WO2021004108A1 - 一种掺钕bgso混晶材料及其制备方法 - Google Patents

一种掺钕bgso混晶材料及其制备方法 Download PDF

Info

Publication number
WO2021004108A1
WO2021004108A1 PCT/CN2020/084482 CN2020084482W WO2021004108A1 WO 2021004108 A1 WO2021004108 A1 WO 2021004108A1 CN 2020084482 W CN2020084482 W CN 2020084482W WO 2021004108 A1 WO2021004108 A1 WO 2021004108A1
Authority
WO
WIPO (PCT)
Prior art keywords
bgso
crystal
doped
neodymium
temperature
Prior art date
Application number
PCT/CN2020/084482
Other languages
English (en)
French (fr)
Inventor
李纳
徐军
徐晓东
宋青松
Original Assignee
南京同溧晶体材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京同溧晶体材料研究院有限公司 filed Critical 南京同溧晶体材料研究院有限公司
Publication of WO2021004108A1 publication Critical patent/WO2021004108A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides

Definitions

  • the invention belongs to the technical field of laser materials, and relates to an infrared waveband laser crystal and a preparation method thereof, in particular to a neodymium-doped BGSO mixed crystal material and a preparation method thereof.
  • Nd:YCa 4 O(BO 3 ) 3 crystal achieves a slope efficiency of 57% at 1060nm and a laser output with an output power of 1900mW.
  • Nd:YAG achieves a laser output with a slope efficiency of 35% at 1300nm and an output power of 200mw.
  • BGO single crystal has the advantages of low thermal expansion coefficient (6.3 ⁇ 10 -6 /°C) and low effective phonon energy (400 cm -1 ), making it a promising laser matrix material.
  • Doping a small amount of SiO 2 in the BGO crystal to replace GeO 2 does not change its structure.
  • the crystals are mainly grown by the Czochralski method, the vertical Bridgman method and the micro pull-down method. Compared with other crystal growth methods, the micro pull-down method has the advantages of using less raw materials, fast growth speed, adjustable crystal diameter and short growth period.
  • the research on rare earth ion doped BGSO mixed crystal mainly focuses on the study of scintillation performance, such as: light yield, energy resolution and fluorescence decay time.
  • scintillation performance such as: light yield, energy resolution and fluorescence decay time.
  • the present invention provides a neodymium-doped BGSO mixed crystal material.
  • the chemical formula of the mixed crystal material is (Nd x Bi 1-x ) 4 (Ge 1-y Si y ) 3 O 12 , where the value range of x is 0.001-0.010, the value range of y is 0.05-0.5, and the unit cell parameter is
  • a method for preparing the above-mentioned mixed crystal material which adopts a micro pull-down method for growth, and the method mainly includes the following steps:
  • the initial raw materials are 5N purity Nd 2 O 3 , Bi 2 O 3 , GeO 2 and SiO 2 powders.
  • Second select Nd x Bi 1-x ) 4 (Ge 1-y Si y ) 3 O 12 carefully calculate the required mass of each raw material and weigh it accurately;
  • step (2) the time for grinding the raw materials is 40min-60min.
  • the heating rate is 75-155°C/h, and the temperature is kept at 700-850°C for 22-30h.
  • the pulling speed of the seed rod during seeding in step (4) is 0.25-0.65 mm/min, and the pulling speed is 5-8 mm/min when the crystal grows stably.
  • step (4) cooling process is 3-4 hours.
