WO2021005661A1 - ダイシング・ダイボンディング一体型フィルム、ダイボンディングフィルム、及び半導体装置の製造方法 - Google Patents

ダイシング・ダイボンディング一体型フィルム、ダイボンディングフィルム、及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2021005661A1
WO2021005661A1 PCT/JP2019/026886 JP2019026886W WO2021005661A1 WO 2021005661 A1 WO2021005661 A1 WO 2021005661A1 JP 2019026886 W JP2019026886 W JP 2019026886W WO 2021005661 A1 WO2021005661 A1 WO 2021005661A1
Authority
WO
WIPO (PCT)
Prior art keywords
die bonding
bonding film
dicing
film
less
Prior art date
Application number
PCT/JP2019/026886
Other languages
English (en)
French (fr)
Inventor
裕太 小関
祐樹 中村
大輔 山中
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2019/026886 priority Critical patent/WO2021005661A1/ja
Priority to KR1020217042101A priority patent/KR20220030218A/ko
Priority to JP2021530652A priority patent/JPWO2021006158A1/ja
Priority to PCT/JP2020/025891 priority patent/WO2021006158A1/ja
Priority to CN202080046101.6A priority patent/CN114008760A/zh
Priority to TW109122253A priority patent/TW202120641A/zh
Publication of WO2021005661A1 publication Critical patent/WO2021005661A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present disclosure relates to a dicing / die bonding integrated film, a die bonding film, and a method for manufacturing a semiconductor device.
  • Patent Document 1 discloses an adhesive sheet (dicing die bonding sheet) having both a function of fixing a semiconductor wafer in a dicing process and a function of adhering a semiconductor chip to a substrate in a dicing process. In the dicing step, the semiconductor wafer and the adhesive layer are separated into individual pieces to obtain a chip with an adhesive piece.
  • Patent Document 2 discloses a conductive film-like adhesive having higher heat dissipation after curing than heat dissipation before curing, and a dicing tape with a film-like adhesive.
  • the present inventors sufficiently dissipate heat to the adhesive layer of a dicing / die bonding integrated film having an adhesive layer made of a die bonding film and an adhesive layer. It has been found that when conductive particles in an amount that can obtain properties (for example, 75% by mass or more based on the total amount of the dicing film) are blended, the adhesion between the adhesive layer and the adhesive layer tends to be insufficient. .. If the adhesion between the two is insufficient, there may be a problem that the dicing / die bonding integrated film cannot be formed, and even if the film can be formed, the tip with the adhesive piece is separated from the adhesive layer in the dicing process.
  • one aspect of the present disclosure is that the dicing / die bonding integrated film provided with the adhesive layer and the adhesive layer has excellent heat dissipation, excellent adhesion between the adhesive layer and the adhesive layer, and a semiconductor wafer. It is an object of the present invention to provide a dicing / die bonding integrated film having excellent adhesion between the adhesive layer and the semiconductor wafer even when the adhesive layer is attached to the wafer.
  • the dicing / die bonding integrated film has a dicing tape having a base material and an adhesive layer provided on the base material, and a first surface and a second surface opposite to the first surface, and dicing.
  • a dicing film arranged in contact with the first surface is provided on the adhesive layer of the tape, and the dicing film contains 75% by mass or more of conductive particles based on the total amount of the dicing film.
  • the surface roughness of the first surface is 1.0 ⁇ m or less
  • the surface roughness of the second surface is 1.0 ⁇ m or less.
  • Such a dicing / die bonding integrated film has excellent heat dissipation, has excellent adhesion between an adhesive layer made of a die bonding film and an adhesive layer, and when attached to a semiconductor wafer, die bonding. Excellent adhesion between the adhesive layer made of film and the semiconductor wafer.
  • the surface roughness of the first surface is larger than the surface roughness of the second surface.
  • the adhesion between the die bonding film and the adhesive layer (dicing tape) at the time of dicing is excellent, and chip skipping and the like tend to be suppressed. ..
  • the surface roughness of the first surface may be 0.25 ⁇ m or more. That is, the surface roughness of the first surface may be 0.25 to 1.0 ⁇ m. When the surface roughness of the first surface is 1.0 ⁇ m or less, it tends to be possible to prevent a decrease in adhesiveness due to the surface roughness. On the other hand, when the surface roughness of the first surface is 0.25 ⁇ m or more, it tends to be possible to prevent a decrease in the anchor effect due to excessively high surface smoothness.
  • a dicing / die bonding integrated film including a die bonding film having a surface roughness of the first surface in such a range can further improve the adhesion between the adhesive layer made of the die bonding film and the adhesive layer. it can.
  • the thermal conductivity of the die bonding film may be 1.6 W / mK or more.
  • the thermal conductivity of the die bonding film is 1.6 W / mK or more, the dicing / die bonding integrated film tends to have better heat dissipation.
  • the conductive particles may be spherical. Further, the average particle size of the conductive particles may be 5.0 ⁇ m or less or 3.0 ⁇ m or less. By using such conductive particles, it tends to be easy to obtain a die bonding film having a predetermined surface roughness without performing a physical smoothing treatment.
  • the die bonding film may further contain a thermosetting resin, a curing agent, and an elastomer.
  • the die bonding film containing these tends to easily adjust the surface roughness within a predetermined range.
  • the thermosetting resin may contain an epoxy resin that is liquid at 25 ° C.
  • the content of the epoxy resin may be 2% by mass or more based on the total amount of the die bonding film.
  • the thermosetting resin contains an epoxy resin liquid at 25 ° C. in a predetermined range, a die bonding film having a predetermined surface roughness tends to be easily obtained.
  • even when the physical smoothing process is performed it tends to be possible to perform the physical smoothing process under milder conditions.
  • One aspect of the present disclosure includes a step of attaching the second surface of the die bonding film of the dicing / die bonding integrated film to the semiconductor wafer, at least a step of separating the semiconductor wafer and the die bonding film into individual pieces, and a dicing tape.
  • a method for manufacturing a semiconductor device comprising a step of picking up a semiconductor chip to which a dicing film piece is attached and a step of adhering the semiconductor chip to a support substrate via the die bonding film piece.
  • the die bonding film has a first surface and a second surface opposite to the first surface, contains 75% by mass or more of conductive particles based on the total amount of the die bonding film, and is the first.
  • the surface roughness of the surface is 1.0 ⁇ m or less, and the surface roughness of the second surface is 1.0 ⁇ m or less.
  • the surface roughness of the first surface is preferably larger than the surface roughness of the second surface.
  • the surface roughness of the first surface may be 0.25 ⁇ m or more.
  • the thermal conductivity of the die bonding film may be 1.6 W / mK or more.
  • the conductive particles may be spherical. Further, the average particle size of the conductive particles may be 5.0 ⁇ m or less or 3.0 ⁇ m or less.
  • the die bonding film may further contain a thermosetting resin, a curing agent, and an elastomer.
  • the thermosetting resin may contain an epoxy resin that is liquid at 25 ° C. When the thermosetting resin contains an epoxy resin liquid at 25 ° C., the content of the epoxy resin may be 2% by mass or more based on the total amount of the die bonding film.
  • the dicing / die bonding integrated film in a dicing / die bonding integrated film provided with an adhesive layer and an adhesive layer, the dicing / die bonding integrated film has excellent heat dissipation, excellent adhesion between the adhesive layer and the adhesive layer, and is attached to a semiconductor wafer. Even in such a case, a dicing / die bonding integrated film having excellent adhesion between the adhesive layer and the semiconductor wafer is provided. Further, according to the present disclosure, there is provided a method for manufacturing a semiconductor device using such a dicing / die bonding integrated film. Further, according to the present disclosure, there is provided a die bonding film that is suitably used for such a dicing / die bonding integrated film.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a die bonding film.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of a dicing / die bonding integrated film.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of a method for manufacturing a semiconductor device. 3 (a), (b), (c), (d), (e), and (f) are cross-sectional views schematically showing each step.
  • FIG. 4 is a schematic cross-sectional view showing an embodiment of a semiconductor device.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • (meth) acrylate means acrylate or the corresponding methacrylate.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a die bonding film.
  • the die bonding film 10 shown in FIG. 1 has a first surface 10A and a second surface 10B opposite to the first surface 10A.
  • the first surface 10A may be a surface arranged on the adhesive layer of the dicing tape as described later.
  • the die bonding film 10 may be provided on the support film 20.
  • the die bonding film 10 is thermosetting and can be in a semi-cured (B stage) state and then in a completely cured product (C stage) state after a curing treatment.
  • the die bonding film 10 contains (a) conductive particles, and may further contain (b) a thermosetting resin, (c) a curing agent, and (d) an elastomer, if necessary.
  • Component (a) Conductive particles
  • the component (a) is a component used to enhance heat dissipation in a die bonding film.
  • the component (a) for example, fibrous particles composed of nickel particles, copper particles, silver particles, aluminum particles, carbon black particles, and carbon nanotubes; the surface of core particles such as metal particles and resin particles is coated with a conductive material. Examples include particles that have been formed. These may be used individually by 1 type or in combination of 2 or more type.
  • the component (a) may be silver particles or metal particles (for example, copper particles) whose surface is coated with silver because it is difficult to be oxidized.
  • the shape of the component (a) is not particularly limited and may be, for example, flaky or spherical, but the shape of the component (a) is preferably spherical.
  • the shape of the component (a) is spherical, it tends to be easy to obtain a die bonding film having a predetermined surface roughness without performing a physical smoothing treatment.
  • the average particle size of the component (a) may be 0.01 to 10 ⁇ m.
  • the average particle size of the component (a) is 0.01 ⁇ m or more, it is possible to prevent an increase in viscosity when the adhesive varnish is produced, and a desired amount of the component (a) can be contained in the die bonding film. There is a tendency to ensure the wettability of the die bonding film to the adherend and to exhibit better adhesiveness.
  • the average particle size of the component (a) is 10 ⁇ m or less, the film formability is more excellent, and the conductivity tends to be further improved by adding the conductive particles.
  • the average particle size of the component (a) may be 0.1 ⁇ m or more, 0.5 ⁇ m or more, 1.0 ⁇ m or more, or 1.5 ⁇ m or more, and may be 8.0 ⁇ m or less, 7.0 ⁇ m or less, 6.0 ⁇ m or less. , 5.0 ⁇ m or less, 4.0 ⁇ m or less, or 3.0 ⁇ m or less.
  • the average particle size of the component (a) means the particle size (D 50 ) when the ratio (volume fraction) to the volume of the entire component (a) is 50%.
  • a suspension in which the component (a) is suspended in water is subjected to a laser scattering method using a laser scattering type particle size measuring device (for example, Microtrac). It can be determined by measuring.
  • the component (a) is spherical particles and the average particle size thereof is 5.0 ⁇ m or less.
  • the content of the component (a) is 75% by mass or more based on the total amount of the die bonding film.
  • the content of the component (a) may be 77% by mass or more, 80% by mass or more, 83% by mass or more, or 85% by mass or more based on the total amount of the die bonding film.
  • the upper limit of the content of the component (a) is not particularly limited, but may be 95% by mass or less, 92% by mass or less, or 90% by mass or less based on the total amount of the die bonding film.
  • Component (b) Thermosetting resin
  • the component (b) is a component having a property of forming a three-dimensional bond between molecules and being cured by heating or the like, and is a component that exhibits an adhesive action after curing.
  • the component (b) may be an epoxy resin.
  • the component (b) may contain an epoxy resin that is liquid at 25 ° C.
  • the epoxy resin can be used without particular limitation as long as it has an epoxy group in the molecule.
  • the epoxy resin may have two or more epoxy groups in the molecule.
  • the epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, and bisphenol F novolac type epoxy resin.
  • Stilben type epoxy resin triazine skeleton containing epoxy resin, fluorene skeleton containing epoxy resin, triphenol methane type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type
  • examples thereof include epoxy resins, polyfunctional phenols, and polycyclic aromatic diglycidyl ether compounds such as anthracene. These may be used individually by 1 type or in combination of 2 or more type.
  • the epoxy resin may be a bisphenol type epoxy resin or a cresol novolac type epoxy resin from the viewpoint of heat resistance of the cured product and the like.
  • the epoxy resin may be an epoxy resin that is liquid at 25 ° C.
  • an epoxy resin that is liquid at 25 ° C.
  • a die bonding film having a predetermined surface roughness tends to be easily obtained.
  • the physical smoothing process it tends to be possible to perform the physical smoothing process under milder conditions.
  • Examples of commercially available products of epoxy resins liquid at 25 ° C. include EXA-830CRP (trade name, manufactured by DIC Corporation), YDF-8170C (trade name, manufactured by Nippon Steel Chemical & Materials Co., Ltd.) and the like.
  • the epoxy equivalent of the epoxy resin is not particularly limited, but may be 90 to 300 g / eq, 110 to 290 g / eq, or 110 to 290 g / eq.
  • the epoxy equivalent of the component (A) is in such a range, it tends to be easy to secure the fluidity of the adhesive composition when forming the die bonding film while maintaining the bulk strength of the die bonding film.
  • the content of the component (b) may be 0.1% by mass or more, 1% by mass or more, 2% by mass or more, or 3% by mass or more, and is 15% by mass or less, based on the total amount of the die bonding film. It may be 12% by mass or less, 10% by mass or less, or 8% by mass or less.
  • the mass ratio of the epoxy resin to the component (b) is 10 to 100 as a percentage. %, 40-100%, 60% -100%, or 80% -100%.
