WO2021002380A1 - 積層フィルムおよびその製造方法 - Google Patents

積層フィルムおよびその製造方法 Download PDF

Info

Publication number
WO2021002380A1
WO2021002380A1 PCT/JP2020/025777 JP2020025777W WO2021002380A1 WO 2021002380 A1 WO2021002380 A1 WO 2021002380A1 JP 2020025777 W JP2020025777 W JP 2020025777W WO 2021002380 A1 WO2021002380 A1 WO 2021002380A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
laminated film
polyamide
resin layer
laminated
Prior art date
Application number
PCT/JP2020/025777
Other languages
English (en)
French (fr)
Inventor
貴良 大葛
彰子 浜本
謙 赤松
西谷 千恵美
雅生 大野
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to CN202080047759.9A priority Critical patent/CN114096597A/zh
Priority to JP2021529155A priority patent/JPWO2021002380A1/ja
Priority to KR1020227000492A priority patent/KR20220027942A/ko
Publication of WO2021002380A1 publication Critical patent/WO2021002380A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/08PVDC, i.e. polyvinylidene chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2427/08Homopolymers or copolymers of vinylidene chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a laminated film in which a resin layer containing a polyvinylidene chloride resin is laminated on a film made of a polyamide resin composition containing a polyester thermoplastic elastomer, and a method for producing the same.
  • a film made of a polyamide resin such as nylon 6 or nylon 66 has excellent mechanical properties such as tensile strength, puncture strength, pinhole strength, and impact resistance, and also has excellent gas barrier properties and heat resistance. For this reason, laminated films in which a polyamide resin film is used as a base material and a sealant made of a polyolefin film is bonded by a method such as dry laminating or extruded laminating are used in a wide range of fields, including packaging materials for sterilization treatment such as boiling and retort. Is used for.
  • packaging materials are increasingly required to have the ability to maintain quality without deteriorating the contents to be packaged and the contents, and improvements thereof are required.
  • a distribution method that maintains a low temperature environment such as refrigeration or freezing has come to be widely used in the process of production, transportation, and consumption, and packaging materials. Is increasingly required to improve pinhole resistance, especially in low temperature environments.
  • Pinholes generated in the packaging material include piercing pinholes generated when sharp corners of the packaging material pierce the other packaging material, and the packaging material is repeatedly bent due to vibration during transportation. Examples thereof include bending pinholes that are generated and friction pinholes that are generated by repeated contact with corrugated cardboard.
  • the polyamide resin film is considered to be a packaging material having high pinhole resistance, which is less likely to cause pinholes due to piercing, bending, friction, etc. However, since the polyamide resin film becomes hard when the environmental temperature is low, the number of pinholes generated due to bending tends to increase remarkably.
  • Japanese Patent Application Laid-Open No. 2014-014976 has flexibility resistance in a low temperature environment by adding a ternary copolymer of ethylene, n-butyl acrylate, and maleic anhydride as an olefin copolymer.
  • a polyamide resin film in which the above is improved is disclosed. Further, in Japanese Patent Application Laid-Open No.
  • packaging materials especially food packaging materials, oxygen barrier properties and water vapor barrier properties are required from the viewpoint of improving the storage stability of the contents.
  • a method for this a method of laminating a resin layer having a barrier property on a base film is known.
  • the laminated film obtained by laminating the resin layer on the base film does not have sufficient adhesion between the base film and the resin layer in a low temperature environment and bending resistance in a low temperature environment, and the resulting package is at a low temperature. In some cases, the bag resistance was not sufficient in the environment.
  • the present invention solves the above problems, has excellent adhesion between the base film and the resin layer in a low temperature environment, has excellent bending resistance, and can reduce the number of pinholes generated.
  • Another object of the present invention is to provide a polyamide-based laminated film having excellent barrier properties and transparency and excellent bag-breaking resistance in a low temperature environment when used as a package, and a method for producing the same.
  • the present inventors have applied a resin layer containing a polyvinylidene chloride resin to a film made of a polyamide-based resin composition containing a specific amount of a polyester-based thermoplastic elastomer by a specific method.
  • a resin layer containing a polyvinylidene chloride resin to a film made of a polyamide-based resin composition containing a specific amount of a polyester-based thermoplastic elastomer by a specific method.
  • the laminated / film-formed / stretched film has excellent bending resistance in a low temperature environment, and also has excellent adhesion and transparency at a low temperature, and has reached the present invention.
  • the laminated film of the present invention is a laminated film in which a resin layer is provided on at least one surface of a polyamide-based film.
  • the polyamide-based film is a stretched film made of a polyamide-based resin composition containing 1.0 to 10.0% by mass of a polyester-based thermoplastic elastomer.
  • the resin layer contains polyvinylidene chloride resin and It is characterized by satisfying the following conditions (A) to (C).
  • A) The cloudiness of the laminated film is 10% or less.
  • B) The adhesion strength between the resin layer and the polyamide film under a 5 ° C. and 55% RH atmosphere is 0.5 N / cm or more.
  • the number of pinholes of the laminated film in the 1000-time repeated bending fatigue test at 5 ° C. and 55% RH atmosphere is 5/500 cm 2 or less.
  • the extraction amount of the caprotaxum monomer is preferably 0.1% by mass or less.
  • the number of drops to the bag is 70 times or more. Is preferable.
  • the method for producing a laminated film of the present invention is characterized in that the following steps (a), (b), and (c) are sequentially performed.
  • B A step of applying a resin layer forming liquid containing a polyvinylidene chloride resin to at least one surface of a water-absorbed unstretched film.
  • C The unstretched film coated with the resin layer forming liquid has an MD stretching ratio (X) and a TD stretching ratio (Y) in the range of 2.2 to 3.8 times, respectively, and a stretching ratio ratio (X /).
  • the laminated film of the present invention has high adhesion strength between the polyamide film as the base film and the resin layer in a low temperature environment, has excellent bending resistance at low temperatures, can reduce the number of pinholes generated, and is a barrier. It also has excellent properties and transparency.
  • the package obtained from the laminated film of the present invention has excellent bag breakage resistance not only in a refrigerated environment but also in a frozen environment, and is suitably used for medical containers such as foods and infusion bags distributed in a low temperature environment. It is possible.
  • the laminated film of the present invention has a resin layer provided on at least one surface of a polyamide-based film.
  • the polyamide-based film constituting the laminated film is a stretched film made of a polyamide-based resin composition containing a polyester-based thermoplastic elastomer.
  • the polyamide-based film may have either a single-layer structure or a multi-layer structure, but the single-layer structure is more productive.
  • polyamide resin constituting the above resin composition examples include nylon 6, nylon 66, nylon 46, nylon 69, nylon 610, nylon 612, nylon 1010, nylon 11, nylon 12, polymethoxylylen adipamide (nylon MXD6), and the like.
  • nylon 6T, nylon 9T, nylon 10T and mixtures thereof, and copolymers examples include nylon 6T, nylon 9T, nylon 10T and mixtures thereof, and copolymers.
  • nylon 6 is preferable in terms of productivity and performance, and is excellent in cost performance.
  • other polyamide components from the above-mentioned polyamide resins may be contained in an amount of 30% by mass or less by a method such as copolymerization or mixing.
  • the polyamide resin preferably contains an organic glycidyl ester, a dicarboxylic acid anhydride, a monocarboxylic acid such as benzoic acid, a diamine, etc. as a terminal blocking agent in order to suppress the formation of monomers during melting.
  • the relative viscosity of the polyamide resin is not particularly limited, but the relative viscosity measured under the conditions of using 96% sulfuric acid as a solvent, a temperature of 25 ° C., and a concentration of 1 g / dl is 1.5 to 5.0. Is preferable, 2.5 to 4.5 is more preferable, and 2.8 to 4.0 is further preferable. If the relative viscosity of the polyamide resin is less than 1.5, the resulting film tends to have significantly reduced mechanical properties. In addition, a polyamide resin having a relative viscosity of more than 5.0 tends to interfere with film formation.
  • Polyamide resin can be used with various additives such as pigments, antioxidants, UV absorbers, preservatives, antistatic agents, antiblocking agents, and inorganic fine particles, as long as it does not adversely affect the performance of the film. It can contain one kind or two or more kinds.
  • the polyamide resin may contain one or more kinds of various inorganic lubricants and organic lubricants in order to improve the slipperiness of the film.
  • Lubricants include clay, talc, calcium carbonate, zinc carbonate, wallastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, magnesium aluminosilicate, glass balloon, carbon black, zinc oxide, three.
  • examples thereof include antimony oxide, zeolite, hydrotalside, layered silicate, and ethylene bisstearic acid amide.
  • the resin composition constituting the polyamide-based film needs to contain 1.0 to 10.0% by mass of the polyester-based thermoplastic elastomer, and 1.3 to 8.0% by mass. Is preferable, and the content is most preferably 2.0 to 6.0% by mass.
  • the content of the polyester-based thermoplastic elastomer is less than 1% by mass, the obtained film has a high elastic modulus and is inferior in bending resistance in a low temperature environment.
  • the content of the polyester-based thermoplastic elastomer exceeds 10% by mass, the transparency of the obtained laminated film may be lowered, or the adhesion between the polyamide-based film and the resin layer in a low temperature environment may be poor. There are cases where the seal strength and drop resistance when used as a package are inferior, and the bag tear resistance is inferior.
  • the polyester-based thermoplastic elastomer in the present invention is preferably composed of a crystalline polymer segment composed of a crystalline aromatic polyester unit and a polymer segment composed of an aliphatic polyether unit as main components. ..
  • the crystalline polymer segment composed of a crystalline aromatic polyester unit is a unit composed of a crystalline aromatic polyester formed of an aromatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol, and is a unit composed of terephthalic acid and /.
  • it is preferably a polybutylene terephthalate unit derived from dimethyl terephthalate and 1,4-butanediol.
  • polyester units include terephthalic acid, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4'-dicarboxylic acid, and diphenoxyetandicarboxylic acid.
  • Dicarboxylic acid components such as acids, 5-sulfoisophthalic acids, or ester-forming derivatives thereof, and diols having a molecular weight of 300 or less, such as 1,4-butanediol, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene.
  • Aliper diols such as glycols, neopentyl glycols and decamethylene glycols, alicyclic diols such as 1,4-cyclohexanedimethanol and tricyclodecanedimethylol, xylylene glycols, bis (p-hydroxy) diphenyls and bis (p).
  • a polymer segment composed of an aliphatic polyether unit is a unit containing an aliphatic polyether as a main component.
  • the aliphatic polyether include poly (ethylene ether) glycol, poly (propylene ether) glycol, poly (tetramethylene ether) glycol, poly (hexamethylene ether) glycol, a copolymer of ethylene oxide and propylene oxide, and poly. Examples thereof include ethylene oxide addition polymers of (propylene ether) glycol and copolymers of ethylene oxide and tetrahydrofuran.
  • poly (tetramethylene ether) glycol is preferable because the obtained polyester block copolymer has good elastic properties.
  • the number average molecular weight of the polymer segments is preferably about 300 to 6000 in the copolymerized state.
  • the content of the polymer segment composed of the aliphatic polyether unit in the polyester-based thermoplastic elastomer is preferably 10 to 80% by mass, more preferably 15 to 75% by mass. If the content of the polymer segment is less than 10% by mass, the obtained resin composition tends to be hard, while if the content exceeds 80% by mass, the resin composition becomes too flexible and the physical properties are not exhibited. Sometimes.
  • the polyester-based thermoplastic elastomer can be produced by a commonly used method. For example, a method in which a lower alcohol diester of a dicarboxylic acid, an excess amount of a low molecular weight glycol and a component constituting a polymer segment are subjected to an ester exchange reaction in the presence of a catalyst to polycondensate the obtained reaction product, a method of polycondensing the obtained reaction product with the dicarboxylic acid. A method in which an amount of glycol and the components constituting the polymer segment are subjected to an esterification reaction in the presence of a catalyst to polycondensate the obtained reaction product, and a polymer segment component is added to a pre-prepared crystalline segment. Any method is used, such as a method of performing an ester exchange reaction to randomize.