  • the present invention has the following advantages: (1) Compared with other crystal growth methods, the micro pull-down method of crystal growth has the advantages of less raw materials, fast growth rate, and short growth period. And the crystal diameter can be adjusted; (2) The micro pull-down method is used to grow the crystal, which can stably obtain the Nd:BGSO laser crystal with a diameter of 2mm and a length of 131mm, and the doping ratio of Nd ions and Si ions can be further adjusted Obtain near infrared laser output.
  • Figure 1 is a sample diagram of the mixed crystal material prepared by the present invention.
  • Figure 2 is an X-ray powder diffraction pattern of the sample of Example 1 prepared by the present invention.
  • Fig. 3 is a fluorescence diagram of the sample micro-area of Example 1 prepared by the present invention.
  • Figure 4 is a micro-area fluorescence image of a sample of Example 1 prepared by the present invention at a point taken along the diameter.
  • Figure 5 is the absorption spectrum of the sample of Example 1 prepared by the present invention at room temperature.
  • Fig. 6 is a refractive index diagram of a sample of Example 1 prepared by the present invention.
  • Figure 7 is the fluorescence spectrum of the sample of Example 1 prepared by the present invention.
  • Fig. 8 is a fluorescence lifetime diagram of a sample prepared in Example 1 of the present invention.
  • Example 1 Micro pull-down growth (Nd 0.003 Bi 0.997 ) 4 (Ge 0.95 Si 0.05 ) 3 O 12 was specifically prepared by the following method:
  • Nd 2 O 3 , Bi 2 O 3 , GeO 2 and SiO 2 powder as starting materials.
  • chemical formula (Nd 0.003 Bi 0.997 ) 4 (Ge 0.95 Si 0.05 ) 3 O 12 carefully calculate the required mass of each raw material and weigh it accurately.
  • the blank is sintered at a high temperature at a rate of 75°C/h and kept at 700°C for 30h After that, take it out and put it in a platinum crucible, and put it into a micro pull-down furnace for growth.
  • the growth program is adjusted so that the temperature in the furnace drops to room temperature after 4 hours, and the crystals are taken out.
  • the data obtained by experimenting with any selected crystal is shown in Figure 1-8.
  • the XRD diffraction peak of the crystal sample is consistent with the BGO standard card peak position, indicating that the grown crystal is pure BGO phase.
  • Through the micro-area fluorescence spectrum test it can be obtained that the Nd 3+ ion concentration distribution on the end face of the crystal is uniform.
  • the absorption cross section at 808 nm is 0.98 ⁇ 10 -20 cm 2 , and the half-height width is 17. nm.
  • the relatively large FWHM is more conducive to pumping with AlGaAs laser diodes.
  • Nd:BGSO crystal is a promising material for near-infrared laser output.
  • Example 2 Micro pull-down growth (Nd 0.005 Bi 0.995 ) 4 (Ge 0.95 Si 0.05 ) 3 O 12 is specifically prepared by the following method:
  • Example 3 Micro pull-down growth (Nd 0.007 Bi 0.993 ) 4 (Ge 0.95 Si 0.05 ) 3 O 12 was specifically prepared by the following method:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种掺钕BGSO混晶材料及其制备方法,该晶体的化学式为(Nd xBi 1-x) 4(Ge 1-ySi y) 3O 12,其中x的取值范围为0.001-0.01,y的取值范围是0.05-0.5,晶胞参数为a=b=c=10.513Å。使用纯度为5N的Nd 2O 3,Bi 2O 3,GeO 2和SiO 2粉末作为原料,经过充分研磨之后压制成棒,在700-850摄氏度下高温烧结22-30小时。采用微下拉生长掺钕BGSO混晶。

