WO2021002447A1 - 両面研磨装置の制御システム、制御装置および基板の製造方法 - Google Patents

両面研磨装置の制御システム、制御装置および基板の製造方法 Download PDF

Info

Publication number
WO2021002447A1
WO2021002447A1 PCT/JP2020/026117 JP2020026117W WO2021002447A1 WO 2021002447 A1 WO2021002447 A1 WO 2021002447A1 JP 2020026117 W JP2020026117 W JP 2020026117W WO 2021002447 A1 WO2021002447 A1 WO 2021002447A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
work amount
bot
double
polished
Prior art date
Application number
PCT/JP2020/026117
Other languages
English (en)
French (fr)
Inventor
秀夫 北本
博史 藤井
行正 塩道
修 杉村
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Publication of WO2021002447A1 publication Critical patent/WO2021002447A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/16Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a control system, a control device, and a method for manufacturing a substrate of a double-sided polishing device that polishes the TOP surface and the BOT surface of a plate-shaped object to be polished.
  • the relative speed of polishing the surface of the object to be polished by the upper surface plate is A
  • the relative velocity of polishing the back surface of the object to be polished by the lower surface plate is B
  • the ratio of A to B (A / B) is 0. It is disclosed that the flatness of the object to be polished is improved by setting it to 6 or more and 0.8 or less (see Patent Document 2).
  • control system described in Patent Document 1 integrates the amount of work performed between the work layer and the surface plate on which the abrasive is held, so that the amount of polishing of the work layer formed on the semiconductor substrate is increased. Is in control. Further, the control system described in Patent Document 1 is for polishing only one side of the layer to be processed, not both sides of the front and back surfaces of the semiconductor substrate, and controlling so that the polishing amount is constant, and the semiconductor substrate is flat. It does not control the degree. When the control system described in Patent Document 1 is used for controlling the flatness of a substrate that requires polishing both the front and back surfaces, there is a problem that it becomes difficult to control the flatness.
  • control system described in Patent Document 2 improves the flatness of the object to be polished by controlling the relative velocity ratio (A / B) within a predetermined range, but the flatness of the object to be polished is high. Not only is it uniquely affected by the relative speed alone, but it is also affected by other polishing conditions. For example, the flatness is affected by the torque change of the upper surface plate and the lower surface plate and the processing time of the object to be polished. Therefore, there is a problem that the flatness of the object to be polished may not be controlled with high accuracy only by controlling the relative velocity ratio (A / B) within a predetermined range.
  • the present invention has been made to solve such a problem, and is a control system, a control device, and a double-sided polishing device that can quickly control the flatness of a substrate with high accuracy by controlling the polishing conditions.
  • An object of the present invention is to provide a method for manufacturing a substrate.
  • the TOP of the object to be polished is obtained by sandwiching the object to be polished between the upper surface plate and the lower surface plate and rotating the upper surface plate and the lower surface plate.
  • the TOP surface work amount PT (Ws) required for polishing the TOP surface and the BOT surface work amount PB (Ws) required for polishing the BOT surface are respectively. It is characterized in that the polishing conditions are controlled so that the calculated work amount TB difference, which is the difference between the TOP surface work amount PT and the BOT surface work amount PB, is within a predetermined range.
  • the control system for the double-sided polishing machine according to the present invention is the control system for the double-sided polishing machine according to (1), and the TOP surface work amount PT and the BOT surface work amount PB are the upper surface plate. It is characterized in that it is calculated based on the rotation speed (rpm), torque (Nm) of the lower surface plate and the processing time T (sec) of the object to be polished.
  • the control system for the double-sided polishing apparatus is the control system for the double-sided polishing apparatus according to (1) or (2), and the TOP surface work amount PT required for polishing the TOP surface is The following formula (1) (In equation (1), T 1 is the time to start the measurement of the workload (sec), T 2 is the time to finish the measurement of the workload (sec), k is a constant, and NU is the upper surface plate rotation speed (rpm). ), NC is the carrier revolution speed (rpm), QUA is the upper surface plate torque (Nm), QUA is the torque for the upper surface plate mechanical loss (Nm), and t is the sampling time (sec). It is characterized in that it is calculated by.
  • the control system for the double-sided polishing apparatus is the control system for the double-sided polishing apparatus according to any one of (1) to (3), and the amount of work on the BOT surface required for polishing the BOT surface.
  • PB is the following formula (2) (In equation (2), T 1 is the time to start the measurement of the workload (sec), T 2 is the time to finish the measurement of the workload (sec), k is the constant, and NL is the lower platen rotation speed (rpm).
  • NC is the carrier revolution speed (rpm)
  • QL is the lower platen torque (Nm)
  • QLM is the torque (Nm) for the lower platen mechanical loss
  • t is the sampling time (sec). It is characterized in that it is calculated by.
  • the control system for the double-sided polishing machine according to the present invention is the control system for the double-sided polishing machine according to (1), and the predetermined range is determined by the threshold value of flatness and the threshold value of the work amount TB difference. It is characterized by being set.
  • the control system for the double-sided polishing machine according to the present invention is the control system for the double-sided polishing machine according to (1), and is either the upper surface plate or the lower surface plate based on the work amount TB difference. It is characterized in that only one of them is controlled.
  • the control device sandwiches the object to be polished between the upper surface plate and the lower surface plate, and rotates the upper surface plate and the lower surface plate to rotate the TOP surface and the BOT surface of the object to be polished.
  • the difference between the second calculation means for calculating the above, the TOP surface work amount PT calculated by the first calculation means, and the BOT surface work amount PB calculated by the second calculation means is within a predetermined range. It is characterized in that it is provided with a control means for controlling the polishing conditions.
  • the substrate manufacturing method according to the present invention is a method for manufacturing a substrate for polishing the TOP surface and BOT surface of an object to be polished by a double-sided polishing device, in which the TOP surface work amount PT (Ws) required for polishing the TOP surface is The first calculation step for calculating the BOT surface, the second calculation step for calculating the BOT surface work amount PB (Ws) required for polishing the BOT surface, the TOP surface work amount PT calculated by the first calculation step, and the above. It is characterized by including a control step of controlling polishing conditions so that the difference from the BOT surface work amount PB calculated by the second calculation step is within a predetermined range.
  • the flatness of the substrate is quickly controlled with high accuracy by controlling the polishing conditions, and a substrate with good flatness can be obtained.
  • the TOP surface work amount PT and the BOT surface work amount PB are calculated with high accuracy.
  • the TOP surface work amount PT required for polishing the TOP surface is calculated by the formula (1).
  • the calculation process is performed based on the torque QUA (Nm) and the sampling time t (sec). Since the calculation process of the TOP surface work amount PT is definitely integrated from the start to the end of the machining time, the calculation process is performed during the polishing of the substrate, and a highly accurate TOP surface work amount PT can be obtained.
  • the BOT surface work amount PB required for polishing the BOT surface is calculated by the formula (2).
  • the machining time T (sec), the constant k, the lower platen rotation speed NL (rpm), the carrier revolution speed NC (rpm), the lower platen torque QL (Nm), and the torque QLM for the lower platen mechanical loss The calculation process is performed based on Nm) and the sampling time t (sec). Since the calculation process of the BOT surface work amount PB is definitely integrated from the start to the end of the machining time, the calculation process is performed during the polishing of the substrate, and a highly accurate BOT surface work amount PB can be obtained.
  • the polishing amount of the substrate is within a predetermined range, and a substrate with good flatness can be obtained.
  • the TOP surface work amount PT (Ws) required for polishing the TOP surface is calculated by the first calculation means, and the BOT surface is polished by the second calculation means.
  • the required BOT surface work amount PB (Ws) is calculated.
  • the control means controls the polishing conditions so that the difference between the calculated TOP surface work amount PT and the BOT surface work amount PB is within a predetermined range.
  • the TOP surface work amount PT (Ws) required for polishing the TOP surface is calculated by the first calculation step, and the BOT surface is calculated by the second calculation step.
  • the BOT surface work amount PB (Ws) required for polishing is calculated, and the polishing conditions are controlled by the control process so that the difference between the TOP surface work amount PT and the BOT surface work amount PB is within a predetermined range.
  • a control system for a double-sided polishing device a control device, and a method for manufacturing a substrate, which can quickly control the flatness of a substrate with high accuracy by controlling polishing conditions. Further, according to the present invention, a substrate having good flatness can be stably produced.
  • FIG. 1A shows the perspective view of the substrate
  • FIG. 1B shows the sectional view of the substrate.
  • FIG. 2A shows the state of zero flatness
  • FIG. 2B shows the flatness deteriorated.
  • the state is shown
  • FIG. 2C shows a graph showing the influence of the difference in plate thickness on the flatness.
  • the block diagram of the control system of the double-sided polishing apparatus which concerns on embodiment of this invention.
  • FIG. 5A shows the rotation direction of the upper surface plate
  • FIG. 5B shows the lower surface plate, the sun gear and. Indicates the direction of rotation of the carrier (revolution, rotation).
  • FIG. 6A shows the distribution at the time of normal production
  • FIG. 6B shows.
  • FIG. 7A shows the figure of management by the flatness of the conventional method
  • FIG. 7B Shows a diagram of management by flatness in a work volume measuring device of a batch-by-batch management method.
  • a line graph showing the correlation between the amount of polishing and the amount of work in the control system of the double-sided polishing apparatus according to the embodiment of the present invention.
  • the graph which shows the relationship between the double-sided polishing amount and double-sided work amount in the control system of the double-sided polishing apparatus which concerns on embodiment of this invention.
  • FIG. 11A is a graph of the frequency distribution of the work amount TB difference in the control system of the double-sided polishing apparatus which concerns on embodiment of this invention
  • FIG. 11B shows a graph at the time of workload management.
  • FIG. 13A is a graph of the frequency distribution of the flatness TB difference in the control system of the double-sided polishing apparatus according to the embodiment of the present invention, and FIG. 13A shows a graph when the workload is not controlled (during normal production).
  • FIG. 13B shows a graph at the time of workload management.
  • the normal distribution curve and the graph of the flatness TB difference in the control system of the double-sided polishing apparatus which concerns on embodiment of this invention.
  • control system of the double-sided polishing device 10 the control device 20 and the manufacturing method of the substrate 30 according to the embodiment to which the control system of the double-sided polishing device according to the present invention is applied will be described with reference to the drawings.
  • the substrate 30 manufactured by the double-sided polishing apparatus 10 according to the embodiment will be described.
  • the substrate 30 has a disk shape having a thickness of th, an outer diameter of D, and an inner diameter of the central through hole h of d.
  • the substrate 30 is not limited to a disk, and may have a shape other than the disk, such as a square or an ellipse, and may not have a through hole h at the center.
  • the substrate 30 is a substrate for a hard disk in this embodiment, but may be a substrate used for other purposes.
  • the thickness th of the substrate 30 has dimensions of about 0.3 mm to 2 mm
  • the outer diameter D has dimensions of about 30 mm to 270 mm
  • the inner diameter d has dimensions of about 10 mm to 70 mm.
  • the thickness th is 1.75 mm, 1.6 mm, 1.27 mm, 1.0 mm, 0.8 mm, 0.635 mm, 0.6 mm, 0.5 mm, 0.38 mm, 0.3 mm, outer diameter.
  • the size of D has a disk shape selected from 3.5 inch, 2.8 inch, 2.5 inch, and the inner diameter d is 20 mm and 25 mm.
  • the substrate 30 is composed of an aluminum base material made of a plate material of aluminum or an aluminum alloy.
  • the substrate 30 has high-precision smoothness and surface hardness, and also has high rigidity and impact resistance capable of suppressing the generation of vibration due to high-speed rotation.
  • the substrate 30 is made of a hard material, and may be a glass substrate made of a glass plate material.
  • the substrate 30 is electroless nickel-phosphorus plated (NiP) on the front and back surfaces of an aluminum base material (Al_Sub) that has been surface-treated such as grinder polishing and annealing.
  • FIG. 2A shows an ideal substrate in which the film thickness difference between the front and back surfaces of electroless nickel-phosphorus plating, that is, the film thickness difference between the front surface side plating and the back surface side plating of the aluminum base material (Al_Sub) is zero. Is shown.
  • the compressive stress acting on the front surface side and the back surface side of the substrate is the same, and the flatness is zero.
  • the aluminum base material (Al_Sub) is a base material having a constant thickness and zero flatness and no distortion.
  • FIG. 2B shows an actual substrate 30 in which a difference in plating film thickness is generated on the front and back surfaces due to polishing of the front surface and the back surface.
  • the film thicknesses of the plating on the front surface side and the back surface side before polishing the substrate 30 are the same, and the film thickness difference is zero, but by polishing, for example, as shown in FIG.
  • the plating may be thick and the backside plating may be thin. In this case, the compressive stress acting on the front surface is large and the compressive stress acting on the back surface is small.
  • the flatness of the substrate 30 deteriorates.
  • the rigidity of the substrate 30 decreases as the thickness of the aluminum base material (Al_Sub) decreases, and the compressive stress caused by the difference in film thickness between the front and back surfaces of the electroless nickel-phosphorus plating film increases. It will be greatly affected.
  • the thickness of the substrate 30 is 0.635 mm
  • the inclination angle of the inclination line showing the relationship between the front and back film thickness difference and the flatness is larger than that of 1.27 mm, and the influence of compressive stress is large. It will be received, and the degree of deterioration of flatness will increase.
  • the flatness of the present embodiment is the magnitude of distortion with respect to the flatness of the substrate 30.
  • a substrate having a high flatness indicates a substrate having a large distortion (a substrate having a poor flatness), and a substrate having a low flatness indicates a substrate having a small distortion (a substrate having a good flatness).
  • the magnitude of this distortion can be determined from the distance from the flat surface to the surface of the substrate 30, the number of interference fringes, the amount of polishing, and the like.
  • the surface polished by the upper surface plate is defined as the TOP surface 30a
  • the surface polished by the lower surface plate is defined as the BOT surface 30b.
  • the flatness can also be expressed by a combination of the maximum value of the unevenness difference on the TOP surface 30a side or the BOT surface 30b side of the substrate 30 and a code indicating the convex direction.
  • the flatness can be expressed by the difference between the maximum values of the TOP surface 30a side and the BOT surface 30b side of the substrate 30, that is, the value of the TB difference calculated by TOP-BOT (top minus bottom). For example, if the TOP surface 30a side is convex, the calculation result is + (plus), and if the BOT surface 30b side is convex, the calculation result is ⁇ (minus), and the unit is expressed in ⁇ m.
  • FIG. 3 is a diagram illustrating flatness in the present embodiment.
  • the distance from the geometrically correct plane (geometric plane) to the surface of the substrate 30 is measured, and the measured numerical value is used for calculating the flatness.
  • the difference (BOT) in the thickness direction from the retracted part is measured, and it is represented by a numerical value obtained by subtracting BOT from TOP.
  • the TOP surface 30a side is 3 ⁇ m and the BOT surface 30b side is 2 ⁇ m
  • the TOP surface 30a side is convex
  • the TOP surface 30a side is 3 ⁇ m and the BOT.
  • the surface 30b side is 5 ⁇ m
  • the BOT surface 30b is convex
  • any calculation method may be used so that it can be seen which of the TOP surface 30a side and the BOT surface 30b side is convex, and + and-may be reversed.
  • the definition of flatness is not limited to the above contents, and may have the same meaning as the flatness defined in the JIS standard (JIS B 0621-1984), or both sides of the substrate 30.
  • the number of interference fringes and the amount of polishing may be measured and expressed as a value obtained by subtracting the value of the BOT surface 30b from the value of the TOP surface 30a.
  • a flatness meter In order to measure both sides of the substrate 30, it can be selected according to the object to be detected, such as a flatness meter, a flatness measuring device, and an interferometer.
  • These measuring devices may include not only a mechanism for measuring both sides of the substrate 30, but also a control device, a storage device, and an output device for calculating and displaying the measured numerical values as predetermined numerical values.
  • the flatness measuring method in the present embodiment can be measured by, for example, a flatness meter.
  • the control system of the double-sided polishing apparatus 10 includes a double-sided polishing device 10 and a control device 20 for controlling the double-sided polishing device 10, and polishes the object to be polished W to manufacture the substrate 30. It is configured in.
  • the double-sided polishing apparatus 10 includes an upper surface plate portion 11, a lower surface plate portion 12, a pneumatic unit 13, a balancer 14, a polishing liquid supply unit 15, a load cell 16, a torque sensor (not shown), and a rotation speed sensor. ing.
  • the double-sided polishing apparatus 10 sandwiches the object to be polished W between the upper surface plate portion 11 and the lower surface plate portion 12, and rotates the upper surface plate portion 11 and the lower surface plate portion 12 relative to the object to be polished W. As a result, it has a structure for polishing both the front surface and the back surface of the object to be polished W.
  • the upper surface plate portion 11 includes an upper surface plate 21, a polishing pad 22, an upper surface plate drive motor 23, a rotary shaft 24, a rod 25, and a universal joint 26, and includes the rotary shaft 24 and a universal joint.
  • the driving force of the upper surface plate drive motor 23 is transmitted to the upper surface plate 21 via the joint 26, and the upper surface plate 21 is rotated.
  • the upper surface plate 21 is made of a disk having a predetermined thickness, and a polishing pad 22 is detachably attached to a pad mounting portion 21a provided on the lower surface, and the upper surface plate 21 and the polishing pad 22 are attached together. It is configured to rotate.
  • a plurality of rods 21b are provided on the upper surface of the upper surface plate 21, and are inserted into the through holes provided in the rod 25 with a slight gap.
  • a rotation speed sensor (not shown) is connected to the upper surface plate 21, and the rotation speed of the upper surface plate 21 is converted into an electric signal and transmitted to the connection destination control device 20.
  • the polishing pad 22 polishes the surface of the substrate 30, and a known polishing pad 22 is used.
  • the polishing pad 22 has a through hole formed in the center thereof, and is made of a so-called donut-shaped disk.
  • a plurality of through holes are formed at positions separated inward from the outer peripheral portion of the upper surface polishing pad, and the polishing liquid is supplied to the polishing pad 22 and the substrate 30 located on the lower surface of the polishing pad 22 through the through holes. It has become like.
