity elements include H, O, Co, As, Zr, Ag, Ta, Pb and the like.
  • the permissible upper limit of each unavoidable impurity element is H: 0.0005%, O: 0.004%, Co: 0.001%, As: 0.006%, Zr: 0.0004%, Ag: 0. 001%, Ta: 0.004%, Pb: 0.005%.
  • the seamless steel pipe of the present invention has an average Cu concentration (mass%), an average Cr concentration (mass%), and an average Sb concentration in a region of 0.5 to 2.0 mm from the outer surface of the seamless steel pipe in the central direction of the wall thickness.
  • (mass%) and average W concentration (mass%) are Cu * , Cr * , Sb * , and W * , respectively, when W is not added, 1.7 ⁇ Cu * + 11 ⁇ Cr * +3.8 ⁇ Sb * ⁇ 13.5 ⁇ ⁇ ⁇ (1)
  • the filling In the case of W addition 1.7 ⁇ Cu * + 11 ⁇ Cr * +3.8 ⁇ Sb * +5.2 ⁇ W * ⁇ 13.5 ⁇ ⁇ ⁇ (2) Meet.
  • the exfoliation property of the corrosion product generated in the sulfuric acid dew point environment is related to the concentration of Cu, Cr, Sb and W on the surface of the steel pipe.
  • the steel pipe surface referred to here refers to a region up to 2 mm from the outer surface of the steel pipe.
  • the composition of the corrosion product corresponds to Cu, Cr, Sb, and W that elute when this region is corroded in a sulfuric acid dew point environment, and when these elements are concentrated on the steel pipe surface, the peelability is improved. Conceivable.
  • the present inventor collects samples for EPMA analysis from various steel pipes, sets the measurement conditions to an acceleration voltage of 20 kV, a beam current of 0.5 ⁇ A, and a beam diameter of 10 ⁇ m, from the outer surface side of the steel pipe of the sample toward the center of the wall thickness.
  • Concentration (% by mass) of Cu, Cr, Sb, and W obtained by performing EPMA line analysis measurement in a 2 mm region using a calibration curve prepared in advance from the characteristic X-ray intensity of each element. was calculated.
  • the arithmetic average of the concentrations (mass%) of Cu, Cr, Sb, and W calculated every 0.25 mm in the region of 0.5 to 2.0 mm from the outer surface of the steel pipe toward the center of the wall thickness is calculated.
  • the value calculated on the left side of the equation (1) must satisfy 13.5 or more when W is not added.
  • the value calculated on the left side of the equation (1) is preferably 14.0 or more, and more preferably 15.0 or more.
  • the corrosion product peeling rate can be further reduced, and for example, a corrosion product peeling rate of 8% or less can be obtained.
  • the corrosion product peeling rate can be further reduced, and for example, a corrosion product peeling rate of 5% or less can be obtained.
  • the value calculated on the left side of the equation (2) must satisfy 13.5 or more.
  • the value calculated on the left side of the equation (2) is preferably 14.0 or more, and more preferably 15.0 or more.
  • the corrosion product peeling rate can be further reduced, and for example, a corrosion product peeling rate of 8% or less can be obtained.
  • the corrosion product peeling rate can be further reduced, and for example, a corrosion product peeling rate of 5% or less can be obtained.
  • the Cu, Cr, Sb, and W contents of the steel should be appropriately combined, and the steel pipe manufacturing method described later, particularly the steel piece rolling or slab heat treatment to be carried out after continuous casting of the steel pieces, is optimal. It is achieved by doing it under various conditions.
  • the seamless steel pipe of the present invention has a yield strength of 230 MPa or more and a tensile strength of 380 MPa or more in order to have sufficient strength when used for piping.
  • the yield strength is preferably 250 MPa or more.
  • the tensile strength is preferably 400 MPa or more.
  • the yield strength and tensile strength can be measured by the method described in Examples.
  • the method for melting steel is not particularly limited.
  • molten steel having the above-mentioned composition can be melted by a commonly known melting method such as a converter, an electric furnace, or a vacuum melting furnace.
  • the molten steel casting method is preferably a continuous casting method.
  • continuous casting there are cases where continuous casting is performed on slabs having a rectangular cross section such as general slabs and blooms, and cases where continuous casting is performed directly on slabs having a circular cross section more suitable for hot rolling into seamless steel pipes.
  • the manufacturing conditions in the subsequent manufacturing process change.
  • a slab having a rectangular cross section has a substantially square columnar outer shape
  • a slab having a circular cross section has a substantially cylindrical outer shape.
  • the slab having the rectangular cross section is heated to a predetermined heating temperature and then hot-rolled to obtain a steel pipe material having a circular cross section.
  • the heating temperature is as follows.
  • the temperatures such as slab, steel pipe material, heating temperature of steel pipe, hot rolling temperature, quenching temperature, cooling stop temperature, etc. are the surface temperatures of slab, steel pipe material, steel pipe, etc. (In the case of a steel pipe, the temperature of the outer surface) can be measured with a radiation thermometer or the like.
  • Heating temperature Temperature range of 1000 to 1200 ° C.
  • rolling is performed hot and in the temperature range of the austenite phase of steel.
  • elements such as Cu, Cr, Sb, and W are concentrated on the outer surface of the seamless steel pipe after the steel pipe heat treatment described later. The heating temperature during rolling of steel pieces affects this thickening.
  • the heating temperature during rolling of the steel piece is less than 1000 ° C.
  • the above-mentioned elements are not sufficiently concentrated on the outer surface of the slab (surface of the slab), and the outer surface of the seamless steel pipe after the final heat treatment of the steel pipe is used.
  • the required Cu, Cr, Sb, and W enrichment cannot be obtained. Therefore, a slab having a rectangular cross section is heated to a heating temperature in a temperature range of 1000 ° C. or higher, and hot rolling is performed. That is, the heating temperature at the start of hot rolling (during steel piece rolling) is set to 1000 ° C. or higher.
  • the heating temperature is preferably 1050 ° C. or higher, more preferably 1100 ° C. or higher.
  • the upper limit of the heating temperature is 1200 ° C. This is because the concentration of the alloying elements described above saturates at about 1180 ° C. or higher, and thus it is economically disadvantageous to consume a large fuel cost and raise the heating temperature.
  • the heating temperature is preferably 1190 ° C. or lower, more preferably 1180 ° C. or lower.
  • Heating time from 900 ° C to heating temperature 1.5 hours or more (optimal conditions)
  • the heating time is particularly long at a temperature exceeding 900 ° C.
  • the heating time is more preferably 2.0 hours or more.
  • the upper limit is preferably 3.0 h.
  • hot rolling (steel piece rolling) is immediately performed.
  • the steel piece is rolled within 60 seconds.
  • the hot rolling end temperature is not particularly limited, but the hot rolling temperature end temperature (steel piece rolling end temperature) is 800 ° C. or higher in consideration of the load of the rolling mill due to the rolling load. It is preferably, more preferably 900 ° C. or higher.
  • room temperature means 25 ° C.
  • the cooling method at this time is not particularly limited. Normally, air cooling is performed on a cooling bed or the like, but weak water cooling may be performed for the purpose of shortening the cooling time to room temperature and increasing the number of rollings per hour.
  • air cooling means cooling by leaving it to stand naturally without taking any cooling means, and the cooling rate is usually 1 ° C./s or less.
  • the slab is once heated (shard heat treatment) to be used as a steel pipe material before rolling the steel pipe (pipe making).
  • the heating temperature in this slab heat treatment is as follows.
  • Heating temperature of slab heat treatment Temperature range of 1000 to 1200 ° C. In order to obtain the same effect as steel slab rolling, the heating temperature of slab heat treatment is also the same. That is, when the heating temperature during the slab heat treatment is less than 1000 ° C., the above-mentioned elements such as Cu, Cr, Sb, and W are insufficiently concentrated on the slab outer surface (slab surface), and the final steel pipe heat treatment is performed. The required Cu, Cr, Sb, and W enrichment cannot be obtained on the outer surface of the subsequent seamless steel pipe. Therefore, the heating temperature of the slab heat treatment is set to 1000 ° C. or higher. The heating temperature is preferably 1050 ° C. or higher, more preferably 1100 ° C. or higher.
  • the upper limit of the heating temperature of the slab heat treatment is 1200 ° C. This is because the concentration of the above-mentioned elements saturates at about 1180 ° C. or higher, and therefore it is economically disadvantageous to consume a large fuel cost and raise the heating temperature.
  • the heating temperature of the slab heat treatment is preferably 1190 ° C. or lower, more preferably 1180 ° C. or lower.
  • Heating time from 900 ° C to heating temperature 1.5 hours or more (optimal conditions)
  • the heating time is particularly long at a temperature exceeding 900 ° C.
  • the heating time from 900 ° C. to the heating temperature of the slab heat treatment is 1.5 hours or more.
  • the heating time is more preferably 2.0 hours or more.
  • the upper limit is preferably 3.0 h.
  • the cooling method after the slab heat treatment is not particularly limited. Normally, air cooling is performed on a cooling bed or the like, but weak water cooling may be performed for the purpose of shortening the cooling time to room temperature and increasing the number of heat treatments per hour.
  • a seamless steel pipe having a predetermined shape is formed hot (pipe making process).
  • the pipe making process as a method of forming a seamless steel pipe having a predetermined shape from a steel pipe material, the steel pipe material is heated and hot-rolled (after drilling a piercer, mandrel mill rolling or plug mill rolling to obtain a predetermined wall thickness. After molding, the diameter is reduced to an appropriate diameter).
  • the heating temperature and hot rolling temperature of the steel pipe material are as follows.
  • Heating temperature of steel pipe material 1100 to 1300 ° C
  • the steel pipe material is heated and then hot-rolled to obtain a seamless steel pipe having a predetermined shape.
  • the heating temperature of the steel pipe material is set to 1100 ° C. or higher.
  • the heating temperature of the steel pipe material is preferably 1150 ° C. or higher, more preferably 1200 ° C. or higher.
  • the upper limit of the heating temperature of the steel pipe material is set to 1300 ° C.
  • the heating temperature of the steel pipe material is preferably 1290 ° C. or lower, more preferably 1280 ° C. or lower.
  • Hot rolling temperature 800 ° C. or higher
  • the hot rolling temperature of hot rolling is lower than 800 ° C.
  • the high-temperature ductility of steel decreases and defects occur on the outer surface during hot rolling. These defects remain even after the heat treatment of the steel pipe, and the defects detected by the non-destructive inspection are rejected even if the maintenance and refinement are performed. Therefore, the hot rolling temperature is set to 800 ° C. or higher from the viewpoint of defect prevention. That is, the hot rolling (steel pipe rolling) end temperature is set to 800 ° C. or higher.
  • the rolling end temperature of the diameter reduction rolling is set to 800 ° C. or higher.
  • the hot rolling temperature is preferably 830 ° C. or higher, more preferably 850 ° C. or higher.
  • the cooling method at this time is not particularly limited. Normally, air cooling is performed on a cooling bed or the like, but weak water cooling may be performed for the purpose of shortening the cooling time to room temperature and increasing the number of rollings per hour.
  • normalizing heat treatment is performed on the seamless steel pipe cooled to room temperature (steel pipe heat treatment process).
  • the purpose of the normalizing heat treatment is to adjust the hardness of the seamless steel pipe to a predetermined strength suitable for piping.
  • the heat treatment temperature (normalizing temperature) of the normalizing heat treatment is as follows.
  • Normalizing temperature 850-1050 ° C
  • the normalizing temperature is preferably 880 ° C. or higher, more preferably 900 ° C. or higher.
  • the quasi-temperature shall be 1050 ° C or lower.
  • the normalizing temperature is preferably 1000 ° C. or lower, more preferably 950 ° C. or lower.
  • Air cooling on a cooling floor or the like is preferable for cooling after the completion of the normalizing heat treatment.
  • weak water cooling is performed for the purpose of increasing the number of rollings per hour, it is preferable to start from 500 ° C. or lower, which is sufficiently lower than the transformation end temperature.
  • a slab having a rectangular cross section was heated at a predetermined heating temperature and formed into a steel pipe material (steel piece rolled steel pipe material) having a diameter of 190 mm or a diameter of 140 mm by hot rolling.
  • the seamless steel pipe manufactured using the steel pipe material is described as "steel piece rolling" in the columns of the steel pipe material classification in Tables 3, 4, and 5. Further, the heating temperature at the time of rolling the steel pieces, the heating time from 900 ° C. to the heating temperature, and the end temperature of the rolling of the steel pieces were carried out under the conditions shown in Tables 3, 4 and 5.
  • the slab having a circular cross section was made into a steel pipe material by heat-treating the slab except for some comparative materials.
  • Steel pipes manufactured using steel pipe materials that have undergone slab heat treatment are described as "shard heat treatment” in the columns of steel pipe material categories in Tables 3, 4, and 5.
  • the seamless steel pipe manufactured without performing the slab heat treatment is described as "as straight cast” in the column of steel pipe material classification in Tables 3, 4 and 5.
  • the heating temperature of the slab heat treatment and the heating time from 900 ° C. to the heating temperature were carried out under the conditions shown in Tables 3, 4 and 5.
  • non-destructive inspection is "excellent” without defects
  • non-destructive inspection finds defects but those that meet the acceptance criteria by maintenance are "good”
  • non-destructive inspection finds defects and maintenance is not possible.
  • those that did not meet the acceptance criteria even after maintenance were evaluated as "impossible”
  • excellent and "good” were evaluated as excellent in manufacturability.
  • the manufacturability is more preferably "excellent”.
  • maintenance means removing defects such as flaws using, for example, a cutting device.
  • the EPMA analysis sample had a cross section orthogonal to the longitudinal direction of the steel pipe on the measurement surface, and was mirror-polished.
  • the measurement conditions of EPMA were an acceleration voltage of 20 kV, a beam current of 0.5 ⁇ A, and a beam diameter of 10 ⁇ m, and measurement was performed in a region of 2 mm from the outer surface side of the steel pipe of the sample toward the center of the wall thickness.
  • the reason why the measurement region is set to 2 mm from the outer surface of the steel pipe is that the composition of the corrosion product generated in the sulfuric acid dew point environment corresponds to the concentration of the alloying element eluted when this region is corroded in the sulfuric acid dew point environment.
  • the measurement elements were Cu, Cr, Sb, and W.
  • the concentration (mass%) was calculated using a calibration curve prepared in advance from the characteristic X-ray intensity of each element. Specifically, the arithmetic of the concentrations (mass%) of each of 7 Cu, Cr, Sb, and W calculated every 0.25 mm in the region of 0.5 to 2.0 mm from the outer surface of the steel pipe toward the center of the wall thickness. Calculate the average, average Cu concentration (Cu * ) [mass%], average Cr concentration (Cr * ) [mass%], average Sb concentration (Sb * ) [mass%], average W concentration (W * ) [mass] %].
  • Table 6, Table 7, and Table 8 show Cu * , Cr * , Sb * , and W * .
  • the calculated values on the left side of the formula (1) or the formula (2) calculated from these Cu * , Cr * , Sb * , and W * are also described.
  • the applicable range of the present invention is 13.5 or more. It is preferably 14.0 or more, and more preferably 15.0 or more. The reason why 0.5 mm from the outer surface of the steel pipe is excluded from the measurement area is that it is too close to the sample surface to perform accurate line analysis.
  • Tensile test pieces are sampled from arbitrary positions in the longitudinal and circumferential directions of steel pipes, and processed into JIS Z2241 12B test pieces for steel pipes with an outer diameter of less than 170 mm and JIS Z2241 12C test pieces for steel pipes with an outer diameter of 170 mm or more.
  • a tensile test was conducted based on JIS Z2241.
  • the yield strength and tensile strength obtained in the tensile test are shown in Tables 6, 7 and 8.
  • a yield strength of 230 MPa or more and a tensile strength of 380 MPa or more were accepted. More preferably, the yield strength is 250 MPa or more, and the tensile strength is 400 MPa or more.
  • a corrosion test piece used for the corrosion test under the sulfuric acid dew point environment As a corrosion test piece used for the corrosion test under the sulfuric acid dew point environment, a corrosion test was taken from the outer surface side of the steel pipe so as to include the outer surface of the steel pipe, and the surface corresponding to the outer surface side of the steel pipe was ground by 0.5 mm to remove scale and the like. A piece (length 30 mm ⁇ width 20 mm ⁇ thickness 5 mm) was prepared. Subsequently, the peelability of the corrosion product produced in the sulfuric acid dew point corrosion test was evaluated by the procedure schematically shown in FIG. First, a sulfuric acid aqueous solution adjusted to a concentration of 70% by mass was injected into a container, the liquid temperature was kept at 50 ° C. by an external constant temperature bath, and then the corrosion test piece 1 was immersed.
  • the immersion time was 96 hours. After the completion of the immersion for 96 hours, the sulfuric acid aqueous solution was discharged from the container, the corrosion test piece 1 was dried, carefully taken out, and the corrosion product formed on the surface of the corrosion test piece 1 was photographed by the digital camera 2 on the photographing table.
  • the imaging surface was the surface that was on the outer surface side of the steel pipe when the corrosion test piece was processed. Photographed image analysis performing appropriate image processing on the image by (NIH using the development of the Image J software) to calculate the area S I of the resulting corrosion product (mm 2).
  • a transparent adhesive film manufactured by NICHIBAN, cellophane tape (registered trademark), product number CT-24, width 24 mm
  • Corrosion products that are easily affected were collected on the adhesive surface of the adhesive film.
  • the corrosion product collected on the adhesive surface of the adhesive film is photographed by the digital camera 2, the image is analyzed, the area of the corrosion product collected on the adhesive surface of the adhesive film is calculated, and this is used as the corrosion test piece 1.
  • the area of the corrosion product exfoliated from S II (mm 2 ) was defined.
  • the generated corrode ratio [(S II / S I) ⁇ 100] of the area of corrosion products were stripped from the corrosion test piece to an area of the corrosion products formed corrode the test piece surface (S I) (S II) It was defined as the peeling rate (%).
  • the results are shown in Tables 6, 7 and 8.
  • a corrosion product peeling rate of 10% or less was regarded as acceptable.
  • the corrosion product peeling rate is preferably 8% or less, and more preferably 5% or less.
  • Examples of the invention (steel pipe Nos. 1-1 to 1-22) in which the composition of steel components and the production conditions are within the scope of the present invention and satisfy the requirements of the formula (1) or the formula (2) of the present invention are described.
  • From the viewpoint of pipe defects there were no defects on the inner and outer surfaces of the steel pipe, or even if defects were found, they were minor and met the acceptance criteria after maintenance, and were excellent in manufacturability. Furthermore, it satisfies the yield strength and tensile strength required for seamless steel pipes for piping, and in addition, it has excellent sulfuric acid dew point corrosion resistance with a corrosion product peeling rate of 10% or less after immersion for 96 hours in a sulfuric acid dew point corrosion environment. Indicated.