Description

一种掺钕BGSO混晶材料及其制备方法 技术领域
本发明属于激光材料技术领域,涉及一种红外波段激光晶体及其制备方法,特别涉及一种掺钕BGSO混晶材料及其制备方法。
背景技术
近年来,激光二极管泵浦固体激光器由于其在医疗、非线性光学和科学研究中的广泛应用而得以快速发展。激光材料是固体激光器的重要组成部分。其中,钕离子掺杂的激光晶体材料由于其具有较长的荧光寿命,较大的吸收截面和发射截面已获得瓦级激光输出。比如:Nd:YCa 4O(BO 3) 3晶体在1060nm实现斜率效率为57%,输出功率为1900mW的激光输出。Nd:YAG在1300nm实现斜率效率为35%,输出功率为200mw的激光输出。
近来,BGO单晶由于具有较低的热膨胀系数(6.3×10 -6/℃)和较低的有效声子能量(400cm -1)等优点使其成为一种极具发展前景的激光基质材料。在BGO晶体中掺入少量的SiO 2以取代GeO 2并不会改变其结构。目前,国内外已经有很多BGSO混晶的报道。晶体主要通过提拉法,垂直布里奇曼法和微下拉法进行生长。相比于其它晶体生长方法,微下拉法具有使用原料少,生长速度快,晶体直径可调和生长周期短等优点。关于稀土离子掺杂BGSO混晶的研究主要集中在闪烁性能的研究,例如:光产额,能量分辨率及荧光衰减时间等。然而,有关Nd 3+掺杂BGSO晶体的制备方法以及光谱性能的研究并没有相关报道。
发明内容
为了解决现有技术中制备BGSO混晶材料时用料多、生长速率慢及周期长等的缺陷,本发明提供了一种掺钕BGSO混晶材料,该混晶材料的化学式为(Nd xBi 1-x) 4(Ge 1-ySi y) 3O 12,其中x的取值范围为0.001-0.010,y的取值范围是0.05-0.5,晶胞参数为
Figure PCTCN2020084482-appb-000001
同时,还提供了一种上述混晶材料的制备方法,采用微下拉法进行生长,该方法主要包括以下步骤:
(1)初始原料为5N纯度的Nd 2O 3,Bi 2O 3,GeO 2和SiO 2粉末,先选定Nd离子掺杂取代Bi离子,Si离子取代Ge离子中Nd和Si离子合适浓度之后,按照化学式(Nd xBi 1-x) 4(Ge 1-ySi y) 3O 12仔细计算每种原料所需的质量,并准确称量;
(2)将称量后的粉末原料放入玛瑙研钵中充分研磨使原料混合均匀,然后使用油压机压成棒状料胚,高温烧结,取出放入铂金坩埚,装入微下拉炉中进行生长;
(3)选取合适籽晶,在进行装炉过程要保证籽晶、坩埚底部小孔中心和线圈中心处于同一竖直线上;
(4)在1.2-2.5小时内升温到0.45-0.052KW并恒温0.2-0.4小时以保证坩埚内原料全部熔化,再引晶并控制拉速以使晶体稳定生长,生长结束后慢慢进行降温过程,当降至室温时,取出成品晶体。
作为改进,步骤(2)将原料研磨的时间为40min-60min。
作为改进,步骤(2)对原料高温烧结时,升温速率为75-155℃/h,并在700-850℃恒温22-30h。
作为改进,步骤(3)中当保证籽晶、坩埚底部小孔中心和线圈中心处于同一竖直线上时,采用旋转籽晶杆,籽晶摆幅不超过1mm。
作为改进,步骤(4)引晶时籽晶杆的拉速为0.25-0.65mm/min,晶体稳定生长时拉速为5-8mm/min。
作为改进,步骤(4)降温过程的时间为3-4小时。
有益效果:本发明与现有技术相比,优点为:(1)采用的微下拉法的晶体生长方法,相对于其他晶体生长方法而言,其具有使用原料少,生长速率快,生长周期短和晶体直径可调控等优点;(2)采用微下拉法生长获得晶体,能够稳定地获得直径为2mm,长度为131mm的Nd:BGSO激光晶体,且可进一步调节Nd离子和Si离子的掺杂比例获得近红外激光输出。
附图说明
图1是本发明制备的混晶材料的样品图。
图2是本发明制备的实施例1样品X射线粉末衍射图谱。
图3是本发明制备的实施例1样品微区荧光图。
图4是本发明制备的实施例1样品的沿直径所取个点的微区荧光图。
图5是本发明制备的实施例1样品在室温下的吸收光谱。
图6是本发明制备的实施例1样品的折射率图。
图7是本发明制备的实施例1样品的荧光光谱。
图8是本发明制备的实施例1样品的荧光寿命图。
具体实施方式
下面对本发明附图和具体实施例作出进一步说明。