  • the upper surface plate drive motor 23 is attached to a stationary member (not shown) and is connected to the rotating shaft 24 via a pulley 23a such as a timing pulley and a belt 23b such as a timing belt.
  • the driving force of the upper platen drive motor 23 is transmitted to the rotating shaft 24 via the pulley 23a and the belt 23b, and when the rotating shaft 24 is viewed from above, the rotating shaft 24 rotates clockwise and the upper platen 21 Is also rotated clockwise.
  • a through hole is formed in the rotating shaft 24 in the axial direction, and the rod 25 is inserted into the through hole with a slight gap.
  • a flange 24a is formed in the lower portion of the rotating shaft 24, and a plurality of rods 24b are provided on the flange 24a so as to project downward from the lower surface.
  • a connecting portion (not shown) is formed on the upper portion of the rotating shaft 24, and the belt 23b of the upper surface plate drive motor 23 is connected and the driving force is transmitted from the belt 23b to the rotating shaft 24 via the connecting portion. It has become like.
  • the rod 25 has a shaft portion inserted into the through hole of the rotating shaft 24, a flange portion formed below the shaft portion, and a connecting portion connected to the universal joint 26.
  • the connecting portion of the rod 25 is connected to the upper surface plate 21 via the universal joint 26, and the pressure of the pneumatic unit 13 is transmitted to the upper surface plate 21.
  • a plurality of through holes are formed in the flange portion of the rod 25, and the rod 21b of the upper surface plate 21 and the rod 24b of the rotating shaft 24 are inserted into each through hole with a slight gap. ing.
  • the rod 25 is designed so that the rotation of the rotating shaft 24 is transmitted via the rod 24b. Further, the rotation of the rotating shaft 24 is transmitted to the upper surface plate 21 via the rod 24b and the rod 21b.
  • the universal joint 26 is composed of a universal joint in which the angle at which two connected members intersect with each other can be freely changed. Since the connecting portion of the upper surface plate 21 and the rod 25 is connected to the universal joint 26 and the flange portion of the rod 25 is further connected to the rotating shaft 24, the horizontal surface of the upper surface plate 21 and the rotating shaft 24 The horizontal plane of the upper surface plate 21 is maintained horizontally by the universal joint 26 even if the angle of intersection with the axis changes. Further, since the connecting portion of the lower platen 32 is fixed, it is possible to follow the fluctuation of the lower platen during processing.
  • the lower platen portion 12 includes a table 31, a lower platen 32 rotatably attached to the table 31, a polishing pad 22, a plurality of carriers 33, a sun gear 34, and a lower platen drive motor 35 for rotating the lower platen 32. And a sun gear drive motor 36 that rotates the sun gear 34.
  • the table 31 is a stationary member installed at a predetermined place and rotatably supports the lower platen 32. Further, in the table 31, internal teeth 31t are formed on the inner peripheral surface facing the outer peripheral surface of the polishing pad 22 mounted on the lower platen 32, and the external teeth 33t and the internal teeth 31t of the carrier 33, which will be described later, mesh with each other. It has become like. Further, the table 31 rotatably supports the shaft portion 32b of the lower platen 32, which will be described later.
  • the lower platen 32 has a horizontal upper surface and a truncated cone shape on the lower surface, and has a pad mounting portion 32a and a shaft portion 32b orthogonal to the pad mounting portion 32a.
  • a through hole penetrating in the axial direction is formed in the shaft portion 32b.
  • the shaft portion 34b of the sun gear 34 which will be described later, is rotatably inserted into the through hole.
  • a polishing pad 22 is detachably mounted on the upper surface of the pad mounting portion 32a of the lower platen 32, and the lower platen 32 and the polishing pad 22 rotate together.
  • a rotation speed sensor (not shown) is connected to the lower platen 32, and the torque, torque fluctuation, and rotation speed of the lower platen 32 are converted into electric signals and transmitted to the connected control device 20. There is.
  • the torque of the lower platen 32 is calculated based on the current value of the lower platen drive motor 35, but it may be the torque of the lower platen drive motor 35 at the time of processing actually measured by the torque sensor.
  • the carrier 33 is composed of a disk on which external teeth 33t are formed, and the external teeth 33t are configured to mesh with the external teeth 34t of the sun gear 34 and the internal teeth 31t of the table 31 which will be described later.
  • the carrier 33 rotates while meshing with the outer teeth 34t of the sun gear 34 and the internal teeth 31t of the table 31, and revolves around the sun gear 34.
  • the revolution speed of the carrier 33 is calculated based on the rotation speed of the sun gear 34.
  • the carrier 33 is formed with an accommodating portion for accommodating a plurality of objects W to be polished, for example, about 3 to 5 objects W to be polished so as to be rotatable. Further, the number of carriers 33 revolving around the sun gear 34 is about 10. Therefore, the number of objects to be polished W to be polished in one polishing step is about 50, and the number of objects to be polished W may be treated as one batch.
  • the sun gear 34 has a gear portion 34a formed with external teeth 34t that mesh with the external teeth 33t of the plurality of carriers 33, and a shaft portion 34b.
  • the shaft portion 34b is rotated counterclockwise when viewed from above the sun gear 34 by the sun gear drive motor 36, and the sun gear 34 is rotated counterclockwise.
  • the lower platen drive motor 35 is connected to the shaft portion 32b of the lower platen 32 via a pulley 35a such as a timing pulley and a belt 35b such as a timing belt.
  • the driving force of the lower platen drive motor 35 is transmitted to the shaft portion 32b, and when the shaft portion 32b is viewed from above, the shaft portion 32b rotates counterclockwise. That is, the lower platen drive motor 35 rotates the lower platen 32 counterclockwise.
  • the sun gear drive motor 36 is connected to the shaft portion 34b of the sun gear 34 via a pulley 36a such as a timing pulley and a belt 36b such as a timing belt.
  • the driving force of the sun gear drive motor 36 is transmitted to the shaft portion 34b, and when the shaft portion 34b is viewed from above, the shaft portion 34b rotates counterclockwise.
  • the upper surface plate 21 rotates clockwise when the double-sided polishing device 10 is viewed from above.
  • the lower platen 32 rotates counterclockwise
  • the carrier 33 revolves counterclockwise around the sun gear 34 while rotating clockwise
  • the sun gear 34 rotates counterclockwise. Rotate to.
  • the rotation speed of the sun gear 34 is detected by the rotation speed sensor.
  • the rotation direction of the sun gear 34 may be opposite clockwise. In this case, the rotation direction of the carrier 33 is reversed.
  • the pneumatic unit 13 is composed of a double-acting rod cylinder that reciprocates up and down, and has a piston 13a, a cylinder body 13b, and a piston rod 13c.
  • the piston rod 13c is connected to the rod 25 of the upper surface plate portion 11 and has a configuration for raising and lowering the upper surface plate 21 via the rod 25 and the universal joint 26.
  • the balancer 14 has a balance cylinder 14a, a piston 14b, a wire 14c, and pulleys 14d and 14e for guiding the wire 14c.
  • One end of the wire 14c is connected to the piston 14b, and the other end is connected to the upper surface plate portion 11.
  • the balancer 14 supports the weight of the upper surface plate portion 11 to maintain balance when the upper surface plate 21 is moved up and down by the pneumatic unit 13, and reduces the load required for the upper surface plate 21 to be raised and lowered by the pneumatic unit 13. At the same time, it functions to support the ascending and descending of the upper surface plate 21 with high accuracy and speed.
  • the polishing liquid supply unit 15 has a pump 15a, a pressure gauge 15b, and an on-off valve 15c, and polishes a polishing liquid, a so-called slurry, for polishing the object W to be polished through the through hole of the polishing pad 22. It is configured to supply the pad 22 and the object to be polished W.
  • the pump 15a is connected to the control device 20, and the operation is controlled by the control device 20.
  • the pressure gauge 15b is connected to the control device 20, and the pressure (MPa) signal of the pump 15a is transmitted to the control device 20.
  • the slurry is composed of a liquid polishing liquid containing abrasive grains composed of aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ) and a chemical component composed of an etching component.
  • the slurry is configured so that a smooth polished surface can be obtained by increasing the mechanical polishing effect due to the relative movement between the slurry and the object to be polished W by the surface chemical action of the abrasive grains themselves or the action of chemical components. ing.
  • the load cell 16 is composed of a sensor that detects a force such as a load or torque, and is provided on the rod 25 and is provided on a load or load fluctuation of the rod 25, torque or torque fluctuation, and eventually on an upper platen 21 connected to the rod 25.
  • the applied load, the fluctuation of the load, the torque, and the fluctuation of the torque are converted into an electric signal and transmitted to the connection destination control device 20.
  • the control device 20 has a central processing unit that performs arithmetic processing and a memory that stores a control program, and includes a first calculation means, a second calculation means, and a control means (not shown).
  • the control device 20 is connected to the polishing liquid supply unit 15, the pneumatic unit 13, the upper surface plate drive motor 23, the lower surface plate drive motor 35, and the sun gear drive motor 36, respectively, and controls the operation of each component.
  • the control device 20 calculates and calculates the work amount PT (Ws) required for polishing the TOP surface 30a of the object to be polished W and the work amount PB (Ws) required for polishing the BOT surface 30b of the object to be polished, respectively.
  • the polishing conditions are controlled so that the difference between the work amount PT and the work amount PB is within a predetermined range.
  • the control device 20 quickly controls the flatness of the substrate 30 by controlling the polishing conditions of the double-sided polishing device 10, and the double-sided polishing device 10 manufactures the substrate 30 having good flatness. ..
  • the first calculation means calculates the TOP surface work amount PT (Ws) required for polishing the TOP surface 30a shown in FIG. 3 of the object to be polished W.
  • the first calculation means calculates the TOP surface work amount PT based on the upper surface plate rotation speed (rpm), the upper surface plate torque (Nm), and the processing time T (sec) of the object to be polished W. To do.
  • the first calculation means calculates the TOP surface work amount PT based on the following equation (1).
  • T 1 is the time to start the measurement of the workload (sec)
  • T 2 is the time to finish the measurement of the workload (sec)
  • k is a constant
  • NU is the rotation speed of the upper surface plate.
  • rpm is the carrier revolution speed (rpm)
  • QUA is the upper surface plate torque (Nm)
  • QUA is the torque for the upper surface plate mechanical loss (Nm)
  • t is the sampling time (sec).
  • the machining time T represents a predetermined elapsed machining time, that is, a machining time for measuring the amount of work. That is, it means that the work amount between T 1 and T 2 in the equation (1) is measured, T 1 is the time to start the work amount measurement, and T 2 is the end of the work amount measurement. Represents the time to do.
  • T 1 and T 2 may be determined according to section to measure the amount of work, it is preferable to use a measurement start time or the last sampling end time to T 1, the measurement end time or the time to T 2 It is preferable to use the sampling end time.
  • T 1 and T 2 can be changed as appropriate.
  • the measurement start time can be used for T 1 and the measurement end time can be used for T 2 .
  • T 1 is the work load measurement start time 0 of the predetermined batch
  • T 2 is the work load measurement end time of the predetermined batch ( For example, the amount of work can be calculated using 600 (sec) of the polishing end time).
  • T 2 of the measurement start time to T 1 is the current sampling end time 20 (sec)
  • the amount of work can be calculated by accumulating the sampling time.
  • T 1 uses 10 (sec) of the previous sampling end time
  • T 2 uses 20 (sec) of the current sampling end time. Therefore, the numerical values of T 1 and T 2 can be changed and calculated each time the sampling timing changes. It should be noted that T 1 and T 2 of the equation (1) and the equation (2) described later need to be the same.
  • the upper platen rotation speed NU in the equation (1) is the rotation speed of the upper platen 21 detected by the rotation speed sensor provided on the upper platen 21, and the carrier revolution speed NC is the rotation speed of the sun gear 34. It is the revolution speed of the carrier 33 calculated from the rotation speed of the sun gear 34 detected by the sensor, and the upper platen torque QUA is the torque of the upper platen 21 detected by the load cell 16.
  • the upper surface plate mechanical loss QUM (Nm) in the equation (1) represents the torque loss lost due to the rotation of the upper surface plate 21 itself, and the upper surface plate mechanical loss QUM represents, for example, a load on the upper surface plate 21. It is obtained by detecting in advance the torque of the upper surface plate 21 when the upper surface plate 21 is idled without being applied.
  • the second calculation means is configured to calculate the BOT surface work amount PB (Ws) required for polishing the BOT surface 30b shown in FIG. 3 of the object to be polished W.
  • the second calculation means calculates the BOT surface work amount PB based on the lower platen rotation speed (rpm), the lower platen torque (Nm), and the processing time T (sec) of the object W to be polished.
  • the second calculation means calculates the BOT surface work amount PB based on the following formula (2).
  • T 1 is the time to start the measurement of the workload (sec)
  • T 2 is the time to finish the measurement of the workload (sec)
  • k is a constant
  • NL is the lower platen rotation speed (rpm).
  • NC is the carrier revolution speed (rpm)
  • QL is the lower platen torque (Nm)
  • QLM is the torque (Nm) for the lower platen mechanical loss
  • t is the sampling time (sec).
  • the lower platen rotation speed NL and the lower platen torque QL in the formula (2) are based on the rotation speed of the lower platen 32 and the current value of the lower platen drive motor 35 detected by the rotation speed sensor provided on the lower platen 32. It is the calculated torque of the lower platen 32 at the time of machining, and the carrier revolution speed NC is the revolution speed of the carrier 33 calculated from the rotation speed of the sun gear 34 detected by the rotation speed sensor of the sun gear 34.
  • the lower platen mechanical loss QLM (Nm) in the equation (2) represents the torque loss lost due to the rotation of the lower platen 32 itself, and the lower platen mechanical loss QLM represents, for example, the lower platen 32 without applying a load. It is obtained by detecting in advance the torque of the lower platen 32 when the lower platen 32 is idled.
  • the sampling time t (sec) in the formulas (1) and (2) refers to the time interval during which the polishing time of the processing time T is sampled. For example, if the sampling time t is 1 sec, data such as torque and rotation speed at that moment are detected every 1 sec, and based on each detected data, TOP surface work at the sampling time of 1 sec is performed by the equation (1). The quantity PT (Ws) is calculated, and the BOT surface work amount PB (Ws) at a sampling time of 1 sec is calculated by the equation (2).
  • Equation (1) is a definite integral work amount (Ws) from T 1 (sec) to T 2 (sec) of the TOP surface work amount PT at a sampling time of 1 sec. Similar to the equation (1), the equation (2) is also a work amount (Ws) that is definitely integrated from T 1 (sec) to T 2 (sec) of the BOT surface work amount PB at a sampling time of 1 sec.
  • the sampling time t and the processing time T in the formulas (1) and (2) are the structure, size, material, shape, setting specifications of the double-sided polishing apparatus 10, the polishing pad, and the like. It is appropriately selected based on various conditions such as the type of polishing liquid and data such as experimental values. Further, the constant k in the equations (1) and (2) is a numerical value for converting the rotation speed (rpm) and torque (Nm) of the upper surface plate or the lower surface plate into the work amount (Ws), and is generally used. It can be obtained by using a conversion formula.
  • the control means sets the polishing conditions so that the flatness of the substrate 30 is within the predetermined flatness range by keeping the difference between the calculated TOP surface work amount PT and the BOT surface work amount PB within a predetermined range. Control. That is, by controlling the polishing conditions so that the work amount TB difference, which is the difference between the TOP surface work amount PT and the BOT surface work amount PB, falls within the target work amount TB difference within a predetermined range, the substrate 30 The flatness can be kept within a predetermined flatness range.
  • the control means is based on the work amount TB difference, that is, the difference between the TOP surface work amount PT calculated by the first calculation means and the BOT surface work amount PB calculated by the second calculation means, and the upper surface plate 21 or It is configured to control only one of the lower surface plates 32. By controlling the upper surface plate 21 or the lower surface plate 32, rapid control is performed with high accuracy.
  • polishing conditions to be controlled include rotation speed (rpm), load (kg), carrier revolution number (rpm), time (sec), polishing liquid flow rate (mL / min), etc., and are controlled by a platen. It is preferable to control the rotation speed, the load, the number of revolutions of the carrier, or a combination thereof, and it is more preferable to control the rotation speed and / or the load from the viewpoint of easy control. , It is more preferable to control only the rotation speed.
  • the predetermined range is set by the threshold value of flatness and the threshold value of the work amount TB difference.
  • a procedure for setting a predetermined range first, a range of flatness allowed for the object to be polished W (a range between the upper limit threshold value and the lower limit threshold value of flatness) is determined.
  • the threshold value of the work amount TB difference allowed for the object to be polished W is determined.
  • the threshold value of the work amount TB difference can be determined, for example, by polishing separately performed in advance.
  • the batch represents a unit of the number of objects W to be polished that are polished in one polishing step, and one batch is not limited to this, but the number of objects W to be polished is about 50.
  • the target work amount TB difference is a square area represented by a shade surrounded by the determined flatness threshold value and the work amount TB difference threshold value.
  • the work amount TB difference threshold is an area where a product that does not exceed the flatness threshold can be created.
  • the horizontal axis is the work amount TB difference (kWs) and the vertical axis is the flatness ( ⁇ m), and the flatness ( ⁇ m) at the time of normal production with respect to the calculated work amount TB difference is , It is a graph plotted with black dots.
  • FIG. 6B is a graph similar to that of FIG. 6A.
  • the horizontal axis represents the work amount TB difference (kWs), and the vertical axis represents the flatness ( ⁇ m), and the calculated work amount TB difference is calculated.
  • It is a graph in which the flatness ( ⁇ m) at the time of workload management with respect to is plotted with black dots.
  • the flatness can be controlled, and the flatness of the object to be polished W is the target work amount TB difference. Can fit within the area of.
  • the flatness threshold value, the work amount TB difference threshold value, and the target work amount TB difference are the structure, size, material, shape of the object to be polished W, the structure of the double-sided polishing apparatus 10, the size, and other setting specifications and experimental values. It is appropriately selected based on the data.
  • the flatness threshold, the work amount TB difference threshold, and the target work amount TB difference are determined by performing test polishing each time, for example, the manufacturing apparatus (manufacturing line), the polishing pad, the polishing liquid, or the flow rate of the polishing liquid changes. Will be done.
  • the normal production time and the work amount management time will be described with reference to the drawings.
  • the conventional normal production in which the workload is not controlled as shown in FIG. 7A, after the surface inspection of the polished body W is performed, the polished body W is subjected to a flatness meter. Flatness is measured. The measurement result is displayed graphically on the flatness meter as, for example, the flatness TB difference.
  • the plating thickness of the object to be polished W is TOP> BOT, and the TOP relative speed UP is set. That is, the rotation speed of the upper surface plate 21 is set to be relatively faster than that of the lower surface plate 32.
  • the plating thickness of the object to be polished W is TOP ⁇ BOT, and the BOT relative speed UP is set. Will be done. That is, the rotation speed of the lower surface plate 32 is set to be relatively faster than that of the upper surface plate 21.