Abstract

継目無鋼管およびその製造方法を提供することを目的とする。本発明は、質量%で、C:0.02~0.12%、Si:0.010~1.00%、Mn:0.10~2.00%、P:0.050%以下、S:0.004%以下、Al:0.010~0.100%、Cu:0.03~0.80%、Ni:0.02~0.50%、Cr:0.55~1.00%、Sb:0.005~0.20%、を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼管の外表面から肉厚中央方向に0.5~2.0mmの領域における平均Cu濃度(質量%)、平均Cr濃度(質量%)、平均Sb濃度(質量%)を、それぞれCu、Cr、Sbとしたとき、Cu、Cr、Sbが以下の式(1)を満たし、降伏強度が230MPa以上、引張強度が380MPa以上である、耐硫酸露点腐食性に優れる継目無鋼管である。 1.7×Cu+11×Cr+3.8×Sb≧ 13.5 ・・・(1)

Description

耐硫酸露点腐食性に優れる継目無鋼管およびその製造方法
 本発明は、耐硫酸露点腐食性に優れる継目無鋼管およびその製造方法に関する。より具体的には、本発明は、ボイラーやガス化溶融炉等の燃焼排気ガスで生じる硫酸露点腐食環境で使用される配管用として好適な継目無鋼管であって、特に、排熱回収ボイラーにおける、硫酸露点腐食によって生じた腐食生成物の飛散の防止に有用な、耐硫酸露点腐食性に優れる配管用継目無鋼管およびその製造方法に関する。
 硫黄を含む重油や石炭等の燃料を燃焼させるボイラー、火力発電所等の煙道では、排気ガス中に含まれる硫黄酸化物が、温度の低下とともに結露して硫酸となり、激しい腐食を生じる、いわゆる硫酸露点腐食が問題となっている。特に、排熱回収ボイラーの熱回収配管には継目無鋼管が使用されているが、上述の硫酸露点腐食による配管の寿命低下や損傷による事故に加えて、硫酸露点腐食によって生じた腐食生成物が剥離して、ボイラーの排突から周囲に飛散した場合には周囲の環境に影響を及ぼすおそれがある。
 硫酸露点腐食自体の抑制については、例えば、特許文献1には、C:0.001~0.2質量%の鋼に、Si、Mn、P、Sを適正量添加し、さらにCu:0.1~1質量%、Mo:0.001~1質量%、Sb:0.01~0.2質量%を含有させた上で、Sb、CおよびMoが特定の関係を満たすよう制御することにより、耐硫酸露点腐食鋼が得られることが開示されている。
 また、特許文献2には、C:0.01~0.12mass%、Cu:0.03~1.0mass%、Sb:0.002~0.7mass%の鋼に、WやSn、Crを加え、C、Sb、Wが特定の関係を満たすように制御することにより、硫酸露点腐食性に加え、塩酸露点腐食性も改善された耐硫酸露点腐食鋼が開示されている。
特開2003-213367号公報 特開2007-262558号公報
 これらの特許文献1~2に開示された技術は、いずれも硫酸露点腐食速度、あるいは塩酸露点腐食速度を低減するものであり、排熱回収ボイラー等で問題となっている硫酸露点腐食生成物の発生を抑制することについては効果があると考えられる。しかし、硫酸濃度が70質量%となるようなより厳しい環境においては、硫酸露点腐食を十分に抑制することは難しい。さらに、前記環境において発生した腐食生成物の剥離については全く言及されていない。さらに、排熱回収ボイラー用配管に適する継目無鋼管の製造に関して詳細な記載がなく、硫酸露点腐食性と継目無鋼管の製造性を両立する最適条件を見出すこともできない。
 本発明は、上記事情に鑑みてなされたものであり、耐硫酸露点腐食性に優れ、排熱回収ボイラー等の硫酸露点腐食環境で使用される配管用として好適であり、製造性にも優れる継目無鋼管を提供することを目的とする。
 また、本発明は、上記継目無鋼管の好適な製造方法を提供することを目的とする。
 本発明者らは、上述の課題を解決するため、まず、硫酸露点腐食環境下で生成した腐食生成物の剥離性について鋭意研究した。具体的には、基本化学成分を質量%で、C:0.04%、Si:0.2%、Mn:1.4%、Al:0.02%として、さらに耐酸性に有効とされるCuとSbを添加した成分組成を有するベース鋼管素材に、さらに、Sn、W、Crを適宜添加した成分組成を有する鋼管素材より、外径138.9mm、肉厚10.8mmの継目無鋼管を製造した。これら継目無鋼管を焼準温度950℃での焼準熱処理後、当該鋼管外表面側より腐食試験片を採取した。
 具体的には、腐食試験片として、鋼管外表面側から鋼管外表面を含むように採取し、スケール等を除去するため鋼管外表面側に相当する面を0.5mm研削した腐食試験片(長さ30mm×幅20mm×厚み5mm)を用意した。続いて、図1に模式的に示す手順で硫酸露点腐食試験を実施し、前記腐食試験で生成した腐食生成物の剥離性を評価した。
 図1に示すように、まず、容器に濃度70質量%に調整した硫酸水溶液を注入し、外部恒温槽によって液温を50℃に加熱保持してから、腐食試験片(図1中の試験片1)を浸漬した。浸漬時間は96hとした。96h浸漬後、容器から硫酸水溶液を排出し、腐食試験片1を乾燥後、慎重に取り出し、撮影台上で腐食試験片表面に生成した腐食生成物をデジタルカメラ2で撮影した。撮影面は、腐食試験片加工時に鋼管外表面側であった面とした。撮影した画像に適切な画像処理を施し画像解析(NIH開発のImage Jソフトウエアを使用)して、生成した腐食生成物の面積S(mm)を算出した。次に、腐食試験片1の撮影面に透明な粘着フィルム(NICHIBAN社製、セロテープ(登録商標)品番CT-24、幅24mm)を貼付し、それを剥がすことで生成した腐食生成物のうち剥離しやすい腐食生成物を粘着フィルムの粘着面に採取した。最後に、粘着フィルムの粘着面に採取した腐食生成物をデジタルカメラ2で撮影し、画像解析して、粘着フィルムの粘着面に採取した腐食生成物の面積を算出し、これを腐食試験片から剥離した腐食生成物の面積SII(mm)とした。そして、腐食試験片表面に生成した腐食生成物の面積(S)に対する腐食試験片から剥離した腐食生成物の面積(SII)の割合[(SII/S)×100]を腐食生成物剥離率(%)と定義した。
 実験に使用したCu、Sb、Sn、W、Cr添加量の異なる継目無鋼管の、硫酸露点腐食試験後の腐食生成物剥離率の比較を図2に示す。図2に示すように、基本化学成分(0.04%C-0.2%Si-1.4%Mn-0.02%Al)に、さらにCu:0.3%、Sb:0.1%を添加したベース鋼管素材(図2中の「0.3%Cu-0.1%Sb」材)と比較して、Sb添加量を増やした「0.3%Cu-0.2%Sb」材、Snを添加した「0.3%Cu-0.1%Sb-0.05%Sn」材の腐食生成物剥離率に大きな差は認められなかった。一方、ベース鋼管素材に、Wを添加した「0.3%Cu-0.1%Sb-0.03%W」材と、Crを添加した「0.3%Cu-0.1%Sb-0.3%Cr」材は腐食生成物剥離率の改善が認められた。さらに、Cr量を増加した「0.3%Cu-0.1%Sb-0.6%Cr」材は、ベース鋼管素材(「0.3%Cu-0.1%Sb」材)の約半分程度まで腐食生成物剥離率が改善していた。
 さらに、同一の成分組成でも、鋼管素材の製造方法によって腐食生成物剥離率が変わることも見出した。具体的には、鋼を転炉溶製後、直接、円形断面を有する鋳片に連続鋳造して得た鋼管素材(以降「直鋳まま鋼管素材」ともいう)から造管・熱処理して継目無鋼管を製造した場合にくらべて、鋼を転炉溶製後、一旦、矩形断面を有する鋳片に連続鋳造し、その後、加熱して熱間圧延を施し円形断面に加工して得た鋼管素材(以降「鋼片圧延鋼管素材」ともいう)の方が、腐食生成物剥離率が良好であった。
 本発明者らは、上記鋼管素材(直鋳まま鋼管素材、鋼片圧延鋼管素材)による腐食生成物剥離率の違いを明らかにすべく、鋭意研究を重ねた。その結果、継目無鋼管の外表面の合金元素の濃化の違いであることを突き止めた。具体的には、腐食生成物剥離率測定に用いた「0.3%Cu-0.1%Sb-0.6%Cr」材の継目無鋼管において、腐食試験片を採取した領域の隣接部より試料を採取し、鋼管長手方向と直交する断面を鏡面研磨した。次に、電子線マイクロアナライザー(EPMA)によりCrの定量線分析を行った。EPMAの測定条件は、加速電圧20kV、ビーム電流0.5μA、ビーム径10μmとし、試料の鋼管外表面側から肉厚中央に向かって4mmまでの領域の測定を行い、Cr-K殻励起の特性X線強度よりあらかじめ作成しておいた検量線を使用して、Cr濃度(質量%)に換算した。
 図3に、直鋳まま鋼管素材を造管・熱処理して製造した継目無鋼管から採取した試料と、鋼片圧延鋼管素材を造管・熱処理して製造した継目無鋼管から採取した試料のEPMA線分析結果を比較して示す。図3に示すように、直鋳まま鋼管素材を造管・熱処理して製造した継目無鋼管から採取した試料は、鋼管の外表面から肉厚中央方向に向かって4mmまでの領域でほとんど同じCr濃度を示した。一方、鋼片圧延鋼管素材を造管・熱処理して製造した継目無鋼管から採取した試料は、鋼管の外表面から肉厚中央方向に向かって約1mm前後の領域でCr濃度の増加が認められた。さらに比較のために、直鋳まま鋼管素材の在庫品に対し、鋼片圧延鋼管素材の熱間圧延時の加熱保持を模擬した熱処理、すなわち矩形断面を有する鋳片を加熱して熱間圧延を施し円形断面に加工して鋼片圧延鋼管素材とする際の加熱を模擬した熱処理を施し、その後、造管・熱処理して継目無鋼管としてから試料を採取し、EPMA測定を行った結果も図3に示す。その結果、直鋳まま鋼管素材に対し、矩形断面を有する鋳片から鋼片圧延鋼管素材とする際に施す熱処理と同様の熱処理を施した鋼管素材(以降「鋳片熱処理鋼管素材」ともいう)を造管・熱処理して製造した継目無鋼管から採取した試料は、鋼片圧延鋼管素材を造管・熱処理して製造した継目無鋼管から採取した試料と同様のCr濃度の増加が得られることがわかった。