  • the content of the epoxy resin is 1% by mass or more, 2% by mass or more, 3% by mass or more, or 4 based on the total amount of the die bonding film. It may be mass% or more.
  • the content of the epoxy resin may be 15% by mass or less, 12% by mass or less, 10% by mass or less, or 8% by mass or less.
  • the component (c) may be a phenol resin that can serve as a curing agent for the epoxy resin.
  • the phenol resin can be used without particular limitation as long as it has a phenolic hydroxyl group in the molecule.
  • examples of the phenol resin include phenols such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol, and / or naphthols such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene, and formaldehyde and the like.
  • Phenols such as novolak-type phenol resin, allylated bisphenol A, allylated bisphenol F, allylated naphthalenediol, phenol novolac, and phenol obtained by condensing or co-condensing with a compound having an aldehyde group of
  • a phenol aralkyl resin synthesized from naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl, a naphthol aralkyl resin, a biphenyl aralkyl type phenol resin, a phenyl aralkyl type phenol resin and the like can be mentioned. These may be used individually by 1 type or in combination of 2 or more type.
  • the hydroxyl group equivalent of the phenol resin may be 40 to 300 g / eq, 70 to 290 g / eq, or 100 to 280 g / eq.
  • the hydroxyl group equivalent of the phenol resin is 40 g / eq or more, the storage elastic modulus of the film tends to be further improved, and when it is 300 g / eq or less, it is possible to prevent problems due to the generation of foaming, outgas, etc. ..
  • Ratio of the epoxy equivalent of the epoxy resin as the component (b) to the hydroxyl equivalent of the phenol resin as the component (b) / the epoxy equivalent of the epoxy resin as the component / the hydroxyl equivalent of the phenol resin as the component (c) ) Indicates 0.30 / 0.70 to 0.70 / 0.30, 0.35 / 0.65 to 0.65 / 0.35, 0.40 / 0.60 to 0 from the viewpoint of curability. It may be .60 / 0.40, or 0.45 / 0.55 to 0.55 / 0.45.
  • the equivalent amount ratio is 0.30 / 0.70 or more, more sufficient curability tends to be obtained.
  • the equivalent equivalent ratio is 0.70 / 0.30 or less, it is possible to prevent the viscosity from becoming too high, and it is possible to obtain more sufficient fluidity.
  • the content of the component (c) may be 0.1% by mass or more, 1% by mass or more, 2% by mass or more, or 3% by mass or more, based on the total amount of the die bonding film, and is 15% by mass or less. It may be 12% by mass or less, 10% by mass or less, or 8% by mass or less.
  • the component (d) is, for example, a polyimide resin, an acrylic resin, a urethane resin, a polyphenylene ether resin, a polyetherimide resin, a phenoxy resin, a modified polyphenylene ether resin, or the like, and has a crosslinkable functional group.
  • the acrylic resin means a polymer containing a structural unit derived from a (meth) acrylic acid ester.
  • the acrylic resin may be a polymer containing a structural unit derived from a (meth) acrylic acid ester having a crosslinkable functional group such as an epoxy group, an alcoholic or phenolic hydroxyl group, or a carboxy group as a structural unit.
  • the acrylic resin may be an acrylic rubber such as a copolymer of (meth) acrylic acid ester and acrylonitrile. These may be used individually by 1 type or in combination of 2 or more type.
  • acrylic resins examples include SG-70L, SG-708-6, WS-023 EK30, SG-280 EK23, HTR-860P-3, HTR-860P-3CSP, HTR-860P-3CSP-3DB ( (Made by Nagase ChemteX Corporation) and the like.
  • the glass transition temperature (Tg) of the component (d) may be ⁇ 50 to 50 ° C. or ⁇ 30 to 20 ° C.
  • Tg of the acrylic resin is ⁇ 50 ° C. or higher, the tackiness of the die bonding film is lowered, so that the handleability tends to be further improved.
  • Tg of the acrylic resin is 50 ° C. or lower, the fluidity of the adhesive composition when forming the die bonding film tends to be more sufficiently secured.
  • the glass transition temperature (Tg) of the component (d) means a value measured using a DSC (thermal differential scanning calorimeter) (for example, manufactured by Rigaku Co., Ltd., trade name: Thermo Plus 2).
  • the weight average molecular weight (Mw) of the component (d) may be 50,000 to 1.2 million, 100,000 to 1.2 million, or 300,000 to 900,000. When the weight average molecular weight of the component (d) is 50,000 or more, the film forming property tends to be superior. When the weight average molecular weight of the component (d) is 1.2 million or less, the fluidity of the adhesive composition when forming the die bonding film tends to be superior.
  • the weight average molecular weight (Mw) is a value measured by gel permeation chromatography (GPC) and converted using a calibration curve using standard polystyrene.
  • the measuring device for the weight average molecular weight (Mw) of the component, the measuring conditions, and the like are as follows.
  • the content of the component (d) may be 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, or 2% by mass or more based on the total amount of the die bonding film, and is 10% by mass. Hereinafter, it may be 8% by mass or less, 6% by mass or less, or 5% by mass or less.
  • the die bonding film 10 may further contain (e) a curing accelerator.
  • Component (e) Curing accelerator By containing the component (e) in the die bonding film, there is a tendency that adhesiveness and connection reliability can be more compatible.
  • the component (e) include imidazoles and derivatives thereof, organic phosphorus compounds, secondary amines, tertiary amines, quaternary ammonium salts and the like. These may be used individually by 1 type or in combination of 2 or more type. Among these, the component (e) may be imidazoles and derivatives thereof from the viewpoint of reactivity.
  • imidazoles examples include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. These may be used individually by 1 type or in combination of 2 or more type.
  • the content of the component (e) may be 0.001 to 1% by mass based on the total amount of the die bonding film. When the content of the component (e) is in such a range, the adhesiveness and the connection reliability tend to be more compatible.
  • the die bonding film 10 may further contain a coupling agent, an antioxidant, a rheology control agent, a leveling agent, and the like as other components other than the components (a) to (e).
  • a coupling agent include ⁇ -ureidopropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, and the like. ..
  • the content of other components may be 0.01 to 3% by mass based on the total amount of the die bonding film.
  • the die bonding film 10 shown in FIG. 1 is formed by forming an adhesive composition containing the above-mentioned component (a),, if necessary, components (b) to (e) and other components into a film. Can be made. Such a die bonding film 10 can be formed by applying an adhesive composition to the support film 20. The adhesive composition can be used as a solvent-diluted adhesive varnish. When an adhesive varnish is used, the die bonding film 10 can be formed by applying the adhesive varnish to the support film 20 and removing the solvent by heating and drying.
  • the solvent is not particularly limited as long as it can dissolve components other than component (a).
  • the solvent include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene and p-simene; aliphatic hydrocarbons such as hexane and heptane; cyclic alkanes such as methylcyclohexane; tetrahydrofuran, 1,4-dioxane and the like.
  • Cyclic ethers such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, ⁇ -butyrolactone; Carbonated esters such as ethylene carbonate and propylene carbonate; amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone can be mentioned. These may be used individually by 1 type or in combination of 2 or more type.
  • the solvent may be toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, or cyclohexanone from the viewpoint of solubility and boiling point.
  • the concentration of the solid component in the adhesive varnish may be 10 to 80% by mass based on the total mass of the adhesive varnish.
  • the adhesive varnish can be prepared by mixing and kneading the components (a) to (e), other components, and a solvent.
  • the order of mixing and kneading each component is not particularly limited and can be set as appropriate.
  • Mixing and kneading can be carried out by appropriately combining a disperser such as a normal stirrer, a raft machine, a triple roll, a ball mill, and a bead mill.
  • air bubbles in the varnish may be removed by vacuum degassing or the like.
  • the support film 20 is not particularly limited, and examples thereof include films such as polytetrafluoroethylene, polyethylene, polypropylene, polymethylpentene, polyethylene terephthalate, and polyimide.
  • the thickness of the support film 20 may be, for example, 10 to 200 ⁇ m or 20 to 170 ⁇ m.
  • a known method can be used as a method of applying the adhesive varnish to the support film 20.
  • a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, a curtain coating method and the like can be used.
  • the conditions for heat drying are not particularly limited as long as the solvent used is sufficiently volatilized, but may be, for example, 0.1 to 90 minutes at 50 to 200 ° C.
  • the thickness of the die bonding film 10 can be appropriately adjusted according to the intended use, and may be, for example, 3 to 200 ⁇ m. When the thickness of the die bonding film 10 is 3 ⁇ m or more, the adhesive strength tends to be sufficient, and when the thickness is 200 ⁇ m or less, the heat dissipation tends to be sufficient.
  • the thickness of the die bonding film 10 may be 10 to 100 ⁇ m or 120 to 75 ⁇ m from the viewpoint of adhesive strength and thinning of the semiconductor device.
  • the surface roughness of the first surface 10A is 1.0 ⁇ m or less
  • the surface roughness of the second surface 10B is 1.0 ⁇ m or less.
  • the first surface 10A and the second surface 10B can be arbitrarily determined, but in this specification, on the adhesive layer of the dicing tape, based on the contents of the dicing / die bonding integrated film described later.
  • the surface (that is, the surface opposite to the surface of the die bonding film 10 in contact with the support film 20) is the first surface 10A
  • the surface of the die bonding film 10 in contact with the support film 20 is the first surface.
  • the surface 10B of 2 will be described below.
  • the surface roughness means the arithmetic mean roughness Ra
  • the "arithmetic mean roughness Ra" means the value calculated by the method described in the examples.
  • the measurement magnification may be 50 to 100 times.
  • the surface of the surface is usually independent of the components contained in the adhesive varnish.
  • the roughness tends to be 1.0 ⁇ m or less.
  • the first surface 10A is formed by a manufacturing method in which the adhesive varnish is applied to the support film 20 and the solvent is removed by heating and drying, the first surface 10A usually tends to be affected by the components contained in the adhesive varnish. is there.
  • the surface roughness of the surface of the first surface 10A is adjusted to 1.0 ⁇ m or less by using, for example, particles having an average particle size of 5.0 ⁇ m or less and / or component (a) of spherical particles. Can be done.
  • the surface roughness of the first surface 10A exceeds 1.0 ⁇ m, the surface roughness can be adjusted to 1.0 ⁇ m or less by, for example, performing a physical smoothing treatment.
  • the smoothing treatment can be performed, for example, by pressing the first surface 10A of the die bonding film 10 via a polyethylene film (PE film), a polyethylene terephthalate film (PET film), or the like.
  • the die bonding film 10 may be heated.
  • the pressing can be performed using, for example, a rubber roll, a metal roll, or the like.
  • the load at the time of pressing may be 0.01 to 3.0 MPa or 0.3 to 1.0 MPa. When the load at the time of pressing is 0.01 MPa or more, a sufficient smoothing effect tends to be obtained, and when the load at the time of pressing is 3.0 MPa or less, the load on the device is reduced and continuous processing is performed. Tends to be possible.
  • the heating temperature at the time of pressing may be room temperature (20 ° C.) to 200 ° C. or 50 ° C. to 140 ° C. When the heating temperature at the time of pressing is 200 ° C. or lower, it tends to be possible to suppress the progress of the curing reaction of the die bonding film 10.
  • the smoothing treatment can be performed under milder conditions by including the epoxy resin in which the component (a) is liquid at 25 ° C. in a predetermined range.
  • the surface roughness of the first surface 10A is preferably larger than the surface roughness of the second surface 10B.
  • the surface roughness of the first surface 10A is 1.0 ⁇ m or less, for example, 0.9 ⁇ m or less, 0.8 ⁇ m or less, or 0.75 ⁇ m or less from the viewpoint of preventing deterioration of adhesiveness due to the surface roughness. You can.
  • the surface roughness of the first surface 10A is 0.25 ⁇ m or more, 0.3 ⁇ m or more, 0.4 ⁇ m or more, 0.5 ⁇ m or more, from the viewpoint of preventing deterioration of the anchor effect due to the surface smoothness becoming too high. It may be 0.6 ⁇ m or more, or 0.65 ⁇ m or more.
  • the surface roughness of the second surface 10B may be, for example, 0.9 ⁇ m or less, 0.8 ⁇ m or less, 0.7 ⁇ m or less, 0.6 ⁇ m or less, or less than 0.65 ⁇ m. It may be 25 ⁇ m or more, 0.3 ⁇ m or more, 0.4 ⁇ m or more, or 0.45 ⁇ m or more.
  • the thermal conductivity of the die bonding film 10 may be 1.6 W / mK or more.
  • the thermal conductivity of the die bonding film 10 may be 1.7 W / mK or more, 2.0 W / mK or more, or 2.3 W / mK or more.
  • the upper limit of the thermal conductivity of the die bonding film 10 is not particularly limited, but may be 30 W / mK or less.
  • thermal conductivity means the value calculated by the method described in Example.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of a dicing / die bonding integrated film.
  • the dicing / die bonding integrated film 100 shown in FIG. 2 includes a dicing tape 50 having a base material 40 and an adhesive layer 30 provided on the base material 40, and a first surface 10A and a first surface 10A. It has a second surface 10B on the opposite side, and includes a die bonding film arranged on the adhesive layer 30 of the dicing tape 50 in contact with the first surface 10A.
  • the dicing / die bonding integrated film 100 may include a support film 20 on the second surface 10B of the dicing film 10.
  • Examples of the base material 40 in the dicing tape 50 include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film. Further, the base material 40 may be subjected to surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment, and etching treatment, if necessary.
  • the adhesive layer 30 may be made of a pressure-sensitive adhesive used in the field of dicing tape, and may be made of a pressure-sensitive pressure-sensitive adhesive or an ultraviolet-curable pressure-sensitive adhesive. ..
  • the pressure-sensitive adhesive layer 30 is made of an ultraviolet-curable pressure-sensitive adhesive
  • the pressure-sensitive adhesive layer 2 may have a property that the adhesiveness is lowered by irradiation with ultraviolet rays.