  • the TOP relative speed UP and the BOT relative speed UP are set after the surface inspection, and the double-sided polishing device is set so that the flatness of the object to be polished W becomes appropriate. 10 is adjusted. Therefore, the control time lag is long, and the control may be performed after several batches have elapsed.
  • the amount of polishing (mg) per piece of the body W to be polished is the total weight (mg) of the body W to be polished before polishing for one batch of 50 pieces of the body W to be polished and 50 to be the body W to be polished. It can be obtained by subtracting the total weight (mg) of the object to be polished W after polishing for one batch of sheets and dividing the subtracted total weight by 50 sheets.
  • the horizontal axis is the batch number, and the range from 1 batch to 18 batches is shown.
  • the pad time that is, the pad usage time until the first batch is polished, is about 25 hours.
  • the vertical axis on the left side of FIG. 8 shows the amount of work (kWs), and the vertical axis on the right side shows the amount of polishing (mg).
  • FIG. 8 shows a line graph showing the relationship between each batch and the amount of work, and a line graph showing the relationship between each batch and the amount of polishing.
  • the double-sided polishing amount for each batch is represented by a solid line polygonal line
  • the double-sided work amount for each batch is represented by a fine broken line polygonal line
  • the BOT workload for each batch is represented by a long-dot chain line polygonal line.
  • the TOP work load for each batch is represented by a rough broken line.
  • the double-sided work amount is the sum of the work amount on the TOP side and the work amount on the BOT side.
  • the double-sided polishing amount represented by the solid line polygonal line and the double-sided work amount represented by the fine broken line polygonal line are close to each other, and both are obtained every time the polishing conditions are adjusted. It can be seen that the polygonal lines of are rising and falling with the same tendency, and there is a correlation.
  • the graph is an approximation of the BOT work amount represented by the broken line of the alternate long and short dash line and the TOP work amount represented by the broken line of the rough broken line, and it can be seen that there is a correlation between the two.
  • FIG. 9 is a graph in which the horizontal axis represents the double-sided work amount (kWs) and the vertical axis represents the double-sided polishing amount (mg), and the double-sided polishing amount (mg) with respect to the calculated double-sided work amount is plotted with black dots. ..
  • the graph of double-sided polishing amount-double-sided work amount shown in FIG. 9 shows a graph in which the double-sided polishing amount (mg) is plotted with black dots with respect to the double-sided working amount (kWs) at a standard deviation of ⁇ 2.4.
  • the plotted black dots are gathered near the inclined line of the broken line, and it can be seen that the double-sided work amount (kWs) and the double-sided polishing amount (mg) are correlated and have a proportional relationship.
  • the coefficient of determination is a value that represents the degree of fit of the estimated regression equation to the data, and the coefficient of determination is the sum of squares and regression variation (each predicted value) of the total variation (difference between each numerical value and average value). The sum of squares of the difference between the mean values) can be obtained by dividing the regression variation by the total variation, which is the square of the correlation coefficient. From this regression equation, it can be seen that the amount of polishing of the object to be polished W can be controlled by controlling the amount of work to polish the object to be polished W.
  • the amount of polishing of the body W to be polished is taken into consideration.
  • the amount of double-sided polishing of W1 sheet can be estimated.
  • the amount of work is calculated for each of the TOP surface and the BOT surface, but the amount of polishing is such that the TOP surface and the BOT surface of the object to be polished W are simultaneously polished by the double-sided polishing apparatus 10, so that the object to be polished W.
  • Each of the TOP surface and the BOT surface is not measured individually, but is the amount of polishing on both sides of one sheet.
  • the method for manufacturing the substrate 30 according to the embodiment is an aluminum blank manufacturing process, a lathe processing process, an annealing process, a grinder grinding process, an annealing process, an electrolytic nickel-phosphorus plating (Ni-P) process, an annealing process, a polishing process, and a flat surface.
  • a lathe processing process an annealing process, a grinder grinding process, an annealing process, an electrolytic nickel-phosphorus plating (Ni-P) process, an annealing process, a polishing process, and a flat surface.
  • Ni-P electrolytic nickel-phosphorus plating
  • each step other than the polishing step and the flatness control step is composed of known steps, and the drawings mainly describe the polishing step and the flatness control step. Will be explained with reference to.
  • the double-sided polishing apparatus 10 is operated under the set polishing conditions to start polishing.
  • the double-sided polishing apparatus 10 is operated, as shown in FIGS. 5 (a) and 5 (b), the upper surface plate 21 rotates clockwise, and the lower surface plate 32, the carrier 33, and the sun gear 34 rotate counterclockwise. Rotate to. Due to this rotation, the object to be polished W set on the carrier 33 revolves and rotates in the carrier.
  • the sun gear 34 may be rotated clockwise. In this case, the rotation direction of the carrier 33 is clockwise.
  • the polishing liquid is supplied to the object W to be polished from the polishing liquid supply pressure unit 15.
  • the body W to be polished is polished by the polishing pad 22 mounted on the pad mounting portion 21a of the upper surface plate 21, the polishing pad 22 mounted on the pad mounting portion 32a of the lower surface plate 32, and the supplied polishing liquid.
  • the TOP surface 30a and the BOT surface 30b of the body W are simultaneously polished.
  • the flatness control step in the in-batch management includes upper platen work amount measurement (step S1), upper platen work amount calculation (first calculation step; step S2), and rotation speed calculation. (Step S3), lower platen work amount measurement (step S4), lower platen work amount calculation (second calculation process; step S5), lower platen rotation speed setting (step S6), and set machining time determination (step). It is configured to include S7) and.
  • step S1 The flatness control step from step S1 to step S7 is performed by the control device 20 during polishing of the object to be polished W.
  • the upper surface plate work amount measurement (step S1) and the lower surface plate work amount measurement (step S4) are performed at the same time, but they may be performed in order, and if they are performed in order, whichever is performed first. Good.
  • the rotation speed of the lower surface plate 32 is set in the lower surface plate rotation speed setting (step S6)
  • the rotation speed of the upper surface plate 21 may be set instead.
  • the flatness control step can be controlled by changing the polishing conditions of the upper surface plate 21 or the lower surface plate 32.
  • FIG. 10 shows only the case where the rotation speed is set and the rotation speed is controlled, the accuracy of flatness can be further improved by further controlling the load applied to the object to be polished W. In this case, it is possible to prevent a quality difference in the substrate 30 due to a pad usage time difference. Further, if the flow rate adjustment of the polishing liquid supplied by the polishing liquid supply unit 15 can be automated, more stable polishing control becomes possible.
  • step S1 the work amount of the upper surface plate 21 is measured based on the torque of the upper surface plate, that is, ⁇ (relative speed ⁇ surface plate torque), and the upper surface plate work amount is calculated.
  • step S2 the workload of the upper surface plate 21 is calculated using the above equation (1) based on the measurement data measured by the upper surface plate workload measurement (step S1). The calculation is performed in consideration of the control time lag and the pad elapsed time.
  • the upper surface plate work amount calculation (step S2) corresponds to the first calculation step according to the present invention.
  • step S3 first, a value obtained by subtracting the target work amount TB difference converted into the elapsed time from the target work amount TB difference at the completion of machining is calculated from the TOP work amount in the machining elapsed time, and the machining is performed. It is calculated as the target work amount of BOT in the elapsed time.
  • the TOP work amount is acquired by the formula (1) for calculating the TOP surface work amount PT. As shown in FIG. 6A, the target work amount TB difference at the time of processing completion is determined based on the flatness threshold value and the work amount TB difference threshold value.
  • the relative velocity of the BOT is calculated by the following formula from the acquired target work amount of the BOT, the measured torque and time of the BOT.
  • Target work amount of BOT ⁇ measured torque of BOT ⁇ time relative speed of BOT
  • the relative speed of BOT is obtained by the above formula.
  • the rotation speed of the lower platen 32 to be controlled is calculated from the acquired relative speed of the BOT and the revolution speed of the carrier 33 by the following formula.
  • Relative speed of BOT + Revolving speed of carrier 33 Rotation speed of the lower platen 32 to be controlled
  • the rotation speed of the upper platen 21 may be acquired instead of the rotation speed of the lower platen 32, in which case TOP From the relative speed of the carrier 33 and the revolution speed of the carrier 33, the upper platen rotation speed set in the next step is calculated by the following formula.
  • Relative speed of TOP-Revolution speed of carrier 33 Rotation speed of the upper surface plate 21 to be controlled
  • the rotation speed of the lower surface plate 32 or the upper surface plate 21 is set in step S6 by the above equation.
  • the work amount of the lower platen 32 is measured based on the torque of the lower platen, that is, ⁇ (relative velocity ⁇ platen torque), and the work amount of the lower platen 32 is calculated (step S5).
  • the work amount of the lower platen 32 is calculated using the above equation (2) based on the measurement data measured by the lower platen work amount measurement (step S4). The calculation is performed in consideration of the control time lag and the pad elapsed time.
  • the lower platen work amount calculation (step S5) corresponds to the second calculation step according to the present invention.
  • the rotation speed of the lower platen 32 to be controlled acquired in the rotation speed calculation (step S3) is set.
  • the lower platen rotation speed setting (step S6) corresponds to the control process according to the present invention.
  • the rotation speed of the upper surface plate 21 may be set instead of the rotation speed of the lower surface plate 32.
  • step S7 it is determined whether or not the preset machining time has been reached. When it is determined that the preset processing time has been reached, polishing is completed. If it is not determined that the preset machining time has been reached, polishing is continued, and the process proceeds to the upper surface plate work amount measurement (step S1) and the lower surface plate work amount measurement (step S4).
  • the control device 20 determines the TOP surface work amount PT (Ws) required for polishing the TOP surface 30a and the BOT surface required for polishing the BOT surface 30b.
  • the workload PB (Ws) is calculated respectively.
  • the polishing conditions are controlled so that the difference between the calculated TOP surface work amount PT and the BOT surface work amount PB, that is, the work amount TB difference is within a predetermined range.
  • the frequency distribution of the work amount TB difference in the conventional normal production in which the work amount is not controlled is the work amount TB difference of the object to be polished W on the horizontal axis.
  • the range classification is [-0.5 or more and less than 0]
  • the number of sheets in the range classification of each work amount TB difference of the work piece W on the vertical axis is the largest
  • the number of pieces of the object to be polished W is [-2. It ranges from [less than 5] to [2.5 or more].
  • the curve in the graph represents a normal distribution, but even in the normal distribution, it is a gentle curve with [-0.5 or more and less than 0] at the top.
  • the number of objects W to be polished that is, the number of N is 2519
  • the average is 0.2
  • is 1.1.
  • the range classification of the work amount TB difference of the object to be polished W on the horizontal axis is [-0] as compared with the normal production time. .5 or more and less than 0]
  • the number of pieces of the work piece W on the vertical axis within the range of each work amount TB difference is the largest, and the number of pieces of the body W to be polished is [-1 or more and less than -0.5. ] And [0 or more and less than 0.5].
  • Even in the normal distribution represented by the curve in the graph it is a protruding curve with [-1 or more to less than -0.5] as the top.
  • the number of objects W to be polished that is, the number of N is 1057
  • the average is ⁇ 0.4
  • is 0.2.
  • FIG. 12 is a normal distribution curve and a graph of the work amount TB difference in the control system of the double-sided polishing apparatus according to the embodiment of the present invention.
  • the curve shown by the solid line of the normal distribution during workload management is remarkably high in the central part, whereas the curve shown by the broken line of the normal distribution during normal production is prominent. There are no parts and it is extremely gentle. From the graph of FIG. 12, it was confirmed that the variation in the work amount TB difference of the object to be polished W became extremely small.
  • the frequency distribution of the flatness TB difference in the conventional normal production in which the workload is not controlled has the range classification of the flatness TB difference of the object to be polished W on the horizontal axis.
  • the number of sheets of the object to be polished W on the vertical axis within the range of each flatness TB difference is the largest, and the number of objects to be polished W is from [less than -2.5]. It is widespread [2.5 or more].
  • the number of objects W to be polished that is, the number of N is 2519, the average is 0.19, and ⁇ is 1.02.
  • the range classification of the flatness TB difference of the object to be polished W on the horizontal axis is [-0] as compared with the normal production time.
  • the number of the objects to be polished W on the vertical axis is the largest within the range classification of each flatness TB difference, and the number of the objects to be polished W is [-2 or more to less than -1.5].
  • ] And [0.5 or more and less than 1].
  • the number of objects W to be polished that is, the number of N is 1057, the average is ⁇ 0.45, and ⁇ is 0.77.
  • FIG. 14 is a normal distribution curve and a graph of the flatness TB difference in the control system of the double-sided polishing apparatus according to the embodiment of the present invention.
  • the curve shown by the solid line of the normal distribution during workload management is slightly protruding and high in the central part, whereas the curve shown by the broken line of the normal distribution during normal production is protruding. The part is small and gentle. From the graph of FIG. 12, it was confirmed that the variation in the work amount TB difference of the object to be polished W became slightly smaller.
  • the TOP surface work amount PT and the BOT surface work amount PB are determined by the upper platen 21 and the lower platen 21 for polishing the object W to be polished by the control device 20. Since it is calculated based on the rotation speed (rpm) of the plate 32, the torque (Nm) of the upper platen 21 and the lower platen 32 for polishing the object W to be polished, and the processing time T (sec) of the object W to be polished. It is possible to obtain the effect that the TOP surface work amount PT and the BOT surface work amount PB are calculated with high accuracy.
  • the TOP surface work amount PT required for polishing the TOP surface 30a by the control device 20 is calculated by the equation (1).
  • the calculation process is performed based on the torque QUA (Nm) and the sampling t time (sec). Since the calculation process of the TOP surface work amount PT is definitely integrated from the start to the end of the machining time, the calculation process is performed during the polishing of the substrate 30, and there is an effect that a highly accurate TOP surface work amount PT can be obtained. can get.
  • the BOT surface work amount PB required for polishing the BOT surface 30b by the control device 20 is calculated by the formula (2).
  • the machining time T (sec) the constant k
  • the lower platen rotation speed NL (rpm) the carrier revolution speed NC (rpm)
  • the lower platen torque QL (Nm) the torque QLM for the lower platen mechanical loss
  • the calculation process is performed based on Nm) and the sampling time t (sec).
  • the calculation process of the BOT surface work amount PB is definitely integrated from the start to the end of the machining time, the calculation process is performed during the polishing of the substrate, and the effect that a highly accurate BOT surface work amount PB can be obtained is obtained. Be done.
  • the predetermined range is set by the flatness threshold value and the work amount TB difference threshold value by the control device 20, so that the work amount is predetermined.
  • the polishing amount of the substrate 30 is contained within a predetermined range, and the effect that the substrate 30 having a good flatness can be obtained can be obtained.
  • the control device 20 is performing polishing of the object to be polished W based on the difference between the TOP surface work amount PT and the BOT surface work amount PB. Since the upper surface plate 21 and the lower surface plate 32 are controlled, the effect that the feedback control is performed more quickly and the substrate 30 is manufactured quickly can be obtained. Specifically, as shown in FIGS. 7 (a) and 7 (b), the control time lag was about 1 hour and 30 minutes in the case of normal production, whereas the work according to the present embodiment. In management, the effect of shortening to about 10 minutes can be obtained.
  • the coefficient of friction between the polishing pad and the object W to be polished may increase due to clogging or deterioration of the polishing pad, the flow rate of the polishing liquid, the stoppage of the object W to be polished during transportation, and the like.
  • the friction coefficient between the polishing pad and the object to be polished W increases, so the amount of work increases, but the increased amount of work includes those that do not contribute to polishing, and the increased work due to the above-mentioned causes. It was found that the amount of work that contributes to polishing was almost unchanged.
  • the work load of the upper surface plate 21 or the lower surface plate 32 on one side of the object W to be polished is monitored as it is, and the upper surface plate 21 or the lower surface plate 32 on the other side is monitored so that the work amount TB difference becomes constant.
  • the control amount By determining the control amount, more rapid feedback control is performed, and a substrate with good flatness is quickly manufactured.
  • the control device 20 has a first calculation means for calculating the TOP surface work amount PT (Ws) required for polishing the TOP surface 30a and a BOT surface work amount PB (BOT surface work amount PB) required for polishing the BOT surface 30b. It is provided with a second calculation means for calculating Ws) and a control means for controlling polishing conditions so that the difference between the TOP surface work amount PT and the BOT surface work amount PB is within a predetermined range.
  • Ws TOP surface work amount PT
  • PB BOT surface work amount PB
  • the TOP surface work amount PT (Ws) required for polishing the TOP surface 30a is calculated by the first calculation means
  • the BOT surface work amount PB (Ws) required for polishing the BOT surface 30b is calculated by the second calculation means.
  • the control means controls the polishing conditions so that the difference between the calculated TOP surface work amount PT and the BOT surface work amount PB is within a predetermined range.
  • the TOP surface work amount PT (Ws) required for polishing the TOP surface 30a is calculated by the first calculation step
  • the BOT surface 30b is calculated by the second calculation step.
  • the BOT surface work amount PB (Ws) required for polishing is calculated, and the polishing conditions are controlled by the control process so that the difference between the TOP surface work amount PT and the BOT surface work amount PB is within a predetermined range.
  • Double-sided polishing device 11 ... Upper platen portion 12 ... Lower platen portion 13 ... Pneumatic units 13a, 14b ... Piston 13b ... Cylinder body 13c ... Piston rod 14. ⁇ ⁇ Balancer 14a ⁇ ⁇ ⁇ Balance cylinder 14c ⁇ ⁇ ⁇ Wire 15 ⁇ ⁇ ⁇ Abrasive liquid supply unit 15a ⁇ ⁇ ⁇ Pump 15b ⁇ ⁇ ⁇ Pressure gauge 15c ⁇ ⁇ ⁇ Open / close valve 16 ⁇ ⁇ ⁇ Load cell 20 ⁇ ⁇ ⁇ Control device 21 ... Upper platen 21a, 32a ... Pad mounting part 21b ... Rod 22 ... Polishing pad 23 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本発明は、研磨条件を制御することにより基板の平坦度を高い精度で速やかに制御することができる両面研磨装置の制御システム、制御装置および基板の製造方法を提供することを課題とする。本発明は、被研磨体Wを上定盤21と下定盤32との間に挟んで上定盤と下定盤を回転させることにより被研磨体WのTOP面30aおよびBOT面30bを研磨する両面研磨装置10の制御システムにおいて、TOP面30aの研磨に要するTOP面仕事量PT(Ws)と、BOT面30bの研磨に要するBOT面仕事量PB(Ws)とをそれぞれ算出し、算出されたTOP面仕事量PTとBOT面仕事量PBとの差を所定の範囲内に収めるように研磨条件を制御することを特徴とする。