 本発明者らは、Cr以外の合金元素についても同様なEPMA測定を行った。さらに広範に合金元素量を変えた鋼を溶製し、それぞれ鋼管素材の製造方法を変えた継目無鋼管の実験材を製造し、継目無鋼管の外表面下の合金元素濃化と、硫酸露点腐食試験の腐食生成物剥離率との関係を鋭意調査した。その結果、腐食生成物の剥離率に影響する合金元素を、Cu、Cr、Sbを添加する場合と、Cu、Cr、SbとともにWを添加する場合に絞り込み、EPMA測定で得られた継目無鋼管の外表面下0.5~2.0mmの領域の平均Cu濃度(質量%)、平均Cr濃度(質量%)、平均Sb濃度(質量%)、平均W濃度(質量%)を、それぞれCu、Cr、Sb、Wとし、下記の回帰式で計算される値で腐食生成物剥離率との関係を図4のように整理した。
 すなわち、Cu、Cr、Sbを添加し、W無添加の場合は、
 1.7×Cu+11×Cr+3.8×Sb ・・・(A)
の回帰式となる。
 Cu、Cr、SbとともにW添加の場合は、
 1.7×Cu+11×Cr+3.8×Sb+5.2×W ・・・(B)
の回帰式となる。
 そして、図4より腐食生成物剥離率10%以下とするためには、(A)ないし(B)式で計算された値が13.5以上である必要があることを見出した。
 本発明は、これらの知見に基づいて完成されたものであり、下記の要旨からなる。
[1]質量%で、
C:0.02~0.12%、
Si:0.010~1.00%、
Mn:0.10~2.00%、
P:0.050%以下、
S:0.004%以下、
Al:0.010~0.100%、
Cu:0.03~0.80%、
Ni:0.02~0.50%、
Cr:0.55~1.00%、
Sb:0.005~0.20%、
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
鋼管の外表面から肉厚中央方向に0.5~2.0mmの領域における平均Cu濃度(質量%)、平均Cr濃度(質量%)、平均Sb濃度(質量%)を、それぞれCu、Cr、Sbとしたとき、Cu、Cr、Sbが以下の式(1)を満たし、
降伏強度が230MPa以上、引張強度が380MPa以上である、耐硫酸露点腐食性に優れる継目無鋼管。
1.7×Cu+11×Cr+3.8×Sb≧ 13.5 ・・・(1)
[2]質量%で、
C:0.02~0.12%、
Si:0.010~1.00%、
Mn:0.10~2.00%、
P:0.050%以下、
S:0.004%以下、
Al:0.010~0.100%、
Cu:0.03~0.80%、
Ni:0.02~0.50%、
Cr:0.55~1.00%、
Sb:0.005~0.20%、
W:0.003~0.040%、
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
鋼管の外表面から肉厚中央方向に0.5~2.0mmの領域における平均Cu濃度(質量%)、平均Cr濃度(質量%)、平均Sb濃度(質量%)、平均W濃度(質量%)を、それぞれCu、Cr、Sb、Wとしたとき、Cu、Cr、Sb、Wが以下の式(2)を満たし、
降伏強度が230MPa以上、引張強度が380MPa以上である、耐硫酸露点腐食性に優れる継目無鋼管。
1.7×Cu+11×Cr+3.8×Sb+5.2×W≧ 13.5 ・・・(2)
[3]前記成分組成が、さらに、質量%で、
Sn:0.005~0.5%
を含有する、[1]または[2]に記載の耐硫酸露点腐食性に優れる継目無鋼管。
[4]前記[1]~[3]のいずれかに記載の耐硫酸露点腐食性に優れる継目無鋼管の製造方法であって、
前記成分組成を有する鋼を、矩形断面を有する鋳片に鋳造し、
次いで、前記矩形断面を有する鋳片を1000~1200℃の温度域の加熱温度に加熱し、熱間圧延を施して円形断面を有する鋼管素材としてから冷却し、
前記冷却した鋼管素材を、1100~1300℃に加熱後、800℃以上で熱間圧延して、所定の形状の継目無鋼管とし、冷却した後、
850~1050℃の焼準温度で加熱する焼準熱処理を行う、耐硫酸露点腐食性に優れる継目無鋼管の製造方法。
[5]矩形断面を有する鋳片を1000~1200℃の温度域の加熱温度に加熱する際、900℃から前記加熱温度までの加熱時間が1.5h以上である、[4]に記載の耐硫酸露点腐食性に優れる継目無鋼管の製造方法。
[6]前記[1]~[3]のいずれかに記載の耐硫酸露点腐食性に優れる継目無鋼管の製造方法であって、
前記成分組成を有する鋼を、円形断面を有する鋳片に鋳造し、
次いで、前記円形断面を有する鋳片を1000~1200℃の温度域の加熱温度に加熱して鋼管素材とした後、冷却し、
前記冷却した鋼管素材を、1100~1300℃に加熱後、800℃以上で熱間圧延して、所定の形状の継目無鋼管とし、冷却した後、
850~1050℃の焼準温度で加熱する焼準熱処理を行う、耐硫酸露点腐食性に優れる継目無鋼管の製造方法。
[7]円形断面を有する鋳片を1000~1200℃の温度域の加熱温度に加熱する際、900℃から前記加熱温度までの加熱時間が1.5h以上である、[6]に記載の耐硫酸露点腐食性に優れる継目無鋼管の製造方法。
 なお、本発明において、耐硫酸露点腐食性に優れるとは、継目無鋼管外表面から採取した腐食試験片を、50℃に加熱保持した濃度70質量%の硫酸水溶液中に96h浸漬した後、生成した腐食生成物の剥離率が10%以下であることを指す。
 本発明によれば、耐硫酸露点腐食性に優れ、排熱回収ボイラー等の硫酸露点腐食環境で使用される配管用として好適であり、製造性にも優れる継目無鋼管を提供することができる。また、本発明によれば、上記継目無鋼管の好適な製造方法を提供することができる。
 本発明の継目無鋼管は、耐硫酸露点腐食性に優れ、排熱回収ボイラー等において硫酸濃度が70質量%となるようなより厳しい環境において生成した腐食生成物の剥離の抑制効果に優れる。また、本発明の継目無鋼管は、所定の降伏強度、引張強度を備え、配管用として好適である。さらに、本発明の継目無鋼管は、その製造過程において発生する欠陥の抑制効果に優れ、製造性に優れる。
図1は、腐食生成物剥離率の測定方法を説明する模式図である。 図2は、Cu、Sb、Sn、W、Cr添加量の異なる継目無鋼管実験材の腐食生成物剥離率の調査結果を示すグラフである。 図3は、異なる鋼管素材から製造した継目無鋼管の、外表面~4mmの領域についてEPMA線分析を行った結果を示すグラフである。 図4は、継目無鋼管の外表面近傍のCu、Cr、Sb、W濃度(Cu、Cr、Sb、W)の回帰式と、腐食生成物剥離率との相関を示すグラフである。
 以下、本発明について詳細に説明する。
 まず、本発明の耐硫酸露点腐食性に優れる継目無鋼管の成分組成の限定理由について説明する。なお、成分の含有量の単位である「%」は、特に断わらないかぎり「質量%」を意味するものとする。また、本発明の耐硫酸露点腐食性に優れる継目無鋼管を、単に、本発明の継目無鋼管ともいう。
 C:0.02~0.12%
 Cは鋼の強度を高める元素であり、本発明では、特に配管用継目無鋼管として要求される降伏強度、および引張強度を満足させるため、0.02%以上のCの含有を必要とする。よって、C含有量は0.02%以上とする。C含有量は、好ましくは0.021%以上であり、より好ましくは0.022%以上である。一方、0.12%を超えるCの含有は、高温での熱間延性に悪影響する。具体的には、継目無鋼管の熱間圧延時の表面欠陥発生の原因となる。このため、C含有量の上限を0.12%とする。表面欠陥防止の観点から、C含有量は、好ましくは0.08%以下であり、より好ましくは0.04%以下である。
 Si:0.010~1.00%
 Siは脱酸剤として作用するとともに、鋼中に固溶して鋼の強度を高める元素であり、本発明では、特に配管用継目無鋼管として要求される降伏強度、および引張強度を満足させるため、0.010%以上のSiの含有を必要とする。よって、Si含有量は0.010%以上とする。Si含有量は、好ましくは0.05%以上であり、より好ましくは0.20%以上である。一方、1.00%を超えるSiの含有は、高温での熱間延性に悪影響する。このため、Si含有量の上限を1.00%とする。Si含有量は、好ましくは0.80%以下であり、より好ましくは0.60%以下である。
 Mn:0.10~2.00%
 Mnは、焼入れ性の向上を介して、鋼の強度を高める元素であり、本発明では、特に配管用継目無鋼管として要求される降伏強度、および引張強度を満足させるため、0.10%以上のMnの含有を必要とする。よって、Mn含有量は0.10%以上とする。Mn含有量は、好ましくは0.50%以上であり、より好ましくは1.10%以上である。一方、2.00%を超えてMnを含有させた場合、連続鋳造時の中心偏析が著しく、継目無鋼管の熱間圧延における穿孔時の内部欠陥の原因となる。このため、Mn含有量の上限を2.00%とする。Mn含有量は、好ましくは1.80%以下であり、より好ましくは1.40%以下である。
 P:0.050%以下
 Pは、連続鋳造時の中心偏析が著しく、継目無鋼管の熱間圧延における穿孔時の内部欠陥の原因となる。そのため、本発明ではできるだけ低減することが望ましいが、0.050%までは許容できる。このため、P含有量は0.050%以下とする。P含有量は、好ましくは0.030%以下であり、より好ましくは、0.015%以下である。P含有量の下限は、特に限定されないが、過度の脱Pは製造コストの増加を招くため、P含有量の下限は0.004%程度とすることが好適である。
 S:0.004%以下
 Sもまた、連続鋳造時の中心偏析が著しく、継目無鋼管の熱間圧延における穿孔時の内部欠陥の原因となる。そのため、本発明ではできるだけ低減することが望ましいが、0.004%までは許容できる。このため、S含有量は0.004%以下とする。S含有量は、好ましくは0.003%以下であり、より好ましくは、0.002%以下である。S含有量の下限は、特に限定されないが、過度の脱Sは製造コストの増加を招くため、S含有量の下限は0.0004%程度とすることが好適である。