  • polyester-based thermoplastic elastomers examples include “Primaloy AP (MODEC)” manufactured by Mitsubishi Chemical Corporation, “Perprene” manufactured by Toyo Spinning Co., Ltd., and “Hytrel” manufactured by Toray DuPont.
  • the laminated film of the present invention has a polyvinylidene chloride resin (hereinafter referred to as PVDC) on at least one surface of the polyamide film from the viewpoint of improving the barrier property and improving the adhesion to the polyamide film which is the base film.
  • PVDC polyvinylidene chloride resin
  • a resin layer containing (may be abbreviated as) is provided.
  • PVDC is obtained by polymerizing 50 to 99% by mass of vinylidene chloride as a raw material and 1 to 50% by mass of one or more other monomers copolymerizable with vinylidene chloride by a known emulsion polymerization method. Obtained as a latex dispersed in a medium.
  • the average particle size of PVDC in the latex is preferably 0.05 to 0.5 ⁇ m, and particularly preferably 0.07 to 0.3 ⁇ m.
  • additives such as anti-blocking agents and antistatic agents may be used in combination with PVDC as long as the effects of the present invention are not impaired.
  • the thickness of the resin layer is preferably 0.5 to 3.5 ⁇ m, more preferably 0.7 to 3.0 ⁇ m, and most preferably 1.0 to 2.5 ⁇ m. If the thickness of the resin layer is less than 0.5 ⁇ m, the gas barrier property cannot be sufficiently obtained, and if it exceeds 3.5 ⁇ m, the film-forming property is deteriorated and the appearance of the film is likely to be impaired. Further, when the resin layer becomes thick, the laminated film tends to become hard, so that pinholes are likely to occur due to bending in a low temperature environment.
  • the laminated film of the present invention contains the above-mentioned polyamide-based resin composition and polyvinylidene chloride resin as constituent components, and can be produced by the method for producing a laminated film of the present invention described later.
  • the cloudiness which is a characteristic value indicating the transparency of the laminated film of the present invention, needs to be 10% or less, preferably 8% or less, and most preferably 6% or less.
  • Laminated films with a cloudiness of more than 10% are difficult to use in applications that require transparency.
  • the dispersion state of the polyester-based thermoplastic elastomer is insufficient in the polyamide-based film, or the preheating before the stretching step at the time of film production is insufficient. In some cases, the bending resistance in a low temperature environment is lowered and the drop resistance is inferior.
  • the laminated film of the present invention needs to have a strong adhesion between the polyamide film and the resin layer in an atmosphere of 5 ° C. and 55% RH of 0.5 N / cm or more, and is 1.5 N / cm or more. Is preferable. If the adhesion strength is less than 0.5 N / cm, the adhesion between the polyamide film and the resin layer of the laminated film is lowered in a refrigerated or frozen environment, and sufficient sealing strength cannot be obtained. , There is a possibility that the bag will break when dropped.
  • the adhesive strength between the polyamide film and the resin layer is, for example, to reduce the amount of caprolactam monomer in the laminated film, which will be described later, and in the production of the laminated film, which will be described later, the amount of monomer after the moisture content adjustment step and before stretching is small. It can be improved by forming a resin layer on the step polyamide film.
  • the bending resistance of the laminated film of the present invention in a low temperature environment is evaluated by the number of pinholes in a 1000-time repeated bending fatigue test at 5 ° C. and 55% RH atmosphere using a gelboflex tester.
  • the laminated film of the present invention is that, it is necessary this number is five / 500 cm 2 or less, preferably at inter alia 4.0 pieces / 500 cm 2 or less, 3.5 or / 500 cm 2 or less More preferably, it is less than 3.0 pieces / 500 cm 2 .
  • Laminated films with more than 5 pinholes / 500 cm 2 will not have sufficient strength when packaged, and will leak, especially if the contents are liquid due to pinholes resulting from bending fatigue in a low temperature environment. There is a problem like putting it out.
  • the laminated film of the present invention is also excellent in piercing strength and abrasion resistance, which are properties that affect pinhole resistance in a low temperature environment.
  • the piercing strength of the laminated film of the present invention in a low temperature environment is evaluated by the piercing strength in an atmosphere of 5 ° C. and 55% RH.
  • the laminated film of the present invention preferably has this strength of 0.60 N / ⁇ m or more, and more preferably 0.65 N / ⁇ m or more per 1 ⁇ m.
  • a laminated film having a piercing strength of less than 0.60 N / ⁇ m may be difficult to use in applications requiring pinhole resistance.
  • the wear resistance of the laminated film of the present invention in a low temperature environment is evaluated by the number of slides until a pinhole is generated by repeated contact in a 5 ° C., 55% RH atmosphere using a Gakushin type friction tester. To do.
  • the number of times is preferably 200 times or more, and more preferably 250 times or more. If the number of slides until pinholes occur is less than 200, it may be difficult to use in applications that require pinhole resistance.
  • the extraction amount of caprolactam monomer is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
  • the extraction amount of caprolactam monomer exceeds 0.1% by mass, the adhesion strength between the polyamide film and the resin layer in a 5 ° C. and 55% RH atmosphere decreases, and the laminated film becomes less than 0.5 N / cm. May become.
  • the elastic moduli of MD (length direction) and TD (width direction) of the laminated film of the present invention are preferably 1.0 to 2.3 GPa, respectively, and the ratio of elastic moduli of MD and TD (MD / TD). Is preferably 0.9 to 1.5.
  • the laminated film of the present invention can improve the bending resistance in a low temperature environment and has excellent transparency. Can be done.
  • not only bending resistance but also piercing strength and wear resistance are important. Since the laminated film of the present invention also has excellent piercing strength and abrasion resistance peculiar to the constituent polyamide-based film, it exhibits excellent pinhole resistance even in a low temperature environment.
  • the elastic modulus of MD and TD of the laminated film of the present invention is preferably 1.0 to 2.3 GPa, more preferably 1.2 to 2.1 GPa, and 1.4 to 1 as described above. It is more preferably 9.9 GPa.
  • the elastic modulus of the laminated film is lower than 1.0 GPa, the bending resistance and transparency in a low temperature environment are inferior, and the piercing strength and wear resistance are also lowered.
  • the elastic modulus of the laminated film is higher than 2.3 GPa, even if the polyamide film contains the polyester elastomer in the range specified in the present invention, the bending resistance in a low temperature environment becomes inferior or transparent. It will be inferior in sex.
  • the ratio of the elastic modulus of MD and TD (MD / TD) of the laminated film of the present invention is preferably 0.9 to 1.5 as described above, and more preferably 1.0 to 1.4. It is preferably 1.1 to 1.35, and more preferably 1.1 to 1.35. If the elastic modulus ratio is out of the above range, the bending resistance and transparency in a low temperature environment are inferior, and the piercing strength and wear resistance are also lowered.
  • the thickness of the laminated film is preferably 10 to 50 ⁇ m, more preferably 10 to 30 ⁇ m when used for packaging.
  • the laminated body in which the sealant resin layer is laminated on the laminated film of the present invention can be used as a packaging body.
  • the laminated film of the present invention has high adhesion between the polyamide film and the resin layer, has excellent bending resistance at low temperatures, and can reduce the number of pinholes generated. Therefore, the resulting package can be obtained. , Excellent bag resistance. For example, even if a package filled with water is repeatedly dropped in a refrigerated environment or a frozen environment, the number of drops until the bag is broken is large.
  • the number of drops to the bag is preferably 70 times or more in the bag dropping test of the laminated film in which the sealant resin layer is laminated on the laminated film in a 5 ° C., 55% RH atmosphere. , 150 times or more is more preferable, and 200 times or more is further preferable.
  • the bag-dropping test is carried out by dropping a package (heat-sealed with a width of 10 mm using two 200 mm ⁇ 300 mm laminates) filled with 1000 ml of water from a height of 1.2 m.
  • the method for producing a laminated film of the present invention is a method in which the following steps (a), (b), and (c) are sequentially performed.
  • (A) A step of absorbing water so that an unstretched film made of a polyamide resin composition containing 1.0 to 10.0% by mass of a polyester-based thermoplastic elastomer has a water content of 2 to 10%.
  • (B) A step of applying a resin layer forming liquid containing a polyvinylidene chloride resin to at least one surface of a water-absorbed unstretched film.
  • the unstretched film coated with the resin layer forming liquid has an MD stretching ratio (X) and a TD stretching ratio (Y) in the range of 2.2 to 3.8 times, respectively, and a stretching ratio ratio (X /).
  • the polyamide resin and the polyester-based thermoplastic elastomer are melt-kneaded to produce a polyamide-based resin composition containing 1.0 to 10.0% by mass of the polyester-based thermoplastic elastomer.
  • the extruder used for melt-kneading may be either a single-screw extruder having one screw in the cylinder or a multi-screw extruder having a plurality of screws.
  • the polyester-based thermoplastic elastomer and the polyamide resin are charged into the cylinder, it is preferable to charge them at the same time from the vicinity of the cylinder entrance.
  • polyester is charged from the middle of the cylinder.
  • a system thermoplastic elastomer may be added.
  • the cylinder temperature at the start of kneading immediately after both resins are charged is set to 180 to 200 ° C.
  • the cylinder temperature near the outlet of the composition in which both resins are kneaded is set to (melting point of polyamide resin + 10 ° C.).
  • melt kneading is preferably performed.
  • the dispersibility of the polyester-based thermoplastic elastomer added to the polyamide resin is improved.
  • the cylinder temperature at the start of kneading is less than 180 ° C.
  • the polyamide resin melts in the latter half of the cylinder, kneading with the polyester-based thermoplastic elastomer becomes insufficient, and the dispersed particle size of the polyester-based thermoplastic elastomer becomes large.
  • the obtained film may have insufficient bending resistance and may have an increased degree of fogging.
  • the polyester-based thermoplastic elastomer melts immediately after charging, wraps around the cylinder, and the extrusion of the polyamide resin becomes unstable, resulting in an unstretched film having a uniform film thickness. May be difficult to collect. Further, when the cylinder temperature near the outlet of the composition in which both resins are kneaded is less than (melting point of polyamide resin + 10 ° C.), unmelted polyamide resin may be present, and continuous unstretched film is collected. May be difficult.
  • the polyamide resin or polyester-based thermoplastic elastomer may be thermally decomposed, making it difficult to collect a continuous unstretched film.
  • the resin composition containing both resins is heated and melted by an extruder, extruded into a film from a T-die, and cooled and solidified on a rotating cooling drum by a known casting method such as an air knife casting method or an electrostatic application casting method. Then, an unstretched film is formed.
  • the average thickness of the unstretched film is not particularly limited, but is generally about 15 to 500 ⁇ m, preferably 50 to 300 ⁇ m. By setting within such a range, the stretching step can be carried out more efficiently.
  • the obtained unstretched film is made to absorb water so that the water content is 2 to 10% by mass.
  • the unstretched film before water absorption usually has a moisture content of 0.1% by mass, and in the prior art, the unstretched film having such a moisture content is stretched.
  • the present invention is characterized in that water is added to the unstretched film to adjust the water content within the above range. That is, in the present invention, the water content of the unstretched film needs to be 2 to 10% by mass as described above, and more preferably 3.5 to 8.5% by mass. When the water content of the unstretched film is less than 2% by mass, the amount of water that serves as a plasticizer is small, so that the stress during stretching becomes high.
  • the method for adjusting the water content is not particularly limited as long as it can increase the water content of the unstretched film.
  • a method of spraying water or water vapor on the unstretched film, a method of applying water to the unstretched film with a roller, a method of immersing the unstretched film in water, or the like may be used.
  • a method of immersing the unstretched film in a water tank for a certain period of time can be preferably adopted.
  • the water used for adjusting the water content may be pure water, tap water, or the like, and is not particularly limited.
  • other components may be dispersed or dissolved in water as long as the effects of the present invention are not impaired.
  • the pH of the water used for adjusting the water content is preferably 6.5 to 9.0.
  • the temperature of the water is preferably 20 to 70 ° C, more preferably 30 to 65 ° C, and even more preferably 40 to 55 ° C. If the temperature of the water is less than 20 ° C., it may be difficult to adjust the water content in a short time. If the temperature of the water exceeds 70 ° C, wrinkles are likely to occur in the unstretched film, the stretching becomes non-uniform, the quality of the stretched film deteriorates, the film is cut during stretching, and the edge of the film is gripped. Problems such as disconnection are likely to occur, and operability is reduced.