Description

両面研磨装置の制御システム、制御装置および基板の製造方法
 本発明は、板状の被研磨体のTOP面とBOT面を研磨する両面研磨装置の制御システム、制御装置および基板の製造方法に関する。
 この種の制御システムとして、半導体基板に形成された被加工層を研磨する際に、被加工層と研磨剤の保持された定盤との間の摩擦を研磨中に測定し、測定した摩擦に基づいて被加工層の研磨速度を算出し、算出した研磨速度を時間で積分してゆき研磨量を求め、求めた研磨量が所定量となった時点で研磨を終了させるものが開示されている(特許文献1参照)。この制御システムは、さらに、被加工層と研磨剤の保持された定盤との間でなされる仕事量を積算し、積算された仕事量が所定量となった時点で研磨を終了させている。即ち、この制御システムは、仕事量を管理することで半導体基板に形成された被加工層の研磨量を制御している。
 また、上定盤により被研磨体の表面を研磨する相対速度をAとし、下定盤により被研磨体の裏面を研磨する相対速度をBとして、AのBに対する比(A/B)を0.6以上0.8以下とすることで被研磨体の平面度を良好にするものが開示されている(特許文献2参照)。
特開平11-265865号公報 特許第2993184号公報
 しかしながら、特許文献1に記載の制御システムは、被加工層と研磨剤の保持された定盤との間でなされる仕事量を積算することで、半導体基板に形成された被加工層の研磨量を制御している。また、特許文献1に記載の制御システムは、半導体基板の表裏の両面ではなく被加工層の片面のみを研磨し、研磨量が一定になるように制御するためのものであり、半導体基板の平坦度を制御するものではない。特許文献1に記載の制御システムを、表裏の両面を研磨することが必要となる基板の平坦度の制御に用いると、平坦度の制御が困難になってしまうという問題がある。
 また、特許文献2に記載の制御システムは、相対速度比(A/B)を所定の範囲内に制御することで被研磨体の平面度を良好にしているが、被研磨体の平面度は一義的に相対速度のみにより影響を受けるだけでなく、他の研磨条件の影響も受けてしまう。例えば、上定盤および下定盤のトルク変化や被研磨体の加工時間によっても平面度が影響を受けてしまう。したがって、相対速度比(A/B)を所定の範囲内に制御することだけでは、被研磨体の平面度を高い精度で制御することができないおそれがあるという問題がある。
 また、記録容量を増やすために基板の搭載枚数が増加するにつれて平坦度の品質要求がより一層強まってきており、平坦度の良好な基板の生産歩留まりを上げ、安定して生産する技術が必要とされている。
 本発明は、このような問題を解決するためになされたもので、研磨条件を制御することにより基板の平坦度を高い精度で速やかに制御することができる両面研磨装置の制御システム、制御装置および基板の製造方法を提供することを課題とする。
 (1)本発明に係る両面研磨装置の制御システムは、被研磨体を上定盤と下定盤との間に挟んで前記上定盤と前記下定盤を回転させることにより前記被研磨体のTOP面およびBOT面を研磨する両面研磨装置の制御システムにおいて、前記TOP面の研磨に要するTOP面仕事量PT(Ws)と、前記BOT面の研磨に要するBOT面仕事量PB(Ws)とをそれぞれ算出し、算出された前記TOP面仕事量PTと前記BOT面仕事量PBとの差である仕事量TB差を所定の範囲内に収めるように研磨条件を制御することを特徴とする。
 (2)本発明に係る両面研磨装置の制御システムは、(1)に記載の両面研磨装置の制御システムであって、前記TOP面仕事量PTおよび前記BOT面仕事量PBは、前記上定盤及び前記下定盤の回転速度(rpm)、トルク(Nm)および前記被研磨体の加工時間T(sec)に基づいて算出されることを特徴とする。
 (3)本発明に係る両面研磨装置の制御システムは、(1)または(2)に記載の両面研磨装置の制御システムであって、前記TOP面の研磨に要する前記TOP面仕事量PTは、下記式(1)
Figure JPOXMLDOC01-appb-I000003
 (式(1)中、T1は仕事量の測定を開始する時間(sec)、T2は仕事量の測定を終了する時間(sec)、kは定数、NUは上定盤回転速度(rpm)、NCはキャリア公転速度(rpm)、QUは上定盤トルク(Nm)、QUMは上定盤メカロス分のトルク(Nm)、tはサンプリング時間(sec)をそれぞれ表す。)
により算出されることを特徴とする。
 (4)本発明に係る両面研磨装置の制御システムは、(1)から(3)の何れかに記載の両面研磨装置の制御システムであって、前記BOT面の研磨に要する前記BOT面仕事量PBは、下記式(2)
Figure JPOXMLDOC01-appb-I000004
 (式(2)中、T1は仕事量の測定を開始する時間(sec)、T2は仕事量の測定を終了する時間(sec)、kは定数、NLは下定盤回転速度(rpm)、NCはキャリア公転速度(rpm)、QLは下定盤トルク(Nm)、QLMは下定盤メカロス分のトルク(Nm)、tはサンプリング時間(sec)をそれぞれ表す。)
により算出されることを特徴とする。
 (5)本発明に係る両面研磨装置の制御システムは、(1)に記載の両面研磨装置の制御システムであって、前記所定の範囲は、平坦度の閾値と前記仕事量TB差の閾値によって設定されることを特徴とする。
 (6)本発明に係る両面研磨装置の制御システムは、(1)に記載の両面研磨装置の制御システムであって、前記仕事量TB差に基づいて、前記上定盤または前記下定盤の何れか一方のみを制御することを特徴とする。
 (7)本発明に係る制御装置は、被研磨体を上定盤と下定盤との間に挟んで前記上定盤と前記下定盤を回転させることにより前記被研磨体のTOP面およびBOT面を研磨する両面研磨装置の制御装置において、前記TOP面の研磨に要するTOP面仕事量PT(Ws)を算出する第1算出手段と、前記BOT面の研磨に要するBOT面仕事量PB(Ws)を算出する第2算出手段と、前記第1算出手段により算出された前記TOP面仕事量PTと前記第2算出手段により算出された前記BOT面仕事量PBとの差を所定の範囲内に収めるように研磨条件を制御する制御手段と、を備えたことを特徴とする。
 (8)本発明に係る基板の製造方法は、両面研磨装置により被研磨体のTOP面およびBOT面を研磨する基板の製造方法において、前記TOP面の研磨に要するTOP面仕事量PT(Ws)を算出する第1算出工程と、前記BOT面の研磨に要するBOT面仕事量PB(Ws)を算出する第2算出工程と、前記第1算出工程により算出された前記TOP面仕事量PTと前記第2算出工程により算出された前記BOT面仕事量PBとの差を所定の範囲内に収めるように研磨条件を制御する制御工程と、を含むことを特徴とする。
 上記(1)に記載した本発明に係る両面研磨装置の制御システムによれば、研磨条件の制御により、高い精度で速やかに基板の平坦度が制御され、平坦度の良好な基板が得られる。
 上記(2)に記載した本発明に係る両面研磨装置の制御システムによれば、高い精度のTOP面仕事量PTおよびBOT面仕事量PBが算出される。
 上記(3)に記載した本発明に係る両面研磨装置の制御システムによれば、TOP面の研磨に要するTOP面仕事量PTは、式(1)により算出される。式(1)においては、加工時間T(sec)、定数k、上定盤回転速度NU(rpm)、キャリア公転速度NC(rpm)、上定盤トルクQU(Nm)、上定盤メカロス分のトルクQUM(Nm)、サンプリング時間t(sec)に基づいて算出処理がなされる。TOP面仕事量PTの算出処理は、加工時間の開始から終了までが定積分されるので、基板の研磨中に算出処理が行われ、高い精度のTOP面仕事量PTが得られる。
 上記(4)に記載した本発明に係る両面研磨装置の制御システムによれば、BOT面の研磨に要するBOT面仕事量PBは、式(2)により算出される。式(2)においては、加工時間T(sec)、定数k、下定盤回転速度NL(rpm)、キャリア公転速度NC(rpm)、下定盤トルクQL(Nm)、下定盤メカロス分のトルクQLM(Nm)、サンプリング時間t(sec)に基づいて算出処理がなされる。BOT面仕事量PBの算出処理は、加工時間の開始から終了までが定積分されるので、基板の研磨中に算出処理が行われ、高い精度のBOT面仕事量PBが得られる。
 上記(5)に記載した本発明に係る両面研磨装置の制御システムによれば、基板の研磨量が所定の範囲に収められ、平坦度の良好な基板が得られる。
 上記(6)に記載した本発明に係る両面研磨装置の制御システムによれば、より速やかなフィードバック制御が行われ、平坦度の良好な基板が速やかに製造される。
 上記(7)に記載した本発明に係る制御装置によれば、第1算出手段によりTOP面の研磨に要するTOP面仕事量PT(Ws)が算出され、第2算出手段によりBOT面の研磨に要するBOT面仕事量PB(Ws)が算出される。さらに、制御手段により、算出されたTOP面仕事量PTとBOT面仕事量PBとの差を所定の範囲内に収めるように研磨条件が制御される。その結果、研磨条件の制御により、高い精度で速やかに基板の平坦度が制御され、平坦度の良好な基板が得られる。
 上記(8)に記載した本発明に係る基板の製造方法によれば、第1算出工程によりTOP面の研磨に要するTOP面仕事量PT(Ws)が算出され、第2算出工程によりBOT面の研磨に要するBOT面仕事量PB(Ws)が算出され、制御工程によりTOP面仕事量PTとBOT面仕事量PBとの差が所定の範囲内に収まるように研磨条件が制御される。その結果、研磨条件の制御により、高い精度で速やかに基板の平坦度が制御され、平坦度の良好な基板が得られる。
 本発明によれば、研磨条件を制御することにより基板の平坦度を高い精度で速やかに制御することができる両面研磨装置の制御システム、制御装置および基板の製造方法を提供することができる。また、本発明によって平坦度の良好な基板を安定して生産することができる。
本発明の実施形態に係る両面研磨装置の制御システムにより製造される基板の図であり、図1(a)は、基板の斜視図を示し、図1(b)は、基板の断面図を示す。 本発明の実施形態に係るアルミ基板からなる基板の平坦度を説明する概略図であり、図2(a)は、平坦度ゼロの状態を示し、図2(b)は、平坦度が悪化した状態を示し、図2(c)は、板厚違いによる平坦度への影響を表すグラフを示す。 平坦度の算出方法の一例を説明する図。 本発明の実施形態に係る両面研磨装置の制御システムの構成図。 本発明の実施形態に係る両面研磨装置の回転方向の一例を説明する図であり、図5(a)は、上定盤の回転方向を示し、図5(b)は、下定盤、サンギアおよびキャリアの回転方向(公転、自転)を示す。 本発明の実施形態に係る両面研磨装置の制御システムにおける平坦度-仕事量TB差の閾値を表すグラフであり、図6(a)は、通常生産時の分布を示し、図6(b)は、仕事量管理時の分布を示す。 本発明の実施形態に係る両面研磨装置の制御システムにおける平坦度の管理方法を説明する図であり、図7(a)は、従来方式の平坦度による管理の図を示し、図7(b)は、バッチ毎管理方式の仕事量測定器における平坦度による管理の図を示す。 本発明の実施形態に係る両面研磨装置の制御システムにおける研磨量と仕事量との相関を表す折れ線グラフ。 本発明の実施形態に係る両面研磨装置の制御システムにおける両面研磨量と両面仕事量との関係を表すグラフ。 本発明の実施形態に係る両面研磨装置のバッチ内管理方式の制御システムにおける研磨開始から研磨終了までの処理の一例を説明するフローチャート。 本発明の実施形態に係る両面研磨装置の制御システムにおける仕事量TB差の度数分布のグラフであり、図11(a)は、仕事量管理を行っていない時(通常生産時)のグラフを示し、図11(b)は、仕事量管理時のグラフを示す。 本発明の実施形態に係る両面研磨装置の制御システムにおける仕事量TB差の正規分布曲線とグラフ。 本発明の実施形態に係る両面研磨装置の制御システムにおける平坦度TB差の度数分布のグラフであり、図13(a)は、仕事量管理を行っていない時(通常生産時)のグラフを示し、図13(b)は、仕事量管理時のグラフを示す。 本発明の実施形態に係る両面研磨装置の制御システムにおける平坦度TB差の正規分布曲線とグラフ。
 本発明に係る両面研磨装置の制御システムを適用した実施形態に係る両面研磨装置10の制御システム、制御装置20および基板30の製造方法について図面を参照して説明する。
 まず、実施形態に係る両面研磨装置10により製造される基板30について説明する。基板30は、図1(a)、図1(b)に示すように、厚みがth、外径がD、中心の貫通孔hの内径がdの円盤形状を有している。なお、基板30は、円盤に限定されず、例えば、方形や楕円形等の円盤以外の他の形状であってもよく、中心の貫通孔hは無くてもよい。基板30は、本実施形態ではハードディスク用基板であるが、他の用途に用いる基板であってもよい。
 基板30の厚みthは0.3mm~2mm程度、外径Dは30mm~270mm程度、内径dは10mm~70mm程度の寸法を有している。具体的には、厚みthが1.75mm、1.6mm、1.27mm、1.0mm、0.8mm、0.635mm、0.6mm、0.5mm、0.38mm、0.3mm、外径Dのサイズが3.5inch、2.8inch、2.5inch、内径dが20mm、25mmの内から選択される何れかの円盤形状を有する。
 基板30は、アルミニウムまたはアルミニウム合金の板材からなるアルミニウム基材によって構成されている。基板30は、高い精度の平滑性と表面硬度を有しており、高速回転による振動の発生を抑制することができる高い剛性および耐衝撃性も有している。これらの特性を備えるために基板30は硬い素材で形成されており、ガラスの板材からなるガラス基板であってもよい。
 基板30は、図2(a)に示すように、グラインダー研磨や焼鈍などの表面処理が行われたアルミニウム基材(Al_Sub)の表面および裏面に、無電解ニッケル-りんめっき(NiP)が施されている。図2(a)は、無電解ニッケル-りんめっきの表面と裏面の膜厚差、つまり、アルミニウム基材(Al_Sub)の表面側のめっきと裏面側のめっきとの膜厚差がゼロの理想基板を示している。理想基板は、基板の表面側および裏面側に作用する圧縮応力が同じであり、平坦度はゼロとなっている。なお、この場合、アルミニウム基材(Al_Sub)は、厚みが一定であり、平坦度がゼロの歪みのない基材である。
 これに対し、図2(b)は、表面および裏面の研磨により、表裏にめっきの膜厚差が生じた実際の基板30を示している。例えば、基板30を研磨する前の表面側と裏面側のめっきの膜厚は互いに同じであり、膜厚差はゼロであるが、研磨によって、例えば図2(b)に示すように、表面のめっきが厚く、裏面のめっきが薄くなることがある。この場合、表面に作用する圧縮応力が大きく、裏面に作用する圧縮応力が小さい。このように、基板30の表裏に圧縮応力の差があると、基板30の平坦度は悪化する。
 また、図2(c)に示すように、基板30は、アルミニウム基材(Al_Sub)の厚みが薄くなるほど剛性が低下し、無電解ニッケル-りんめっき被膜の表裏の膜厚差により生ずる圧縮応力の影響を大きく受けてしまう。例えば、基板30の厚みが、1.27mmよりも、0.635mmの方が、表裏膜厚差と平坦度との関係を表す傾斜線の傾斜角が大きくなっており、圧縮応力の影響を大きく受けてしまい、平坦度の悪化の程度は大きくなる。
 本実施形態の平坦度は、基板30の平坦に対する歪みの大きさのことである。平坦度が高い基板とは、歪みが大きい基板(平坦度が悪い基板)を示し、平坦度が低い基板とは、歪みが小さい基板(平坦度が良い基板)を示す。この歪みの大きさは、平面から基板30の表面までの距離や、干渉縞の本数、研磨量などから求めることができる。
 本発明においては、基板30の両面のうち、上定盤で研磨される面をTOP面30aと定義し、下定盤で研磨される面をBOT面30bと定義する。平坦度は、基板30のTOP面30a側、または、BOT面30b側の凹凸差の最大値と凸方向を示す符号との組み合わせで表すこともできる。