  • the dicing / die bonding integrated film 100 can be produced by preparing the dicing tape 50 and the dicing film 10 and attaching the first surface 10A of the dicing film 10 to the adhesive layer 30 of the dicing tape 50. .. At this time, if the surface roughness of the first surface 10A exceeds 1.0 ⁇ m, the dicing / die bonding integrated film 100 may not be formed.
  • the die bonding film 10 contains 75% by mass or more of conductive particles based on the total amount of the die bonding film, and in the die bonding film 10, the first surface 10A The surface roughness is 1.0 ⁇ m or less, and the surface roughness of the second surface 10B is 1.0 ⁇ m or less. According to such a dicing / die bonding integrated film, it has excellent heat dissipation, excellent adhesion between the adhesive layer made of the die bonding film and the adhesive layer, and when it is attached to a semiconductor wafer, it has excellent adhesion. The adhesion between the adhesive layer made of the die bonding film and the semiconductor wafer can be excellent.
  • the surface roughness of the first surface 10A and the second surface 10B measured by the dicing / die bonding film 10 tends to be maintained as they are. According to the tests of the present inventors, for example, irradiation of the dicing tape with ultraviolet rays does not substantially affect the surface roughness of the first surface 10A of the dicing film 10. Therefore, the first surface 10A and the second surface 10B of the dicing / die bonding film 10 are exposed from the dicing / die bonding integrated film 100, and the surface roughness of the exposed first surface and the second surface is measured. The surface roughness of the first surface and the second surface of the die bonding film 10 can be determined.
  • the dicing tape 50 and the support film 20 in the dicing / die bonding integrated film 100 are peeled off at room temperature (20 ° C.) to expose the first surface 10A and the second surface 10A and the second surface.
  • the surface 10B may be exposed, or if necessary, the first surface 10A and the second surface 10B may be exposed by laminating on a semiconductor wafer, a base material, or the like at about 40 to 80 ° C. You may.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of a method for manufacturing a semiconductor device.
  • 3 (a), (b), (c), (d), (e), and (f) are cross-sectional views schematically showing each step.
  • the method for manufacturing the semiconductor device is a step of attaching the second surface 10B of the die bonding film 10 (adhesive layer) of the dicing / die bonding integrated film 100 described above to the semiconductor wafer W (wafer laminating step, FIG. 3A). ), (B), a step of separating the semiconductor wafer W, the die bonding film 10 (adhesive layer), and the adhesive layer 30 (dicing step, see FIG.
  • a step of irradiating the adhesive layer 30 with ultraviolet rays (via the base material 40) (ultraviolet irradiation step, see FIG. 3D), and a semiconductor element Wa on which the dicing film piece 10a is attached from the adhesive layer 30a.
  • a step of picking up the semiconductor element 60 with an adhesive piece pickup process, see FIG. 3E) and a step of adhering the semiconductor element 60 with an adhesive piece to the support substrate 80 via the dicing film piece 10a (semiconductor element). It includes a bonding step, (see FIG. 3 (f))).
  • the dicing / die bonding integrated film 100 is placed in a predetermined device. Subsequently, the second surface 10B of the die bonding film 10 (adhesive layer) of the dicing / die bonding integrated film 100 is attached to the surface Ws of the semiconductor wafer W (see FIGS. 3A and 3B).
  • the circuit surface of the semiconductor wafer W is preferably provided on the surface opposite to the surface Ws.
  • the semiconductor wafer W, the die bonding film 10 (adhesive layer), and the adhesive layer 30 are diced (see FIG. 3C). At this time, a part of the base material 40 may be diced. As described above, the dicing / die bonding integrated film 100 also functions as a dicing sheet.
  • the adhesive layer 30 When the adhesive layer 30 is made of an ultraviolet curable adhesive, the adhesive layer 30 may be irradiated with ultraviolet rays (via the base material 40), if necessary (FIG. 3 (d)). reference). In the case of an ultraviolet curable adhesive, the adhesive layer 30 is cured, and the adhesive force between the adhesive layer 30 and the die bonding film 10 (adhesive layer) can be reduced. In ultraviolet irradiation, it is preferable to use ultraviolet rays having a wavelength of 200 to 400 nm. As for the ultraviolet irradiation conditions, it is preferable to adjust the illuminance and the irradiation amount to the range of 30 to 240 mW / cm 2 and the range of 50 to 500 mJ / cm 2 , respectively.
  • the semiconductor element 60 with an adhesive piece has a semiconductor element Wa and a die bonding film piece 10a.
  • the semiconductor element Wa is a semiconductor wafer W that is individualized by dicing
  • the die bonding film piece 10a is a die bonding film 10 that is individualized by dicing.
  • the adhesive layer 30a is obtained by dicing the adhesive layer 30 into pieces. The adhesive layer 30a may remain on the base material 40 when the semiconductor element 60 with the adhesive piece is picked up. In the pick-up step, it is not always necessary to expand the base material 40, but the pick-up property can be further improved by expanding the base material 40.
  • the amount of push-up by the needle 72 can be set as appropriate. Further, from the viewpoint of ensuring sufficient pick-up property even for ultra-thin wafers, for example, two-stage or three-stage push-up may be performed. Further, the semiconductor element 60 with the adhesive piece may be picked up by a method other than the method using the suction collet 74.
  • the method for manufacturing the semiconductor device includes, if necessary, a step of electrically connecting the semiconductor element Wa and the support substrate 80 by wire bonding, and a semiconductor element using a resin encapsulant on the surface 80A of the support substrate 80. It may further include a step of sealing the Wa with a resin.
  • FIG. 4 is a schematic cross-sectional view showing an embodiment of a semiconductor device.
  • the semiconductor device 200 shown in FIG. 4 can be manufactured by going through the above steps.
  • the semiconductor element Wa and the support substrate 80 may be electrically connected by a wire bond 70.
  • the semiconductor element Wa may be resin-sealed on the surface 80A of the support substrate 80 by using the resin encapsulant 92.
  • Solder balls 94 may be formed on the surface of the support substrate 80 opposite to the surface 80A for electrical connection with the external substrate (motherboard).
  • Elastomer HTR-860P-3 (trade name, manufactured by Nagase ChemteX Corporation, glycidyl group-containing acrylic rubber, weight average molecular weight: 1 million, Tg: -7 ° C.)
  • Curing accelerator Curesol 2PZ-CN (trade name, manufactured by Shikoku Chemicals Corporation, 1-cyanoethyl-2-phenylimidazole)
  • Adhesive varnish B was used to prepare the die bonding film.
  • the vacuum-defoamed adhesive varnish B was applied onto a polyethylene terephthalate (PET) film (thickness 38 ⁇ m) that had undergone a mold release treatment as a support film.
  • PET polyethylene terephthalate
  • the applied varnish was heat-dried at 90 ° C. for 5 minutes and then at 140 ° C. for 5 minutes in two steps to prepare a die bonding film having a thickness of 20 ⁇ m in a B stage state on the support film.
  • the surface of the produced die bonding film opposite to the support film is the first surface, and the surface of the die bonding film in contact with the support film is the second surface.
  • the first surface of the produced die bonding film is pressed through the PET film using a rubber roll under the conditions of a temperature of 140 ° C., a pressure of 0.5 MPa, and a speed of 0.1 m / min to smooth the surface. This was performed to obtain the die bonding film of Example 1.
  • the die bonding film of Example 1 was measured.
  • the surface roughness (arithmetic mean roughness Ra) was determined by measuring at a magnification of 50 times using a shape measuring laser microscope VK-X100 (manufactured by KEYENCE CORPORATION).
  • the surface roughness of the surface (first surface) of the die bonding film opposite to the support film was measured as it was.
  • the surface roughness of the surface (second surface) of the die bonding film in contact with the support film was measured after the support film was peeled off. The results are shown in Table 2.
  • the laminate was subjected to a thermal history at 110 ° C. for 30 minutes and 175 ° C. for 180 minutes to obtain a measurement sample.
  • the dicing tape provided with the adhesive layer is prepared, and the first surface of the dicing film of Example 1 is attached to the adhesive layer of the dicing tape at 25 ° C. to provide the dicing film and the dicing tape.
  • a dicing / die bonding integrated film was obtained.
  • Example 2 For the production of the die bonding film, the adhesive varnish C was used, and the surface was smoothed by pressing with a rubber roll under the conditions of a temperature of 60 ° C., a pressure of 0.5 MPa, and a speed of 0.1 m / min. Obtained the die bonding film of Example 2 in the same manner as in Example 1. For the die bonding film of Example 2, the surface roughness and thermal conductivity were measured in the same manner as in Example 1. The results are shown in Table 2. Further, in the same manner as in Example 1, a dicing / die bonding integrated film of Example 2 was obtained.
  • Example 3 An adhesive varnish D was used to prepare the die bonding film, and the die bonding film of Example 3 was obtained in the same manner as in Example 1 except that the smoothing treatment was not performed.
  • the surface roughness and thermal conductivity were measured in the same manner as in Example 1. The results are shown in Table 2. Further, in the same manner as in Example 1, a dicing / die bonding integrated film of Example 3 was obtained.
  • Example 4 An adhesive varnish E was used to prepare the die bonding film, and the die bonding film of Example 4 was obtained in the same manner as in Example 1 except that the smoothing treatment was not performed.
  • the surface roughness and thermal conductivity were measured in the same manner as in Example 1. The results are shown in Table 2. Further, in the same manner as in Example 1, a dicing / die bonding integrated film of Example 4 was obtained.
  • Comparative Example 1 A die bonding film of Comparative Example 1 was obtained in the same manner as in Example 1 except that the adhesive varnish A was used for producing the die bonding film and no smoothing treatment was performed.
  • the surface roughness and the thermal conductivity were measured in the same manner as in Example 1. The results are shown in Table 2. Further, in the same manner as in Example 1, a dicing / die bonding integrated film of Comparative Example 1 was obtained.
  • Comparative Example 2 A die bonding film of Comparative Example 2 was obtained in the same manner as in Example 1 except that the smoothing treatment was not performed.
  • the surface roughness and the thermal conductivity were measured in the same manner as in Example 1. The results are shown in Table 2. Further, an attempt was made to produce a dicing / die bonding integrated film, but the adhesion between the first surface of the dicing film and the adhesive layer was not sufficient, and the same method as in Example 1 was used for dicing / die bonding. The body film could not be produced.
  • Comparative Example 3 The dicing / die bonding film of Comparative Example 2 was used for producing the dicing / die bonding integrated film of Comparative Example 3.
  • the first surface of the die bonding film was transferred to another support film (polyethylene terephthalate (PET) film (thickness 38 ⁇ m) subjected to a mold release treatment).
  • PET polyethylene terephthalate
  • the support film on the second surface side was peeled off, and the exposed second surface was attached to the adhesive layer of the dicing tape similar to Comparative Example 2 at 25 ° C., and the dicing / die bonding integrated film of Comparative Example 3 was attached.
  • the test piece is separated into pieces by dicing to a size of 2 mm ⁇ 2 mm, the test piece is observed, and the adhesion between the die bonding film piece (adhesive layer) and the adhesive layer and the die bonding film piece (adhesive layer)
  • the adhesion with the semiconductor wafer was evaluated.
  • Dicing was performed by a step-cut method using two blades, and dicing blades SD4000-BB and SD4000-DD were used. In the step cut method, dicing was performed to a position of 50 ⁇ m in the depth of the semiconductor wafer in the first cut, and then dicing was performed to a position of 20 ⁇ m in the base material of the dicing tape in the second cut.
  • the dicing conditions were a blade rotation speed of 4000 rpm and a cutting speed of 30 mm / sec. After dicing, the space between the die bonding film piece (adhesive layer) and the adhesive layer was observed, and the one without peeling was evaluated as "A” and the one with peeling was evaluated as "B". The space between the die bonding film piece (adhesive layer) and the semiconductor wafer was observed, and the one without peeling was evaluated as "A”, and the one with peeling was evaluated as "B”. The results are shown in Table 2.
  • Comparative Example 1 which did not satisfy the requirement of containing 75% by mass or more of conductive particles based on the total amount of the die bonding film was not sufficient.
  • Comparative Example 2 which does not satisfy the requirement that the surface roughness of the first surface is 1.0 ⁇ m or less, the dicing / die bonding integrated film cannot be produced, and the dicing film (adhesive layer) and the dicing tape are used. Adhesion with the adhesive layer was not sufficient.
  • Comparative Example 3 which does not satisfy the requirement that the surface roughness of the second surface is 1.0 ⁇ m or less, the adhesion between the die bonding film piece (adhesive layer) and the semiconductor wafer was not sufficient.
  • Example 2 As a method for reducing the surface roughness, it can be seen that it is effective to physically perform the smoothing treatment as shown in Example 1. Further, as shown in Example 2, (b) by increasing the content of the liquid epoxy resin at 25 ° C. as the thermosetting resin (for example, 2% by mass or more based on the total amount of the die bonding film). , It was found that the conditions of the smoothing treatment can be made milder. Further, as shown in Examples 3 and 4, by using small conductive particles having a small average particle size and using spherical particles, the surface roughness on both sides of the die bonding film can be reduced without smoothing treatment. Turned out to be possible.
  • the dicing / die bonding integrated film provided with the adhesive layer and the adhesive layer according to one aspect of the present disclosure has excellent heat dissipation, excellent adhesion between the adhesive layer and the adhesive layer, and further. It was confirmed that the adhesive layer and the semiconductor wafer have excellent adhesion when attached to the semiconductor wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Die Bonding (AREA)
  • Dicing (AREA)
  • Adhesive Tapes (AREA)