其中坩埚内原料全部熔化话,再进行引晶,控制拉速,开始控制拉速0.25-0.65mm/min保证熔料慢慢结晶后,再增加拉速到5-8mm/min,保证晶体能够稳定生长。
实施例1:微下拉法生长(Nd 0.003Bi 0.997) 4(Ge 0.95Si 0.05) 3O 12具体通过以下方法制备:
用5N纯度的Nd 2O 3,Bi 2O 3,GeO 2和SiO 2粉末作为初始原料。按照化学式(Nd 0.003Bi 0.997) 4(Ge 0.95Si 0.05) 3O 12仔细计算每种原料所需的质量并准确称量。将粉末原料放入玛瑙研钵中充分研磨,研磨40min使原料混合均匀,然后使用油压机压成棒状料胚,对料胚进行高温烧结,升温速率为75℃/h,且在700℃下恒温30h后,取出放入铂金坩埚,装入微下拉炉中进行生长。
选取合适的籽晶,进行装炉。在装炉过程要确保籽晶、坩埚底部小孔中心和线圈中心处于同一竖直线上,旋转籽晶杆,籽晶摆幅不超过1mm,一般优选为0-0.25mm。在2小时内升温到0.045KW并恒温0.3小时以保证坩埚内原料全部熔化,再开始引晶,控制拉速0.5mm/min保证熔料慢慢结晶,再增加拉速到5mm/min时晶体可以稳定生长。生长结束后调整生长程序使炉内温度在4小时后降至室温,取出晶体。任一选取获得晶体进行实验获得数据见图1-8所示,如图2所示,晶体样品的XRD衍射峰与BGO标准卡片峰位一致,表明生长所得的晶体为纯的BGO相。通过微区荧光光谱测试可得,晶体端面Nd 3+离子浓度分布均匀。在808nm处的 吸收截面为0.98×10 -20cm 2,半高宽为17.nm。相对较大的半高宽更有利于用AlGaAs激光二极管泵浦。通过JO理论计算得到在1063nm处的截面为3.15×10 -20cm 2,荧光量子效率为82.7%(荧光寿命为248微妙)。以上结果表明,Nd:BGSO晶体是一种很有希望的近红外激光输出的材料。
实施例2:微下拉法生长(Nd 0.005Bi 0.995) 4(Ge 0.95Si 0.05) 3O 12具体通过以下方法制备:
用5N纯度的Nd 2O 3,Bi 2O 3,GeO 2和SiO 2粉末作为初始原料,按照化学式(Nd 0.005Bi 0.995) 4(Ge 0.95Si 0.05) 3O 12仔细计算每种原料所需的质量并准确称量。将粉末原料放入玛瑙研钵中充分研磨,研磨50min使原料混合均匀,然后使用油压机压成棒状料胚,对料胚进行高温烧结,升温速率为100℃/h,且在850℃下恒温24h后,取出放入铂金坩埚,装入微下拉炉中进行生长。
选取合适的籽晶,进行装炉。在装炉过程要确保籽晶、坩埚底部小孔中心和线圈中心处于同一竖直线上,旋转籽晶杆,籽晶摆幅不超过1mm,一般优选为0-0.2mm。在1.2小时内升温到0.05KW并恒温0.4小时以保证坩埚内原料全部熔化,再开始引晶,控制拉速0.25mm/min保证熔料慢慢结晶,再增加拉速到8mm/min时晶体可以稳定生长。生长结束后调整生长程序使炉内温度在3小时后降至室温,取出晶体。
实施例3:微下拉法生长(Nd 0.007Bi 0.993) 4(Ge 0.95Si 0.05) 3O 12具体通过以下方法制备:
用5N纯度的Nd 2O 3,Bi 2O 3,GeO 2和SiO 2粉末作为初始原料,按照化学式(Nd 0.007Bi 0.993) 4(Ge 0.95Si 0.05) 3O 12仔细计算每种原料所需的质量并准确称量。将粉末原料放入玛瑙研钵中充分研磨,研磨60min使原料混合均匀,然后使用油压机压成棒状料胚,对料胚进行高温烧结,升温速率为155℃/h,且在755℃下恒温22h后,取出放入铂金坩埚,装入微下拉炉中进行生长。
选取合适的籽晶,进行装炉。在装炉过程要确保籽晶、坩埚底部小孔中心和线圈中心处于同一竖直线上,旋转籽晶杆,籽晶摆幅不超过1mm,一般优选为0-0.15mm。在2.5小时内升温到0.052KW并恒温0.2小时以保证坩埚内原料全部熔化,再开始引晶,控制拉速0.65mm/min保证熔料慢慢结晶,再增加拉速到6.5mm/min时晶体可以稳定生长。生长结束后调整生长程序使炉内温度在3.2小时后降至室温,取出晶体。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