 平坦度は、基板30のTOP面30a側およびBOT面30b側のそれぞれの最大値の差分、つまり、TOP-BOT(トップマイナスボトム)で算出したTB差の値で表すことができる。例えば、TOP面30a側が凸であれば算出の結果は+(プラス)となり、BOT面30b側が凸であれば算出の結果は-(マイナス)となり、単位はμmで表される。
 具体的な平坦度の測定方法と算出方法の一例について、図3を参照して以下に説明する。図3は、本実施形態における平坦度を説明する図である。本実施形態の平坦度は、幾何学的に正しい平面(幾何学的平面)から基板30の表面までの距離を測定し、その測定した数値を平坦度の算出に用いている。
 具体的には、基板30のTOP面30aにおいて厚さ方向に最も突出した箇所と最も引っ込んだ箇所との差(TOP)と、基板30のBOT面30bにおいて厚さ方向に最も突出した箇所と最も引っ込んだ箇所との厚さ方向の差(BOT)とを計測し、TOPからBOTを引いた数値で表される。
 平坦度は、例えば、TOP面30a側が3μmでBOT面30b側が2μmの場合、TOP面30a側が凸であり、算出の結果は3μm-2μm=+(プラス)1μmとなり、TOP面30a側が3μmでBOT面30b側が5μmの場合、BOT面30bが凸であり、算出の結果は3μm-5μm=-(マイナス)2μmとなる。
 しかしながら、TOP面30a側とBOT面30b側のどちらが凸になっているかが分かるような算出方法であればよく、+と-は逆となっていてもよい。
 なお、平坦度の定義は、上記の内容に限定されるものではなく、例えば、JIS規格(JIS B 0621-1984)に定義されている平面度と同様の意味内容でもよいし、基板30の両面の干渉縞の本数や、研磨量を測定し、TOP面30aの数値からBOT面30bの数値を引いた数値で表してもよい。
 基板30の両面を測定するためには、平坦度計や平面度測定器、干渉計など、検出する対象によって選ぶことができる。これらの測定機器には、基板30の両面を測定する機構だけでなく、測定した数値を所定の数値として算出・表示するための制御装置や記憶装置、出力装置を備えていてもよい。本実施形態における平坦度の測定方法は、例えば、平坦度計により測定することができる。
 次いで、本実施形態に係る両面研磨装置10の制御システムについて図面を参照して説明する。
 両面研磨装置10の制御システムは、図4に示すように、両面研磨装置10、両面研磨装置10を制御する制御装置20を備えており、被研磨体Wを研磨して基板30を製造するように構成されている。
 両面研磨装置10は、上定盤部11と、下定盤部12と、空圧ユニット13と、バランサー14と、研磨液供給ユニット15と、ロードセル16と、図示しないトルクセンサー、回転速度センサーを備えている。両面研磨装置10は、被研磨体Wを上定盤部11および下定盤部12の間に挟み込んで、被研磨体Wに対して上定盤部11および下定盤部12を相対的に回転させることにより被研磨体Wの表面および裏面の両面を研磨する構成を有している。
 上定盤部11は、上定盤21と、研磨パッド22と、上定盤駆動モータ23と、回転軸24と、ロッド25と、ユニバーサルジョイント26とを有しており、回転軸24およびユニバーサルジョイント26を介して上定盤駆動モータ23の駆動力が上定盤21に伝達され、上定盤21が回転される構成となっている。
 上定盤21は、所定の厚みを有する円盤からなり、下面に設けられたパッド装着部21aには研磨パッド22が着脱可能に装着されており、上定盤21と研磨パッド22とが一緒に回転するように構成されている。上定盤の21の上面には、複数のロッド21bが設けられており、ロッド25に設けられた貫通孔に僅かの隙間を空けて挿入されるようになっている。上定盤21には、図示しない回転速度センサーが接続されており、上定盤21の回転速度が電気信号に変換され、接続先の制御装置20に送信されるようになっている。
 研磨パッド22は、基板30の表面を研磨するものであり公知のものが用いられる。研磨パッド22は、中央部に、貫通孔が形成されており、いわゆるドーナツ状の円盤からなる。上面研磨パッドの外周部から内側に離隔した位置に複数の貫通孔が形成されており、この貫通孔を介して研磨パッド22と研磨パッド22の下面に位置する基板30に研磨液が供給されるようになっている。
 上定盤駆動モータ23は、図示しない静止部材に取り付けられており、タイミングプーリなどのプーリ23aおよびタイミングベルトなどのベルト23bを介して回転軸24に連結されている。上定盤駆動モータ23の駆動力は、プーリ23aおよびベルト23bを介して回転軸24に伝達され、回転軸24を上方から見たとき、回転軸24が時計回りに回転し、上定盤21も時計回りに回転される。
 回転軸24には、軸線方向に貫通孔が形成されており、貫通孔には、ロッド25が僅かの隙間を空けて挿入されるように構成されている。回転軸24の下部にはフランジ24aが形成されており、フランジ24aには複数のロッド24bが、下面から下方に突出して設けられている。また、回転軸24の上部には、図示しない連結部が形成されており、上定盤駆動モータ23のベルト23bが連結され駆動力が連結部を介してベルト23bから回転軸24に伝達されるようになっている。
 ロッド25は、回転軸24の貫通孔に挿入される軸部と軸部の下方に形成されたフランジ部と、ユニバーサルジョイント26に連結される連結部とを有している。ロッド25の連結部は、ユニバーサルジョイント26を介して上定盤21に連結され、空圧ユニット13の圧力が上定盤21に伝達されるようになっている。ロッド25のフランジ部には、複数の貫通孔が形成されており、各貫通孔に上定盤21のロッド21bおよび回転軸24のロッド24bがそれぞれ僅かの隙間を空けて挿入されるようになっている。
 ロッド25は、ロッド24bを介して回転軸24の回転が伝達されるようになっている。また、ロッド24bおよびロッド21bを介して回転軸24の回転が上定盤21に伝達されるようになっている。
 ユニバーサルジョイント26は、連結される2つの部材が互いに交わる角度が自由に変化する自在継手からなる。ユニバーサルジョイント26には、上定盤21とロッド25の連結部が連結されており、更にロッド25のフランジ部が回転軸24に連結されているので、上定盤21の水平面と回転軸24の軸線とが交わる交角が変化してもユニバーサルジョイント26により上定盤21の水平面が水平に維持される。また、下定盤32の接続部は固定のため、加工時の下定盤の変動に追従することができる。
 下定盤部12は、テーブル31と、テーブル31に回転自在に取り付けられた下定盤32と、研磨パッド22と、複数のキャリア33と、サンギア34と、下定盤32を回転させる下定盤駆動モータ35と、サンギア34を回転させるサンギア駆動モータ36とを有している。
 テーブル31は、所定の場所に設置された静止部材であり、下定盤32を回転自在に支持している。また、テーブル31は、下定盤32に装着された研磨パッド22の外周面に対向する内周面に内歯31tが形成されており、後述するキャリア33の外歯33tと内歯31tとが噛み合うようになっている。また、テーブル31は、後述する下定盤32の軸部32bを回転自在に支持している。
 下定盤32は、上面が水平であり、下面が円錐台形状に形成され、パッド装着部32aと、パッド装着部32aと直交する軸部32bとを有している。軸部32bには、軸線方向に貫通する貫通孔が形成されている。この貫通孔には、後述するサンギア34の軸部34bが回転自在に挿入されるようになっている。下定盤32のパッド装着部32aの上面には、研磨パッド22が着脱可能に装着されており、下定盤32と研磨パッド22とが一緒に回転するようになっている。
 下定盤32には、図示しない回転速度センサーが接続されており、下定盤32のトルクやトルク変動、回転速度が電気信号に変換され、接続先の制御装置20に送信されるように構成されている。なお、下定盤32のトルクは、下定盤駆動モータ35の電流値に基づいて算出されるが、トルクセンサーにより実際に測定された加工時の下定盤駆動モータ35のトルクであってもよい。
 キャリア33は、外歯33tが形成された円盤からなり、外歯33tは、後述するサンギア34の外歯34tとテーブル31の内歯31tに噛み合うように構成されている。キャリア33は、サンギア34の外歯34tとテーブル31の内歯31tに噛み合いながら、自転するとともに、サンギア34の周りを公転する。キャリア33の公転速度は、サンギア34の回転速度に基づいて算出される。
 キャリア33には、複数の被研磨体W、例えば、3枚~5枚程度の被研磨体Wを自転可能に収容する収容部が形成されている。また、サンギア34の周りを公転するキャリア33は、10枚程度である。したがって、1度の研磨工程で研磨される被研磨体Wは50枚程度となり、この被研磨体Wの枚数が1バッチとして扱われることがある。
 サンギア34は、複数のキャリア33の外歯33tと噛み合う外歯34tが形成された歯車部34aと、軸部34bとを有している。軸部34bは、サンギア駆動モータ36により、サンギア34の上方から見て反時計回りに回転し、サンギア34が反時計回りに回転するようになっている。
 下定盤駆動モータ35は、タイミングプーリなどのプーリ35aおよびタイミングベルトなどのベルト35bを介して下定盤32の軸部32bに連結されている。下定盤駆動モータ35の駆動力は、軸部32bに伝達され、軸部32bを上方から見たとき、軸部32bが反時計回りに回転するようになっている。即ち、下定盤駆動モータ35により、下定盤32が反時計回りに回転するようになっている。
 サンギア駆動モータ36は、タイミングプーリなどのプーリ36aおよびタイミングベルトなどのベルト36bを介してサンギア34の軸部34bに連結されている。サンギア駆動モータ36の駆動力は、軸部34bに伝達され、軸部34bを上方から見たとき、軸部34bが反時計回りに回転するようになっている。
 両面研磨装置10においては、図5(a)に示すように、両面研磨装置10を上方から見たとき、上定盤21が時計回りに回転する。また、図5(b)に示すように、下定盤32が反時計回りに回転し、キャリア33が時計回りに自転しながらサンギア34の周りを反時計回りに公転し、サンギア34が反時計回りに回転する。サンギア34の回転速度は、回転速度センサーにより検出される。なお、サンギア34の回転方向は、逆の時計回りとしてもよい。この場合は、キャリア33の自転する回転方向が逆になる。
 空圧ユニット13は、図4に示すように、上下に往復動する複動形のロッドシリンダからなり、ピストン13a、シリンダボディ13b、ピストンロッド13cを有している。ピストンロッド13cは、上定盤部11のロッド25に接続され、ロッド25およびユニバーサルジョイント26を介して上定盤21を昇降させる構成を有している。
 バランサー14は、バランスシリンダ14aと、ピストン14bと、ワイヤ14cと、ワイヤ14cをガイドするプーリ14d、14eとを有している。ワイヤ14cの一端は、ピストン14bに連結され、他端は、上定盤部11に連結されている。バランサー14は、空圧ユニット13により上定盤21が昇降する際に、上定盤部11の重量を支えてバランスを保ち、空圧ユニット13による上定盤21の昇降動作に要する負荷を軽減するとともに、高精度で速やかな上定盤21の昇降を支援するように機能する。
 研磨液供給ユニット15は、ポンプ15aと、圧力計15bと、開閉バルブ15cとを有しており、被研磨体Wを研磨する研磨液、いわゆるスラリーを、研磨パッド22の貫通孔を介して研磨パッド22と被研磨体Wに供給するように構成されている。ポンプ15aは制御装置20に接続されており、制御装置20により動作が制御されるようになっている。圧力計15bは、制御装置20に接続されており、ポンプ15aの圧力(MPa)の信号は、制御装置20に送信されるようになっている。
 スラリーは、酸化アルミニウム(Al)および酸化ケイ素(SiO)からなる砥粒と、エッチング成分からなる化学成分とを含む液状の研磨液からなる。スラリーは、砥粒自体が有する表面化学作用、または、化学成分の作用によって、スラリーと被研磨体Wとの相対運動による機械的研磨効果を増大させ、平滑な研磨面が得られるように構成されている。
 ロードセル16は、荷重やトルクなどの力を検出するセンサーからなり、ロッド25に設けられ、ロッド25の荷重や荷重の変動、トルクやトルク変動、ひいてはロッド25に連結されている上定盤21に加わる荷重や荷重の変動、トルクやトルク変動が電気信号に変換され、接続先の制御装置20に送信されるようになっている。
 次いで、本実施形態に係る制御装置20について、図面を参照して説明する。
 制御装置20は、演算処理を行う中央処理装置および制御プログラムを格納したメモリを有しており、図示しない第1算出手段、第2算出手段および制御手段を備えている。制御装置20は、研磨液供給ユニット15、空圧ユニット13、上定盤駆動モータ23、下定盤駆動モータ35およびサンギア駆動モータ36にそれぞれ接続され、各構成要素の動作を制御する。
 制御装置20は、被研磨体WのTOP面30aの研磨に要する仕事量PT(Ws)と、被研磨体WのBOT面30bの研磨に要する仕事量PB(Ws)とをそれぞれ算出し、算出された仕事量PTと仕事量PBとの差を所定の範囲内に収めるように研磨条件を制御する。制御装置20は、具体的には、両面研磨装置10の研磨条件を制御することで、基板30の平坦度を速やかに制御し、両面研磨装置10により、平坦度の良好な基板30を製造する。
 第1算出手段は、被研磨体Wの図3に示すTOP面30aの研磨に要するTOP面仕事量PT(Ws)を算出する。第1算出手段は、上定盤21の上定盤回転速度(rpm)および上定盤トルク(Nm)、被研磨体Wの加工時間T(sec)に基づいて、TOP面仕事量PTを算出する。
 仕事量(Ws)は、被研磨体Wの研磨加工に使用したエネルギー量(J)であり、仕事量(Ws)=回転速度(rpm)×トルク(Nm)×加工時間(sec)で算出される。
 具体的には、第1算出手段は、TOP面仕事量PTを下記の式(1)に基づいて算出する。
Figure JPOXMLDOC01-appb-I000005
 なお、式(1)中、T1は仕事量の測定を開始する時間(sec)、T2は仕事量の測定を終了する時間(sec)、kは定数、NUは上定盤回転速度(rpm)、NCはキャリア公転速度(rpm)、QUは上定盤トルク(Nm)、QUMは上定盤メカロス分のトルク(Nm)、tはサンプリング時間(sec)をそれぞれ表している。
 加工時間Tは、所定の加工経過時間、即ち、仕事量を測定する加工時間を表わしている。つまり、式(1)中のT1からT2の間の仕事量を測定していることを表わしており、T1は仕事量の測定を開始する時間、T2は仕事量の測定を終了する時間を表わしている。
 T1とT2は、仕事量を測定する区間に応じて決定すればよく、T1には測定開始時間または前回のサンプリング終了時間を用いることが好ましく、T2には測定終了時間または今回のサンプリング終了時間を用いることが好ましい。
 T1とT2は、適宜変更することができ、例えば、バッチ毎管理の場合、T1には測定開始時間、T2には測定終了時間を用いることができる。所定バッチの研磨の開始から終了までの10分間の仕事量を測定する場合には、T1には所定バッチの仕事量測定開始時間の0、T2には所定バッチの仕事量測定終了時間(例えば研磨終了時間)の600(sec)を用いて仕事量を算出することができる。
 また、予め決められたサンプリング時間によって仕事量を算出することもできる。例えば所定バッチ内での仕事量測定間隔を10秒おきとしたとき、初回のサンプリングではT1には測定開始時間の0を用い、T2には今回のサンプリング終了時間の10(sec)を用い、2回目のサンプリングではT1には測定開始時間の0、T2には今回のサンプリング終了時間の20(sec)を用い、サンプリングのタイミングが変わる毎にT2のみを変更することで、つまり、サンプリング時間を累積することで仕事量を算出することができる。