  • the time for immersing the unstretched film in the water tank is preferably 0.5 to 10 minutes.
  • step (b) is a step of applying a resin layer forming liquid containing polyvinylidene chloride resin to at least one surface of the unstretched film which has been absorbed to have a water content of 2 to 10% by mass.
  • a resin layer-forming liquid containing polyvinylidene chloride resin is applied to at least one surface of an unstretched film whose water content has been adjusted in the above range, and the film is stretched in the next step to form a polyamide film and a resin layer.
  • the adhesion strength can be 0.5 N / cm or more.
  • the method of applying the resin layer forming liquid to provide the resin layer containing polyvinylidene chloride resin on the polyamide film is not particularly limited, but gravure roll coating, reverse roll coating, wire bar coating, air knife coating, die coating. , Ordinary methods such as curtain die coating can be used.
  • the polyamide-based film may be subjected to a corona discharge treatment or the like.
  • the unstretched film coated with the resin layer forming liquid containing polyvinylidene chloride resin undergoes a preheating (drying) step prior to the stretching step.
  • the preheating temperature is preferably 180 to 250 ° C., more preferably 190 to 240 ° C., further preferably 200 to 230 ° C., and most preferably 210 to 230 ° C. If the preheating temperature is less than 180 ° C., it becomes difficult for the unstretched film to obtain the film temperature required for stretching, so that the stretching stress becomes high, and the polyamide resin in close contact with the polyester-based thermoplastic elastomer suddenly increases due to the stretching stress.
  • the void ratio may be high and the degree of cloudiness may be high.
  • neck stretching may occur, the Boeing phenomenon may become prominent, and cutting may occur frequently.
  • the preheating temperature exceeds 250 ° C.
  • the unstretched film has a high evaporation rate of the absorbed water, so that the film temperature becomes too high, drawing stretching occurs, and molecular orientation becomes difficult. The film tends to have thickness unevenness, and further tends to have poor bending resistance.
  • the method of preheating the unstretched film is also not limited.
  • the time (preheating time) for the unstretched film to travel in the preheating zone is preferably 0.5 to 5 seconds.
  • the step (c) will be described.
  • the unstretched film produced as described above is stretched in the stretching step.
  • the stretching method is not particularly limited, and for example, a tubular method, a tenter type simultaneous biaxial stretching method, a tenter type sequential biaxial stretching method, and the like can be applied.
  • the tubular method is advantageous in that the equipment cost of the equipment is cheaper than other methods, but it is difficult to improve the thickness accuracy of the film, and in terms of quality stability, dimensional stability, and productivity, the tenter type biaxial The stretching method is superior.
  • the tenter type biaxial stretching method is preferable, and in particular, the tenter type simultaneous biaxial stretching method has a small variation in physical property values and distortion between the central portion and the edge portion of the film. Therefore, it is preferable as a method for producing a film having the above elastic modulus and elastic modulus ratio.
  • the stretching stress during stretching can be suppressed, and the polyamide resin is in close contact with the polyester-based thermoplastic elastomer. Can be stretched without peeling due to stretching stress, and it is possible to effectively suppress or prevent the formation of large voids or a large number of voids in the film.
  • the unstretched film coated with the resin layer forming liquid containing polyvinylidene chloride resin is subjected to a stretching ratio in the length direction (MD stretching ratio, X) and a stretching ratio in the width direction (TD stretching ratio, Y).
  • Biaxial stretching is performed so that the stretching ratio ratio (X / Y) is 0.8 to 1.2 in the range of 2.2 to 3.8 times, respectively.
  • X and Y are preferably 2.3 to 3.7 times, respectively, and X / Y is preferably 0.9 to 1.1.
  • the unstretched film is not sufficiently stretched, so that the resulting laminated film has a low elastic modulus as a result of insufficient progress of the oriented crystals of the film.
  • the thickness unevenness becomes large.
  • the bending resistance is inferior, and the impact strength, tensile strength, tensile elongation, etc. may also be inferior.
  • the orientation and crystallization of the film progresses too much, and as a result, the obtained laminated film tends to have a high elastic modulus, and the film is formed in the stretching step. Cutting is likely to occur.
  • the product of stretching ratios (X ⁇ Y) is preferably 8.5 to 11.0, and more preferably 9.0 to 10.0. If the product of draw ratios (X ⁇ Y) is less than 8.5, the resulting laminated film may have a low elastic modulus and may have low wear resistance. On the other hand, when the product of draw ratios (X ⁇ Y) exceeds 11.0, the obtained laminated film may have a high elastic modulus and a decrease in bending resistance.
  • the stretching temperature is preferably 170 to 230 ° C, more preferably 180 ° C to 220 ° C. If the stretching temperature is less than 170 ° C, it becomes difficult to obtain the film temperature required for stretching, so that the stretching stress becomes high, and the laminated film deteriorates physical properties such as bending resistance and impact strength, and also cuts. Occurs frequently. On the other hand, when the stretching temperature exceeds 230 ° C., the film temperature becomes too high, resulting in draw stretching and difficult molecular orientation, so that the obtained laminated film has reduced physical properties such as impact strength.
  • the biaxially stretched laminated film is heat-fixed at a temperature of 150 to 220 ° C. in the stretched tenter, and if necessary, in the range of 0 to 10%, preferably 2 to 6%. It is preferable that the MD and / or TD is relaxed.
  • the polyamide resin pellets were dissolved in 96% sulfuric acid so as to have a concentration of 1 g / dl, and measured at a temperature of 25 ° C.
  • the haze was measured according to JIS K7136 using a haze meter manufactured by Nippon Denshoku Kogyo Co., Ltd. The measurement was performed with the number of samples 3, and the average value was calculated.
  • ⁇ Bending resistance pinhole resistance 1 (bending fatigue test)> The obtained laminated film was left to stand for 2 hours in an environmental test room adjusted to 5 ° C. and 55% RH, and then subjected to a bending fatigue test 1000 times using a gelboflex tester (BE-1005 manufactured by Tester Sangyo Co., Ltd.). The twist angle was 440 °).
  • the number of pinholes was determined by measuring the number of ink transmission points on the filter paper. The measurement was carried out with the number of samples 3, and the average value of the number of pinholes per 500 cm 2 was calculated.
  • the cardboard is slid in the vertical direction of the folded film at 120 mm under the condition of 30 times / minute, and the occurrence of pinholes is confirmed every 10 times of sliding, and the number of times of sliding at the time when pinholes occur is determined. Recorded. A test was conducted with a sample size of 3, and the wear resistance was evaluated with the smallest number of slides. The number of times of sliding until the occurrence of a pinhole is substantially required to be 150 times or more, preferably 250 times or more. The presence or absence of pinholes was determined by the presence or absence of ethyl acetate permeating onto the white paper by dropping ethyl acetate onto the apex of the folded film that was in contact with the cardboard.
  • Thickness unevenness (maximum thickness along the width direction-minimum thickness along the width direction) / average thickness x 100 ⁇ : 10% or less ⁇ : More than 10%, 15% or less ⁇ : More than 15%
  • the gas barrier property was evaluated by measuring the oxygen permeability of the laminated film in an atmosphere of a temperature of 20 ° C. and 90% RH using an oxygen barrier measuring device (OX-TRAN 2/20) manufactured by Mocon. The measurement was performed with the number of samples 2, and the average value was calculated. If the oxygen permeability is less than 100 ml / (m 2 ⁇ d ⁇ MPa), it is considered acceptable, and if it is less than 90 ml / (m 2 ⁇ d ⁇ MPa), it is preferable.
  • a urethane adhesive (DIC-Dry LX-401A / SP-60, manufactured by DIC Corporation) is applied to the surface of the resin layer of the laminated film so that the dry coating amount is 3.0 g / m 2, and then 80 ° C. Heat treatment was performed in. Then, an unstretched polyethylene film (TUX MCS, 50 ⁇ m, manufactured by Mitsui Chemicals Tohcello Co., Ltd.) was dry-laminated on the adhesive surface after the heat treatment at a nip pressure of 490 kPa on a metal roll heated to 80 ° C. Further, aging recommended by the adhesive was performed to obtain a laminated film.
  • a test piece having a width of 15 mm was collected from the obtained laminated film, and the interface between the polyethylene film and the resin layer at the end of the test piece was peeled off in an atmosphere of 55 ° C. and 55% RH. Then, using a tensile tester (AGS-100G manufactured by Shimadzu Corporation), the laminating strength was measured so that the polyethylene film and the laminated film formed a T shape at a tensile speed of 300 mm / min. In this laminate strength measurement, the peeling occurs at the interface between the resin layer and the polyamide film, or at the interface between the polyethylene film and the resin layer.
  • the peeling strength between the polyamide film and the resin layer has at least a value equal to or higher than this measured value. Seems to be. Adhesion strength of 0.5 N / cm or more was regarded as acceptable.
  • ⁇ Fall resistance (bag rupture resistance)> A three-sided bag prepared by the method described in ⁇ Seal strength> was filled with 1000 ml of water, air in the bag was released, and the other side was heat-sealed with a width of 10 mm to prepare a sealed test sample. The sealing condition was 160 ° C. ⁇ 1 second.
  • a test in which the lower end of the test sample is dropped from a height of 1.2 m above a horizontally placed 0.5 mm thick smooth SUS plate so that one film surface of the test sample hits the SUS plate.
  • a and then test B, in which one short side of the test sample is dropped so as to hit the SUS plate, are alternately performed until the test sample is broken, and test A or B is dropped until the bag is broken.
  • the number of times was measured.
  • the test sample had two film surfaces and two short sides, but the same film surface and the same short side were dropped so as to hit the SUS plate.
  • the number of samples was 3 and the average value was calculated.
  • the test was carried out in an atmosphere of 5 ° C. and 55% RH and in an atmosphere of -2 ° C., and the test sample was allowed to stand in the atmosphere for 3 hours before the test was performed.
  • the number of times until the bag is broken in a refrigerated environment at 5 ° C. and 55% RH is substantially required to be 70 times or more, preferably 150 times or more, and more preferably 200 times or more.
  • the number of times until the bag is broken in a freezing environment at ⁇ 2 ° C. is substantially required to be 50 times or more, preferably 100 times or more, and more preferably 150 times or more.
  • the raw materials used in the examples and comparative examples are as follows.
  • Polyamide resin 100 parts by mass of ⁇ -caprolactam, 0.12 parts by mass of benzoic acid (10 mmol / kg with respect to ⁇ -caprolactam), and 3 parts by mass of water were put into a closed reaction vessel equipped with a stirrer to raise the temperature.
  • the polycondensation reaction was carried out at a control pressure of 0.5 MPa and a temperature of 260 ° C., and after being discharged from the reaction vessel, it was cut into chips, which were refined and dried to obtain a polyamide resin.
  • the relative viscosity of the polyamide resin chip was 3.03.
  • a master chip was prepared by melting and mixing 100 parts by mass of a polyamide resin and 6 parts by mass of silica fine particles (Syroid SY-150 manufactured by Mizusawa Industrial Chemicals, Inc.).
  • Example 1 A polyamide resin, a polyester-based thermoplastic elastomer Primaloy, and a master chip are blended so that the Primaloy content is 4.0% by mass and the content of inorganic fine particles is 0.05% by mass, and an extruder is used.
  • the mixture was melted in a cylinder heated to a kneading start temperature of 190 ° C. and a cylinder outlet temperature of 230 ° C., extruded into a sheet from a T-die orifice, and rapidly cooled by being brought into close contact with a rotating drum cooled to 10 ° C.
  • An unstretched film having a thickness of 250 ⁇ m was obtained.
  • this unstretched film is guided to a water tank set at pH 7.9 and a temperature of 53 ° C. as a water content adjusting step, immersed in water for 1 minute, and absorbed to absorb water to increase the water content of the film by 5.8 mass. %.
  • PVDC latex Saran Latex L536B (solid content concentration 49% by mass) manufactured by Asahi Kasei Corporation) was applied to one side of the unstretched film that had absorbed water by the air knife coating method, and dried for 30 seconds with an infrared irradiator at a temperature of 110 ° C. The treatment was carried out to evaporate and dry the moisture in the latex.