Abstract

基材と基材上に設けられた粘着層とを有するダイシングテープと、第1の表面及び第1の表面と反対側の第2の表面を有し、ダイシングテープの粘着層上に、第1の表面を接して配置されたダイボンディングフィルムとを備え、ダイボンディングフィルムが、ダイボンディングフィルムの全量を基準として、75質量%以上の導電性粒子を含有し、ダイボンディングフィルムにおいて、第1の表面の表面粗さが1.0μm以下であり、かつ第2の表面の表面粗さが1.0μm以下である、ダイシング・ダイボンディング一体型フィルムが開示される。

Description

ダイシング・ダイボンディング一体型フィルム、ダイボンディングフィルム、及び半導体装置の製造方法
 本開示は、ダイシング・ダイボンディング一体型フィルム、ダイボンディングフィルム、及び半導体装置の製造方法に関する。
 従来、半導体装置は以下の工程を経て製造される。まず、ダイシング用粘着シートに半導体ウェハを貼り付け、その状態で半導体ウェハを半導体チップに個片化する(ダイシング工程)。その後、ピックアップ工程、圧着工程、及びダイボンディング工程等が実施される。特許文献1は、ダイシング工程において半導体ウェハを固定する機能と、ダイボンディング工程において半導体チップを基板と接着させる機能とを併せ持つ粘接着シート(ダイシングダイボンディングシート)を開示する。ダイシング工程において、半導体ウェハ及び接着剤層を個片化することによって、接着剤片付きチップが得られる。
 近年、電力の制御等を行うパワー半導体装置と称されるデバイスが普及している。パワー半導体装置は供給される電流に起因して熱が発生し易く、優れた放熱性が求められる。特許文献2は、硬化前の放熱性より硬化後の放熱性が高い導電性フィルム状接着剤及びフィルム状接着剤付きダイシングテープを開示する。
特開2008-218571号公報 特許第6396189号公報
 本発明者らは、優れた放熱性を有する半導体装置を開発する過程において、ダイボンディングフィルムからなる接着剤層と粘着層とを有するダイシング・ダイボンディング一体型フィルムの接着剤層に、充分な放熱性が得られる量(例えば、ダイボンディングフィルムの全量を基準として、75質量%以上)の導電性粒子を配合したところ、接着剤層と粘着層との密着性が不充分となり易いことを見出した。両者の密着性が不充分であると、ダイシング・ダイボンディング一体型フィルムが形成できないという不具合が生じる場合があり、形成できた場合においても、ダイシング工程において粘着層から接着剤片付きチップが離脱するという不具合(チップ飛び)が生じる場合がある。また、本発明者らがさらに検討したところ、ダイシング・ダイボンディング一体型フィルムの接着剤層を半導体ウェハに貼り付けた場合において、接着剤層と半導体ウェハとの密着性が不充分となり易いことも見出した。両者の密着性が不充分であると、ダイシング工程において半導体ウェハからダイシング・ダイボンディング一体型フィルムが離脱するという不具合が生じる場合がある。
 そこで、本開示の一側面は、接着剤層と粘着層とを備えるダイシング・ダイボンディング一体型フィルムにおいて、優れた放熱性を有し、接着剤層と粘着層との密着性に優れ、半導体ウェハに貼り付けた場合においても、接着剤層と半導体ウェハとの密着性に優れるダイシング・ダイボンディング一体型フィルムを提供することを目的とする。
 本開示の一側面は、ダイシング・ダイボンディング一体型フィルムに関する。ダイシング・ダイボンディング一体型フィルムは、基材と基材上に設けられた粘着層とを有するダイシングテープと、第1の表面及び第1の表面と反対側の第2の表面を有し、ダイシングテープの粘着層上に、第1の表面を接して配置されたダイボンディングフィルムとを備え、ダイボンディングフィルムが、ダイボンディングフィルムの全量を基準として、75質量%以上の導電性粒子を含有し、ダイボンディングフィルムにおいて、第1の表面の表面粗さが1.0μm以下であり、かつ第2の表面の表面粗さが1.0μm以下である。このようなダイシング・ダイボンディング一体型フィルムは、優れた放熱性を有し、ダイボンディングフィルムからなる接着剤層と粘着層との密着性に優れ、さらに半導体ウェハに貼り付けた場合において、ダイボンディングフィルムからなる接着剤層と半導体ウェハとの密着性に優れる。
 第1の表面の表面粗さは、第2の表面の表面粗さよりも大きいことが好ましい。第1の表面の表面粗さが第2の表面の表面粗さよりも大きいと、ダイシング時におけるダイボンディングフィルムと粘着層(ダイシングテープ)との密着力により優れ、チップ飛び等を抑制できる傾向にある。
 第1の表面の表面粗さは、0.25μm以上であってよい。すなわち、第1の表面の表面粗さは、0.25~1.0μmであってよい。第1の表面の表面粗さが1.0μm以下であると、表面粗さによる接着性の低下を防ぐことができる傾向にある。一方、第1の表面の表面粗さが0.25μm以上であると、表面の平滑性が高くなり過ぎることによるアンカー効果の低下を防ぐことができる傾向にある。第1の表面の表面粗さがこのような範囲にあるダイボンディングフィルムを備えるダイシング・ダイボンディング一体型フィルムは、ダイボンディングフィルムからなる接着剤層と粘着層との密着性をより向上させることができる。
 ダイボンディングフィルムにおける熱伝導率は、1.6W/mK以上であってよい。ダイボンディングフィルムにおける熱伝導率が1.6W/mK以上であると、ダイシング・ダイボンディング一体型フィルムは放熱性により優れる傾向にある。
 導電性粒子は、球状であってよい。さらに、導電性粒子の平均粒径は、5.0μm以下又は3.0μm以下であってよい。このような導電性粒子を用いることによって、物理的な平滑化処理を行わなくても、所定の表面粗さを有するダイボンディングフィルムが得られ易い傾向にある。
 ダイボンディングフィルムは、熱硬化性樹脂、硬化剤、及びエラストマーをさらに含有していてもよい。これらを含有するダイボンディングフィルムは、表面粗さを所定の範囲に調整し易い傾向にある。
 熱硬化性樹脂は、25℃で液状のエポキシ樹脂を含んでいてもよい。熱硬化性樹脂が25℃で液状のエポキシ樹脂を含む場合、当該エポキシ樹脂の含有量は、ダイボンディングフィルムの全量を基準として、2質量%以上であってよい。熱硬化性樹脂が25℃で液状のエポキシ樹脂を所定の範囲で含むことによって、所定の表面粗さを有するダイボンディングフィルムが得られ易い傾向にある。また、物理的な平滑化処理を行う場合であっても、より温和な条件で行うことができる傾向にある。
 本開示の一側面は、上記ダイシング・ダイボンディング一体型フィルムのダイボンディングフィルムの第2の表面を半導体ウェハに貼り付ける工程と、少なくとも半導体ウェハ及びダイボンディングフィルムを個片化する工程と、ダイシングテープからダイボンディングフィルム片が付着した半導体チップをピックアップする工程と、ダイボンディングフィルム片を介して、半導体チップを支持基板に接着する工程とを備える、半導体装置の製造方法を提供する。上記ダイシング・ダイボンディング一体型フィルムを用いることによって、放熱性に優れる半導体装置を製造することが可能となる。
 本開示の一側面は、ダイボンディングフィルムに関する。ダイボンディングフィルムは、第1の表面及び第1の表面と反対側の第2の表面を有し、ダイボンディングフィルムの全量を基準として、75質量%以上の導電性粒子を含有し、第1の表面の表面粗さが1.0μm以下であり、かつ第2の表面の表面粗さが1.0μm以下である。第1の表面の表面粗さは、第2の表面の表面粗さよりも大きいことが好ましい。第1の表面の表面粗さは、0.25μm以上であってよい。
 ダイボンディングフィルムにおける熱伝導率は、1.6W/mK以上であってよい。
 導電性粒子は、球状であってよい。さらに、導電性粒子の平均粒径は、5.0μm以下又は3.0μm以下であってよい。
 ダイボンディングフィルムは、熱硬化性樹脂、硬化剤、及びエラストマーをさらに含有していてもよい。熱硬化性樹脂は、25℃で液状のエポキシ樹脂を含んでいてもよい。熱硬化性樹脂が25℃で液状のエポキシ樹脂を含む場合、当該エポキシ樹脂の含有量は、ダイボンディングフィルムの全量を基準として、2質量%以上であってよい。
 本開示によれば、接着剤層と粘着層とを備えるダイシング・ダイボンディング一体型フィルムにおいて、優れた放熱性を有し、接着剤層と粘着層との密着性に優れ、半導体ウェハに貼り付けた場合においても、接着剤層と半導体ウェハとの密着性に優れるダイシング・ダイボンディング一体型フィルムが提供される。また、本開示によれば、このようなダイシング・ダイボンディング一体型フィルムを用いた半導体装置の製造方法が提供される。さらに、本開示によれば、このようなダイシング・ダイボンディング一体型フィルムに好適に用いられるダイボンディングフィルムが提供される。
図1は、ダイボンディングフィルムの一実施形態を示す模式断面図である。 図2は、ダイシング・ダイボンディング一体型フィルムの一実施形態を示す模式断面図である。 図3は、半導体装置の製造方法の一実施形態を示す模式断面図である。図3(a)、(b)、(c)、(d)、(e)、及び(f)は、各工程を模式的に示す断面図である。 図4は、半導体装置の一実施形態を示す模式断面図である。
 以下、図面を適宜参照しながら、本開示の実施形態について説明する。ただし、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。
 本明細書における数値及びその範囲についても同様であり、本開示を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において、(メタ)アクリレートは、アクリレート又はそれに対応するメタクリレートを意味する。(メタ)アクリロイル基、(メタ)アクリル共重合体等の他の類似表現についても同様である。
[ダイボンディングフィルム]
 図1は、ダイボンディングフィルムの一実施形態を示す模式断面図である。図1に示されるダイボンディングフィルム10は、第1の表面10A及び第1の表面10Aと反対側の第2の表面10Bを有する。第1の表面10Aは、後述のとおり、ダイシングテープの粘着層上に配置される表面であり得る。ダイボンディングフィルム10は、図1に示すとおり、支持フィルム20上に設けられていてもよい。ダイボンディングフィルム10は、熱硬化性であり、半硬化(Bステージ)状態を経て、硬化処理後に完全硬化物(Cステージ)状態となり得る。
 ダイボンディングフィルム10は、(a)導電性粒子を含有し、必要に応じて、(b)熱硬化性樹脂、(c)硬化剤、及び(d)エラストマーをさらに含有していてもよい。
(a)成分:導電性粒子
 (a)成分は、ダイボンディングフィルムにおける放熱性を高めるために用いられる成分である。(a)成分としては、例えば、ニッケル粒子、銅粒子、銀粒子、アルミニウム粒子、カーボンブラック粒子、カーボンナノチューブからなる繊維状粒子;金属粒子、樹脂粒子等のコア粒子の表面を導電性材料で被覆した粒子などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(a)成分は、酸化され難いことから、銀粒子又は金属粒子(例えば、銅粒子等)の表面を銀で被覆した粒子であってよい。
 (a)成分の形状は、特に制限されず、例えば、フレーク状、球状等であってよいが、(a)成分の形状は、球状であることが好ましい。(a)成分の形状が球状であると、物理的な平滑化処理を行わなくても、所定の表面粗さを有するダイボンディングフィルムが得られ易い傾向にある。
 (a)成分の平均粒径は、0.01~10μmであってよい。(a)成分の平均粒径が0.01μm以上であると、接着剤ワニスを作製したときの粘度上昇を防ぎ、所望の量の(a)成分をダイボンディングフィルムに含有させることができるとともに、ダイボンディングフィルムの被着体への濡れ性を確保してより良好な接着性を発揮させることができる傾向にある。(a)成分の平均粒径が10μm以下であると、フィルム成形性により優れ、導電性粒子の添加による導電性をより向上させることができる傾向にある。また、このような範囲にすることによって、ダイボンディングフィルムの厚みをより薄くすることができ、さらに半導体チップを高積層化することができるとともに、ダイボンディングフィルムから導電性粒子が突き出すことによるチップクラックの発生を防止することができる傾向にある。(a)成分の平均粒径は、0.1μm以上、0.5μm以上、1.0μm以上、又は1.5μm以上であってもよく、8.0μm以下、7.0μm以下、6.0μm以下、5.0μm以下、4.0μm以下、又は3.0μm以下であってもよい。(a)成分の平均粒径が5.0μm以下であると、物理的な平滑化処理を行わなくても、所定の表面粗さを有するダイボンディングフィルムが得られ易い傾向にある。なお、(a)成分の平均粒径は、(a)成分全体の体積に対する比率(体積分率)が50%のときの粒径(D50)を意味する。(a)成分の平均粒径(D50)は、レーザー散乱型粒径測定装置(例えば、マイクロトラック)を用いて、水中に(a)成分を懸濁させた懸濁液をレーザー散乱法によって測定することによって求めることができる。