 Al:0.010~0.100%
 Alは脱酸材として作用する元素である。固溶酸素を低減し、後述するCr含有時に、Cr酸化物生成による有効Cr量の低下を防止するため、0.010%以上の含有を必要とする。よって、Al含有量は0.010%以上とする。Al含有量は、好ましくは0.015%以上であり、より好ましくは0.020%以上である。一方、0.100%を超えてAlを含有させた場合、Alが鋼中に多く発生し、鋼の高温での熱間延性に悪影響する。このことから、Al含有量の上限を0.100%とする。Al含有量は、好ましくは0.080%以下であり、より好ましくは0.040%以下である。
 Cu:0.03~0.80%
 Cuは硫酸露点環境下での鋼の腐食防止に有効な元素である。さらに、Crとの複合添加で、鋼管外表面に濃化した場合、腐食生成物の剥離性を改善する働きをする。このような効果を得るため、Cuは0.03%以上の含有を必要とする。よって、Cu含有量は0.03%以上とする。Cu含有量は、好ましくは0.10%以上であり、より好ましくは0.20%以上である。一方、Cuは鋼の高温延性を低下させることも良く知られており、0.80%を超えて含有させた場合、熱間圧延時の外表面欠陥発生が著しいことから、Cu含有量の上限を0.80%とする。Cu含有量は、好ましくは0.60%以下であり、より好ましくは0.40%以下である。
 Ni:0.02~0.50%
 Niは、Cu含有鋼に複合添加した場合、Cuの高温延性低下を抑制する元素である。このような効果を得るため、0.02%以上の含有を必要とする。よって、Ni含有量は0.02%以上とする。Ni含有量は、好ましくは0.08%以上であり、より好ましくは0.10%以上である。一方、0.50%を超えて含有させても効果が飽和し、かつ、添加コストが高い元素であることから、Ni含有量の上限を0.50%とする。Ni含有量は、好ましは0.45%以下であり、より好ましは0.30%以下である。
 Cr:0.55~1.00%
 Crは硫酸露点環境下での腐食防止自体には大きく寄与しないが、図2に示すように、CuおよびSbとの複合添加によって、腐食生成物の剥離性の改善に寄与する重要な元素である。このような効果を得るため、0.55%以上の含有を必要とする。よって、Cr含有量は0.55%以上とする。Cr含有量は、好ましくは0.57%以上であり、より好ましくは0.60%以上である。一方、1.00%を超えて含有させた場合、特に連続鋳造時の中心偏析部において、継目無鋼管の熱間圧延における穿孔時の内部欠陥の発生を助長する。このことから、Cr含有量の上限を1.00%とする。Cr含有量は、好ましは0.90%以下であり、より好ましは0.80%以下である。
 Sb:0.005~0.20%
 SbはCuと同様、硫酸露点腐食環境下での鋼の腐食防止に有効な元素である。さらに、Crとの複合添加で鋼管外表面に濃化した場合、腐食生成物の剥離性を改善する働きをする。このような効果を得るためには、Sbは0.005%以上の含有を必要とする。よって、Sb含有量は0.005%以上とする。Sb含有量は、好ましくは0.02%以上であり、より好ましくは0.05%以上である。一方、0.20%を超えて含有させた場合、高温延性を著しく低下させ、熱間圧延時の外表面欠陥発生が著しいことから、Sb含有量の上限を0.20%とする。Sb含有量は、好ましは0.15%以下であり、より好ましは0.09%以下である。
 以上を基本成分とすることが好ましいが、本発明では、さらに、W:0.003~0.040%、Sn:0.005~0.5%のうち1種または2種を含有することができる。
 W:0.003~0.040%
 Wは、Crと同様、硫酸露点環境下で生成した腐食生成物の剥離性を改善することを本発明者らは見出した。ただし、Crと異なり高価な元素であるため、Crと複合添加させることで、さらなる腐食生成物剥離性を改善させることを目的に含有させてもよい。このような効果を得るために、Wは0.003%以上の含有を必要とする。よって、Wを含有する場合、W含有量は0.003%以上とする。W含有量は、好ましくは0.005%以上であり、より好ましくは0.008%以上である。一方、0.040%を超えて含有させた場合、特に連続鋳造時の中心偏析部において、継目無鋼管の熱間圧延における穿孔時の内部欠陥の発生を助長する。このことから、Wを含有する場合、W含有量の上限を0.040%とする。W含有量は、好ましは0.030%以下であり、より好ましは0.015%以下である。
 Sn:0.005~0.5%
 Snは、図2に示すように硫酸露点環境下で生成した腐食生成物の剥離率の改善にはあまり影響しないが、硫酸露点腐食環境下での腐食そのものを低減する目的に含有させても良い。硫酸露点腐食の改善のためには、Snは0.005%以上の含有を必要とする。よって、Snを含有する場合、Sn含有量は0.005%以上とする。Sn含有量は、0.02%以上が好ましい。一方、SnはSbと同様に鋼の高温延性を低下させるため、Snを含有する場合、Sn含有量の上限を0.5%とする。Sn含有量は、好ましくは0.05%以下とする。
 上記した成分以外の残部は、Feおよび不可避的不純物である。具体的な不可避的不純物元素としては、H、O、Co、As、Zr、Ag、Ta、Pb等が挙げられる。それぞれの不可避的不純物元素の許容上限は、H:0.0005%、O:0.004%、Co:0.001%、As:0.006%、Zr:0.0004%、Ag:0.001%、Ta:0.004%、Pb:0.005%である。
 次に、本発明の継目無鋼管の外表面下におけるCu濃度、Cr濃度、Sb濃度、W濃度の規定について説明する。
 本発明の継目無鋼管は、当該継目無鋼管の外表面から肉厚中央方向に0.5~2.0mmの領域における平均Cu濃度(質量%)、平均Cr濃度(質量%)、平均Sb濃度(質量%)、平均W濃度(質量%)を、それぞれCu、Cr、Sb、Wとしたとき、W無添加の場合は、
1.7×Cu+11×Cr+3.8×Sb≧ 13.5 ・・・(1)
を満たし、
W添加の場合は、
1.7×Cu+11×Cr+3.8×Sb+5.2×W≧ 13.5 ・・・(2)
を満たす。
 上述の通り、本発明の課題である、硫酸露点環境下で生成した腐食生成物の剥離性は、鋼管表面のCu、Cr、Sb、Wの濃化と関係する。ここでいう鋼管表面とは、鋼管外表面から最大で2mmまでの領域を指す。腐食生成物の組成は、この領域が硫酸露点環境で腐食した際に溶出するCu、Cr、Sb、Wと対応し、これらの元素が鋼管表面に濃化していることで、剥離性が向上すると考えられる。本発明者は、種々鋼管よりEPMA分析用試料を採取し、測定条件を、加速電圧20kV、ビーム電流0.5μA、ビーム径10μmとして、前記試料の鋼管外表面側から肉厚中央方向に向かって2mmの領域のEPMA線分析測定を行って得られたCu、Cr、Sb、Wについて、それぞれの元素の特性X線強度よりあらかじめ作成しておいた検量線を使用して、濃度(質量%)を算出した。具体的には、鋼管の外表面から肉厚中央方向に0.5~2.0mmの領域において0.25mmごとに算出したCu、Cr、Sb、Wそれぞれの濃度(質量%)の算術平均を、それぞれ平均Cu濃度(Cu)[質量%]、平均Cr濃度(Cr)[質量%]、平均Sb濃度(Sb)[質量%]、平均W濃度(W)[質量%]とした。なお、鋼管外表面から0.5mmまでを測定領域から除外したのは、試料表面に近すぎて正確な線分析ができないためである。さらに、Cu、Cr、Sb、Wを重回帰し、W無添加の場合は、1.7×Cu+11×Cr+3.8×Sbで計算される値、W添加の場合は、1.7×Cu+11×Cr+3.8×Sb+5.2×Wで計算される値と、EPMA分析用試料を採取した継目無鋼管と同一の継目無鋼管より採取した腐食試験片を用い、図1に模式的に示す要領で算出した硫酸露点環境下での腐食生成物剥離率との関係を図4のように整理した。
 図4より、腐食生成物剥離率10%以下を目標としたとき、W無添加の場合は、式(1)の左辺で計算される値が13.5以上を満たす必要がある。式(1)の左辺で計算される値は、好ましくは14.0以上であり、より好ましくは15.0以上である。式(1)の左辺で計算される値が14.0以上であると、腐食生成物剥離率をより低減でき、例えば8%以下の腐食生成物剥離率が得られる。さらに式(1)で計算される値が15.0以上であると、腐食生成物剥離率をさらに低減でき、例えば5%以下の腐食生成物剥離率が得られる。W添加の場合も同様に、腐食生成物剥離率10%以下を目標としたとき、式(2)の左辺で計算される値が13.5以上を満たす必要がある。式(2)の左辺で計算される値は、好ましくは14.0以上であり、より好ましくは15.0以上である。式(2)の左辺で計算される値が14.0以上であると、腐食生成物剥離率をより低減でき、例えば8%以下の腐食生成物剥離率が得られる。さらに式(2)で計算される値が15.0以上であると、腐食生成物剥離率をさらに低減でき、例えば5%以下の腐食生成物剥離率が得られる。これらの値は、鋼のCu、Cr、Sb、W含有量を適切な組み合わせとすると共に、後述する鋼管の製造方法、特に鋼片の連続鋳造後に実施する、鋼片圧延あるいは鋳片熱処理を最適な条件で行うことで達成される。
 本発明の継目無鋼管は、配管に用いた場合に、充分な強度を備えるために、降伏強度230MPa以上、かつ、引張強度380MPa以上とする。降伏強度は、250MPa以上が好ましい。引張強度は、400MPa以上が好ましい。なお、降伏強度、引張強度は、実施例に記載の方法により測定できる。
 次に、本発明の継目無鋼管の製造方法について説明する。
 本発明では、鋼の溶製方法は特に限定しない。例えば、上記した成分組成を有する溶鋼を、転炉、電気炉、真空溶解炉等の通常公知の溶製方法で溶製することができる。溶鋼の鋳造方法は、コストの観点から、連続鋳造法が好ましい。連続鋳造では、一般的なスラブ、ブルームといった矩形断面を有する鋳片に連続鋳造する場合と、より継目無鋼管への熱間圧延に適した円形断面を有する鋳片に直接連続鋳造する場合とで、その後の製造過程における製造条件が変わる。なお、矩形断面を有する鋳片は、略四角柱状の外形を有しており、円形断面を有する鋳片は、略円柱状の外形を有している。