  • An unstretched film on which a resin layer containing PVDC is laminated is guided to a simultaneous biaxial stretching machine, preheated at 220 ° C. for 2 seconds, and then MD stretch ratio (X) 3.0 times and TD stretch ratio (Y). ) Simultaneous biaxial stretching was performed at 195 ° C. at 3.3 times. Subsequently, heat treatment was performed at a temperature of 210 ° C. to perform a relaxation treatment of 5% in the lateral direction to obtain a laminated film having a polyamide film of 25 ⁇ m and a resin layer thickness of 1.5 ⁇ m.
  • Example 2-14, 16-19, Comparative Examples 1-5, 7, 9-11, 13 A laminated film was obtained in the same manner as in Example 1 except that the type and content of the elastomer and the film production conditions were changed as shown in Tables 1 and 3.
  • Saran Latex L549B solid content concentration 48% by mass manufactured by Asahi Kasei Corporation was used as the PVDC latex.
  • Example 15 An unstretched film having a thickness of 250 ⁇ m was obtained in the same manner as in Example 1. Next, this unstretched film is guided to a water tank set at pH 7.9 and a temperature of 53 ° C. as a water content adjusting step, immersed in water for 1 minute, and absorbed to absorb water to increase the water content of the film by 5.8 mass. %. Next, the water-absorbed unstretched film was longitudinally stretched at 55 ° C. and an MD stretching ratio (X) of 3.0 times by an MD stretching machine composed of heating rollers having different peripheral speeds.
  • X MD stretching ratio
  • PVDC latex Saran Latex L536B (solid content concentration 49% by mass) manufactured by Asahi Kasei Corporation
  • this longitudinally stretched film was preheated at 180 ° C. for 1 second.
  • the film was transversely stretched at 180 ° C. and a TD stretching ratio (Y) of 3.3 times, and sequentially stretched.
  • the temperature was gradually raised in the tenter and heat treatment was performed at a maximum temperature of 210 ° C., and the TD was further relaxed by 2% at 210 ° C.
  • the film was cooled at 100 ° C. to obtain a laminated film having a thickness of 25 ⁇ m on which a resin layer having a thickness of 1.5 ⁇ m was laminated.
  • Comparative Example 6 Instead of applying PVDC latex, a PVA aqueous solution (polyvinyl alcohol JF-05 manufactured by Japan Vam & Poval Co., Ltd., saponification degree 98-99 mol%, concentration 10% by mass) was applied to one side of the water-absorbed unstretched film. A laminated film having a thickness of 25 ⁇ m was obtained by laminating a resin layer having a thickness of 1.5 ⁇ m in the same manner as in Example 1 except for the above.
  • PVA aqueous solution polyvinyl alcohol JF-05 manufactured by Japan Vam & Poval Co., Ltd., saponification degree 98-99 mol%, concentration 10% by mass
  • Comparative Example 8 The thickness of the unstretched film absorbed by water was increased by the same method as in Example 1 except that the unstretched film was dried at 110 ° C. for 30 seconds with an infrared irradiator to adjust the moisture content of the unstretched film to 1.3% by mass. A laminated film having a thickness of 25 ⁇ m was obtained by laminating a resin layer of 1.5 ⁇ m.
  • Comparative Example 12 A polyamide-based film having a thickness of 25 ⁇ m was obtained by the same method as in Example 1 without laminating the polyvinylidene chloride resin layer after the water content adjusting step. The obtained film was coated with PVDC latex so as to have a thickness of 1.5 ⁇ m, and dried at a drying temperature of 110 ° C. for 15 seconds to obtain a laminated film.
  • Tables 1 to 4 show the configurations, manufacturing conditions, and evaluation results of the laminated films obtained in Examples 1 to 19 and Comparative Examples 1 to 13.
  • a resin layer containing PVDC is laminated on a polyamide film containing a polyester-based thermoplastic elastomer in the range specified in the present invention. Therefore, even in a low temperature environment, the adhesion between the polyamide film and the resin layer is excellent, the pinhole resistance such as bending resistance, piercing strength, and abrasion resistance is excellent, and the gas barrier property and transparency are also excellent. It was. In addition, the package using the laminated film was excellent in bag breaking resistance.
  • the polyamide-based film does not contain a polyester-based thermoplastic elastomer
  • the content of the polyester-based thermoplastic elastomer is within the range specified in the present invention. Since the number was small, all of them were inferior in bending resistance and bag breaking resistance in a low temperature environment. Since the laminated film of Comparative Example 3 has a content of polyester-based thermoplastic elastomer higher than the range specified in the present invention, the value of cloudiness is large and the transparency is inferior, and the polyamide-based film in a low temperature environment is used. The adhesion between the film and the resin layer was inferior, and the bag breaking resistance was inferior.
  • the polyamide-based film of Comparative Example 4 contains an olefin-based copolymer instead of the polyester-based thermoplastic elastomer, wrinkles are generated in the unstretched film during running in the moisture content adjusting step, and the laminated film is stretched. As a result of the non-uniformity, the thickness unevenness was very large, cutting occurred frequently, and the operability was poor. Therefore, the physical properties were not evaluated. Since the laminated film of Comparative Example 5 contains an amide-based thermoplastic elastomer instead of the polyester-based thermoplastic elastomer, the adhesion between the polyamide-based film and the resin layer in a low-temperature environment is inferior, and the bag-breaking resistance is improved. It became inferior.