 また、サンプリング時間を累積せずに仕事量を測定する際には、例えば、T1は前回のサンプリング終了時間の10(sec)、T2には今回のサンプリング終了時間の20(sec)を用いて、サンプリングのタイミングが変わる毎にT1およびT2の数値を変更して算出することができる。なお、式(1)と後述の式(2)のT1およびT2は同じである必要がある。
 式(1)中の上定盤回転速度NUは、上定盤21に設けられた回転速度センサーにより検出された上定盤21の回転速度であり、キャリア公転速度NCは、サンギア34の回転速度センサーにより検出されたサンギア34の回転速度から算出されるキャリア33の公転速度であり、上定盤トルクQUは、ロードセル16により検出された上定盤21のトルクである。
 なお、式(1)における上定盤メカロスQUM(Nm)は、上定盤21自体が回転することで失われるトルク損失を表し、上定盤メカロスQUMは、例えば、上定盤21に負荷を掛けずに、上定盤21を空転させた際の上定盤21のトルクを事前に検出することにより得られる。
 第2算出手段は、被研磨体Wの図3に示すBOT面30bの研磨に要するBOT面仕事量PB(Ws)を算出するように構成されている。第2算出手段は、下定盤32の下定盤回転速度(rpm)および下定盤トルク(Nm)、被研磨体Wの加工時間T(sec)に基づいて、BOT面仕事量PBを算出する。
 具体的には、第2算出手段は、BOT面仕事量PBを下記の式(2)に基づいて算出する。
Figure JPOXMLDOC01-appb-I000006
 なお、式(2)中、T1は仕事量の測定を開始する時間(sec)、T2は仕事量の測定を終了する時間(sec)、kは定数、NLは下定盤回転速度(rpm)、NCはキャリア公転速度(rpm)、QLは下定盤トルク(Nm)、QLMは下定盤メカロス分のトルク(Nm)、tはサンプリング時間(sec)をそれぞれ表している。
 式(2)中の下定盤回転速度NLおよび下定盤トルクQLは、下定盤32に設けられた回転速度センサーにより検出された下定盤32の回転速度および下定盤駆動モータ35の電流値に基づいて算出された加工時の下定盤32のトルクであり、キャリア公転速度NCは、サンギア34の回転速度センサーにより検出されたサンギア34の回転速度から算出されるキャリア33の公転速度である。
 なお、式(2)における下定盤メカロスQLM(Nm)は、下定盤32自体が回転することで失われるトルク損失を表し、下定盤メカロスQLMは、例えば、下定盤32に負荷を掛けずに、下定盤32を空転させた際の下定盤32のトルクを事前に検出することにより得られる。
 式(1)および式(2)におけるサンプリング時間t(sec)は、加工時間Tの研磨時間の中でサンプリングされる時間間隔をいう。例えば、サンプリング時間tが1secであれば、1secごとに、その瞬間のトルクや回転速度などのデータを検出し、検出された各データに基づいて、式(1)によりサンプリング時間1secにおけるTOP面仕事量PT(Ws)が算出され、式(2)によりサンプリング時間1secにおけるBOT面仕事量PB(Ws)が算出される。
 式(1)は、サンプリング時間1secにおけるTOP面仕事量PTのT1(sec)からT2(sec)まで定積分された仕事量(Ws)となっている。式(2)も、式(1)と同様に、サンプリング時間1secにおけるBOT面仕事量PBのT1(sec)からT2(sec)まで定積分された仕事量(Ws)となっている。
 式(1)および式(2)におけるサンプリング時間tおよび加工時間Tは、被研磨体Wの構造、大きさ、材質、形状や両面研磨装置10の構造、大きさなどの設定諸元、研磨パッドや研磨液の種類などの諸条件や実験値などのデータに基づいて適宜選択される。また、式(1)および式(2)における定数kは、上定盤又は下定盤の回転速度(rpm)およびトルク(Nm)を仕事量(Ws)に換算するための数値であり、一般的な換算式を用いて得ることができる。
 制御手段は、算出されたTOP面仕事量PTとBOT面仕事量PBとの差を所定の範囲内に収めることで、基板30の平坦度を所定の平坦度範囲内に収まるように研磨条件を制御する。つまり、TOP面仕事量PTとBOT面仕事量PBとの差である仕事量TB差が、所定の範囲である目標仕事量TB差に収まるように、研磨条件を制御することで、基板30の平坦度を所定の平坦度範囲内に収めることができる。
 制御手段は、仕事量TB差、即ち、第1算出手段により算出されたTOP面仕事量PTと第2算出手段により算出されたBOT面仕事量PBとの差に基づいて、上定盤21または下定盤32の何れか一方のみを制御するように構成されている。上定盤21または下定盤32を制御することにより、高い精度で速やかな制御が行われる。
 また、制御する研磨条件としては、回転速度(rpm)、荷重(kg)、キャリアの公転数(rpm)、時間(sec)、研磨液流量(mL/min)などが挙げられ、定盤による制御を行う場合には、回転速度、荷重、キャリアの公転数のうちいずれか、またはこれらの組み合わせを制御することが好ましく、制御が容易という観点から回転速度および/または荷重を制御することがより好ましく、回転速度のみを制御することがさらに好ましい。
 所定の範囲は、図6(a)に示すように、平坦度の閾値と仕事量TB差の閾値によって設定される。所定の範囲の設定手順としては、まず、被研磨体Wに許容される平坦度の範囲(平坦度の上限閾値と下限閾値との間の範囲)が決定される。次いで、被研磨体Wに許容される仕事量TB差の閾値が決定される。仕事量TB差の閾値は、例えば、事前に別途行う研磨によって決定することができる。
 仕事量TB差は、S=PT-PBで表すことができ、Sが所定の範囲に収まるように、上定盤21または下定盤32の何れか一方のみが制御手段により制御される。なお、制御は、バッチ毎の管理またはバッチ内の管理により行われることが好ましい。バッチ毎の管理においては、1バッチが終わる毎に制御が行われ、バッチ内の管理においては、バッチ内で、つまり研磨中に制御が行われる。バッチは、1度の研磨工程で研磨される被研磨体Wの枚数単位を表しており、1バッチはこれに限定されないが被研磨体Wが50枚程度である。
 目標仕事量TB差は、決定された平坦度閾値と、仕事量TB差閾値とで囲まれた網掛けで表される方形の領域である。仕事量TB差閾値は、平坦度閾値からはみ出さないものが作れる領域である。
 なお、図6(a)は、横軸を仕事量TB差(kWs)とし、縦軸を平坦度(μm)としており、算出された仕事量TB差に対する通常生産時における平坦度(μm)が、黒点でプロットされたグラフである。
 図6(b)は、図6(a)と同様のグラフであり、横軸に仕事量TB差(kWs)をとり、縦軸に平坦度(μm)をとり、算出された仕事量TB差に対する仕事量管理時における平坦度(μm)が、黒点でプロットされたグラフである。図6(b)に示されるように、仕事量管理時においては、即ち、仕事量を制御することにより、平坦度を制御することができ、被研磨体Wの平坦度を目標仕事量TB差の領域内に収めることができる。
 平坦度閾値、仕事量TB差閾値および目標仕事量TB差は、被研磨体Wの構造、大きさ、材質、形状や両面研磨装置10の構造、大きさなどの設定諸元や実験値などのデータに基づいて適宜選択される。平坦度閾値、仕事量TB差閾値および目標仕事量TB差は、例えば、製造装置(製造ライン)、研磨パッド、研磨液、研磨液の流量のいずれかが変化するごとに試験研磨を行って決定される。
 次いで、通常生産時および仕事量管理時について図面を参照して説明する。
 仕事量管理を行っていない従来の通常生産時においては、図7(a)に示すように、研磨された被研磨体Wの表面検査が行われた後に、平坦度計により被研磨体Wの平坦度が測定される。測定結果は、例えば、平坦度TB差として平坦度計にグラフで表示される。
 そして、平坦度TB差が上限を超えていると判定された場合、被研磨体Wのめっき厚が、TOP>BOTであることが分かり、TOP相対速度UPが設定される。即ち、上定盤21の回転速度を下定盤32に比べて相対的に速くする設定がなされる。一方、平坦度TB差のグラフから、平坦度TB差が下限を超えていると判定された場合、被研磨体Wのめっき厚が、TOP<BOTであることが分かり、BOT相対速度UPが設定される。即ち、下定盤32の回転速度を上定盤21に比べて相対的に速くする設定がなされる。これらの判定及び設定は、作業者によって行われる。
 したがって、仕事量管理を行っていない通常生産時においては、表面検査後にTOP相対速度UPの設定およびBOT相対速度UPの設定がなされ、被研磨体Wの平坦度が適正になるように両面研磨装置10が調整される。したがって、制御タイムラグが長時間かかっており、数バッチ経過後に制御されることもあった。
 これに対して、本実施形態の仕事量管理時においては、図7(b)に示すように、研磨から表面検査までの間、即ち、被研磨体Wの研磨中に、仕事量TB差が算出されるため、制御タイムラグを大幅に短縮することができ、高精度な平坦度を実現することができる。また、平坦度の測定結果が出るのを待って行う制御も不要となり、製造費用を大幅にコストダウンすることができる。
 次いで、被研磨体Wの仕事量(kWs)と被研磨体Wの研磨量(mg)との相関係数について図面を参照して説明する。なお、被研磨体Wの1枚当たりの研磨量(mg)は、被研磨体Wが50枚の1バッチ分の研磨前の被研磨体Wの総重量(mg)と被研磨体Wが50枚の1バッチ分の研磨後の被研磨体Wの総重量(mg)を減算し、減算された総重量を50枚で除算することにより取得することができる。
 図8は、横軸をバッチナンバーとし、1バッチ~18バッチまでの範囲を示している。パッド時間、即ち、1バッチ目を研磨するまでのパッドの使用時間は、25時間前後経過したものとなっている。図8の左側の縦軸は、仕事量(kWs)を示し、右側の縦軸は、研磨量(mg)を示している。図8には、各バッチと仕事量との関係を示す折れ線グラフと、各バッチと研磨量との関係を示す折れ線グラフが表されている。
 具体的には、各バッチに対する両面研磨量が実線の折れ線で表され、各バッチに対する両面仕事量が細かな破線の折れ線で表され、各バッチに対するBOT仕事量が一点鎖線の折れ線で表され、各バッチに対するTOP仕事量が大まかな破線の折れ線で表されている。なお、両面仕事量とは、TOP面の仕事量とBOT面の仕事量とを足し合わせたもののことをいう。
 図8のグラフによれば、実線の折れ線で表される両面研磨量と、細かな破線の折れ線で表される両面仕事量とが近似したグラフとなっており、研磨条件を調整するたびに両者の折れ線が同じ傾向で上昇・降下しており、相関があることが分かる。また、一点鎖線の折れ線で表されるBOT仕事量と、大まかな破線の折れ線で表されるTOP仕事量とが近似したグラフとなっており、両者は相関関係にあることが分かる。また、4つの各折れ線グラフは、数値は異なっているが、折れ線の形状が近似しており、各バッチに対する両面研磨量、各バッチに対する両面仕事量、各バッチに対するBOT仕事量および各バッチに対するTOP仕事量は、互いに相関関係にあることが分かる。
 図8に示される研磨量-仕事量の相関を検証した結果、被研磨体Wの研磨量と被研磨体Wの両面仕事量との間の相関は、図9のグラフによっても表される。図9は、横軸を両面仕事量(kWs)とし、縦軸を両面研磨量(mg)としており、算出された両面仕事量に対する両面研磨量(mg)が、黒点でプロットされたグラフである。
 図9に示す両面研磨量-両面仕事量のグラフは、標準偏差σ2.4において、両面仕事量(kWs)に対する、両面研磨量(mg)を黒点でプロットしたグラフを示している。プロットされた黒点は、破線の傾斜線付近に集まっており、両面仕事量(kWs)と、両面研磨量(mg)とは相関があり、比例関係にあることが分かる。
 なお、破線の傾斜線は、図9の右上に示すように、回帰式からなる近似式、y=0.1346x-2.2355で表される。また、R=0.9592は、エクセルで近似式を扱った場合の、決定係数を表している。この決定係数とは、データに対する推定された回帰式の当てはまりの度合いを表す値で、決定係数は、全変動(それぞれの数値と平均値の差)の平方和・回帰変動(それぞれの予測値と平均値の差)の平方和を求め、回帰変動を全変動で割ることにより求めることができ、相関係数の2乗となる。この回帰式からも、被研磨体Wを研磨する仕事量を管理することで、被研磨体Wの研磨量を管理することができることが分かる。
 被研磨体Wの研磨量と被研磨体Wの両面仕事量との間には、相関関係があるので、被研磨体Wを加工するTOP面の仕事量とBOT面の仕事量から被研磨体W1枚の両面研磨量を推定することができる。同様に、めっき厚は、平坦度と相関関係があることから、TOP面の仕事量とBOT面の仕事量(=研磨量=めっき厚)を制御することで、TOP面とBOT面の研磨量を制御することができ、ひいては、平坦度の制御をすることが可能となり、被研磨体Wが薄い基板であっても、基板30の生産における歩留まりを改善することができる。
 なお、仕事量は、TOP面およびBOT面のそれぞれについて算出されるが、研磨量は、被研磨体WのTOP面およびBOT面が、両面研磨装置10により同時に研磨されるので、被研磨体WのTOP面およびBOT面のそれぞれは個別に計測されず、1枚両面の研磨量となる。
 次いで、実施形態に係る基板30の製造方法について図面を参照して説明する。
 実施形態に係る基板30の製造方法は、アルミブランク作製工程、旋盤加工工程、焼鈍工程、グラインダー研削工程、焼鈍工程、無電解ニッケル-りんめっき(Ni-P)工程、焼鈍工程、研磨工程、平坦度の制御工程、表面検査工程、平坦度測定工程、出荷工程の各工程が含まれる。各工程は順に行われ、各工程を経て基板30が製造される。
 実施形態に係る基板30の製造方法の各工程の内、研磨工程および平坦度の制御工程以外の各工程は、公知の工程で構成されており、主に研磨工程および平坦度の制御工程について図面を参照して説明する。
 研磨工程においては、図4に示すキャリア33に被研磨体Wの1バッチ分50枚がセットされる。被研磨体Wのセットが完了すると、設定された研磨条件で両面研磨装置10が稼働され研磨が開始される。両面研磨装置10が稼働されると、図5(a)および図5(b)に示すように、上定盤21が時計回りに回転し、下定盤32、キャリア33およびサンギア34が反時計回りに回転する。この回転により、キャリア33にセットされた被研磨体Wは公転するとともにキャリア内で自転している。なお、サンギア34は、時計回りに回転するようにしてもよい。この場合は、キャリア33の回転方向が時計回りになる。
 研磨が開始されると同時に、研磨液供給圧ユニット15から研磨液が被研磨体Wに供給される。被研磨体Wは、上定盤21のパッド装着部21aに装着された研磨パッド22と、下定盤32のパッド装着部32aに装着された研磨パッド22と、供給された研磨液により、被研磨体WのTOP面30aおよびBOT面30bが同時に研磨される。
 バッチ内管理における平坦度の制御工程は、図10に示すように、上定盤仕事量測定(ステップS1)と、上定盤仕事量算出(第1算出工程;ステップS2)と、回転速度算出(ステップS3)と、下定盤仕事量測定(ステップS4)と、下定盤仕事量算出(第2算出工程;ステップS5)と、下定盤回転速度設定(ステップS6)と、設定加工時間判定(ステップS7)とを含んで構成されている。
 なお、ステップS1~ステップS7までの平坦度の制御工程は、制御装置20により被研磨体Wの研磨中に行われる。上定盤仕事量測定(ステップS1)と下定盤仕事量測定(ステップS4)は、同時に行われるが、順番に行われても良く、順番に行われる場合には何れが先に行われてもよい。