 矩形断面を有する鋳片に連続鋳造した場合、当該矩形断面を有する鋳片を所定加熱温度に加熱した後、熱間圧延して、円形断面を有する鋼管素材とする。この際、前記加熱温度は以下とする。なお、本発明において、特に断らない限り、鋳片、鋼管素材、鋼管の加熱温度、熱間圧延温度、焼準温度、冷却停止温度等の温度は、鋳片、鋼管素材、鋼管等の表面温度(鋼管の場合には、外表面の温度)とし、放射温度計等で測定することができる。
 加熱温度:1000~1200℃の温度域
 矩形断面を有する鋳片を円形断面の鋼管素材へ圧延(鋼片圧延)によって成形する際、熱間で、かつ鋼のオーステナイト相の温度域で圧延を行う必要がある。加えて、本発明の課題である、硫酸露点環境下で生成した腐食生成物を剥離しにくくするため、後述する鋼管熱処理後の継目無鋼管外表面にCu、Cr、Sb、Wといった元素を濃化させる必要があり、鋼片圧延時の加熱温度がこの濃化に影響する。すなわち、鋼片圧延時の加熱温度が1000℃未満の場合、上述の元素の鋳片外面(鋳片表面)への濃化が不十分で、最終的な鋼管熱処理後の継目無鋼管外表面で必要なCu、Cr、Sb、W濃化が得られない。そのため、矩形断面を有する鋳片を1000℃以上の温度域の加熱温度に加熱し、熱間圧延を施す。すなわち、熱間圧延開始時(鋼片圧延時)の加熱温度を1000℃以上とする。なお、前記加熱温度は、好ましくは1050℃以上であり、より好ましくは1100℃以上である。一方で、前記加熱温度の上限は1200℃とする。上述の合金元素の濃化はおよそ1180℃以上で飽和するため、多大な燃料コストを消費して加熱温度を上げることは経済的に不利となるためである。前記加熱温度は、好ましくは1190℃以下であり、より好ましくは1180℃以下である。
 900℃から加熱温度までの加熱時間:1.5h以上(好適条件)
 より効果的に継目無鋼管の外表面にCu、Cr、Sb、Wといった元素を濃化させるため、特に900℃を超える温度での加熱時間が長いことが好ましい。具体的には、900℃から目標とする鋼片圧延時の加熱温度までの加熱時間を1.5h以上とすることで、鋼片圧延時の加熱温度が同一であってもCu、Cr、Sb、Wといった元素の濃化が著しくなる。よって、900℃から鋼片圧延時の加熱温度までの加熱時間を1.5h以上とすることが好ましい。前記加熱時間は、より好ましくは2.0h以上である。一方で、この加熱時間を3.0h以上としても効果は飽和し、かつ、燃料費等で経済的に不利となるため、上限は3.0hとすることが好ましい。
 なお、矩形断面を有する鋳片を1000~1200℃の温度域の目標とする加熱温度に加熱後、速やかに熱間圧延(鋼片圧延)を実施する。好ましくは、60秒以内に鋼片圧延を実施する。また、熱間圧延終了温度(鋼片圧延終了温度)は特に限定はしないが、圧延荷重による圧延機の負荷を考慮すると、熱間圧延温度終了温度(鋼片圧延終了温度)は800℃以上が好ましく、より好ましくは900℃以上である。
 熱間圧延(鋼片圧延)が終了した後、室温まで冷却する。なお、本発明において、室温とは25℃を意味する。この際の冷却方法は特に限定はしない。通常は冷却床等で空冷するが、室温までの冷却時間を短縮して、時間当たりの圧延数を増やす目的で弱水冷を行っても構わない。なお、ここで、空冷とは、何らの冷却手段を講じることなく、自然に放置して冷却することであり、通常、その冷却速度は1℃/s以下である。
 円形断面を有する鋳片に連続鋳造した場合は、鋼管圧延(造管)前に、一旦、前記鋳片を加熱(鋳片熱処理)して鋼管素材とする。この鋳片熱処理における加熱温度は以下とする。
 鋳片熱処理の加熱温度:1000~1200℃の温度域
 鋼片圧延と同等の効果を得るために、鋳片熱処理の加熱温度も同様とする。すなわち、鋳片熱処理時の加熱温度が1000℃未満の場合、Cu、Cr、Sb、Wといった上述の元素の鋳片外面(鋳片表面)への濃化が不十分で、最終的な鋼管熱処理後の継目無鋼管の外表面で必要なCu、Cr、Sb、W濃化が得られない。よって、鋳片熱処理の加熱温度は、1000℃以上とする。なお、前記加熱温度は、好ましくは1050℃以上であり、より好ましくは1100℃以上である。一方で、鋳片熱処理の加熱温度の上限は1200℃とする。上述の元素の濃化はおよそ1180℃以上で飽和するため、多大な燃料コストを消費して加熱温度を上げることは経済的に不利となるためである。鋳片熱処理の加熱温度は、好ましくは1190℃以下であり、より好ましくは1180℃以下である。
 900℃から加熱温度までの加熱時間:1.5h以上(好適条件)
 より効果的に継目無鋼管の外表面にCu、Cr、Sb、Wといった元素を濃化させるため、特に900℃を超える温度での加熱時間が長いことが好ましい。具体的には、900℃から目標とする鋳片熱処理の加熱温度までの加熱時間を1.5h以上とすることで、鋳片熱処理の加熱温度が同一であってもCu、Cr、Sb、Wといった元素の濃化が著しくなる。よって、900℃から鋳片熱処理の加熱温度までの加熱時間を1.5h以上とすることが好ましい。前記加熱時間は、より好ましくは2.0h以上である。一方で、この加熱時間を3.0h以上としても効果は飽和し、かつ、燃料費等で経済的に不利となるため、上限は3.0hとすることが好ましい。
 鋳片熱処理工程では、目標とする加熱温度となってから、速やかに加熱炉から搬出して室温まで冷却を行う。鋳片熱処理後の冷却方法は特に限定はしない。通常は冷却床等で空冷するが、室温までの冷却時間を短縮して、時間当たりの熱処理本数を増やす目的で弱水冷を行っても構わない。
 次に、鋼片圧延あるいは鋳片熱処理を実施して得た鋼管素材を用いて、熱間で所定の形状の継目無鋼管を形成する(造管工程)。造管工程において、鋼管素材から所定の形状の継目無鋼管を形成する方法としては、鋼管素材を加熱し、熱間圧延(ピアサー穿孔の後、マンドレルミル圧延、あるいはプラグミル圧延して所定の肉厚に成形後、適切な径まで縮径圧延)する方法が挙げられる。鋼管素材の加熱温度、熱間圧延温度は以下とする。
 鋼管素材の加熱温度:1100~1300℃
 造管工程では、鋼管素材を加熱した後、熱間圧延して所定の形状の継目無鋼管とする。この際、鋼管素材の加熱温度が1100℃未満の場合、ピアサー穿孔時の内部欠陥の発生が著しく、最終の鋼管熱処理後に非破壊検査で検出された欠陥は手入れ精整を行っても不合格となるため、欠陥防止の観点から鋼管素材の加熱温度は1100℃以上とする。鋼管素材の加熱温度は、好ましくは1150℃以上であり、より好ましくは1200℃以上である。一方で、鋼管素材の加熱温度が1300℃超えの場合、鋼表面の酸化ロスや、燃料費の上昇等、経済的に不利益となるため、鋼管素材の加熱温度の上限を1300℃とする。鋼管素材の加熱温度は、好ましくは1290℃以下であり、より好ましくは1280℃以下である。
 熱間圧延温度:800℃以上
 熱間圧延(鋼管圧延)の圧延温度が800℃を下回ると、鋼の高温延性が低下し熱間圧延中の外表面に欠陥が発生する。これらの欠陥は鋼管熱処理後も残存し、非破壊検査で検出された欠陥は手入れ精整を行っても不合格となるため、欠陥防止の観点から熱間圧延温度は800℃以上とする。すなわち、熱間圧延(鋼管圧延)終了温度を800℃以上とする。例えば、熱間圧延として、ピアサー穿孔、マンドレルミル圧延あるいはプラグミル圧延し、その後、縮径圧延する場合、縮径圧延の圧延終了温度を800℃以上とする。熱間圧延温度は、好ましくは830℃以上であり、より好ましくは850℃以上である。
 鋼管の熱間圧延が終了した後、室温まで冷却する。この際の冷却方法については特に制限しない。通常は冷却床等で空冷するが、室温までの冷却時間を短縮して、時間当たりの圧延数を増やす目的で弱水冷を行っても構わない。
 造管工程後、室温まで冷却した継目無鋼管に、焼準熱処理を行う(鋼管熱処理工程)。焼準熱処理の目的は、継目無鋼管の硬度を、配管用として好適な所定の強度に調整することである。焼準熱処理の熱処理温度(焼準温度)は以下とする。
 焼準温度:850~1050℃
 焼準熱処理の焼準温度が850℃未満の場合、鋼の一部がオーステナイト変態を終了せず、未変態のフェライトやパーライト組織のまま高温で保持される。この結果、これらのフェライトやパーライト組織が強度低下の原因となるため、焼準温度は850℃以上とする。焼準温度は、好ましくは880℃以上であり、より好ましくは900℃以上である。一方、焼準温度が1050℃を超える場合、オーステナイト変態終了後の粒成長が著しく、焼準熱処理終了後の冷却過程で変態生成するフェライト粒が粗大化し、降伏強度低下の原因となるため、焼準温度は1050℃以下とする。焼準温度は、好ましくは1000℃以下であり、より好ましくは950℃以下である。
 焼準熱処理終了後の冷却は冷却床等での空冷が好ましい。時間当たりの圧延数を増やす目的で弱水冷を行う場合は、変態終了温度より十分低い、500℃以下から開始することが好ましい。
 表1および表2に示す成分組成を有する鋼を、転炉法にて溶製し、引き続き、連続鋳造法を用いて鋳片を作製した。連続鋳造は、300mm厚×400mm幅の矩形断面を有する鋳片への鋳造と、直径190mmの円形断面を有する鋳片への鋳造の2種類を実施した。
 矩形断面を有する鋳片は、所定の加熱温度で加熱し、熱間圧延によって直径190mmあるいは直径140mmの鋼管素材(鋼片圧延鋼管素材)へ成形した。前記鋼管素材を用いて製造した継目無鋼管は、表3、表4、表5の鋼管素材区分の欄に、「鋼片圧延」と記載した。また、鋼片圧延時の加熱温度、900℃~加熱温度までの加熱時間、鋼片圧延終了温度は、表3、表4、表5に記載した条件で実施した。