  • the laminated film of Comparative Example 8 was produced by stretching an unstretched film having a moisture content lower than the range specified in the present invention, it is inferior in transparency and inferior in bending resistance and bag breaking resistance in a low temperature environment. It became. Since the laminated film of Comparative Example 9 was produced by stretching a film having a moisture content higher than the range specified in the present invention, it has large thickness unevenness, and has bending resistance, piercing strength, abrasion resistance, and tear resistance in a low temperature environment. It became inferior to the bag. Since the laminated film of Comparative Example 10 had a small stretching ratio in the vertical direction, it had large thickness unevenness and was inferior in bending resistance, piercing strength, abrasion resistance, and bag breaking resistance in a low temperature environment.
  • the laminated film of Comparative Example 11 had a large stretching ratio in the vertical direction, cutting occurred frequently in the stretching step in the width direction and the operability was inferior, so that the physical properties were not evaluated.
  • the laminated film of Comparative Example 12 since the polyvinylidene chloride resin layer was laminated on the polyamide film stretched by adjusting the water content by the post-coating method, the adhesion between the polyamide film and the resin layer was low, and the bag-breaking resistance was low. It became inferior to. Similar to Comparative Example 1, the laminated film of Comparative Example 13 was inferior in bending resistance and bag breaking resistance in a low temperature environment because the polyamide-based film did not contain a polyester-based thermoplastic elastomer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

ポリアミド系フィルムの少なくとも一方の面に樹脂層が設けられた積層フィルムであって、ポリアミド系フィルムは、ポリエステル系熱可塑性エラストマーを1.0~10.0質量%含有するポリアミド系樹脂組成物からなる延伸フィルムであり、樹脂層は、ポリ塩化ビニリデン樹脂を含有し、以下の(A)~(C)の条件を満たすことを特徴とする積層フィルム。 (A)積層フィルムの曇度が10%以下である。 (B)樹脂層とポリアミド系フィルムとの、5℃、55%RH雰囲気下での密着強力が0.5N/cm以上である。 (C)積層フィルムの、5℃、55%RH雰囲気下での1000回繰り返し屈曲疲労テストにおけるピンホール個数が、5個/500cm以下である。

Description

積層フィルムおよびその製造方法
 本発明は、ポリエステル系熱可塑性エラストマーを含有するポリアミド系樹脂組成物からなるフィルムに、ポリ塩化ビニリデン系樹脂を含有する樹脂層が積層された積層フィルムおよびその製造方法に関するものである。
 ナイロン6やナイロン66などのポリアミド樹脂からなるフィルムは、引張強度、突刺強度、ピンホール強度、耐衝撃強度などの機械的物性に優れ、かつガスバリア性、耐熱性に優れている。このため、ポリアミド樹脂フィルムを基材とし、ポリオレフィンフィルムからなるシーラントをドライラミネートや押出しラミネートなどの方法で貼合した積層フィルムは、ボイルやレトルト等の殺菌処理用の包装材料をはじめとして、幅広い分野に使用されている。
 近年、包装材料には、被包装物や内容物が変質せずに品質を維持できる性能が、益々厳しく要求され、その改良が求められるようになっている。特に医薬品や食品などの内容物においては、品質保持のため、生産・輸送・消費の過程において、冷蔵や冷凍といった低温環境を保持する物流方式(コールドチェーン)が広く用いられるようになり、包装材料には、特に低温環境における耐ピンホール性能の改良が益々要求されている。
 包装材料に発生するピンホールには、包装材料の鋭利な角部等が相手包装材料に突刺さることによって発生する突刺しピンホールや、輸送時の振動等によって包装材料が繰り返し屈曲されることによって発生する屈曲ピンホールや、段ボールと繰り返し接触することによって発生する摩擦ピンホールなどが挙げられる。ポリアミド樹脂フィルムは、これら突刺し、屈曲、摩擦などによるピンホールの発生が少ない、耐ピンホール性の高い包装材料とされている。しかしながら、ポリアミド樹脂フィルムは、環境温度が低くなると硬くなることから、特に、屈曲によるピンホールの発生数が著しく増加する傾向にある。
 低温環境での耐屈曲性の向上のために、ポリアミド樹脂にオレフィン系共重合体やポリアミド系共重合体を添加する方法が提案されている。
 例えば、日本国特開2014-014976号公報には、オレフィン系共重合体として、エチレン、n-ブチルアクリレート、無水マレイン酸の3元共重合体を添加することによって、低温環境での耐屈曲性を向上させたポリアミド樹脂フィルムが開示されている。また、日本国特開2003-012921号公報には、ポリアミド系共重合体として、ポリアミド系熱可塑性エラストマーであるポリエーテルエステルアミドエラストマーを添加することによって、低温環境での耐屈曲性を向上させたポリアミド樹脂が開示されている。
 しかしながら、いずれのポリアミド系フィルムも、低温環境での耐屈曲性が十分に向上しておらず、また、透明性が低く、包装材料として透明性が要求される用途に使用できない。このように、低温環境でも耐屈曲性に優れるとともに透明性に優れる包装材料は未だに提供されていない。
 また、包装材料の中でも特に食品包装材料においては、内容物の保存性を高める観点から、酸素バリア性、水蒸気バリア性が求められる。その方法として、基材フィルムにバリア性を有する樹脂層を積層する方法が知られている。しかしながら、基材フィルムに上記樹脂層を積層した積層フィルムは、低温環境における、基材フィルムと樹脂層との密着性や、低温環境における耐屈曲性が十分ではなく、得られる包装体は、低温環境において耐破袋性が十分ではないことがあった。
 本発明は、上記のような問題を解消するものであり、低温環境において、基材フィルムと樹脂層との密着性に優れ、また耐屈曲性に優れピンホール発生数を低減することができ、さらに、バリア性、透明性に優れ、包装体とした際に低温環境において耐破袋性に優れるポリアミド系積層フィルムおよびその製造方法を提供することを目的とする。
 本発明者等は上記課題を解決するために検討した結果、ポリエステル系熱可塑性エラストマーを特定量含有するポリアミド系樹脂組成物からなるフィルムに、ポリ塩化ビニリデン樹脂を含有する樹脂層を特定の方法で積層・製膜・延伸したフィルムが、低温環境での耐屈曲性に優れ、かつ低温での密着性、透明性にも優れることを見出し、本発明に到達した。
 本発明の積層フィルムは、ポリアミド系フィルムの少なくとも一方の面に樹脂層が設けられた積層フィルムであり、
ポリアミド系フィルムは、ポリエステル系熱可塑性エラストマーを1.0~10.0質量%含有するポリアミド系樹脂組成物からなる延伸フィルムであり、
樹脂層は、ポリ塩化ビニリデン樹脂を含有し、
以下の(A)~(C)の条件を満たすことを特徴とする。
(A)積層フィルムの曇度が10%以下である。
(B)樹脂層とポリアミド系フィルムとの、5℃、55%RH雰囲気下での密着強力が0.5N/cm以上である。
(C)積層フィルムの、5℃、55%RH雰囲気下での1000回繰り返し屈曲疲労テストにおけるピンホール個数が、5個/500cm以下である。
 本発明の積層フィルムによれば、カプロタクタムモノマーの抽出量が0.1質量%以下であることが好ましい。
 本発明の積層フィルムによれば、積層フィルムにシーラント樹脂層を積層した積層体の、5℃、55%RH雰囲気下での落袋試験において、破袋までの落下回数が70回以上であることが好ましい。
 本発明の積層フィルムの製造方法は、下記(a)、(b)、(c)の工程を順に行うことを特徴とする。
(a)ポリエステル系熱可塑性エラストマーを1.0~10.0質量%含有するポリアミド系樹脂組成物からなる未延伸フィルムを、水分率が2~10%になるように吸水させる工程。
(b)吸水した未延伸フィルムの少なくとも一方の面にポリ塩化ビニリデン樹脂を含有する樹脂層形成液を塗布する工程。
(c)樹脂層形成液を塗布した未延伸フィルムを、MD延伸倍率(X)とTD延伸倍率(Y)がそれぞれ2.2~3.8倍の範囲で、かつ延伸倍率の比(X/Y)が0.8~1.2になるように二軸延伸する工程。
 本発明の積層フィルムは、低温環境下において、基材フィルムであるポリアミド系フィルムと樹脂層との密着強力が高く、低温での耐屈曲性に優れピンホール発生数を低減することができ、バリア性、透明性にも優れる。本発明の積層フィルムから得られる包装体は、冷蔵環境だけでなく冷凍環境においても耐破袋性に優れており、低温環境で流通される食品や輸液バッグ等の医療用容器に好適に使用することが可能である。
 以下、本発明を詳細に説明する。
 本発明の積層フィルムは、ポリアミド系フィルムの少なくとも一方の面に樹脂層が設けられたものである。
 本発明において、積層フィルムを構成するポリアミド系フィルムは、ポリエステル系熱可塑性エラストマーを含有するポリアミド系樹脂組成物からなる延伸フィルムである。ポリアミド系フィルムは、単層構成および複層構成のどちらであってもよいが、単層構成の方が生産性に優れる。
 上記樹脂組成物を構成するポリアミド樹脂としては、ナイロン6、ナイロン66、ナイロン46、ナイロン69、ナイロン610、ナイロン612、ナイロン1010、ナイロン11、ナイロン12、ポリメタキシリレンアジパミド(ナイロンMXD6)、ナイロン6T、ナイロン9T、ナイロン10Tおよびそれらの混合物、共重合体が挙げられる。
 特に、ナイロン6は、生産性や性能の面で好ましく、コストパフォーマンスに優れる。ナイロン6をフィルム原料として用いる場合には、上記したポリアミド樹脂の中から他のポリアミド成分を、共重合、混合などの方法により、30質量%以下含有してもよい。
 ポリアミド樹脂は、溶融時のモノマー生成を抑制するために、有機グリシジルエステル、無水ジカルボン酸、安息香酸などのモノカルボン酸、ジアミンなどを、末端封鎖剤として含んでいることが好ましい。
 ポリアミド樹脂の相対粘度は、特に制限されるものではないが、溶媒として96%硫酸を用い、温度25℃、濃度1g/dlの条件で測定した相対粘度が1.5~5.0であることが好ましく、2.5~4.5であることがより好ましく、2.8~4.0であることがさらに好ましい。ポリアミド樹脂の相対粘度が1.5未満であると、得られるフィルムは、力学的特性が著しく低下しやすくなる。また、相対粘度が5.0を超えるポリアミド樹脂は、フィルムの製膜に支障をきたしやすくなる。
 ポリアミド樹脂は、必要に応じて、フィルムの性能に悪影響を与えない範囲で、顔料、酸化防止剤、紫外線吸収剤、防腐剤、帯電防止剤、ブロッキング防止剤、無機微粒子等の各種の添加剤を、1種あるいは2種以上含有することができる。
 また、ポリアミド樹脂は、フィルムのスリップ性を向上させるなどのために、各種無機系滑剤や有機系滑剤を1種あるいは2種以上含有してもよい。滑剤としては、クレー、タルク、炭酸カルシウム、炭酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、珪酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸マグネシウム、ガラスバルーン、カーボンブラック、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイド、層状ケイ酸塩、エチレンビスステアリン酸アミド等が挙げられる。
 本発明において、ポリアミド系フィルムを構成する樹脂組成物は、ポリエステル系熱可塑性エラストマーを1.0~10.0質量%含有することが必要であり、1.3~8.0質量%含有することが好ましく、2.0~6.0質量%含有することが最も好ましい。
 ポリエステル系熱可塑性エラストマーの含有量が1質量%未満の場合、得られるフィルムは、弾性率が高くなり、低温環境における耐屈曲性に劣るものとなる。
 また、ポリエステル系熱可塑性エラストマーの含有量が10質量%を超える場合、得られる積層フィルムは、透明性が低下したり、ポリアミド系フィルムと樹脂層との低温環境下での密着性に劣る場合があり、包装体とした際のシール強力や耐落体性に劣り、耐破袋性に劣る場合がある。
 本発明におけるポリエステル系熱可塑性エラストマーは、結晶性芳香族ポリエステル単位からなる結晶性重合体セグメントと、脂肪族ポリエーテル単位からなる重合体セグメントとを主な成分として構成されるものであることが好ましい。