  1. 一种掺钕BGSO混晶材料,其特征在于,该混晶材料的化学式为(Nd xBi 1-x) 4(Ge 1-ySi y) 3O 12,其中x的取值范围为0.001-0.010,y的取值范围是0.05-0.5,晶胞参数为
    Figure PCTCN2020084482-appb-100001
  2. 一种如权利要求1所述的掺钕BGSO混晶材料的制备方法,其特征在于,采用微下拉法进行生长,该方法主要包括以下步骤:
    (1)初始原料为5N纯度的Nd 2O 3,Bi 2O 3,GeO 2和SiO 2粉末,先选定Nd离子掺杂取代Bi离子,Si离子取代Ge离子中Nd和Si离子合适浓度之后,按照化学式(Nd xBi 1-x) 4(Ge 1-ySi y) 3O 12仔细计算每种原料所需的质量,并准确称量;
    (2)将称量后的粉末原料放入玛瑙研钵中充分研磨使原料混合均匀,然后使用油压机压成棒状料胚,高温烧结,取出放入铂金坩埚,装入微下拉炉中进行生长;
    (3)选取合适籽晶,在进行装炉过程要保证籽晶、坩埚底部小孔中心和线圈中心处于同一竖直线上;
    (4)在1.2-2.5小时内升温到0.045-0.052KW并恒温0.2-0.4小时以保证坩埚内原料全部熔化,再引晶并控制拉速以使晶体稳定生长,生长结束后慢慢进行降温过程,当降至室温时,取出成品晶体。
  3. 根据权利要求2所述的一种掺钕BGSO混晶材料及其制备方法,其特征在于,步骤(2)将原料研磨的时间为40min-60min。
  4. 根据权利要求2所述的掺钕BGSO混晶材料的制备方法,其特征在于,步骤(2)对原料高温烧结时,升温速率为75-155℃/h,并在700-850℃恒温22-30h。
  5. 根据权利要求2所述的掺钕BGSO混晶材料的制备方法,其特征在于,步骤(3)中当保证籽晶、坩埚底部小孔中心和线圈中心处于同一竖直线上时,采用旋转籽晶杆,籽晶摆幅不超过1mm。
  6. 根据权利要求2所述的掺钕BGSO混晶材料的制备方法,其特征在于,步骤(4)引晶时籽晶杆的拉速为0.25-0.65mm/min,晶体稳定生长时拉速为5-8mm/min。
  7. 根据权利要求2所述的掺钕BGSO混晶材料的制备方法,其特征在于,步骤(4)降温过程的时间为3-4小时。
PCT/CN2020/084482 2019-07-11 2020-04-13 一种掺钕bgso混晶材料及其制备方法 WO2021004108A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910622904.0A CN110528077A (zh) 2019-07-11 2019-07-11 一种掺钕bgso混晶材料及其制备方法
CN201910622904.0 2019-07-11