 円形断面を有する鋳片は、一部の比較材を除いて鋳片熱処理を行い鋼管素材とした。鋳片熱処理を行った鋼管素材を用いて製造した鋼管は、表3、表4、表5の鋼管素材区分の欄に、「鋳片熱処理」と記載した。一方、比較のため鋳片熱処理を行わずに製造した継目無鋼管は、表3、表4、表5の鋼管素材区分の欄に、「直鋳まま」と記載した。鋳片熱処理の加熱温度、900℃~加熱温度までの加熱時間は、表3、表4、表5に記載した条件で実施した。
 これらの鋼管素材を用いて、表3、表4、表5に記載した管厚と外径の継目無鋼管を形成した(造管工程)。この際、上述の鋼管素材を加熱後、ピアサー穿孔、マンドレルミル圧延、仕上縮径圧延の順に熱間圧延を行った。鋼管素材の加熱温度、熱間圧延終了温度、および熱間圧延後の冷却条件は、表3、表4、表5に記載した条件で実施した。次いで、表3、表4、表5に記載した鋼管熱処理条件にて鋼管熱処理を実施した。鋼管熱処理後、鋼管温度が室温まで冷えてから、鋼管内外面の欠陥の非破壊検査を行った。欠陥の有無、および手入れによる欠陥の除去の可否を表6、表7、表8のパイプ欠陥評価の欄に記載した。ここでは、非破壊検査で欠陥なしを「優れる」、非破壊検査で欠陥が発見されたが、手入れにより合格基準を満たしたものを「良い」、非破壊検査で欠陥が発見され、手入れが不可または手入れをしても合格基準を満たせなかったものを「不可」とし、「優れる」と「良い」を製造性に優れると評価した。なお、製造性は「優れる」がより好ましい。また、手入れとは、例えば切削装置などを用いて疵等の欠陥を除去することを意味する。
 また、上記のようにして製造した継目無鋼管より、EPMA分析用試料、引張試験片、および硫酸露点環境下腐食試験用の腐食試験片を採取した。
 EPMA分析用試料は、測定面を鋼管長手方向と直交する断面とし、鏡面研磨仕上げを行った。EPMAの測定条件は、加速電圧20kV、ビーム電流0.5μA、ビーム径10μmとし、試料の鋼管外表面側から肉厚中央方向に向かって2mmの領域について測定を行った。測定領域を鋼管外表面から2mmとした理由は、硫酸露点環境で生成する腐食生成物の組成が、この領域が硫酸露点環境で腐食した際に溶出する合金元素の濃度と対応するためである。測定元素は、Cu、Cr、Sb、Wとした。ただし、Wについては、Wを積極添加した、鋼No.R、S、T、V、W、AMのみ測定を行った。そして、それぞれの元素の特性X線強度よりあらかじめ作成しておいた検量線を使用して、濃度(質量%)を算出した。詳細には、鋼管の外表面から肉厚中央方向に0.5~2.0mmの領域において0.25mmごとに算出した7箇所のCu、Cr、Sb、Wそれぞれの濃度(質量%)の算術平均を求め、それぞれ平均Cu濃度(Cu)[質量%]、平均Cr濃度(Cr)[質量%]、平均Sb濃度(Sb)[質量%]、平均W濃度(W)[質量%]とした。表6、表7、表8にCu、Cr、Sb、Wを記載した。また、これらのCu、Cr、Sb、Wより算出した、式(1)あるいは式(2)の左辺の計算値も記載した。なお、前記計算値に関し、本発明適合範囲は13.5以上である。好適には14.0以上であり、より好適には15.0以上である。なお、鋼管外表面から0.5mmまでを測定領域から除外したのは、試料表面に近すぎて正確な線分析ができないためである。
 引張試験片は、鋼管長手・周方向任意の位置より採取し、外径170mm未満の鋼管についてはJIS Z2241 12B号試験片に、外径170mm以上の鋼管についてはJIS Z2241 12C号試験片に加工し、JIS Z2241にもとづいて引張試験を行った。引張試験で得られた降伏強度と引張強度を表6、表7、表8に記載した。ここでは、降伏強度230MPa以上、引張強度380MPa以上を合格とした。なお好適には、降伏強度は250MPa以上であり、引張強度は400MPa以上である。
 硫酸露点環境下腐食試験に用いる腐食試験片として、鋼管外表面側から鋼管外表面を含むように採取し、スケール等を除去するため鋼管外表面側に相当する面を0.5mm研削した腐食試験片(長さ30mm×幅20mm×厚み5mm)を用意した。続いて、図1に模式的に示す手順で、硫酸露点腐食試験で生成した腐食生成物の剥離性を評価した。まず、容器に濃度70質量%に調整した硫酸水溶液を注入し、外部恒温槽によって液温を50℃に加熱保持してから、腐食試験片1を浸漬した。浸漬時間は96hとした。96hの浸漬終了後、容器から硫酸水溶液を排出し、腐食試験片1を乾燥後、慎重に取り出し、撮影台上で腐食試験片1の表面に生成した腐食生成物をデジタルカメラ2で撮影した。撮影面は、腐食試験片加工時に鋼管外表面側であった面とした。撮影した画像に適切な画像処理を施し画像解析(NIH開発のImage Jソフトウエアを使用)して、生成した腐食生成物の面積S(mm)を算出した。次に、腐食試験片1の撮影面に透明な粘着フィルム(NICHIBAN社製、セロテープ(登録商標)品番CT-24、幅24mm)を貼付し、それを剥がすことで生成した腐食生成物のうち剥離しやすい腐食生成物を粘着フィルムの粘着面に採取した。最後に、粘着フィルムの粘着面に採取した腐食生成物をデジタルカメラ2で撮影し、画像解析して、粘着フィルムの粘着面に採取した腐食生成物の面積を算出し、これを腐食試験片1から剥離した腐食生成物の面積SII(mm)とした。そして、腐食試験片表面に生成した腐食生成物の面積(S)に対する腐食試験片から剥離した腐食生成物の面積(SII)の割合[(SII/S)×100]を腐食生成物剥離率(%)と定義した。結果を表6、表7、表8に示す。ここでは、腐食生成物剥離率10%以下を合格とした。腐食生成物剥離率は、好適には8%以下であり、より好適には5%以下である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 鋼の成分組成および製造条件が本発明の範囲内であり、かつ、本発明の式(1)あるいは式(2)の要件を満たす発明例(鋼管No.1-1~1-22)は、パイプ欠陥の観点で鋼管内外面に欠陥がないか、欠陥が見つかっても軽微であり手入れ後合格基準を満たし、製造性に優れていた。さらに、配管用継目無鋼管として必要な降伏強度および引張強度を満足し、加えて、硫酸露点腐食環境下で96h浸漬後の腐食生成物剥離率が10%以下と優れた耐硫酸露点腐食性を示した。
 一方、鋼のC含有量が本発明範囲の上限を上回った比較例(鋼管No.1-24)、Si含有量が本発明範囲の上限を上回った比較例(鋼管No.1-26)、Cu含有量が本発明範囲の上限を上回った比較例(鋼管No.1-32)、Sb含有量が本発明範囲の上限を上回った比較例(鋼管No.1-37)、Sn含有量が本発明範囲の上限を上回った比較例(鋼管No.1-40)は、鋼管の非破壊検査で外表面に欠陥が発見され、かつ、手入れを行っても欠陥を除去できず合格基準を満たすことができず、所望の製造性が得られなかった。
 同様に、鋼のNi含有量が本発明範囲の下限を下回った比較例(鋼管No.1-34)もまた、鋼管の非破壊検査で外表面に欠陥が発見されたため、手入れを行ったが合格基準を満たすことができず、所望の製造性が得られなかった。
 鋼のMn含有量が本発明範囲の上限を上回った比較例(鋼管No.1-28)、P含有量が本発明範囲の上限を上回った比較例(鋼管No.1-30)、S含有量が本発明範囲の上限を上回った比較例(鋼管No.1-31)、Cr含有量が本発明範囲の上限を上回った比較例(鋼管No.1-35)、W含有量が本発明範囲の上限を上回った比較例(鋼管No.1-39)は、鋼管の非破壊検査の結果、上記本発明範囲の上限を上回った合金元素の中心偏析等の影響と考えられる、鋼管圧延時の穿孔で発生した欠陥が発見され、かつ、手入れを行っても合格基準を満たすことができず、所望の製造性が得られなかった。
 鋼のC含有量が本発明範囲の下限を下回った比較例(鋼管No.1-25)、Si含有量が本発明範囲の下限を下回った比較例(鋼管No.1-27)、Mn含有量が本発明範囲の下限を下回った比較例(鋼管No.1-29)は、いずれも引張試験の結果、目標とする降伏強度と引張強度を達成しなかった。
 鋼のCu含有量が本発明範囲の下限を下回った比較例(鋼管No.1-33)、およびSb含有量が本発明範囲の下限を下回った比較例(鋼管No.1-38)は、硫酸露点腐食試験で著しく腐食したため、腐食生成物剥離率が目標を達成しなかった。鋼のCr含有量が本発明範囲の下限を下回った比較例(鋼管No.1-36)もまた、硫酸露点腐食試験の結果、腐食生成物剥離率が目標を達成しなかった。
 鋼の成分組成が本発明範囲を満たすものの、連続鋳造後に実施した鋼片圧延または鋳片熱処理の加熱温度が、本発明範囲の下限を下回った比較例(鋼管No.2-1、2-5、2-10)は、本発明の式(1)の要件を満たさなかったため、いずれも硫酸露点腐食試験の結果、腐食生成物剥離率が目標を達成しなかった。同様に、連続鋳造時に実施した鋼片圧延の加熱温度が、本発明範囲の下限を下回った比較例(鋼管No.2-8)は、本発明の式(2)の要件を満たさなかったため、硫酸露点腐食試験の結果、腐食生成物剥離率が目標を達成しなかった。
 連続鋳造後に鋼片圧延、あるいは鋳片熱処理を実施せず、直鋳ままで造管と鋼管熱処理を実施した、比較例(鋼管No.2-4、2-9、2-11)は、本発明の式(1)あるいは式(2)の要件を満たさなかったため、硫酸露点腐食試験の結果、腐食生成物剥離率が目標を達成しなかった。
 鋼管の焼準熱処理の焼準温度が、本発明範囲の上限を上回った比較例(鋼管No.2-2)および比較例(鋼管No.2-6)は、焼準時に鋼のミクロ組織が粗大化してしまい、引張試験の結果、目標とする降伏強度を達成しなかった。
 鋼管の焼準熱処理の焼準温度が、本発明範囲の下限を下回った比較例(鋼管No.2-3)および比較例(鋼管No.2-7)は、焼準時に全面オーステナイト変態させられず、一部未変態のフェライトやパーライトが高温保持されたため、引張試験の結果、目標とする降伏強度および引張強度を達成しなかった。   
 1  試験片
 2  デジタルカメラ