 結晶性芳香族ポリエステル単位からなる結晶性重合体セグメントとは、芳香族ジカルボン酸またはそのエステル形成性誘導体と脂肪族ジオールとから形成される結晶性芳香族ポリエステルからなる単位であり、テレフタル酸および/またはジメチルテレフタレートと1,4-ブタンジオールとから誘導されるポリブチレンテレフタレート単位であることが好ましい。
 ポリエステル単位としては、この他に、テレフタル酸、イソフタル酸、フタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル-4,4′-ジカルボン酸、ジフェノキシエタンジカルボン酸、5-スルホイソフタル酸、あるいはこれらのエステル形成性誘導体などのジカルボン酸成分と、分子量300以下のジオール、例えば、1,4-ブタンジオール、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコールなどの脂肪族ジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメチロールなどの脂環式ジオール、キシリレングリコール、ビス(p-ヒドロキシ)ジフェニル、ビス(p-ヒドロキシフェニル)プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、ビス[4-(2-ヒドロキシ)フェニル]スルホン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4′-ジヒドロキシ-p-ターフェニル、4,4′-ジヒドロキシ-p-クオーターフェニルなどの芳香族ジオールなどから誘導されるポリエステル単位、あるいはこれらのジカルボン酸成分およびジオール成分を2種以上併用した共重合ポリエステル単位であってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分および多官能ヒドロキシ成分などを5モル%以下の範囲で共重合することも可能である。
 脂肪族ポリエーテル単位からなる重合体セグメントとは、脂肪族ポリエーテルを主な構成成分とする単位である。脂肪族ポリエーテルの具体例としては、ポリ(エチレンエーテル)グリコール、ポリ(プロピレンエーテル)グリコール、ポリ(テトラメチレンエーテル)グリコール、ポリ(ヘキサメチレンエーテル)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリ(プロピレンエーテル)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランの共重合体などが挙げられる。
 これらの脂肪族ポリエーテルの中でも、ポリ(テトラメチレンエーテル)グリコールが、得られるポリエステルブロック共重合体の弾性特性が良好であるので好ましい。また、この重合体セグメントの数平均分子量は、共重合された状態において300~6000程度であることが好ましい。
 ポリエステル系熱可塑性エラストマー中の脂肪族ポリエーテル単位からなる重合体セグメントの含有量は、10~80質量%であることが好ましく、15~75質量%であることがより好ましい。重合体セグメントの含有量が10質量%未満では、得られる樹脂組成物が硬くなる傾向となり、一方、含有量が80質量%を超えると、樹脂組成物が柔軟になり過ぎて、物性が発現しないことがある。
 ポリエステル系熱可塑性エラストマーは、通常用いられる方法で製造することができる。例えば、ジカルボン酸の低級アルコールジエステル、過剰量の低分子量グリコールおよび重合体セグメントを構成する成分を、触媒の存在下でエステル交換反応させ、得られる反応生成物を重縮合する方法、ジカルボン酸と過剰量のグリコールおよび重合体セグメントを構成する成分を触媒の存在下でエステル化反応させ、得られる反応生成物を重縮合する方法、および予め調製された結晶性セグメントに重合体セグメント成分を添加してエステル交換反応させてランダム化する方法など、いずれの方法も用いられる。
 ポリエステル系熱可塑性エラストマーの市販品としては、三菱ケミカル社製「プリマロイAP(MODIC)」、東洋紡績社製「ペルプレン」、東レ・デュポン社製「ハイトレル」等が挙げられる。
 本発明の積層フィルムは、バリア性向上の観点で、また基材フィルムであるポリアミド系フィルムとの密着性向上の観点で、ポリアミド系フィルムの少なくとも一方の表面にポリ塩化ビニリデン系樹脂(以下、PVDCと略す場合がある)を含有する樹脂層が設けられたものである。
 PVDCは、原料としての塩化ビニリデン50~99質量%と、塩化ビニリデンと共重合可能な1種以上の他の単量体1~50質量%とを、公知の乳化重合方法によって重合することにより、媒体に分散したラテックスとして得られる。ラテックス中のPVDCの平均粒径は0.05~0.5μmであることが好ましく、0.07~0.3μmであることが特に好ましい。PVDCには、本発明の効果を損なわない範囲で、例えばアンチブロッキング剤、帯電防止剤等の各種添加剤を併用してもよい。
 樹脂層の厚みは、0.5~3.5μmであることが好ましく、0.7~3.0μmであることがより好ましく、1.0~2.5μmであることが最も好ましい。樹脂層は、厚みが0.5μm未満であると、ガスバリア性が十分得られず、3.5μmを超えると、造膜性が低下して皮膜の外観が損なわれやすい。また、樹脂層が厚くなると、積層フィルムが硬くなる傾向にあるため、低温環境での屈曲によりピンホールが発生しやすくなる。
 本発明の積層フィルムは、上記ポリアミド系樹脂組成物とポリ塩化ビニリデン樹脂とを構成成分とするものであり、後述する本発明の積層フィルムの製造方法によって製造することができる。
 本発明の積層フィルムの透明性を示す特性値である曇度は、10%以下であることが必要であり、8%以下であることが好ましく、6%以下であることが最も好ましい。曇度が10%を超える積層フィルムは、透明性を要求される用途での使用が難しい。また、曇度が10%を超える積層フィルムは、ポリアミド系フィルムにおいてポリエステル系熱可塑性エラストマーの分散状態が不十分であったり、フィルム製造時の延伸工程前の予熱が不足している可能性があり、低温環境での耐屈曲性が低下し、耐落体性が劣る場合がある。
 本発明の積層フィルムは、ポリアミド系フィルムと樹脂層との、5℃、55%RH雰囲気下での密着強力が、0.5N/cm以上であることが必要であり、1.5N/cm以上であることが好ましい。密着強力が0.5N/cm未満であると、積層フィルムは、冷蔵や冷凍環境下時に、ポリアミド系フィルムと樹脂層の密着性が低下し、十分なシール強力得られなくなり、得られる包装体は、落下時に破袋する可能性がある。
 ポリアミド系フィルムと樹脂層との密着強力は、たとえば、後述する、積層フィルム中のカプロラクタムモノマー量を低減することや、後述する積層フィルムの製造において、水分率調整工程後かつ延伸前のモノマーが少ない段階のポリアミド系フィルムに樹脂層を形成することにより、向上させることができる。
 本発明の積層フィルムの低温環境における耐屈曲性は、ゲルボフレックステスターを用いた、5℃、55%RH雰囲気下での1000回繰り返し屈曲疲労テストにおけるピンホールの個数によって評価する。本発明の積層フィルムは、この個数が5個/500cm以下であることが必要であり、中でも4.0個/500cm以下であることが好ましく、3.5個/500cm以下であることより好ましく、3.0個/500cm未満であることが最も好ましい。ピンホール個数が5個/500cmを超える積層フィルムは、包装体とした時の強度が不足し、特に、低温環境における屈曲疲労の結果生じるピンホールにより、内容物が液体である場合は、漏れ出すような問題が生じる。
 上記したように、本発明の積層フィルムは、低温環境における耐ピンホール性に影響する特性である、突刺強力と耐摩耗性にも優れるものである。
 まず、本発明の積層フィルムの低温環境における突刺強力は、5℃、55%RH雰囲気下での突刺強力によって評価する。本発明の積層フィルムは、この強力が1μmあたり、0.60N/μm以上であることが好ましく、0.65N/μm以上であることがより好ましい。突刺強力が0.60N/μmより低い積層フィルムは、耐ピンホール性を要求される用途での使用が難しくなる場合がある。
 本発明の積層フィルムの低温環境における耐摩耗性は、学振型摩擦試験機を用いた、5℃、55%RH雰囲気下での繰り返し接触によって、ピンホールが発生するまでの摺動回数によって評価する。本発明の積層フィルムは、この回数が200回以上であることが好ましく、250回以上であることがより好ましい。ピンホールが発生するまでの摺動回数が200回より低い場合、耐ピンホール性を要求される用途での使用が難しくなる場合がある。
 本発明の積層フィルムは、カプロラクタムモノマーの抽出量が0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましい。積層フィルムは、カプロラクタムモノマー抽出量が0.1質量%を超えると、ポリアミド系フィルムと樹脂層との、5℃、55%RH雰囲気下での密着強力が低下し、0.5N/cm未満となることがある。
 本発明の積層フィルムのMD(長さ方向)とTD(幅方向)の弾性率はそれぞれ1.0~2.3GPaであることが好ましく、かつMDとTDの弾性率の比(MD/TD)は0.9~1.5であることが好ましい。本発明の積層フィルムは、MD、TDのそれぞれの弾性率と弾性率比が上記範囲であれば、低温環境における耐屈曲性を向上させることが可能となり、透明性にも優れたものとすることができる。
 一般に、ポリアミド系積層フィルムにおけるピンホールの発生を低減させるには、耐屈曲性とともに、突刺強力と耐摩耗性の特性も重要である。本発明の積層フィルムは、構成するポリアミド系フィルムが特有の優れた突刺強力や耐摩耗性も兼ね備えているため、低温環境下においても優れた耐ピンホール性を示すものとなる。
 本発明の積層フィルムのMDとTDの弾性率は、上記のように1.0~2.3GPaであることが好ましく、1.2~2.1GPaであることがより好ましく、1.4~1.9GPaであることがさらに好ましい。積層フィルムは、弾性率が1.0GPaより低いと、低温環境における耐屈曲性や透明性に劣るものとなり、また、突刺強力や耐摩耗性も低下する。一方、積層フィルムは、弾性率が2.3GPaより高いと、ポリアミド系フィルムがポリエステル系エラストマーを本発明で規定した範囲で含有しても、低温環境における耐屈曲性に劣るものとなったり、透明性に劣るものとなる。
 本発明の積層フィルムのMDとTDの弾性率の比(MD/TD)は、上記のように0.9~1.5であることが好ましく、1.0~1.4であることがより好ましく、1.1~1.35であることがさらに好ましい。弾性率比が上記範囲を外れると、低温環境における耐屈曲性や透明性に劣るものとなり、また、突刺強力や耐摩耗性も低下する。
 積層フィルムの厚みは、包装用途に使用する場合には、10~50μmであることが好ましく、10~30μmであることがより好ましい。
 本発明の積層フィルムにシーラント樹脂層を積層した積層体は、包装体として使用することができる。本発明の積層フィルムは、前述のように、ポリアミド系フィルムと樹脂層との密着強力が高く、低温での耐屈曲性に優れピンホール発生数を低減することができるため、得られる包装体は、耐破袋性に優れている。たとえば、水を充填した包装体は、冷蔵環境や冷凍環境下において繰り返し落下しても、破袋にいたるまでの落下回数が多いものとなる。本発明の積層フィルムは、積層フィルムにシーラント樹脂層を積層した積層体の、5℃、55%RH雰囲気下での落袋試験において、破袋までの落下回数が70回以上であることが好ましく、150回以上であることがより好ましく、200回以上であることがさらに好ましい。なお、落袋試験は、水1000mlを充填した包装体(200mm×300mmの積層体2枚を使用して10mm幅でヒートシールしたもの)を1.2mの高さから落下して実施する。
 次に、本発明の積層フィルムの製造方法について説明する。
 本発明の積層フィルムの製造方法は、下記(a)、(b)、(c)の工程を順に行う方法である。
(a)ポリエステル系熱可塑性エラストマーを1.0~10.0質量%含有するポリアミド系樹脂組成物からなる未延伸フィルムを、水分率が2~10%になるように吸水させる工程。
(b)吸水した未延伸フィルムの少なくとも一方の面にポリ塩化ビニリデン樹脂を含有する樹脂層形成液を塗布する工程。
(c)樹脂層形成液を塗布した未延伸フィルムを、MD延伸倍率(X)とTD延伸倍率(Y)がそれぞれ2.2~3.8倍の範囲で、かつ延伸倍率の比(X/Y)が0.8~1.2になるように二軸延伸する工程。
 上記(a)工程について説明する。
 まず、ポリアミド樹脂とポリエステル系熱可塑性エラストマーとを溶融混練してポリエステル系熱可塑性エラストマーを1.0~10.0質量%含有するポリアミド系樹脂組成物を製造する。
 溶融混練に使用する押出機は、シリンダー内にスクリューを1つ有する一軸押出機もしくは、スクリューを複数有する多軸押出機のいずれであってもよい。そして、シリンダー内にポリエステル系熱可塑性エラストマーとポリアミド樹脂を投入する際には、シリンダーの入り口付近から同時に投入することが好ましいが、シリンダーの入り口付近からポリアミド樹脂を投入した後に、シリンダーの途中からポリエステル系熱可塑性エラストマーを投入してもよい。
 いずれの場合も、両樹脂が投入された直後の混練開始時のシリンダー温度を180~200℃に設定し、両樹脂が混練された組成物の出口付近のシリンダー温度を(ポリアミド樹脂の融点+10℃)~(ポリアミド樹脂の融点+30℃)に設定して、溶融混練を行なうことが好ましい。
 このような温度設定で溶融混練を行なうことにより、ポリアミド樹脂中に添加するポリエステル系熱可塑性エラストマーの分散性が向上する。
 混練開始時のシリンダー温度が180℃未満の場合、ポリアミド樹脂は、溶融がシリンダー後半部に移行し、ポリエステル系熱可塑性エラストマーとの混練が不十分となり、ポリエステル系熱可塑性エラストマーの分散粒子径が大きくなることにより、得られるフィルムは、耐屈曲性が不十分となることや、曇度が上昇することがある。一方、混練開始時のシリンダー温度が200℃を超える場合、ポリエステル系熱可塑性エラストマーが、投入直後から溶融し、シリンダーへ巻きつき、ポリアミド樹脂の押出が不安定となり、均一な膜厚の未延伸フィルムの採取が困難となることがある。