Publications (1)

Publication Number Publication Date
WO2021004108A1 true WO2021004108A1 (zh) 2021-01-14

Family

ID=68659609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084482 WO2021004108A1 (zh) 2019-07-11 2020-04-13 一种掺钕bgso混晶材料及其制备方法

Country Status (2)

Country Link
CN (1) CN110528077A (zh)
WO (1) WO2021004108A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699582A (zh) * 2021-08-17 2021-11-26 上海应用技术大学 一种掺铥bgso人眼安全激光晶体及其制备方法
CN115491765A (zh) * 2022-10-27 2022-12-20 江苏师范大学 一种掺铥的铝酸钇钙2μm波段单晶光纤及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110528077A (zh) * 2019-07-11 2019-12-03 南京同溧晶体材料研究院有限公司 一种掺钕bgso混晶材料及其制备方法
CN112342621B (zh) * 2020-10-15 2023-01-06 江苏师范大学 一种碲掺杂锗酸铋晶体材料及其制备方法和应用
CN112251811A (zh) * 2020-10-23 2021-01-22 南京同溧晶体材料研究院有限公司 一种稀土离子掺杂锗酸盐共晶材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011187A (zh) * 2010-12-28 2011-04-13 上海应用技术学院 硅锗酸铋混晶及其制备方法
CN106948006A (zh) * 2017-02-28 2017-07-14 上海应用技术大学 一种高光输出硅酸铋闪烁晶体及其制备方法
CN107163938A (zh) * 2017-05-24 2017-09-15 上海应用技术大学 一种Ho掺杂硅酸铋绿光荧光体及其制备方法
CN110528077A (zh) * 2019-07-11 2019-12-03 南京同溧晶体材料研究院有限公司 一种掺钕bgso混晶材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011187A (zh) * 2010-12-28 2011-04-13 上海应用技术学院 硅锗酸铋混晶及其制备方法
CN106948006A (zh) * 2017-02-28 2017-07-14 上海应用技术大学 一种高光输出硅酸铋闪烁晶体及其制备方法
CN107163938A (zh) * 2017-05-24 2017-09-15 上海应用技术大学 一种Ho掺杂硅酸铋绿光荧光体及其制备方法
CN110528077A (zh) * 2019-07-11 2019-12-03 南京同溧晶体材料研究院有限公司 一种掺钕bgso混晶材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, SAI ET AL.: "Development and Application of Micro-pulling-down Furnace for Growth of BGSO Fiber Crystals", JOURNAL OF SYNTHETIC CRYSTALS, vol. 44, no. 12, 31 December 2015 (2015-12-31), DOI: 20200604145119 *
LIN, Y. K. ET AL.: "Growth and laser properties of Nd3+-doped Bi4Ge3O12 single-crystal fiber", OPTICS LETTERS, vol. 43, no. 6, 5 March 2018 (2018-03-05), XP055772466, DOI: 20200604145136 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699582A (zh) * 2021-08-17 2021-11-26 上海应用技术大学 一种掺铥bgso人眼安全激光晶体及其制备方法
CN115491765A (zh) * 2022-10-27 2022-12-20 江苏师范大学 一种掺铥的铝酸钇钙2μm波段单晶光纤及其制备方法

Also Published As

Publication number Publication date
CN110528077A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2021004108A1 (zh) 一种掺钕bgso混晶材料及其制备方法
CN102076892B (zh) 掺杂的低温相偏硼酸钡单晶体、其制备方法及其变频器件
WO2021004078A1 (zh) 一种掺谱钪酸钆可见波段激光晶体及其制备方法
CN101503823B (zh) 掺镱四钼钨酸铋钠/钾激光晶体及其生长方法和应用
CN103014868B (zh) 非线性光学晶体亚碲钼酸镉及其制备和用途
CN105502329B (zh) RbNaMgP2O7化合物、RbNaMgP2O7非线性光学晶体及其制法和用途
Zhang et al. Cracking mechanism and spectral properties of Er, Yb: CaGdAlO 4 crystals grown by the LHPG method
CN115341284B (zh) 一种高浓度梯度钕掺杂钆钇铝石榴石激光晶体及其制备方法
Jia et al. Growth and properties of Nd:(LuxGd1− x) 3Ga5O12 laser crystal by Czochralski method
CN108048908A (zh) 一种大尺寸掺钛蓝宝石激光晶体及其制造工艺
Quan et al. Growth and fluorescence characteristics of Er: LuAG laser crystals
CN103451730B (zh) Cd4RO(BO3)3化合物、Cd4RO(BO3)3光学晶体及制法和用途
Tu et al. Crystal growth of KGd (WO4) 2: Nd3+
CN102337591B (zh) 镱掺杂硼酸三钇钾激光晶体及其生长方法和用途
CN115216840B (zh) 离子补偿法制备锂铊共掺杂碘化钠闪烁晶体的方法
Haiping et al. Optical spectroscopy and crystal-field strength of Cr3+ in various solid matrixes
US20030085378A1 (en) Nonlinear optical crystals of compound Na3La9B8O27 and producing method and uses thereof
CN1040228A (zh) 三硼酸锂大单晶的生长及其用途
CN103060911A (zh) 一种大尺寸高品质因素掺碳钛宝石激光晶体及其制备方法
CN104233468B (zh) Li4Sr(BO3)2化合物、Li4Sr(BO3)2非线性光学晶体及其制法和用途
CN102321918A (zh) 一种双掺铌酸锂晶体及其制备方法
CN102517635B (zh) 化合物锂钾磷氧和锂钾磷氧晶体及其制备方法
CN110541197A (zh) 一种掺镱硼酸钙钆镧混晶激光晶体及其制备方法和应用
CN101717998A (zh) 掺钕的硅酸钇镥激光晶体及其制备方法
CN104746139A (zh) 化合物硼酸铷镁非线性光学晶体及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836947

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836947

Country of ref document: EP

Kind code of ref document: A1