Claims (7)

  1.  質量%で、
    C:0.02~0.12%、
    Si:0.010~1.00%、
    Mn:0.10~2.00%、
    P:0.050%以下、
    S:0.004%以下、
    Al:0.010~0.100%、
    Cu:0.03~0.80%、
    Ni:0.02~0.50%、
    Cr:0.55~1.00%、
    Sb:0.005~0.20%、
    を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
    鋼管の外表面から肉厚中央方向に0.5~2.0mmの領域における平均Cu濃度(質量%)、平均Cr濃度(質量%)、平均Sb濃度(質量%)を、それぞれCu、Cr、Sbとしたとき、Cu、Cr、Sbが以下の式(1)を満たし、
    降伏強度が230MPa以上、引張強度が380MPa以上である、耐硫酸露点腐食性に優れる継目無鋼管。
    1.7×Cu+11×Cr+3.8×Sb≧ 13.5 ・・・(1)
  2.  質量%で、
    C:0.02~0.12%、
    Si:0.010~1.00%、
    Mn:0.10~2.00%、
    P:0.050%以下、
    S:0.004%以下、
    Al:0.010~0.100%、
    Cu:0.03~0.80%、
    Ni:0.02~0.50%、
    Cr:0.55~1.00%、
    Sb:0.005~0.20%、
    W:0.003~0.040%、
    を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
    鋼管の外表面から肉厚中央方向に0.5~2.0mmの領域における平均Cu濃度(質量%)、平均Cr濃度(質量%)、平均Sb濃度(質量%)、平均W濃度(質量%)を、それぞれCu、Cr、Sb、Wとしたとき、Cu、Cr、Sb、Wが以下の式(2)を満たし、
    降伏強度が230MPa以上、引張強度が380MPa以上である、耐硫酸露点腐食性に優れる継目無鋼管。
    1.7×Cu+11×Cr+3.8×Sb+5.2×W≧ 13.5 ・・・(2)
  3.  前記成分組成が、さらに、質量%で、
    Sn:0.005~0.5%
    を含有する、請求項1または2に記載の耐硫酸露点腐食性に優れる継目無鋼管。
  4.  請求項1~3のいずれかに記載の耐硫酸露点腐食性に優れる継目無鋼管の製造方法であって、
    前記成分組成を有する鋼を、矩形断面を有する鋳片に鋳造し、
    次いで、前記矩形断面を有する鋳片を1000~1200℃の温度域の加熱温度に加熱し、熱間圧延を施して円形断面を有する鋼管素材としてから冷却し、
    前記冷却した鋼管素材を、1100~1300℃に加熱後、800℃以上で熱間圧延して、所定の形状の継目無鋼管とし、冷却した後、
    850~1050℃の焼準温度で加熱する焼準熱処理を行う、耐硫酸露点腐食性に優れる継目無鋼管の製造方法。
  5.  矩形断面を有する鋳片を1000~1200℃の温度域の加熱温度に加熱する際、900℃から前記加熱温度までの加熱時間が1.5h以上である、請求項4に記載の耐硫酸露点腐食性に優れる継目無鋼管の製造方法。
  6.  請求項1~3のいずれかに記載の耐硫酸露点腐食性に優れる継目無鋼管の製造方法であって、
    前記成分組成を有する鋼を、円形断面を有する鋳片に鋳造し、
    次いで、前記円形断面を有する鋳片を1000~1200℃の温度域の加熱温度に加熱して鋼管素材とした後、冷却し、
    前記冷却した鋼管素材を、1100~1300℃に加熱後、800℃以上で熱間圧延して、所定の形状の継目無鋼管とし、冷却した後、
    850~1050℃の焼準温度で加熱する焼準熱処理を行う、耐硫酸露点腐食性に優れる継目無鋼管の製造方法。
  7.  円形断面を有する鋳片を1000~1200℃の温度域の加熱温度に加熱する際、900℃から前記加熱温度までの加熱時間が1.5h以上である、請求項6に記載の耐硫酸露点腐食性に優れる継目無鋼管の製造方法。
PCT/JP2020/023144 2019-07-09 2020-06-12 耐硫酸露点腐食性に優れる継目無鋼管およびその製造方法 WO2021005960A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2022000386A MX2022000386A (es) 2019-07-09 2020-06-12 Tubo de acero sin costura que tiene una resistencia a la corrosion de punto de rocio de acido sulfurico deseable, y metodo para la fabricacion del mismo.
CN202080049959.8A CN114096692A (zh) 2019-07-09 2020-06-12 耐硫酸露点腐蚀性优异的无缝钢管及其制造方法
US17/623,919 US20220411890A1 (en) 2019-07-09 2020-06-12 Seamless steel pipe having desirable sulfuric acid dew-point corrosion resistance, and method for manufacturing same
EP20835991.9A EP3998356A4 (en) 2019-07-09 2020-06-12 SEAMLESS STEEL PIPE EXHIBITING EXCEPTIONAL RESISTANCE TO SULFURIC ACID DEW POINT CORROSION, AND METHOD OF MAKING THE SAME SEAMLESS STEEL PIPE
BR112022000052A BR112022000052A2 (pt) 2019-07-09 2020-06-12 Tubo de aço sem emenda tendo resistência à corrosão de ponto de orvalho de ácido sulfúrico desejável e método para fabricar o tubo de aço sem emenda
JP2020553562A JP6822623B1 (ja) 2019-07-09 2020-06-12 耐硫酸露点腐食性に優れる継目無鋼管およびその製造方法
KR1020227000341A KR102654713B1 (ko) 2019-07-09 2020-06-12 내황산 노점 부식성이 우수한 이음매 없는 강관 및 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019127602 2019-07-09
JP2019-127602 2019-07-09