 また、両樹脂が混練された組成物の出口付近のシリンダー温度が、(ポリアミド樹脂の融点+10℃)未満の場合、未溶融のポリアミド樹脂が存在する可能性があり、連続した未延伸フィルムの採取が困難となることがある。一方、出口付近のシリンダー温度が、(ポリアミド樹脂の融点+30℃)を超える場合は、ポリアミド樹脂やポリエステル系熱可塑性エラストマーが熱分解し、連続した未延伸フィルムの採取が困難となることがある。
 次に、両樹脂を含む樹脂組成物を押出機で加熱溶融してTダイよりフィルム状に押出し、エアーナイフキャスト法、静電印加キャスト法など公知のキャスティング法により回転する冷却ドラム上で冷却固化して未延伸フィルムを製膜する。
 未延伸フィルムの平均厚みは、特に限定されないが、一般的には15~500μm程度であり、50~300μmであることが好ましい。このような範囲内に設定することによって、より効率的に延伸工程を実施することができる。
 さらに、得られた未延伸フィルムを水分率が2~10質量%になるように吸水させる。
 吸水前の未延伸フィルムは、通常水分率が0.1質量%であり、従来技術では、そのような水分率の未延伸フィルムについて延伸が実施されている。これに対し、本発明では、未延伸フィルムに水分を加えて、水分率を上記範囲に調整することを特徴とする。
 すなわち、本発明では、未延伸フィルムの水分率は、上記のように2~10質量%とすることが必要であり、中でも3.5~8.5質量%とすることが好ましい。未延伸フィルムは、水分率が2質量%未満であると、可塑剤となる水分量が少ないため、延伸時の応力が高くなる。このため、フィルム中のポリアミド樹脂と分散しているポリエステル系熱可塑性エラストマー粒子との間に大きな空隙や多数の空隙が生じ、フィルムの曇度が大きくなったり、フィルムの切断が多発する。一方、水分率が10質量%を超えると、未延伸フィルムは、厚み斑が大きくなり、延伸工程を経て得られる延伸フィルムも、厚み斑が大きくなり、耐屈曲性に劣るものとなる。
 水分率の調整方法は、未延伸フィルムの水分率を増加させることができる方法であれば特に限定されない。例えば、未延伸フィルムに水または水蒸気を噴霧する方法、未延伸フィルムにローラーで水を付与する方法、未延伸フィルムを水に浸漬する方法等のいずれであってもよい。例えば、未延伸フィルムを水槽に一定時間浸漬する方法等を好適に採用することができる。
 水分率の調整に使用する水は、純水、水道水等のいずれであってもよく、特に限定されない。また、本発明の効果を妨げない限り、水に他の成分が分散または溶解していてもよい。水分率の調整に使用する水のpHは、6.5~9.0であることが好ましい。
 水の温度は20~70℃であることが好ましく、30~65℃であることがより好ましく、40~55℃であることがさらに好ましい。水の温度が20℃未満では、短時間で水分率調整を行うことが困難になることがある。水の温度が70℃を超えると、未延伸フィルムに皺が入りやすくなり、延伸が不均一となって、延伸フィルムの品質が低下し、また、延伸時にフィルムが切断や、フィルム端部の掴みはずれなどのトラブルが発生しやすく、操業性が低下する。
 未延伸フィルムを水槽に浸漬する時間は、0.5~10分であることが好ましい。
 次に工程(b)について説明する。
 工程(b)は、水分率が2~10質量%になるように吸水させた未延伸フィルムの少なくとも一方の面にポリ塩化ビニリデン樹脂を含有する樹脂層形成液を塗布する工程である。
 上記範囲に水分率を調製した未延伸フィルムの少なくとも一方の面にポリ塩化ビニリデン樹脂を含有する樹脂層形成液を塗布して設け、次工程で延伸することで、ポリアミド系フィルムと樹脂層との密着強力を0.5N/cm以上とすることができる。
 ポリアミド系フィルムにポリ塩化ビニリデン樹脂を含有する樹脂層を設けるために、樹脂層形成液を塗布する方法は特に限定されないが、グラビアロールコーティング、リバースロールコーティング、ワイヤーバーコーティング、エアーナイフコーティング、ダイコーティング、カーテンダイコーティング等の通常の方法を用いることができる。
 ポリアミド系フィルムには、上記塗布の直前に、コロナ放電処理等が行われてもよい。
 ポリ塩化ビニリデン樹脂を含有する樹脂層形成液を塗布した未延伸フィルムは、延伸工程に先立って、予熱(乾燥)する工程を経ることが好ましい。予熱温度は180~250℃であることが好ましく、中でも190~240℃であることがより好ましく、200~230℃であることがさらに好ましく、210~230℃であることが最も好ましい。
 予熱温度が180℃未満では、未延伸フィルムは、延伸に必要とするフィルム温度が得られにくくなるため、延伸応力が高くなり、ポリエステル系熱可塑性エラストマーと密着しているポリアミド樹脂が延伸応力により急激に剥離し、フィルム中に大きな空隙が生じたり、多数の空隙が生じることがあるため、空隙率が高くなり、曇度が大きくなることがある。また、ネック延伸が発生したり、ボーイング現象が顕著になったり、切断が多発することがある。
 一方、予熱温度が250℃を超えた場合、未延伸フィルムは、吸水した水分の蒸発速度が速くなり、そのため、フィルム温度が高くなりすぎ、ドロー延伸となり、分子配向しにくくなるため、得られる延伸フィルムは、厚み斑が生じるものとなりやすく、さらには、耐屈曲性に劣るものとなりやすい。
 未延伸フィルムを予熱する方法も限定されない。例えば、延伸機の予熱ゾーンを走行するフィルムに吹き付ける熱風の温度を上記の温度範囲に設定することによって行うことが好ましい。そして、未延伸フィルムが予熱ゾーンを走行する時間(予熱時間)は、0.5~5秒間とすることが好ましい。
 工程(c)について説明する。
 上記のようにして製造された未延伸フィルムを、延伸工程において延伸する。
 延伸方法としては、特に制限されず、例えば、チューブラー法、テンター式同時二軸延伸法、テンター式逐次二軸延伸法等のいずれも適用可能である。チューブラー法は、装置の設備コストが他の方法より安い点で有利であるが、フィルムの厚み精度を高めることが難しく、品質安定性、寸法安定性、生産性の面でも、テンター式二軸延伸法の方が優れている。従って、本発明の積層フィルムを製造する方法としては、テンター式二軸延伸法が好ましく、特にテンター式同時二軸延伸法は、フィルムの中央部と端部での物性値のバラつきや歪みが小さくなる傾向にあるため、上記弾性率、弾性率比を有するフィルムの製造方法として好ましい。
 上記のように、未延伸フィルムを特定の水分率とした後に、延伸、熱固定処理をすることにより、延伸時の延伸応力を抑えることができ、ポリエステル系熱可塑性エラストマーと密着しているポリアミド樹脂が延伸応力により剥離することなく延伸することが可能となり、フィルム中に大きな空隙が生じたり、多数の空隙が生じることを効果的に抑制ないしは防止することができる。
 延伸工程においては、ポリ塩化ビニリデン樹脂を含有する樹脂層形成液を塗布した未延伸フィルムを、長さ方向の延伸倍率(MD延伸倍率、X)と幅方向の延伸倍率(TD延伸倍率、Y)がそれぞれ2.2~3.8倍の範囲で、延伸倍率の比(X/Y)が0.8~1.2になるように二軸延伸を行う。中でも、XとYはそれぞれ2.3~3.7倍であることが好ましく、X/Yは、0.9~1.1であることが好ましい。
 XとYのいずれかが2.2倍未満であると、未延伸フィルムが十分に延伸されないため、得られる積層フィルムは、フィルムの配向結晶が十分に進まない結果、弾性率が低いものとなり、また、厚み斑が大きくなる。その結果、耐屈曲性に劣るものとなり、さらには衝撃強度や引張強度、引張伸度等にも劣ることがある。一方、XとYのいずれかが3.8倍を超えると、フィルムの配向結晶化が進み過ぎた結果、得られる積層フィルムは、弾性率が高くなる傾向にあり、また、延伸工程でフィルムの切断が生じやすくなる。
延伸倍率の比(X/Y)が上記範囲から外れると、得られた積層フィルムは、弾性率の異方性が大きくなる傾向にあり、耐屈曲性や耐摩耗性が低下する。
 また、延伸倍率の積(X×Y)は、8.5~11.0であることが好ましく、9.0~10.0であることがより好ましい。延伸倍率の積(X×Y)が8.5未満であると、得られる積層フィルムは、弾性率が低くなる場合があり、耐摩耗性が低下する場合がある。一方、延伸倍率の積(X×Y)が11.0を超えると、得られる積層フィルムは、フィルムの弾性率が高くなる場合があり、耐屈曲性が低下することがある。
 延伸温度は、170~230℃であることが好ましく、180℃~220℃であることがより好ましい。延伸温度が170℃未満では、延伸に必要とするフィルム温度が得られにくくなるため、延伸応力が高くなり、積層フィルムは、耐屈曲性や衝撃強度等の物理的特性が低下し、また、切断が多発する。一方、延伸温度が230℃を超えた場合、フィルム温度が高くなりすぎて、ドロー延伸となり、分子配向がされにくくなるため、得られる積層フィルムは、衝撃強度等の物理的特性が低下する。
 二軸延伸が行われた積層フィルムは、延伸処理が行われたテンター内において150~220℃の温度で熱固定され、必要に応じて0~10%、好ましくは2~6%の範囲で、MDおよび/またはTDの弛緩処理が施されることが好ましい。
 次に、本発明を、実施例によって具体的に説明する。なお、下記の実施例、比較例における各種物性の評価方法は、次のとおりである。
<相対粘度>
 ポリアミド樹脂のペレットを、濃度が1g/dlになるように96%硫酸に溶解し、温度25℃の条件で測定した。
<水分率>
 延伸前の未延伸フィルムを採取し、秤量瓶に入れた後、150℃で20時間乾燥し、乾燥前後の質量変化から算出した。
<操業性>
 水槽を通過する未延伸フィルムの状態を目視で観察し、皺、蛇行等の発生の状況を判定した。下記の「○」「△」「×」の3段階で評価した。「○」と「△」を合格とし、「○」であることが好ましい。
〇:走行中の未延伸フィルムに、皺、蛇行等が発生しない
△:延伸は可能なものの、走行中の未延伸フィルムに、皺、蛇行等が発生する
×:走行中の未延伸フィルムに、皺、蛇行等の発生が頻発し、延伸フィルムの切断が頻発する
<フィルム中のカプロラクタムモノマー抽出量>
[測定試料の調製]
 得られた積層フィルムを凍結粉砕し、0.5g精秤、10mlヘッドスペース瓶にとり、超純水10mlを添加し、ブチルゴム製栓とアルミキャップで密封した後、沸騰水浴中(100℃)で2時間抽出を行った。これを冷却後、0.45μmディスクフィルターでろ過し、測定試料とした。
[検量線の作成]
 カプロラクタム0.1gを100mlの超純水に溶解し、1000ppm溶液とし、これをさらに希釈し、100、50、20、10、5、2ppmの標準溶液を調製し、作成した。
[HPLC条件]
装置:HewlettPackard社製 HP1100HPLCsystem、カラム:Waters Pureisil 5μm C18 120Å 4.6mm×250mm(40℃)、検出器:UV210nm、注入量:10μl、流速:0.7ml/min、溶離:メタノール/水(容積比:35/75)液で12分間実施、その後、3分かけてメタノール/水(容積比:100/0)液に切り替えて30分間実施し、その後5分かけてメタノール/水(容積比:35/75)液に切り替えてから20分間実施
[計算方法]
 上記条件にて検出された試料のモノマー濃度から、試料中のモノマーの質量を計算し、フィルムの質量で割った値をモノマーの抽出量(質量%)とした。
<弾性率、弾性率比>
 得られた積層フィルムを23℃、50%RHに調整した環境試験室内で2時間放置した後、フィルムのMD、TDの測定方向に長さ150mm(標線間距離100mm)、幅10mmの短冊状に裁断してサンプルを得た。1kN測定用のロードセルとサンプルチャックとを取り付けた引張試験機(島津製作所製AG-IS)を用いて、試験速度500mm/minにて引張試験を実施した。荷重-伸び曲線の勾配から弾性率を算出し、弾性率比(MD/TD)を算出した。サンプル数5で測定を行い、それぞれの平均値を算出した。
<曇度>
 日本電色工業社製ヘーズメーターを用いて、JIS K7136に準じてヘーズを測定した。サンプル数3で測定を行い、平均値を算出した。
<耐屈曲性(耐ピンホール性1)(屈曲疲労テスト)>
 得られた積層フィルムを、5℃、55%RHに調整した環境試験室内で2時間放置した後、ゲルボフレックステスター(テスター産業社製、BE-1005)を用いて1000回の屈曲疲労テスト(ねじり角は440゜)を行った。フィルムサンプル(チャック間距離178mm、直径89mm)について、ピンホール個数を、濾紙上でインキの透過箇所の個数を計測することによって求めた。サンプル数3で測定を実施し、500cmあたりのピンホール個数の平均値を算出した。
<突刺強力(耐ピンホール性2)>
 得られた積層フィルムを、5℃、55%RHに調整した環境試験室内で2時間放置した後、内径30mmのドーナツ状の板枠にフィルムを緊張させて固定し、この試料の中央部に、直径1.0mm、先端形状半径0.5mmの半円形の針を、50mm/分の速度で試料面に垂直に当てて突き刺し、針が貫通するまでの最大荷重をフィルムが破れる際の強力として測定した。サンプル数5で測定を行い、フィルムの厚み1μmあたりの強力値の平均値を算出した。
<耐摩耗性(耐ピンホール性3)>
 後述する<密着強力>の欄に記載の方法で作製したラミネートフィルムを、5℃、55%RHに調整した環境試験室内で2時間放置した後、ポリアミド系フィルム面が外側になるように四つ折にし、学振型摩擦試験機において、折り重ねたフィルムの頂点を坪量400g/mのボール紙に垂直に接触させた後、フィルムに対して50gの荷重を加え治具に固定した。ボール紙は折り重ねたフィルムの縦方向に120mm、30回/分の条件で摺動させ、摺動10回ごとにピンホール発生の確認を行い、ピンホールが発生した時点での摺動回数を記録した。サンプル数3で試験を行い、その内の最も少ない摺動回数で耐摩耗性を評価した。ピンホール発生までの摺動回数は実質的には150回以上が求められ、250回以上が好ましい。