 また、下定盤回転速度設定(ステップS6)で下定盤32の回転速度を設定しているが、代わりに、上定盤21の回転速度を設定するようにしてもよい。また、平坦度の制御工程は、上定盤21または下定盤32の研磨条件を変更することによって制御することができる。図10は回転速度を設定して回転速度を制御する場合のみを示しているが、さらに被研磨体Wに加える荷重を制御することで更に平坦度の精度を向上させることが可能となる。この場合、パッド使用時間差で基板30に品質差が生ずることを抑制することが可能となる。また、研磨液供給ユニット15により供給される研磨液の流量調整の自動化ができれば、より安定した研磨制御が可能となる。
 上定盤仕事量測定(ステップS1)においては、上定盤のトルク、即ちΣ(相対速度×定盤トルク)に基づいて、上定盤21の仕事量が測定され、上定盤仕事量算出(ステップS2)においては、上定盤仕事量測定(ステップS1)により測定された測定データに基づいて前述の式(1)を用いて上定盤21の仕事量が算出される。算出は、制御タイムラグおよびパッド経過時間を考慮した上で行われる。なお、上定盤仕事量算出(ステップS2)は、本発明に係る第1算出工程に対応する。
 回転速度算出(ステップS3)においては、まず、加工経過時間でのTOP仕事量から加工完了時の目標仕事量TB差より経過時間に換算した目標仕事量TB差を減算した値が演算され、加工経過時間でのBOTの目標仕事量として算出される。なお、TOP仕事量は、TOP面仕事量PTを算出する式(1)によって取得される。加工完了時の目標仕事量TB差は、図6(a)に示すように、平坦度閾値、仕事量TB差閾値に基づいて決定される。
 次いで、取得されたBOTの目標仕事量、BOTの実測トルクおよび時間から、下記の式により、BOTの相対速度が算出される。
 BOTの目標仕事量÷BOTの実測トルク÷時間=BOTの相対速度
 上記の式により、BOTの相対速度が取得される。
 次いで、取得されたBOTの相対速度およびキャリア33の公転速度から、下記の式により、制御する下定盤32の回転速度が算出される。
 BOTの相対速度+キャリア33の公転速度=制御する下定盤32の回転速度
 なお、下定盤32の回転速度の代わりに上定盤21の回転速度を取得するようにしてもよく、その場合、TOPの相対速度およびキャリア33の公転速度から、下記の式により、次工程で設定される上定盤回転速度が算出される。
 TOPの相対速度-キャリア33の公転速度=制御する上定盤21の回転速度
 上記の式によりステップS6において下定盤32または上定盤21の回転速度が設定される。
 下定盤仕事量測定(ステップS4)においては、下定盤のトルク、即ちΣ(相対速度×定盤トルク)に基づいて、下定盤32の仕事量が測定され、下定盤仕事量算出(ステップS5)においては、下定盤仕事量測定(ステップS4)により測定された測定データに基づいて前述の式(2)を用いて下定盤32の仕事量が算出される。算出は、制御タイムラグおよびパッド経過時間を考慮した上で行われる。なお、下定盤仕事量算出(ステップS5)は、本発明に係る第2算出工程に対応する。
 下定盤回転速度設定(ステップS6)においては、回転速度算出(ステップS3)において取得された制御する下定盤32の回転速度が設定される。下定盤回転速度設定(ステップS6)は、本発明に係る制御工程に対応する。なお、前述のように下定盤32の回転速度に代えて上定盤21の回転速度を設定してもよい。
 設定加工時間判定(ステップS7)においては、予め設定された加工時間に到達したか否かが判定される。予め設定された加工時間に到達したと判定された場合には、研磨が終了する。予め設定された加工時間に到達したと判定されない場合には、研磨が継続され、上定盤仕事量測定(ステップS1)および下定盤仕事量測定(ステップS4)に進む。
 以下、実施形態に係る両面研磨装置10の制御システム、制御装置20および基板30の製造方法の効果について説明する。
 (1)本実施形態に係る両面研磨装置10の制御システムによれば、制御装置20により、TOP面30aの研磨に要するTOP面仕事量PT(Ws)と、BOT面30bの研磨に要するBOT面仕事量PB(Ws)とがそれぞれ算出される。また、算出されたTOP面仕事量PTとBOT面仕事量PBとの差、即ち、仕事量TB差が所定の範囲内に収まるように研磨条件が制御される。その結果、研磨条件の制御により、高い精度で速やかに基板の平坦度が制御され、平坦度の良好な基板が得られるという効果が得られる。
 具体的には、図11(a)に示すように、仕事量管理を行っていない従来の通常生産時における仕事量TB差の度数分布は、横軸の被研磨体Wの仕事量TB差の範囲区分が[-0.5以上~0未満]で、縦軸の被研磨体Wの各仕事量TB差の範囲区分内の枚数が最も多く、被研磨体Wの枚数は、[-2.5未満]から[2.5以上]の広範囲に広がっている。グラフ中の曲線は、正規分布を表しているが、正規分布においても、[-0.5以上~0未満]を頂部としてなだらかな曲線となっている。なお、通常生産時においては、被研磨体Wの枚数、即ち、N数は2519枚、平均が0.2、σが1.1となっている。
 この通常生産時に対して、仕事量管理時には、図11(b)に示すように、仕事量TB差の度数分布は、横軸の被研磨体Wの仕事量TB差の範囲区分が[-0.5以上~0未満]で、縦軸の被研磨体Wの各仕事量TB差の範囲区分内の枚数が最も多く、被研磨体Wの枚数は、[-1以上~-0.5未満]と[0以上~0.5未満]に集中している。グラフ中の曲線で表される正規分布においても、[-1以上~-0.5未満]を頂部として突出した曲線となっている。なお、仕事量管理時においては、被研磨体Wの枚数、即ち、N数は1057枚、平均が-0.4、σが0.2となっている。
 したがって、仕事量TB差が所定の範囲内に収まるように研磨条件が制御された結果、σが1.1から0.2となり、被研磨体Wの仕事量TB差のばらつきが極めて小さくなったことが確認され、研磨条件の制御が極めて良好に行われているという効果が得られた。
 また、図12は、本発明の実施形態に係る両面研磨装置の制御システムにおける仕事量TB差の正規分布曲線とグラフである。図12に示すように、仕事量管理時の正規分布の実線で示す曲線は、中央部が著しく突出して高くなっているのに対して、通常生産時における正規分布の破線で示す曲線は、突出部分がなく極めてなだらかになっている。図12のグラフからも、被研磨体Wの仕事量TB差のばらつきが極めて小さくなったことが確認された。
 また、図13(a)に示すように、仕事量管理を行っていない従来の通常生産時における平坦度TB差の度数分布は、横軸の被研磨体Wの平坦度TB差の範囲区分が[0以上~0.5未満]で、縦軸の被研磨体Wの各平坦度TB差の範囲区分内の枚数が最も多く、被研磨体Wの枚数は、[-2.5未満]から[2.5以上]の広範囲に広がっている。グラフ中の曲線で表わされる正規分布においても、[0以上~0.5未満]を頂部としてなだらかな曲線となっている。なお、通常生産時においては、被研磨体Wの枚数、即ち、N数は2519枚、平均が0.19、σが1.02となっている。
 この通常生産時に対して、仕事量管理時には、図13(b)に示すように、平坦度TB差の度数分布は、横軸の被研磨体Wの平坦度TB差の範囲区分が[-0.5以上~0未満]で、縦軸の被研磨体Wの各平坦度TB差の範囲区分内の枚数が最も多く、被研磨体Wの枚数は、[-2以上~-1.5未満]と[0.5以上~1未満]の間に集まっている。グラフ中の曲線で表される正規分布においても、[-1以上~-0.5未満]を頂部として突出した曲線となっている。なお、仕事量管理時においては、被研磨体Wの枚数、即ち、N数は1057枚、平均が-0.45、σが0.77となっている。
 したがって、平坦度TB差が所定の範囲内に収まるように研磨条件が制御された結果、σが1.02から0.77となり、被研磨体Wの平坦度TB差のばらつきが小さくなったことが確認され、研磨条件の制御が良好に行われているという効果が得られた。
 また、図14は、本発明の実施形態に係る両面研磨装置の制御システムにおける平坦度TB差の正規分布曲線とグラフである。図14に示すように、仕事量管理時の正規分布の実線で示す曲線は、中央部がやや突出して高くなっているのに対して、通常生産時における正規分布の破線で示す曲線は、突出部分が小さくなだらかになっている。図12のグラフからも、被研磨体Wの仕事量TB差のばらつきがやや小さくなったことが確認された。
 (2)本実施形態に係る両面研磨装置10の制御システムによれば、TOP面仕事量PTおよびBOT面仕事量PBは、制御装置20により、被研磨体Wを研磨する上定盤21および下定盤32の回転速度(rpm)と、被研磨体Wを研磨する上定盤21および下定盤32のトルク(Nm)と、被研磨体Wの加工時間T(sec)に基づいて算出されるので、高い精度のTOP面仕事量PTおよびBOT面仕事量PBが算出されるという効果が得られる。
 (3)本実施形態に係る両面研磨装置10の制御システムによれば、制御装置20により、TOP面30aの研磨に要するTOP面仕事量PTは、式(1)により算出される。式(1)においては、加工時間T(sec)、定数k、上定盤回転速度NU(rpm)、キャリア公転速度NC(rpm)、上定盤トルクQU(Nm)、上定盤メカロス分のトルクQUM(Nm)、サンプリングt時間(sec)に基づいて算出処理がなされる。TOP面仕事量PTの算出処理は、加工時間の開始から終了までが定積分されるので、基板30の研磨中に算出処理が行われ、高い精度のTOP面仕事量PTが得られるという効果が得られる。
 (4)本実施形態に係る両面研磨装置10の制御システムによれば、制御装置20により、BOT面30bの研磨に要するBOT面仕事量PBは、式(2)により算出される。式(2)においては、加工時間T(sec)、定数k、下定盤回転速度NL(rpm)、キャリア公転速度NC(rpm)、下定盤トルクQL(Nm)、下定盤メカロス分のトルクQLM(Nm)、サンプリング時間t(sec)に基づいて算出処理がなされる。BOT面仕事量PBの算出処理は、加工時間の開始から終了までが定積分されるので、基板の研磨中に算出処理が行われ、高い精度のBOT面仕事量PBが得られるという効果が得られる。
 (5)本実施形態に係る両面研磨装置10の制御システムによれば、制御装置20により、所定の範囲は、平坦度の閾値と仕事量TB差の閾値によって設定されるため、仕事量が所定の範囲に収められることにより、基板30の研磨量が所定の範囲に収められ、平坦度の良好な基板30が得られるという効果が得られる。
 (6)本実施形態に係る両面研磨装置10の制御システムによれば、制御装置20により、TOP面仕事量PTとBOT面仕事量PBとの差に基づいて、被研磨体Wの研磨中に上定盤21および下定盤32が制御されるので、より速やかなフィードバック制御が行われ、基板30が速やかに製造されるという効果が得られる。具体的には、図7(a)および図7(b)に示すように、制御タイムラグが、通常生産の場合、約1時間30分程度であったのに対して、本実施形態に係る仕事管理においては、約10分に短縮されるという効果が得られる。
 なお、上定盤21または下定盤32の何れか一方のみを制御することで、被研磨体WのTOP面とBOT面との間における研磨量のばらつきを抑えることができ、研磨量差の悪化を抑えることができる。
 従来、研磨パッドの目詰まりや劣化、研磨液の流量、被研磨体Wの搬送途中の停止などにより、研磨パッドと被研磨体Wの摩擦係数が増えることがあった。研磨パッドと被研磨体Wの摩擦係数が増えると、トルクが上昇するため、仕事量は増加するが、増加した仕事量は研磨に寄与しないものも含まれており、前述の原因で増加した仕事量のうち研磨に寄与する仕事量はほぼ変わっていないことが分かった。即ち、摩擦係数が増えたことによる仕事量の増加と研磨量の増加は等しくないという場合があり、被研磨体Wの片面の仕事量のみで判断すると、研磨量がばらつき、被研磨体WのTB差が悪化する場合がある。
 そこで、本実施形態に係る両面研磨装置10の制御システムでは、TBの仕事量の差で評価することで、研磨に寄与しない仕事量が相殺され、仕事量TB差=研磨量TB差となる。
 ここで、被研磨体Wの両面の上定盤21と下定盤32の回転速度を制御するという方法が考えられるが、前述のとおり、各種原因の影響で、研磨に寄与する仕事量、または研磨に寄与しない仕事量は一定でないため、目標値となる制御量を決めることが難しい。
 そこで、被研磨体Wの片面の上定盤21または下定盤32の仕事量を成り行きでモニタリングし、仕事量TB差が一定になるように、もう片面の上定盤21かまたは下定盤32の制御量を決めることで、より速やかなフィードバック制御が行われ、平坦度の良好な基板が速やかに製造される。具体的な制御方法としては、定盤の回転速度および/または荷重を制御することが好ましい。
 (7)本実施形態に係る制御装置20は、TOP面30aの研磨に要するTOP面仕事量PT(Ws)を算出する第1算出手段と、BOT面30bの研磨に要するBOT面仕事量PB(Ws)を算出する第2算出手段と、TOP面仕事量PTとBOT面仕事量PBとの差を所定の範囲内に収めるように研磨条件を制御する制御手段とを備えている。
 この構成により、第1算出手段によりTOP面30aの研磨に要するTOP面仕事量PT(Ws)が算出され、第2算出手段によりBOT面30bの研磨に要するBOT面仕事量PB(Ws)が算出される。さらに、制御手段により、算出されたTOP面仕事量PTとBOT面仕事量PBとの差を所定の範囲内に収めるように研磨条件が制御される。その結果、研磨条件の制御により、高い精度で速やかに基板30の平坦度が制御され、平坦度の良好な基板30が得られるという効果が得られる。
 (8)本実施形態に係る基板30の製造方法によれば、第1算出工程によりTOP面30aの研磨に要するTOP面仕事量PT(Ws)が算出され、第2算出工程によりBOT面30bの研磨に要するBOT面仕事量PB(Ws)が算出され、制御工程によりTOP面仕事量PTとBOT面仕事量PBとの差が所定の範囲内に収まるように研磨条件が制御される。その結果、研磨条件の制御により、高い精度で速やかに基板30の平坦度が制御され、平坦度の良好な基板30が得られるという効果が得られる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の趣旨を逸脱しない範囲で、種々の設計変更を行うことができるものである。
10・・・両面研磨装置
11・・・上定盤部
12・・・下定盤部
13・・・空圧ユニット
13a、14b・・・ピストン
13b・・・シリンダボディ
13c・・・ピストンロッド
14・・・バランサー
14a・・・バランスシリンダ
14c・・・ワイヤ
15・・・研磨液供給ユニット
15a・・・ポンプ
15b・・・圧力計
15c・・・開閉バルブ
16・・・ロードセル
20・・・制御装置
21・・・上定盤
21a、32a・・・パッド装着部
21b・・・ロッド
22・・・研磨パッド
23・・・上定盤駆動モータ
23a、35a、36a、14d、14e・・・プーリ
23b、35b、36b・・・ベルト
24・・・回転軸
24a・・・フランジ
24b・・・ロッド
25・・・ロッド
26・・・ユニバーサルジョイント
30・・・基板
30a・・・TOP面
30b・・・BOT面
31・・・テーブル
31t・・・内歯
32・・・下定盤
32b、34b・・・軸部
33・・・キャリア
33t、34t・・・外歯
34・・・サンギア
34a・・・歯車部
35・・・下定盤駆動モータ
36・・・サンギア駆動モータ
D・・・外径
d・・・内径
h・・・貫通孔
k・・・定数
NC・・・キャリア公転速度
NL・・・下定盤回転速度
NU・・・上定盤回転速度
QL・・・下定盤トルク
QLM・・・下定盤メカロス分のトルク
QU・・・上定盤トルク
QUM・・・上定盤メカロス分のトルク
t・・・サンプリング時間
th・・・厚み
T・・・加工時間
W・・・被研磨体