 (a)成分は、球状粒子であり、かつその平均粒径が5.0μm以下であることが好ましい。
 (a)成分の含有量は、ダイボンディングフィルムの全量を基準として、75質量%以上である。(a)成分の含有量が、ダイボンディングフィルムの全量を基準として、75質量%以上であると、ダイボンディングフィルムの熱伝導率を向上させることができ、結果として、放熱性を向上させることができる。(a)成分の含有量は、ダイボンディングフィルムの全量を基準として、77質量%以上、80質量%以上、83質量%以上、又は85質量%以上であってもよい。(a)成分の含有量の上限は、特に制限されないが、ダイボンディングフィルムの全量を基準として、95質量%以下、92質量%以下、又は90質量%以下であってよい。
(b)成分:熱硬化性樹脂
 (b)成分は、加熱等によって、分子間で三次元的な結合を形成し硬化する性質を有する成分であり、硬化後に接着作用を示す成分である。(b)成分は、エポキシ樹脂であってよい。(b)成分は、25℃で液状のエポキシ樹脂を含んでいてもよい。エポキシ樹脂は、分子内にエポキシ基を有するものであれば、特に制限なく用いることができる。エポキシ樹脂は、分子内に2以上のエポキシ基を有しているものであってよい。
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、多官能フェノール類、アントラセン等の多環芳香族類のジグリシジルエーテル化合物などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、エポキシ樹脂は、硬化物の耐熱性等の観点から、ビスフェノール型エポキシ樹脂又はクレゾールノボラック型エポキシ樹脂であってよい。
 エポキシ樹脂は、25℃で液状のエポキシ樹脂であってよい。このようなエポキシ樹脂を用いることによって、所定の表面粗さを有するダイボンディングフィルムが得られ易い傾向にある。また、物理的な平滑化処理を行う場合であっても、より温和な条件で行うことができる傾向にある。25℃で液状のエポキシ樹脂の市販品としては、例えば、EXA-830CRP(商品名、DIC株式会社製)、YDF-8170C(商品名、日鉄ケミカル&マテリアル株式会社)等が挙げられる。
 エポキシ樹脂のエポキシ当量は、特に制限されないが、90~300g/eq、110~290g/eq、又は110~290g/eqであってよい。(A)成分のエポキシ当量がこのような範囲にあると、ダイボンディングフィルムのバルク強度を維持しつつ、ダイボンディングフィルムを形成する際の接着剤組成物の流動性を確保し易い傾向にある。
 (b)成分の含有量は、ダイボンディングフィルムの全量を基準として、0.1質量%以上、1質量%以上、2質量%以上、又は3質量%以上であってよく、15質量%以下、12質量%以下、10質量%以下、又は8質量%以下であってよい。
 (b)成分が25℃で液状のエポキシ樹脂を含む場合、(b)成分に対する当該エポキシ樹脂の質量比(当該エポキシ樹脂の質量/(b)成分の全質量)は、百分率で、10~100%、40~100%、60%~100%、又は80%~100%であってよい。(b)成分が25℃で液状のエポキシ樹脂を含む場合、当該エポキシ樹脂の含有量は、ダイボンディングフィルムの全量を基準として、1質量%以上、2質量%以上、3質量%以上、又は4質量%以上であってよい。当該エポキシ樹脂の含有量は、15質量%以下、12質量%以下、10質量%以下、又は8質量%以下であってよい。
(c)成分:硬化剤
 (c)成分は、エポキシ樹脂の硬化剤となり得るフェノール樹脂であってよい。フェノール樹脂は、分子内にフェノール性水酸基を有するものであれば特に制限なく用いることができる。フェノール樹脂としては、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化ナフタレンジオール、フェノールノボラック、フェノール等のフェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニルアラルキル型フェノール樹脂、フェニルアラルキル型フェノール樹脂などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。
 フェノール樹脂の水酸基当量は、40~300g/eq、70~290g/eq、又は100~280g/eqであってよい。フェノール樹脂の水酸基当量が40g/eq以上であると、フィルムの貯蔵弾性率がより向上する傾向にあり、300g/eq以下であると、発泡、アウトガス等の発生による不具合を防ぐことが可能となる。
 (b)成分であるエポキシ樹脂のエポキシ当量と(c)成分であるフェノール樹脂の水酸基当量との比((b)成分であるエポキシ樹脂のエポキシ当量/(c)成分であるフェノール樹脂の水酸基当量)は、硬化性の観点から、0.30/0.70~0.70/0.30、0.35/0.65~0.65/0.35、0.40/0.60~0.60/0.40、又は0.45/0.55~0.55/0.45であってよい。当該当量比が0.30/0.70以上であると、より充分な硬化性が得られる傾向にある。当該当量比が0.70/0.30以下であると、粘度が高くなり過ぎることを防ぐことができ、より充分な流動性を得ることができる。
 (c)成分の含有量は、ダイボンディングフィルムの全量を基準として、0.1質量%以上、1質量%以上、2質量%以上、又は3質量%以上であってよく、15質量%以下、12質量%以下、10質量%以下、又は8質量%以下であってよい。
(d)成分:エラストマー
 (d)成分としては、例えば、ポリイミド樹脂、アクリル樹脂、ウレタン樹脂、ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、フェノキシ樹脂、変性ポリフェニレンエーテル樹脂等であって、架橋性官能基を有するものが挙げられる。ここで、アクリル樹脂とは、(メタ)アクリル酸エステルに由来する構成単位を含むポリマーを意味する。アクリル樹脂は、構成単位として、エポキシ基、アルコール性又はフェノール性水酸基、カルボキシ基等の架橋性官能基を有する(メタ)アクリル酸エステルに由来する構成単位を含むポリマーであってよい。また、アクリル樹脂は、(メタ)アクリル酸エステルとアクリルニトリルとの共重合体等のアクリルゴムであってもよい。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。
 アクリル樹脂の市販品としては、例えば、SG-70L、SG-708-6、WS-023 EK30、SG-280 EK23、HTR-860P-3、HTR-860P-3CSP、HTR-860P-3CSP-3DB(いずれもナガセケムテックス株式会社製)等が挙げられる。
 (d)成分のガラス転移温度(Tg)は、-50~50℃又は-30~20℃であってよい。アクリル樹脂のTgが-50℃以上であると、ダイボンディングフィルムのタック性が低くなるため取り扱い性がより向上する傾向にある。アクリル樹脂のTgが50℃以下であると、ダイボンディングフィルムを形成する際の接着剤組成物の流動性をより充分に確保できる傾向にある。ここで、(d)成分のガラス転移温度(Tg)は、DSC(熱示差走査熱量計)(例えば、株式会社リガク製、商品名:Thermo Plus 2)を用いて測定した値を意味する。
 (d)成分の重量平均分子量(Mw)は、5万~120万、10万~120万、又は30万~90万であってよい。(d)成分の重量平均分子量が5万以上であると、成膜性により優れる傾向にある。(d)成分の重量平均分子量が120万以下であると、ダイボンディングフィルムを形成する際の接着剤組成物の流動性により優れる傾向にある。なお、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値である。
 (d)成分の重量平均分子量(Mw)の測定装置、測定条件等は、以下のとおりである。
 ポンプ:L-6000(株式会社日立製作所製)
 カラム:ゲルパック(Gelpack)GL-R440(日立化成株式会社製)、ゲルパック(Gelpack)GL-R450(日立化成株式会社製)、及びゲルパックGL-R400M(日立化成株式会社製)(各10.7mm(直径)×300mm)をこの順に連結したカラム
 溶離液:テトラヒドロフラン(以下、「THF」という。)
 サンプル:試料120mgをTHF5mLに溶解させた溶液
 流速:1.75mL/分
 (d)成分の含有量は、ダイボンディングフィルムの全量を基準として、0.1質量%以上、0.5質量%以上、1質量%以上、又は2質量%以上であってよく、10質量%以下、8質量%以下、6質量%以下、又は5質量%以下であってよい。
 ダイボンディングフィルム10は、(e)硬化促進剤をさらに含有していてもよい。
(e)成分:硬化促進剤
 ダイボンディングフィルムが(e)成分を含有することによって、接着性と接続信頼性とをより両立することができる傾向にある。(e)成分としては、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、第四級アンモニウム塩等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(e)成分は、反応性の観点から、イミダゾール類及びその誘導体であってよい。
 イミダゾール類としては、例えば、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。
 (e)成分の含有量は、ダイボンディングフィルム全量を基準として、0.001~1質量%であってよい。(e)成分の含有量がこのような範囲にあると、接着性と接続信頼性とをより両立することができる傾向にある。
 ダイボンディングフィルム10は、(a)成分~(e)成分以外のその他の成分として、カップリング剤、抗酸化剤、レオロジーコントロール剤、レベリング剤等をさらに含有していてもよい。カップリング剤としては、例えば、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン等が挙げられる。その他の成分の含有量は、ダイボンディングフィルム全量を基準として、0.01~3質量%であってよい。
 図1に示すダイボンディングフィルム10は、上述の(a)成分、必要に応じて、(b)成分~(e)成分及びその他の成分を含有する接着剤組成物をフィルム状に形成することによって作製することができる。このようなダイボンディングフィルム10は、接着剤組成物を支持フィルム20に塗布することによって形成することができる。接着剤組成物は、溶剤で希釈された接着剤ワニスとして用いることができる。接着剤ワニスを用いる場合は、接着剤ワニスを支持フィルム20に塗布し、溶剤を加熱乾燥して除去することによってダイボンディングフィルム10を形成することができる。
 溶剤は、(a)成分以外の成分を溶解できるものであれば特に制限されない。溶剤としては、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素;ヘキサン、ヘプタン等の脂肪族炭化水素;メチルシクロヘキサンなどの環状アルカン;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミドなどが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらのうち、溶剤は、溶解性及び沸点の観点から、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、又はシクロヘキサノンであってもよい。接着剤ワニス中の固形成分濃度は、接着剤ワニスの全質量を基準として、10~80質量%であってよい。
 接着剤ワニスは、(a)成分~(e)成分、その他の成分、及び溶剤を、混合、混練することによって調製することができる。なお、各成分の混合、混練の順序は特に制限されず、適宜設定することができる。混合及び混練は、通常の撹拌機、らいかい機、三本ロール、ボールミル、ビーズミル等の分散機を適宜、組み合わせて行うことができる。接着剤ワニスを調製した後、真空脱気等によってワニス中の気泡を除去してもよい。
 支持フィルム20としては、特に制限はなく、例えば、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリエチレンテレフタレート、ポリイミド等のフィルムが挙げられる。支持フィルム20の厚みは、例えば、10~200μm又は20~170μmであってよい。