Publications (1)

Publication Number Publication Date
WO2021005960A1 true WO2021005960A1 (ja) 2021-01-14

Family

ID=74114810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023144 WO2021005960A1 (ja) 2019-07-09 2020-06-12 耐硫酸露点腐食性に優れる継目無鋼管およびその製造方法

Country Status (9)

Country Link
US (1) US20220411890A1 (ja)
EP (1) EP3998356A4 (ja)
JP (1) JP6822623B1 (ja)
KR (1) KR102654713B1 (ja)
CN (1) CN114096692A (ja)
AR (1) AR119363A1 (ja)
BR (1) BR112022000052A2 (ja)
MX (1) MX2022000386A (ja)
WO (1) WO2021005960A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113926999A (zh) * 2021-10-25 2022-01-14 江苏长强钢铁有限公司 耐硫酸低温露点腐蚀钢09CrCuSb的生产方法
CN114182180A (zh) * 2021-12-13 2022-03-15 马鞍山钢铁股份有限公司 一种含Sn、Sb耐硫酸及氯离子腐蚀的钢板及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114937039B (zh) * 2022-07-21 2022-10-25 阿法龙(山东)科技有限公司 一种钢管缺陷智能检测方法
CN115637391B (zh) * 2022-11-07 2023-05-12 鞍钢股份有限公司 550MPa级耐硫酸露点腐蚀用稀土钢及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120403A (ja) * 1994-10-18 1996-05-14 Nkk Corp 耐排ガス腐食性に優れた鋼
JP2002047538A (ja) * 2000-07-27 2002-02-15 Nkk Corp 耐震性及び耐硫酸性に優れた圧延形鋼及びその製造方法
JP2003213367A (ja) * 2001-11-19 2003-07-30 Nippon Steel Corp 耐塩酸腐食性および耐硫酸腐食性に優れた低合金鋼およびその溶接継手
JP2004360064A (ja) * 2003-05-15 2004-12-24 Sumitomo Metal Ind Ltd 海浜耐候性に優れた鋼材およびそれを用いた構造物
JP2006118011A (ja) * 2004-10-22 2006-05-11 Sumitomo Metal Ind Ltd 海浜耐候性に優れた鋼材と構造物
JP2007262558A (ja) * 2006-03-30 2007-10-11 Jfe Steel Kk 耐塩酸性に優れる耐硫酸露点腐食鋼
JP2011179022A (ja) * 2010-02-26 2011-09-15 Jfe Steel Corp 塗装耐食性に優れた鋼材

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241900A (ja) * 1997-08-13 2002-08-28 Sumitomo Metal Ind Ltd 耐硫酸腐食性と加工性に優れたオーステナイト系ステンレス鋼
CN1386886A (zh) * 2001-05-23 2002-12-25 束润涛 耐硫酸露点腐蚀的稀土合金钢
CN1490427A (zh) * 2003-05-08 2004-04-21 朱忠亚 耐硫酸露点腐蚀无缝钢管用低合金钢——09CrCuSb(ND钢)
AR075976A1 (es) * 2009-03-30 2011-05-11 Sumitomo Metal Ind Metodo para la manufactura de tuberias sin costura
CN102719747A (zh) * 2012-06-25 2012-10-10 宝山钢铁股份有限公司 一种耐硫酸盐还原菌腐蚀的油井管及其制造方法
KR102462565B1 (ko) * 2014-03-28 2022-11-03 닛테츠 닛신 세이코 가부시키가이샤 내산 이슬점 부식성이 우수한 강판 및 제조 방법 및 배기가스 유로 구성 부재
MX2017015332A (es) * 2015-05-29 2018-03-28 Jfe Steel Corp Lamina de acero rolada en caliente, lamina de acero extra rigido rolada en frio, y metodo para fabricar lamina de acero rolada en caliente.
JP6831254B2 (ja) * 2016-03-30 2021-02-17 日本製鉄株式会社 耐酸露点腐食性に優れる溶接鋼管およびその製造法並びに熱交換器
CN105937010B (zh) * 2016-06-30 2018-06-19 江阴兴澄特种钢铁有限公司 一种改进型09GrCuSb耐硫酸露点腐蚀用钢及其制造方法
CN105925899B (zh) * 2016-07-13 2017-11-14 达力普石油专用管有限公司 一种调质态x52抗硫化氢腐蚀无缝管线管及其制备方法
KR102215679B1 (ko) * 2016-08-25 2021-02-15 제이에프이 스틸 가부시키가이샤 내황산 이슬점 부식강
MY186699A (en) * 2016-08-25 2021-08-11 Jfe Steel Corp Sulfuric acid dew point corrosion-resistant steel
CN108660384A (zh) * 2017-03-30 2018-10-16 宝山钢铁股份有限公司 一种耐硫酸腐蚀的低合金钢、钢管、钢板及其制造方法
CN107904493A (zh) * 2017-11-28 2018-04-13 江苏常宝普莱森钢管有限公司 高钢级抗腐蚀套管及其制备方法
CN109082591B (zh) 2018-08-22 2020-12-25 东北大学 125ksi抗硫化氢应力腐蚀高强油套管用钢及其制备工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120403A (ja) * 1994-10-18 1996-05-14 Nkk Corp 耐排ガス腐食性に優れた鋼
JP2002047538A (ja) * 2000-07-27 2002-02-15 Nkk Corp 耐震性及び耐硫酸性に優れた圧延形鋼及びその製造方法
JP2003213367A (ja) * 2001-11-19 2003-07-30 Nippon Steel Corp 耐塩酸腐食性および耐硫酸腐食性に優れた低合金鋼およびその溶接継手
JP2004360064A (ja) * 2003-05-15 2004-12-24 Sumitomo Metal Ind Ltd 海浜耐候性に優れた鋼材およびそれを用いた構造物
JP2006118011A (ja) * 2004-10-22 2006-05-11 Sumitomo Metal Ind Ltd 海浜耐候性に優れた鋼材と構造物
JP2007262558A (ja) * 2006-03-30 2007-10-11 Jfe Steel Kk 耐塩酸性に優れる耐硫酸露点腐食鋼
JP2011179022A (ja) * 2010-02-26 2011-09-15 Jfe Steel Corp 塗装耐食性に優れた鋼材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3998356A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113926999A (zh) * 2021-10-25 2022-01-14 江苏长强钢铁有限公司 耐硫酸低温露点腐蚀钢09CrCuSb的生产方法
CN114182180A (zh) * 2021-12-13 2022-03-15 马鞍山钢铁股份有限公司 一种含Sn、Sb耐硫酸及氯离子腐蚀的钢板及其制造方法

Also Published As

Publication number Publication date
BR112022000052A2 (pt) 2022-02-22
JP6822623B1 (ja) 2021-01-27
MX2022000386A (es) 2022-02-10
EP3998356A4 (en) 2023-01-04
JPWO2021005960A1 (ja) 2021-09-13
EP3998356A1 (en) 2022-05-18
KR20220016981A (ko) 2022-02-10
US20220411890A1 (en) 2022-12-29
KR102654713B1 (ko) 2024-04-03
CN114096692A (zh) 2022-02-25
AR119363A1 (es) 2021-12-15

Similar Documents

Publication Publication Date Title
WO2021005960A1 (ja) 耐硫酸露点腐食性に優れる継目無鋼管およびその製造方法
CN109536827B (zh) 耐酸露点腐蚀性得到改善的钢板及制造方法以及排气流路构成部件
CN109642283B (zh) 耐硫酸露点腐蚀钢
KR101256268B1 (ko) 오스테나이트계 스테인리스강
CN109563594B (zh) 耐硫酸露点腐蚀钢
CN109563595B (zh) 耐硫酸露点腐蚀钢
CN109642287B (zh) 耐硫酸露点腐蚀钢
WO2011111871A1 (ja) 耐酸化性に優れたフェライト系ステンレス鋼板並びに耐熱性に優れたフェライト系ステンレス鋼板及びその製造方法
EP3587610B1 (en) Hot-rolled and annealed ferritic stainless steel sheet, and method for manufacturing same
JPH11302801A (ja) 耐応力腐食割れ性に優れた高Cr−高Ni合金
EP3249067A1 (en) Ferritic stainless steel for exhaust system member having excellent corrosion resistance after heating
JP6806291B1 (ja) 耐硫酸露点腐食性に優れる継目無鋼管およびその製造方法
EP2656931B1 (en) PRODUCTION METHOD FOR ROUND STEEL BAR FOR SEAMLESS PIPE COMPRISING HIGH Cr-Ni ALLOY, AND PRODUCTION METHOD FOR SEAMLESS PIPE USING ROUND STEEL BAR
WO2020196595A1 (ja) 棒状鋼材
JP7013301B2 (ja) 二次加工性及び耐高温酸化性に優れるAl含有フェライト系ステンレス鋼材
JP7013302B2 (ja) 二次加工性及び耐高温酸化性に優れるAl含有フェライト系ステンレス鋼材および加工品
JP2021055141A (ja) フェライト系ステンレス鋼
WO2015015735A1 (ja) 溶接部の耐食性に優れたフェライト系ステンレス鋼
WO2021005959A1 (ja) 耐硫酸露点腐食性に優れる継目無鋼管およびその製造方法
KR102597735B1 (ko) 페라이트계 스테인리스 강판 및 그 제조 방법
JP2010202927A (ja) テンパーカラーを防止可能な焼鈍方法
WO2023286338A1 (ja) 加工性、耐食性に優れる溶接管用Ni-Cr-Mo系合金
WO2022196498A1 (ja) 二相ステンレス鋼
JP2022175772A (ja) Cu、Ni、Sn含有鋼の製造方法
JP2024007157A (ja) 鋼材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020553562

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227000341

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022000052

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020835991

Country of ref document: EP

Effective date: 20220209

ENP Entry into the national phase

Ref document number: 112022000052

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220103