Claims (8)

  1.  被研磨体を上定盤と下定盤との間に挟んで前記上定盤と前記下定盤を回転させることにより前記被研磨体のTOP面およびBOT面を研磨する両面研磨装置の制御システムにおいて、
     前記TOP面の研磨に要するTOP面仕事量PT(Ws)と、
     前記BOT面の研磨に要するBOT面仕事量PB(Ws)とをそれぞれ算出し、
     算出された前記TOP面仕事量PTと前記BOT面仕事量PBとの差である仕事量TB差を所定の範囲内に収めるように研磨条件を制御することを特徴とする両面研磨装置の制御システム。
  2.  前記TOP面仕事量PTおよび前記BOT面仕事量PBは、前記上定盤及び前記下定盤の回転速度(rpm)、トルク(Nm)および前記被研磨体の加工時間T(sec)に基づいて算出されることを特徴とする請求項1に記載の両面研磨装置の制御システム。
  3.  前記TOP面の研磨に要する前記TOP面仕事量PTは、下記式(1)
    Figure JPOXMLDOC01-appb-I000001
     (式(1)中、T1は仕事量の測定を開始する時間(sec)、T2は仕事量の測定を終了する時間(sec)、kは定数、NUは上定盤回転速度(rpm)、NCはキャリア公転速度(rpm)、QUは上定盤トルク(Nm)、QUMは上定盤メカロス分のトルク(Nm)、tはサンプリング時間(sec)をそれぞれ表す。)
    により算出されることを特徴とする請求項1または請求項2に記載の両面研磨装置の制御システム。
  4.  前記BOT面の研磨に要する前記BOT面仕事量PBは、下記式(2)
    Figure JPOXMLDOC01-appb-I000002
     (式(2)中、T1は仕事量の測定を開始する時間(sec)、T2は仕事量の測定を終了する時間(sec)、kは定数、NLは下定盤回転速度(rpm)、NCはキャリア公転速度(rpm)、QLは下定盤トルク(Nm)、QLMは下定盤メカロス分のトルク(Nm)、tはサンプリング時間(sec)をそれぞれ表す。)
    により算出されることを特徴とする請求項1から請求項3のいずれか一項に記載の両面研磨装置の制御システム。
  5.  前記所定の範囲は、平坦度の閾値と前記仕事量TB差の閾値によって設定されることを特徴とする請求項1に記載の両面研磨装置の制御システム。
  6.  前記仕事量TB差に基づいて、前記上定盤または前記下定盤の何れか一方のみを制御することを特徴とする請求項1に記載の両面研磨装置の制御システム。
  7.  被研磨体を上定盤と下定盤との間に挟んで前記上定盤と前記下定盤を回転させることにより前記被研磨体のTOP面およびBOT面を研磨する両面研磨装置の制御装置において、
     前記TOP面の研磨に要するTOP面仕事量PT(Ws)を算出する第1算出手段と、 前記BOT面の研磨に要するBOT面仕事量PB(Ws)を算出する第2算出手段と、 前記第1算出手段により算出された前記TOP面仕事量PTと前記第2算出手段により算出された前記BOT面仕事量PBとの差を所定の範囲内に収めるように研磨条件を制御する制御手段と、を備えたことを特徴とする両面研磨装置の制御装置。
  8.  両面研磨装置により被研磨体のTOP面およびBOT面を研磨する基板の製造方法において、
     前記TOP面の研磨に要するTOP面仕事量PT(Ws)を算出する第1算出工程と、 前記BOT面の研磨に要するBOT面仕事量PB(Ws)を算出する第2算出工程と、 前記第1算出工程により算出された前記TOP面仕事量PTと前記第2算出工程により算出された前記BOT面仕事量PBとの差を所定の範囲内に収めるように研磨条件を制御する制御工程と、を含むことを特徴とする基板の製造方法。
PCT/JP2020/026117 2019-07-03 2020-07-03 両面研磨装置の制御システム、制御装置および基板の製造方法 WO2021002447A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019124851A JP7254645B2 (ja) 2019-07-03 2019-07-03 両面研磨装置の制御システム、制御装置および基板の製造方法
JP2019-124851 2019-07-03

Publications (1)

Publication Number Publication Date
WO2021002447A1 true WO2021002447A1 (ja) 2021-01-07

Family

ID=74100340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026117 WO2021002447A1 (ja) 2019-07-03 2020-07-03 両面研磨装置の制御システム、制御装置および基板の製造方法

Country Status (3)

Country Link
JP (1) JP7254645B2 (ja)
TW (1) TWI836112B (ja)
WO (1) WO2021002447A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7235071B2 (ja) * 2021-06-11 2023-03-08 株式会社Sumco ワークの両面研磨方法及びワークの両面研磨装置
KR20240126440A (ko) * 2021-12-27 2024-08-20 가부시끼가이샤 레조낙 굴곡 예측 장치, 굴곡 예측 방법, 연마 대상물 가공 방법 및 프로그램

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358104A (ja) * 1992-10-20 2001-12-26 Toshiba Corp 研磨装置
JP2002103202A (ja) * 2000-09-28 2002-04-09 Toshiba Mach Co Ltd ポリッシング方法及びその装置
JP2012051072A (ja) * 2010-09-01 2012-03-15 Showa Denko Kk 円盤状基板の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245319B2 (ja) * 2007-08-09 2013-07-24 富士通株式会社 研磨装置及び研磨方法、基板及び電子機器の製造方法
JP6003800B2 (ja) * 2013-05-16 2016-10-05 信越半導体株式会社 ウェーハの両面研磨方法及び両面研磨システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358104A (ja) * 1992-10-20 2001-12-26 Toshiba Corp 研磨装置
JP2002103202A (ja) * 2000-09-28 2002-04-09 Toshiba Mach Co Ltd ポリッシング方法及びその装置
JP2012051072A (ja) * 2010-09-01 2012-03-15 Showa Denko Kk 円盤状基板の製造方法

Also Published As

Publication number Publication date
JP7254645B2 (ja) 2023-04-10
JP2021010952A (ja) 2021-02-04
TW202116475A (zh) 2021-05-01
TWI836112B (zh) 2024-03-21

Similar Documents

Publication Publication Date Title
WO2021002447A1 (ja) 両面研磨装置の制御システム、制御装置および基板の製造方法
US8267741B2 (en) Glass substrate manufacturing method, glass substrate polishing method, glass substrate polishing apparatus and glass substrate
US7147541B2 (en) Thickness control method and double side polisher
CN106944679B (zh) 具有平衡装置的加工头
JP5983422B2 (ja) ガラス基板の研磨方法及び製造方法
US20060196283A1 (en) Measurement of Thickness Profile and Elastic Modulus Profile of a Polishing Pad
JP6406238B2 (ja) ウェーハ研磨方法および研磨装置
US7137867B2 (en) Thickness control method and double side polisher
JP5598241B2 (ja) ガラス基板の研磨方法及び製造方法、並びに研磨装置
CN108290269A (zh) 晶圆的研磨方法及研磨装置
JP2007152499A (ja) ワーク研磨方法
JP3754823B2 (ja) 球面形状の加工方法
CN207600430U (zh) 一种用于双面研磨机工件厚度测量机构
JP5699783B2 (ja) ワークの研磨方法及び研磨装置
JPH0710494B2 (ja) ラッピング装置
WO2023248960A1 (ja) ワークを両面研磨する方法
JP6973315B2 (ja) ワークの両面研磨装置および両面研磨方法
KR101272122B1 (ko) Cmp 장치
JPH11254312A (ja) 形状制御を伴ったウェーハの枚葉加工方法及び加工装置
TWI834812B (zh) 硬碟用基板的製造方法
HASHIMOTO et al. Analytical Investigation of Workpiece Attitude during Double-Sided Polishing
JP7031491B2 (ja) ワークの両面研磨装置および両面研磨方法
JP3571559B2 (ja) 平面研磨装置
JP2010094758A (ja) 情報記録媒体用ガラス基板の製造方法およびその製造装置
JPH11188622A (ja) 研削加工方法及び研削盤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834398

Country of ref document: EP

Kind code of ref document: A1