 接着剤ワニスを支持フィルム20に塗布する方法としては、公知の方法を用いることができ、例えば、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等が挙げられる。加熱乾燥の条件は、使用した溶剤が充分に揮発する条件であれば特に制限はないが、例えば、50~200℃で0.1~90分間であってもよい。
 ダイボンディングフィルム10の厚みは、用途に合わせて、適宜調整することができるが、例えば、3~200μmであってよい。ダイボンディングフィルム10の厚みが3μm以上であると、接着力が充分となる傾向にあり、200μm以下であると、放熱性が充分となる傾向にある。ダイボンディングフィルム10の厚みは、接着力及び半導体装置の薄型化の観点から、10~100μm又は120~75μmであってもよい。
 ダイボンディングフィルム10においては、第1の表面10Aの表面粗さが1.0μm以下であり、かつ第2の表面10Bの表面粗さが1.0μm以下である。ここで、第1の表面10A及び第2の表面10Bは、任意に決定することができるが、後述のダイシング・ダイボンディング一体型フィルムの内容を踏まえ、本明細書では、ダイシングテープの粘着層上に配置される表面(すなわち、ダイボンディングフィルム10の支持フィルム20が接している表面とは反対側の表面)を第1の表面10A、ダイボンディングフィルム10の支持フィルム20が接している表面を第2の表面10Bとして以下説明する。なお、本明細書において、表面粗さは、算術平均粗さRaを意味し、「算術平均粗さRa」は、実施例に記載の方法で算出された値を意味する。なお、測定倍率は、50~100倍であってもよい。
 第2の表面10Bは、接着剤ワニスを支持フィルム20に塗布し、溶剤を加熱乾燥して除去する製造方法によって形成される場合、通常、接着剤ワニスの含有成分に依らず、当該面の表面粗さは、1.0μm以下となる傾向にある。一方、第1の表面10Aは、接着剤ワニスを支持フィルム20に塗布し、溶剤を加熱乾燥して除去する製造方法によって形成される場合、通常、接着剤ワニスの含有成分の影響を受ける傾向にある。第1の表面10Aは、例えば、平均粒径5.0μm以下の粒子、及び/又は、球状粒子の(a)成分を用いることによって、当該表面の表面粗さを1.0μm以下に調整することができる。なお、第1の表面10Aの表面粗さが1.0μmを超える場合、例えば、物理的な平滑化処理を行うことによって、その表面粗さを1.0μm以下に調整することができる。
 平滑化処理は、例えば、ダイボンディングフィルム10の第1の表面10Aをポリエチレンフィルム(PEフィルム)、ポリエチレンテレフタレートフィルム(PETフィルム)等を介して押圧することによって行うことができる。この場合、ダイボンディングフィルム10を加温しながら行ってもよい。押圧は、例えば、ゴムロール、金属ロール等を用いて行うことができる。押圧する際の荷重は、0.01~3.0MPa又は0.3~1.0MPaであってよい。押圧する際の荷重が0.01MPa以上であると、充分な平滑化効果が得られる傾向にあり、押圧する際の荷重が3.0MPa以下であると、装置の負担を減らして連続的な処理が可能となる傾向にある。押圧する際の加温温度は、室温(20℃)~200℃又は50℃~140℃であってよい。押圧する際の加温温度が200℃以下であると、ダイボンディングフィルム10の硬化反応が進行するのを抑制できる傾向にある。なお、平滑化処理は、(a)成分が25℃で液状のエポキシ樹脂を所定の範囲で含むことによって、より温和な条件で行うことが可能となり得る。
 第1の表面10Aの表面粗さは、第2の表面10Bの表面粗さよりも大きいことが好ましい。このようなダイボンディングフィルム10をダイシング・ダイボンディング一体型フィルムに適用することによって、ダイシング時におけるダイボンディングフィルムと粘着層(ダイシングテープ)との密着力により優れ、チップ飛び等を抑制できる傾向にある。
 第1の表面10Aの表面粗さは、表面粗さによる接着性の低下を防ぐ観点から、1.0μm以下であり、例えば、0.9μm以下、0.8μm以下、又は0.75μm以下であってよい。第1の表面10Aの表面粗さは、表面の平滑性が高くなり過ぎることによるアンカー効果の低下を防ぐ観点から、0.25μm以上、0.3μm以上、0.4μm以上、0.5μm以上、0.6μm以上、又は0.65μm以上であってよい。第2の表面10Bの表面粗さは、同様の観点から、例えば、0.9μm以下、0.8μm以下、0.7μm以下、0.6μm以下、又は0.65μm未満であってよく、0.25μm以上、0.3μm以上、0.4μm以上、又は0.45μm以上であってよい。
 ダイボンディングフィルム10における熱伝導率は、1.6W/mK以上であってよい。ダイボンディングフィルム10における熱伝導率が1.6W/mK以上であると、ダイシング・ダイボンディング一体型フィルムは放熱性により優れる傾向にある。ダイボンディングフィルムにおける熱伝導率は、1.7W/mK以上、2.0W/mK以上、又は2.3W/mK以上であってよい。ダイボンディングフィルム10における熱伝導率の上限は、特に制限されないが、30W/mK以下であってよい。なお、本明細書において、「熱伝導率」は、実施例に記載の方法で算出された値を意味する。
[ダイシング・ダイボンディング一体型フィルム]
 図2は、ダイシング・ダイボンディング一体型フィルムの一実施形態を示す模式断面図である。図2に示されるダイシング・ダイボンディング一体型フィルム100は、基材40と基材40上に設けられた粘着層30とを有するダイシングテープ50と、第1の表面10A及び第1の表面10Aと反対側の第2の表面10Bを有し、ダイシングテープ50の粘着層30上に、第1の表面10Aを接して配置されたダイボンディングフィルムとを備える。ダイシング・ダイボンディング一体型フィルム100は、ダイボンディングフィルム10の第2の表面10B上に支持フィルム20が備えられていてもよい。
 ダイシングテープ50における基材40としては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルム等のプラスチックフィルムなどが挙げられる。また、基材40は、必要に応じて、プライマー塗布、UV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理が施されていてもよい。
 粘着層30は、ダイシングテープの分野で使用される粘着剤からなるものであってよく、感圧型の粘着剤からなるものであっても、紫外線硬化型の粘着剤からなるものであってもよい。粘着層30が紫外線硬化型の粘着剤からなるものである場合、粘着層2は紫外線が照射されることによって粘着性が低下する性質を有するものであり得る。
 ダイシング・ダイボンディング一体型フィルム100は、ダイシングテープ50及びダイボンディングフィルム10を準備し、ダイボンディングフィルム10の第1の表面10Aをダイシングテープ50の粘着層30に貼り付けることによって作製することができる。このとき、第1の表面10Aの表面粗さが1.0μmを超えている場合、ダイシング・ダイボンディング一体型フィルム100を形成できない場合がある。
 ダイシング・ダイボンディング一体型フィルム100においては、ダイボンディングフィルム10が、ダイボンディングフィルムの全量を基準として、75質量%以上の導電性粒子を含有し、ダイボンディングフィルム10において、第1の表面10Aの表面粗さが1.0μm以下であり、かつ第2の表面10Bの表面粗さが1.0μm以下である。このようなダイシング・ダイボンディング一体型フィルムによれば、優れた放熱性を有し、ダイボンディングフィルムからなる接着剤層と粘着層との密着性に優れ、さらに半導体ウェハに貼り付けた場合において、ダイボンディングフィルムからなる接着剤層と半導体ウェハとの密着性に優れるものとなり得る。
 ダイシング・ダイボンディング一体型フィルム100においては、ダイボンディングフィルム10で測定される第1の表面10A及び第2の表面10Bの表面粗さが、そのまま維持される傾向にある。本発明者らの試験によると、例えば、ダイシングテープに対する紫外線照射は、ダイボンディングフィルム10の第1の表面10Aの表面粗さに実質的な影響を与えるものではない。そのため、ダイシング・ダイボンディング一体型フィルム100からダイボンディングフィルム10の第1の表面10A及び第2の表面10Bを露出させ、露出した第1の表面及び第2の表面の表面粗さを測定することによって、ダイボンディングフィルム10の第1の表面及び第2の表面の表面粗さを求めることできる。第1の表面10A及び第2の表面10Bを露出させる場合、室温(20℃)でダイシング・ダイボンディング一体型フィルム100におけるダイシングテープ50及び支持フィルム20を剥がすことによって第1の表面10A及び第2の表面10Bを露出させてもよいし、必要に応じて、半導体ウェハ、基材等に40~80℃程度でラミネートして転写することによって第1の表面10A及び第2の表面10Bを露出させてもよい。
[半導体装置(半導体パッケージ)の製造方法]
 図3は、半導体装置の製造方法の一実施形態を示す模式断面図である。図3(a)、(b)、(c)、(d)、(e)、及び(f)は、各工程を模式的に示す断面図である。半導体装置の製造方法は、上述のダイシング・ダイボンディング一体型フィルム100のダイボンディングフィルム10(接着剤層)の第2の表面10Bを半導体ウェハWに貼り付ける工程(ウェハラミネート工程、図3(a)、(b)参照)と、半導体ウェハW、ダイボンディングフィルム10(接着剤層)、及び粘着層30を個片化する工程(ダイシング工程、図3(c)参照)と、必要に応じて、粘着層30に対して(基材40を介して)紫外線を照射する工程(紫外線照射工程、図3(d)参照)と、粘着層30aからダイボンディングフィルム片10aが付着した半導体素子Wa(接着剤片付き半導体素子60)をピックアップする工程(ピックアップ工程、図3(e)参照)と、ダイボンディングフィルム片10aを介して、接着剤片付き半導体素子60を支持基板80に接着する工程(半導体素子接着工程、図3(f)参照))とを備える。
<ウェハラミネート工程>
 まず、ダイシング・ダイボンディング一体型フィルム100を所定の装置に配置する。続いて、ダイシング・ダイボンディング一体型フィルム100のダイボンディングフィルム10(接着剤層)の第2の表面10Bを半導体ウェハWの表面Wsに貼り付ける(図3(a)、(b)参照)。半導体ウェハWの回路面は、表面Wsとは反対側の面に設けられていることが好ましい。
<ダイシング工程>
 次に、半導体ウェハW、ダイボンディングフィルム10(接着剤層)、及び粘着層30をダイシングする(図3(c)参照)。このとき、基材40の一部がダイシングされていてもよい。このように、ダイシング・ダイボンディング一体型フィルム100は、ダイシングシートとしても機能する。
<紫外線照射工程>
 粘着層30が紫外線硬化型の粘着剤からなるものである場合は、必要に応じて、粘着層30に対して(基材40を介して)紫外線を照射してもよい(図3(d)参照)。紫外線硬化型の粘着剤である場合、当該粘着層30が硬化し、粘着層30とダイボンディングフィルム10(接着剤層)との間の接着力を低下させることができる。紫外線照射においては、波長200~400nmの紫外線を用いることが好ましい。紫外線照射条件は、照度及び照射量をそれぞれ30~240mW/cmの範囲及び50~500mJ/cmの範囲に調整することが好ましい。
<ピックアップ工程>
 次に、基材40をエキスパンドすることによって、ダイシングされた接着剤片付き半導体素子60を互いに離間させつつ、基材40側からニードル72で突き上げられた接着剤片付き半導体素子60を吸引コレット74で吸引して粘着層30aからピックアップする(図3(e)参照)。なお、接着剤片付き半導体素子60は、半導体素子Waとダイボンディングフィルム片10aとを有する。半導体素子Waは半導体ウェハWがダイシングによって個片化されたものであり、ダイボンディングフィルム片10aはダイボンディングフィルム10がダイシングによって個片化されたものである。また、粘着層30aは粘着層30がダイシングによって個片化されたものである。粘着層30aは接着剤片付き半導体素子60をピックアップする際に基材40上に残存し得る。ピックアップ工程では、必ずしも基材40をエキスパンドすることは必要ないが、基材40をエキスパンドすることによってピックアップ性をより向上させることができる。
 ニードル72による突き上げ量は、適宜設定することができる。さらに、極薄ウェハに対しても充分なピックアップ性を確保する観点から、例えば、2段又は3段の突き上げを行ってもよい。また、吸引コレット74を用いる方法以外の方法で接着剤片付き半導体素子60をピックアップしてもよい。
<半導体素子接着工程>
 接着剤片付き半導体素子60をピックアップした後、接着剤片付き半導体素子60を、熱圧着によって、ダイボンディングフィルム片10aを介して支持基板80に接着する(図3(f)参照)。支持基板80には、複数の接着剤片付き半導体素子60を接着してもよい。
 半導体装置の製造方法は、必要に応じて、半導体素子Waと支持基板80とをワイヤーボンドによって電気的に接続する工程と、支持基板80の表面80A上に、樹脂封止材を用いて半導体素子Waを樹脂封止する工程とをさらに備えていてもよい。
 図4は、半導体装置の一実施形態を示す模式断面図である。図4に示される半導体装置200は、上述の工程を経ることによって製造することができる。半導体装置200は、半導体素子Waと支持基板80とがワイヤーボンド70によって電気的に接続されていてもよい。半導体装置200は、支持基板80の表面80A上に、樹脂封止材92を用いて半導体素子Waが樹脂封止されていてもよい。支持基板80の表面80Aと反対側の面に、外部基板(マザーボード)との電気的な接続用として、はんだボール94が形成されていてもよい。
 以下、実施例により本開示について説明するが、本開示はこれらの実施例に限定されるものではない。
<接着剤ワニスの調製>
 表1に示す記号及び組成比(単位:質量部)で、(b)熱硬化性樹脂としてのエポキシ樹脂、(c)硬化剤としてのフェノール樹脂、及び(d)エラストマーとしてのアクリルゴムにシクロヘキサノンを加え、撹拌し混合物を得た。各成分が溶解した後、混合物に(a)導電性粒子を加えて、ディスパー翼を用いて撹拌し、各成分が均一になるまで分散した。その後、(e)硬化促進剤を加え、各成分が均一になるまで分散することによって、接着剤ワニスA~Eを得た。
 なお、表1の各成分の記号は下記のものを意味する。
(a)導電性粒子
・20%Ag-Cu-MA(福田金属箔粉工業株式会社製、銀コート銅粉の製品名、形状:フレーク状、平均粒径(レーザー50%粒径(D50)):6.0~8.8μm)
・AO-UCI-9(DOWAエレクトロニクス株式会社製、銀コート銅粉の製品名、形状:球状、平均粒径(レーザー50%粒径(D50)):2.3μm)
(b)熱硬化性樹脂
・N500P-10(商品名、DIC株式会社製、ビスフェノール型エポキシ樹脂、エポキシ当量:203g/eq)
・YDCN-700-10(商品名、日鉄ケミカル&マテリアル株式会社製、クレゾールノボラック型エポキシ樹脂、エポキシ当量:215g/eq)
・EXA-830CRP(商品名、DIC株式会社製、ビスフェノール型エポキシ樹脂、エポキシ当量:159g/eq、25℃で液状)
(c)硬化剤
・MEH-7800M(商品名、明和化成株式会社製、フェノール樹脂、粘度(150℃):0.31~0.43Pa・s(3.1~4.3poise)、水酸基当量:175g/eq)
・HE-100C-30(商品名、エア・ウォーター株式会社製、フェニルアラキル型フェノール樹脂、粘度(150℃):0.27~0.41Pa・s(2.7~4.1poise)、水酸基当量:170g/eq)
(d)エラストマー
・HTR-860P-3(商品名、ナガセケムテックス株式会社製、グリシジル基含有アクリルゴム、重量平均分子量:100万、Tg:-7℃)
(e)硬化促進剤
・キュアゾール2PZ-CN(商品名、四国化成工業株式会社製、1-シアノエチル-2-フェニルイミダゾール)
Figure JPOXMLDOC01-appb-T000001
(実施例1)
<ダイボンディングフィルムの作製>
 ダイボンディングフィルムの作製に、接着剤ワニスBを用いた。真空脱泡した接着剤ワニスBを、支持フィルムとしての離型処理を施したポリエチレンテレフタレート(PET)フィルム(厚み38μm)上に塗布した。塗布したワニスを、90℃で5分間、続いて140℃で5分間の2段階で加熱乾燥し、支持フィルム上に、Bステージ状態にある厚み20μmのダイボンディングフィルムを作製した。作製したダイボンディングフィルムの支持フィルムとは反対側の面が第1の表面であり、ダイボンディングフィルムの支持フィルムと接している表面が第2の表面である。作製したダイボンディングフィルムの第1の表面を、温度140℃、圧力0.5MPa、及び速度0.1m/分の条件でゴムロールを用いてPETフィルムを介して押圧して当該面の平滑化処理を行い、実施例1のダイボンディングフィルムを得た。
<表面粗さの測定>
 実施例1のダイボンディングフィルムの測定を行った。表面粗さ(算術平均粗さRa)は、形状測定レーザマイクロスコープVK-X100(キーエンス株式会社製)を用いて倍率50倍で測定することによって求めた。ダイボンディングフィルムの支持フィルムとは反対側の面(第1の表面)の表面粗さは、そのまま測定した。ダイボンディングフィルムの支持フィルムと接している表面(第2の表面)の表面粗さは、支持フィルムを剥がしてから測定した。結果を表2に示す。
<熱伝導率の測定>
(積層体の作製)
 Leon13DX(株式会社ラミーコーポレーション製)を用いて、厚みが100μm以上になるようにダイボンディングフィルムを70℃でラミネートして積層体を得た。
(測定試料の作製)
 積層体に対して、110℃で30分間、175℃で180分間の熱履歴を与え、測定試料を得た。
(熱伝導率の測定)
 測定試料の熱伝導率は、下記式によって算出した。結果を表2に示す。
 熱伝導率(W/mK)=比熱(J/kg・K)×熱拡散率(m/s)×比重(kg/m
 なお、比熱、熱拡散率、及び比重は以下の方法によって測定した。熱伝導率が高くなることは、放熱性により優れることを意味する。
(比熱(25℃)の測定)
・測定装置:示差走査熱量測定装置(株式会社パーキンエルマージャパン製、商品名:DSC8500)
・基準物質:サファイア
・昇温速度:10℃/分
・昇温温度範囲:20℃~100℃
(熱拡散率の測定)
・測定装置:熱拡散率測定装置(ネッチ・ジャパン株式会社社製、商品名:LFA467 HyperFlash)
・測定試料の処理:測定試料の両面をカーボンスプレーで黒化処理
・測定方法:キセノンフラッシュ法
・測定雰囲気温度:25℃
(比重の測定)
・測定装置:電子比重計(アルファミラージュ株式会社製、商品名:SD200L)
・測定方法:アルキメデス法
<ダイシング・ダイボンディング一体型フィルムの作製>
 粘着層を備えるダイシングテープを用意し、実施例1のダイボンディングフィルムの第1の表面をダイシングテープの粘着層に25℃で貼り付けることによって、ダイボンディングフィルムとダイシングテープとを備える実施例1のダイシング・ダイボンディング一体型フィルムを得た。
(実施例2)
 ダイボンディングフィルムの作製に、接着剤ワニスCを用い、温度60℃、圧力0.5MPa、及び速度0.1m/分の条件でゴムロールを用いて押圧して当該面の平滑化処理を行った以外は、実施例1と同様にして、実施例2のダイボンディングフィルムを得た。実施例2のダイボンディングフィルムについて、実施例1と同様にして、表面粗さ及び熱伝導率を測定した。結果を表2に示す。また、実施例1と同様にして、実施例2のダイシング・ダイボンディング一体型フィルムを得た。
(実施例3)
 ダイボンディングフィルムの作製に、接着剤ワニスDを用い、平滑化処理を行わなかった以外は、実施例1と同様にして、実施例3のダイボンディングフィルムを得た。実施例3のダイボンディングフィルムについて、実施例1と同様にして、表面粗さ及び熱伝導率を測定した。結果を表2に示す。また、実施例1と同様にして、実施例3のダイシング・ダイボンディング一体型フィルムを得た。
(実施例4)
 ダイボンディングフィルムの作製に、接着剤ワニスEを用い、平滑化処理を行わなかった以外は、実施例1と同様にして、実施例4のダイボンディングフィルムを得た。実施例4のダイボンディングフィルムについて、実施例1と同様にして、表面粗さ及び熱伝導率を測定した。結果を表2に示す。また、実施例1と同様にして、実施例4のダイシング・ダイボンディング一体型フィルムを得た。
(比較例1)
 ダイボンディングフィルムの作製に、接着剤ワニスAを用い、平滑化処理を行わなかった以外は、実施例1と同様にして、比較例1のダイボンディングフィルムを得た。比較例1のダイボンディングフィルムについて、実施例1と同様にして、表面粗さ及び熱伝導率を測定した。結果を表2に示す。また、実施例1と同様にして、比較例1のダイシング・ダイボンディング一体型フィルムを得た。
(比較例2)
 平滑化処理を行わなかった以外は、実施例1と同様にして、比較例2のダイボンディングフィルムを得た。比較例2のダイボンディングフィルムについて、実施例1と同様にして、表面粗さ及び熱伝導率を測定した。結果を表2に示す。また、ダイシング・ダイボンディング一体型フィルムの作製を試みたが、ダイボンディングフィルムの第1の表面と粘着層との密着性が充分でなく、実施例1と同様の方法では、ダイシング・ダイボンディング一体型フィルムは作製できなかった。
(比較例3)
 比較例3のダイシング・ダイボンディング一体型フィルムの作製に、比較例2のダイボンディングフィルムを用いた。まず、比較例2のダイボンディングフィルムにおいて、ダイボンディングフィルムの第1の表面を、別の支持フィルム(離型処理を施したポリエチレンテレフタレート(PET)フィルム(厚み38μm))に転写した。次いで、第2の表面側の支持フィルムを剥がし、露出した第2の表面を、比較例2と同様のダイシングテープの粘着層に25℃で貼り付け、比較例3のダイシング・ダイボンディング一体型フィルムを得た。
<ダイシング工程における密着性の評価>
 実施例1~4及び比較例1、3のダイシング・ダイボンディング一体型フィルムを用意した。ダイシング・ダイボンディング一体型フィルムの支持フィルムを剥がして、フィルムラミネータ(テイコクテーピングシステム株式会社製)を用いて、ダイシング・ダイボンディング一体型フィルムのダイボンディングフィルム(接着剤層)を厚み100μmの半導体ウェハに貼り付けることによって試験体を得た。試験体を2mm×2mmのサイズにダイシングによって個片化した後に、試験体を観察し、ダイボンディングフィルム片(接着剤層)と粘着層との密着性及びダイボンディングフィルム片(接着剤層)と半導体ウェハとの密着性を評価した。ダイシングには、2枚のブレードを用いるステップカット方式で行い、ダイシングブレードSD4000-BB及びSD4000-DDを用いた。ステップカット方式では、1回目のカットで半導体ウェハの深さの50μmの位置までダイシングを行い、その後、2回目のカットでダイシングテープの基材の深さ20μmの位置までダイシングを行った。ダイシングの条件は、ブレード回転数4000rpm、切断速度30mm/秒とした。ダイシングした後、ダイボンディングフィルム片(接着剤層)と粘着層との間を観察し、剥がれがなかったものを「A」、剥がれがあったものを「B」と評価した。ダイボンディングフィルム片(接着剤層)と半導体ウェハとの間を観察し、剥がれがなかったものを「A」、剥がれがあったものを「B」と評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、ダイボンディングフィルムの全量を基準として、75質量%以上の導電性粒子を含有するという要件を満たさない比較例1は、熱伝導率が充分ではなかった。また、第1の表面の表面粗さが1.0μm以下であるという要件を満たさない比較例2は、ダイシング・ダイボンディング一体型フィルムが作製できないほど、ダイボンディングフィルム(接着剤層)とダイシングテープの粘着層との密着性が充分でなかった。さらに、第2の表面の表面粗さが1.0μm以下であるという要件を満たさない比較例3は、ダイボンディングフィルム片(接着剤層)と半導体ウェハとの密着性が充分でなかった。これらから、ダイボンディングフィルムの両面において、表面粗さを低減させて平滑にする必要性があることが分かる。表面粗さを低減させる方法としては、実施例1に示すとおり、物理的に平滑化処理を行うことが有効であることが分かる。また、実施例2に示すとおり、(b)熱硬化性樹脂として、25℃で液状のエポキシ樹脂の含有量を増加させること(例えば、ダイボンディングフィルムの全量を基準として、2質量%以上)によって、平滑化処理の条件をより温和なものにできることが判明した。さらに、実施例3、4に示すとおり、導電性粒子の平均粒径を小さく、球状のものを使用することによって、平滑化処理を行わなくとも、ダイボンディングフィルムの両面の表面粗さを低減させることが可能であることが判明した。
 以上より、本開示の一側面に係る接着剤層と粘着層とを備えるダイシング・ダイボンディング一体型フィルムが、優れた放熱性を有し、接着剤層と粘着層との密着性に優れ、さらに半導体ウェハに貼り付けた場合において、接着剤層と半導体ウェハとの密着性に優れることが確認された。
 10…ダイボンディングフィルム、10A…第1の表面、10B…第2の表面、10a…ダイボンディングフィルム片、20…支持フィルム、30…粘着層、40…基材、50…ダイシングテープ、60…接着剤片付き半導体素子、70…ワイヤーボンド、72…ニードル、74…吸引コレット、80…支持基板、92…樹脂封止材、94…はんだボール、100…ダイシング・ダイボンディング一体型フィルム、200…半導体装置。

 

Claims (19)

  1.  基材と前記基材上に設けられた粘着層とを有するダイシングテープと、
     第1の表面及び前記第1の表面と反対側の第2の表面を有し、前記ダイシングテープの前記粘着層上に、前記第1の表面を接して配置されたダイボンディングフィルムと、
    を備え、
     前記ダイボンディングフィルムが、ダイボンディングフィルムの全量を基準として、75質量%以上の導電性粒子を含有し、
     前記ダイボンディングフィルムにおいて、前記第1の表面の表面粗さが1.0μm以下であり、かつ前記第2の表面の表面粗さが1.0μm以下である、
     ダイシング・ダイボンディング一体型フィルム。
  2.  前記第1の表面の表面粗さが前記第2の表面の表面粗さよりも大きい、請求項1に記載のダイシング・ダイボンディング一体型フィルム。
  3.  前記第1の表面の表面粗さが0.25μm以上である、請求項1又は2に記載のダイシング・ダイボンディング一体型フィルム。
  4.  前記ダイボンディングフィルムにおける熱伝導率が1.6W/mK以上である、請求項1~3のいずれか一項に記載のダイシング・ダイボンディング一体型フィルム。
  5.  前記導電性粒子が球状である、請求項1~4のいずれか一項に記載のダイシング・ダイボンディング一体型フィルム。
  6.  前記導電性粒子の平均粒径が5.0μm以下である、請求項5に記載のダイシング・ダイボンディング一体型フィルム。
  7.  前記導電性粒子の平均粒径が3.0μm以下である、請求項5に記載のダイシング・ダイボンディング一体型フィルム。
  8.  前記ダイボンディングフィルムが、熱硬化性樹脂、硬化剤、及びエラストマーをさらに含有する、請求項1~7のいずれか一項に記載のダイシング・ダイボンディング一体型フィルム。
  9.  前記熱硬化性樹脂が25℃で液状のエポキシ樹脂を含み、
     前記25℃で液状のエポキシ樹脂の含有量が、ダイボンディングフィルムの全量を基準として、2質量%以上である、請求項8に記載のダイシング・ダイボンディング一体型フィルム。
  10.  請求項1~9のいずれか一項に記載のダイシング・ダイボンディング一体型フィルムの前記ダイボンディングフィルムの前記第2の表面を半導体ウェハに貼り付ける工程と、
     少なくとも前記半導体ウェハ及び前記ダイボンディングフィルムを個片化する工程と、
     前記ダイシングテープからダイボンディングフィルム片が付着した半導体チップをピックアップする工程と、
     前記ダイボンディングフィルム片を介して、前記半導体チップを支持基板に接着する工程と、
    を備える、半導体装置の製造方法。
  11.  第1の表面及び前記第1の表面と反対側の第2の表面を有するダイボンディングフィルムであって、
     ダイボンディングフィルムの全量を基準として、75質量%以上の導電性粒子を含有し、
     前記第1の表面の表面粗さが1.0μm以下であり、かつ前記第2の表面の表面粗さが1.0μm以下である、
     ダイボンディングフィルム。
  12.  前記第1の表面の表面粗さが前記第2の表面の表面粗さよりも大きい、請求項11に記載のダイボンディングフィルム。
  13.  前記第1の表面の表面粗さが0.25μm以上である、請求項11又は12に記載のダイボンディングフィルム。
  14.  前記ダイボンディングフィルムにおける熱伝導率が1.6W/mK以上である、請求項11~13のいずれか一項に記載のダイボンディングフィルム。
  15.  前記導電性粒子が球状である、請求項11~14のいずれか一項に記載のダイボンディングフィルム。
  16.  前記導電性粒子の平均粒径が5.0μm以下である、請求項15に記載のダイボンディングフィルム。
  17.  前記導電性粒子の平均粒径が3.0μm以下である、請求項15に記載のダイボンディングフィルム。
  18.  熱硬化性樹脂、硬化剤、及びエラストマーをさらに含有する、請求項11~17のいずれか一項に記載のダイボンディングフィルム。
  19.  前記熱硬化性樹脂が25℃で液状のエポキシ樹脂を含み、
     前記25℃で液状のエポキシ樹脂の含有量が、ダイボンディングフィルムの全量を基準として、2質量%以上である、請求項18に記載のダイボンディングフィルム。
PCT/JP2019/026886 2019-07-05 2019-07-05 ダイシング・ダイボンディング一体型フィルム、ダイボンディングフィルム、及び半導体装置の製造方法 WO2021005661A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/026886 WO2021005661A1 (ja) 2019-07-05 2019-07-05 ダイシング・ダイボンディング一体型フィルム、ダイボンディングフィルム、及び半導体装置の製造方法
KR1020217042101A KR20220030218A (ko) 2019-07-05 2020-07-01 다이싱·다이본딩 일체형 필름, 다이본딩 필름, 및 반도체 장치의 제조 방법
JP2021530652A JPWO2021006158A1 (ja) 2019-07-05 2020-07-01
PCT/JP2020/025891 WO2021006158A1 (ja) 2019-07-05 2020-07-01 ダイシング・ダイボンディング一体型フィルム、ダイボンディングフィルム、及び半導体装置の製造方法
CN202080046101.6A CN114008760A (zh) 2019-07-05 2020-07-01 切割晶粒接合一体型膜、晶粒接合膜以及半导体装置的制造方法
TW109122253A TW202120641A (zh) 2019-07-05 2020-07-01 切晶-黏晶一體型膜、黏晶膜以及半導體裝置的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026886 WO2021005661A1 (ja) 2019-07-05 2019-07-05 ダイシング・ダイボンディング一体型フィルム、ダイボンディングフィルム、及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2021005661A1 true WO2021005661A1 (ja) 2021-01-14

Family

ID=74114982

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/026886 WO2021005661A1 (ja) 2019-07-05 2019-07-05 ダイシング・ダイボンディング一体型フィルム、ダイボンディングフィルム、及び半導体装置の製造方法
PCT/JP2020/025891 WO2021006158A1 (ja) 2019-07-05 2020-07-01 ダイシング・ダイボンディング一体型フィルム、ダイボンディングフィルム、及び半導体装置の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025891 WO2021006158A1 (ja) 2019-07-05 2020-07-01 ダイシング・ダイボンディング一体型フィルム、ダイボンディングフィルム、及び半導体装置の製造方法

Country Status (5)

Country Link
JP (1) JPWO2021006158A1 (ja)
KR (1) KR20220030218A (ja)
CN (1) CN114008760A (ja)
TW (1) TW202120641A (ja)
WO (2) WO2021005661A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062205A (ja) * 2008-09-01 2010-03-18 Nitto Denko Corp ダイシング・ダイボンドフィルムの製造方法
JP2015103580A (ja) * 2013-11-21 2015-06-04 日東電工株式会社 熱硬化型ダイボンドフィルム、ダイシングシート付きダイボンドフィルム、熱硬化型ダイボンドフィルムの製造方法、及び、半導体装置の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4430085B2 (ja) 2007-03-01 2010-03-10 日東電工株式会社 ダイシング・ダイボンドフィルム
JP6396189B2 (ja) 2014-11-27 2018-09-26 日東電工株式会社 導電性フィルム状接着剤、フィルム状接着剤付きダイシングテープ及び半導体装置の製造方法
JP6636306B2 (ja) * 2015-11-27 2020-01-29 日東電工株式会社 接着シート、ダイシングテープ一体型接着シート、及び、半導体装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062205A (ja) * 2008-09-01 2010-03-18 Nitto Denko Corp ダイシング・ダイボンドフィルムの製造方法
JP2015103580A (ja) * 2013-11-21 2015-06-04 日東電工株式会社 熱硬化型ダイボンドフィルム、ダイシングシート付きダイボンドフィルム、熱硬化型ダイボンドフィルムの製造方法、及び、半導体装置の製造方法

Also Published As

Publication number Publication date
KR20220030218A (ko) 2022-03-10
CN114008760A (zh) 2022-02-01
JPWO2021006158A1 (ja) 2021-01-14
WO2021006158A1 (ja) 2021-01-14
TW202120641A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
JP5725329B2 (ja) バリ特性及び信頼性に優れたダイシング・ダイボンディングフィルム及び半導体装置
WO2020184490A1 (ja) 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法
JP2023017948A (ja) 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法
WO2019151260A1 (ja) 半導体装置の製造方法及び接着フィルム
WO2022009571A1 (ja) ダイシング・ダイボンディング一体型フィルム、ダイボンディングフィルム、及び半導体装置の製造方法
WO2022138455A1 (ja) フィルム状接着剤及びその製造方法、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
JP7287477B2 (ja) 半導体装置の製造方法、接着剤層の選定方法、並びに、ダイシング・ダイボンディング一体型フィルムの製造方法
WO2021006158A1 (ja) ダイシング・ダイボンディング一体型フィルム、ダイボンディングフィルム、及び半導体装置の製造方法
JP7456181B2 (ja) 半導体装置及びその製造方法、フィルム状接着剤、並びにダイシング・ダイボンディング一体型フィルム
JP7380565B2 (ja) 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法
JP2022102458A (ja) 半導体装置の製造方法、フィルム状接着剤及びその製造方法、並びにダイシング・ダイボンディング一体型フィルム
WO2021079968A1 (ja) 接着剤組成物、フィルム状接着剤及びダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
WO2022009570A1 (ja) ダイシング・ダイボンディング一体型フィルム、ダイボンディングフィルム、及び半導体装置の製造方法
JP2021061284A (ja) ダイボンディングフィルム、フィルム状接着剤、並びに半導体装置及びその製造方法
WO2023136057A1 (ja) ダイシング・ダイボンディング一体型フィルム及びその製造方法、並びに半導体装置の製造方法
WO2022137552A1 (ja) フィルム状接着剤及びその製造方法、ダイシング・ダイボンディング一体型フィルム及びその製造方法、並びに半導体装置及びその製造方法
WO2022137714A1 (ja) フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
WO2024135752A1 (ja) ダイボンディングフィルム及びその製造方法、ダイシング・ダイボンディング一体型フィルム及びその製造方法、並びに半導体装置の製造方法
TW201724229A (zh) 切割膠帶一體型接著薄片
JP2023176508A (ja) 半導体装置の製造方法
JPWO2019150995A1 (ja) 熱硬化性樹脂組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.05.2022)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19937045

Country of ref document: EP

Kind code of ref document: A1