 ピンホールの発生の有無は、ボール紙と接触していた折り重ねたフィルムの頂点に酢酸エチルを滴下して、白色紙の上への酢酸エチルの浸透の有無によって判定した。
<厚み斑>
 β線透過式厚み計を用いて、積層フィルムの幅方向に沿って10cmおきに全幅にわたって厚みを測定し、次式から厚み斑を算出し、下記3段階で評価した。「○」と「△」を合格とし、「○」であることが好ましい。
 厚み斑=(幅方向に沿った最大厚み-幅方向に沿った最小厚み)÷平均厚み×100
○:10%以下
△:10%を超え、15%以下
×:15%を超える
<酸素透過度>
 モコン社製の酸素バリア測定器(OX-TRAN 2/20)を用いて、温度20℃、90%RHの雰囲気下における積層フィルムの酸素透過度を測定することにより、ガスバリア性を評価した。サンプル数2で測定を行い、平均値を算出した。酸素透過度が100ml/(m・d・MPa)未満であれば合格とし、90ml/(m・d・MPa)未満であると好ましい。
<密着強力>
 積層フィルムの樹脂層の表面に、ウレタン系接着剤(DIC社製、ディックドライLX-401A/SP-60)を乾燥塗布量が3.0g/mとなる様に塗布し、その後に80℃で熱処理を行った。そして、熱処理後の接着剤面に、未延伸ポリエチレンフィルム(三井化学東セロ社製、T.U.X MCS、50μm)を、80℃に加熱した金属ロール上で490kPaのニップ圧力でドライラミネートした。さらに接着剤推奨のエージングを施して、ラミネートフィルムを得た。
 得られたラミネートフィルムから幅15mmの試験片を採取し、5℃、55%RH雰囲気中で、試験片の端部のポリエチレンフィルムと樹脂層との界面を剥離した。そののち、引張試験機(島津製作所製AGS-100G)を用いて、引張速度300mm/minにて、ポリエチレンフィルムと積層フィルムとがT形をなすようにしてラミネート強力を測定した。
 このラミネート強力測定において、剥離は、樹脂層とポリアミド系フィルムとの界面で生じるか、あるいはポリエチレンフィルムと樹脂層との界面で生じることになる。強力測定後のサンプルにおいて、ポリアミド系フィルムと樹脂層との層間で剥離していないとき、ポリアミド系フィルムと樹脂層との層間の剥離強力は、少なくともこの測定値以上の値を有しているものとみられる。密着強力が0.5N/cm以上を合格とした。
<シール強力>
 上記<密着強力>に記載の方法で作製したラミネートフィルムを200mm×300mmサイズに2枚切り出し、ポリエチレンフィルム同士を合わせて、三方の辺を10mm幅でヒートシールし、三方袋を作製した。シール条件は、160℃×1秒とした。
 得られた三方袋から、幅15mmのシール部試験片を切り出し、5℃、55%RH雰囲気中で、試験片の端部(ラミネートフィルム部)を、引張試験機(島津製作所製AGS-100G)を用いて、引張速度300mm/minにて、シール強力を測定した。下記の3段階で評価した。「○」と「△」を合格(すなわち、25N/cm以上を合格)とし、「○」であることが好ましい(すなわち、35N/cm以上が好ましい)。
○:35N/cm以上
△:25N/cm以上、35N/cm未満
×:25N/cm未満
<耐落体性(耐破袋性)>
 上記<シール強力>に記載の方法で作製した三方袋に、水1000mlを充填し、袋内の空気を逃がし、残り一方の辺を10mm幅でヒートシールし、密封した試験サンプルを作製した。シール条件は160℃×1秒とした。
 試験サンプルを、その下端が、水平に置かれた0.5mm厚の平滑なSUS板の上方1.2mになる高さから、試験サンプルの一方のフィルム面がSUS板に当たるようにして落下させる試験Aと、次いで、試験サンプルの一方の短辺がSUS板に当たるようにして落下させる試験Bとを、それぞれ交互に、試験サンプルが破袋するまで行い、破袋するまでの試験AまたはBの落下回数を測定した。なお、試験サンプルには、フィルム面と短辺がそれぞれ2つずつあるが、同じフィルム面や同じ短辺がそれぞれSUS板に当たるように落下させた。サンプル数3で評価し、平均値を算出した。試験は5℃、55%RH雰囲気中と、-2℃雰囲気中で行い、試験サンプルを3時間その雰囲気中に静置してから試験を行った。
 冷蔵環境である5℃、55%RH雰囲気中での破袋までの回数は、実質的には70回以上が求められ、150回以上が好ましく、200回以上がより好ましい。また、冷凍環境である-2℃雰囲気中での破袋までの回数は、実質的には50回以上が求められ、100回以上が好ましく、150回以上がより好ましい。
 実施例・比較例において使用した原料は、以下のとおりである。
[ポリアミド樹脂]
 撹拌機を備えた密閉反応容器に、ε-カプロラクタム100質量部と、安息香酸0.12質量部(ε-カプロラクタムに対して10mmol/kg)と、水3質量部とを投入して昇温し、制圧力0.5MPa、温度260℃で重縮合反応をおこない、反応容器から払い出した後、チップ状にカッティングし、これを精錬、乾燥して、ポリアミド樹脂を得た。このポリアミド樹脂のチップの相対粘度は3.03であった。
[マスターチップ]
 ポリアミド樹脂100質量部と、シリカ微粒子(水澤化学工業社製 サイロイドSY-150)6質量部とを溶融混合して、マスターチップを作成した。
[ポリエステル系熱可塑性エラストマー]
・プリマロイ:三菱ケミカル社製 プリマロイAP GQ131(MODIC GQ131)
・ハイトレル:東レ・デュポン社製 ハイトレル 5577
[ポリアミド系熱可塑性エラストマー]
・PEBAX:アルケマ社製 PEBAX 3533
[オレフィン系共重合体]
・レクスパール:日本ポリエチレン社製 レクスパールET230X
実施例1
 ポリアミド樹脂と、ポリエステル系熱可塑性エラストマーのプリマロイと、マスターチップとを、プリマロイの含有量が4.0質量%、無機微粒子の含有量が0.05質量%となるようにブレンドして、押出機に投入し、混練開始時温度190℃、シリンダー出口部温度230℃に加熱したシリンダー内で溶融し、Tダイオリフィスよりシート状に押し出し、10℃に冷却された回転ドラムに密着させて急冷し、厚さ250μmの未延伸フィルムを得た。
 次に、この未延伸フィルムを、水分率調整工程として、pH7.9、温度53℃に設定した水槽に導き、1分間水中に浸漬し、吸水させることで、フィルムの水分率を5.8質量%とした。
 次に、吸水させた未延伸フィルムの片面にPVDCラテックス(旭化成社製 サランラテックス L536B(固形分濃度49質量%))をエアーナイフコーティング法により塗布し、温度110℃の赤外線照射機により30秒間乾燥処理を行って、ラテックス中の水分を蒸発乾燥した。
 PVDCを含む樹脂層が積層された未延伸フィルムを同時二軸延伸機に導き、220℃、2秒の予熱処理を行った後、MD延伸倍率(X)3.0倍、TD延伸倍率(Y)3.3倍で、195℃で同時二軸延伸を施した。続いて、温度210℃で熱処理し、横方向に5%の弛緩処理を行い、ポリアミド系フィルム25μm、樹脂層の厚みが1.5μmの積層フィルムを得た。
実施例2~14、16~19、比較例1~5、7、9~11、13
 エラストマーの種類と含有量、フィルムの製造条件を、表1、3に記載のように変更した以外は実施例1と同様の方法で、積層フィルムを得た。なお、実施例9においては、PVDCラテックスとして、旭化成社製 サランラテックス L549B(固形分濃度48質量%)を使用した。
実施例15
 実施例1と同様にして、厚さ250μmの未延伸フィルムを得た。
 次に、この未延伸フィルムを、水分率調整工程として、pH7.9、温度53℃に設定した水槽に導き、1分間水中に浸漬し、吸水させることで、フィルムの水分率を5.8質量%とした。
 次に、吸水させた未延伸フィルムを周速の異なる加熱ローラー群からなるMD延伸機により、55℃、MD延伸倍率(X)3.0倍で縦延伸した。その後、縦延伸フィルムの片面にPVDCラテックス(旭化成社製 サランラテックス L536B(固形分濃度49質量%)をグラビアコーティング法により塗布した。さらに、この縦延伸フィルムを、180℃、1秒の予熱処理を行った後、180℃、TD延伸倍率(Y)3.3倍で横延伸して、逐次延伸処理をおこなった。
 この後、テンター内で徐々に温度を上げて最高到達温度210℃で熱処理し、さらに210℃でTDに2%のリラックスを施した。その後、100℃で冷却し、厚みが1.5μmの樹脂層が積層された厚さ25μmの積層フィルムを得た。
比較例6
 PVDCラテックスを塗布する代わりにPVA水溶液(日本酢ビ・ポバール社製ポリビニルアルコールJF-05、ケン化度98~99モル%、濃度10質量%)を、吸水させた未延伸フィルムの片面に塗布した以外は、実施例1と同様の方法で、厚みが1.5μmの樹脂層が積層された厚さ25μmの積層フィルムを得た。
比較例8
 吸水させた未延伸フィルムに赤外線照射機による110℃、30秒間乾燥処理を行い、未延伸フィルムの水分率を1.3質量%に調整した以外は、実施例1と同様の方法で、厚みが1.5μmの樹脂層が積層された厚さ25μmの積層フィルムを得た。
比較例12
 水分調整工程後にポリ塩化ビニリデン樹脂層を積層せずに、実施例1と同様の方法で、厚さ25μmのポリアミド系フィルムを得た。得られたフィルムに、PVDCラテックスを厚みが1.5μmとなるようにコーティングし、乾燥温度110℃で15秒乾燥し、積層フィルムを得た。
 実施例1~19、比較例1~13で得られた積層フィルムの構成、製造条件、評価結果を表1~4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4から明らかなように、実施例1~19の積層フィルムは、本発明で規定する範囲のポリエステル系熱可塑性エラストマーを含有したポリアミド系フィルムに、PVDCを含有する樹脂層が積層されているため、低温環境においても、ポリアミド系フィルムと樹脂層との密着性に優れ、耐屈曲性、突刺強力、耐摩耗性といった耐ピンホール性に優れており、ガスバリア性、透明性にも優れていた。また、積層フィルムを使用した包装体は、耐破袋性に優れていた。
 一方、比較例1の積層フィルムは、ポリアミド系フィルムがポリエステル系熱可塑性エラストマーを含有しないため、また、比較例2の積層フィルムは、ポリエステル系熱可塑性エラストマーの含有量が本発明で規定する範囲より少なかったため、いずれも、低温環境下での耐屈曲性、耐破袋性に劣るものとなった。比較例3の積層フィルムは、ポリエステル系熱可塑性エラストマーの含有量が本発明で規定する範囲より多いため、曇度の値が大きく、透明性に劣るものとなり、また、低温環境下でのポリアミド系フィルムと樹脂層との密着性が劣り、耐破袋性に劣るものとなった。
 比較例4のポリアミド系フィルムは、ポリエステル系熱可塑性エラストマーに代えて、オレフィン系共重合体を含有するため、水分率調整工程において走行中の未延伸フィルムにシワが発生し、積層フィルムは、延伸が不均一となった結果、厚み斑が非常に大きく、切断が多発して操業性に劣るため、物性を評価しなかった。比較例5の積層フィルムは、ポリエステル系熱可塑性エラストマーに代えて、アミド系熱可塑性エラストマーを含有するため、低温環境下でのポリアミド系フィルムと樹脂層との密着性が劣り、耐破袋性に劣るものとなった。
 比較例6の積層フィルムは、樹脂層がPVDCに代えてPVAを含有するものであったため、ガスバリア性に劣り、さらに、低温環境下でのポリアミド系フィルムと樹脂層との密着性が劣り、耐破袋性に劣るものとなった。
 比較例7の積層フィルムは、ポリアミド系フィルムが水分率調整工程を通過しなかったため、透明性が劣り、また、カプロラクタムモノマーの抽出量が多いため、低温環境下でのポリアミド系フィルムと樹脂層との密着性が低く、さらには耐屈曲性、耐破袋性に劣るものとなった。比較例8の積層フィルムは、水分率が本発明で規定した範囲より低い未延伸フィルムを延伸して製造したため、透明性が劣り、低温環境下での耐屈曲性、耐破袋性に劣るものとなった。比較例9の積層フィルムは、水分率が本発明で規定した範囲より高いフィルムを延伸して製造したため、厚み斑が大きく、低温環境下での耐屈曲性、突刺強力、耐摩耗性、耐破袋性に劣るものとなった。
 比較例10の積層フィルムは、縦方向の延伸倍率が小さかったため、厚み斑が大きく、低温環境下での耐屈曲性、突刺強力、耐摩耗性、耐破袋性に劣るものとなった。比較例11の積層フィルムは、縦方向の延伸倍率が大きかったため、幅方向の延伸工程で切断が多発して操業性に劣るため、物性を評価しなかった。
 比較例12の積層フィルムは、水分調整し延伸されたポリアミド系フィルムに、ポリ塩化ビニリデン樹脂層をポストコート法で積層したために、ポリアミド系フィルムと樹脂層との密着性が低く、耐破袋性に劣るものとなった。
 比較例13の積層フィルムは、比較例1と同様にポリアミド系フィルムがポリエステル系熱可塑性エラストマーを含有しないため、低温環境下での耐屈曲性、耐破袋性に劣るものとなった。

Claims (4)

  1.  ポリアミド系フィルムの少なくとも一方の面に樹脂層が設けられた積層フィルムであって、
    ポリアミド系フィルムは、ポリエステル系熱可塑性エラストマーを1.0~10.0質量%含有するポリアミド系樹脂組成物からなる延伸フィルムであり、
    樹脂層は、ポリ塩化ビニリデン樹脂を含有し、
    以下の(A)~(C)の条件を満たすことを特徴とする積層フィルム。
    (A)積層フィルムの曇度が10%以下である。
    (B)樹脂層とポリアミド系フィルムとの、5℃、55%RH雰囲気下での密着強力が0.5N/cm以上である。
    (C)積層フィルムの、5℃、55%RH雰囲気下での1000回繰り返し屈曲疲労テストにおけるピンホール個数が、5個/500cm以下である。
  2.  カプロタクタムモノマーの抽出量が0.1質量%以下であることを特徴とする請求項1記載の積層フィルム。
  3.  積層フィルムにシーラント樹脂層を積層した積層体の、5℃、55%RH雰囲気下での落袋試験において、破袋までの落下回数が70回以上であることを特徴とする請求項1または2記載の積層フィルム。
  4.  請求項1~3のいずれかに記載の積層フィルムを製造する方法であって、下記(a)、(b)、(c)の工程を順に行うことを特徴とする積層フィルムの製造方法。
    (a)ポリエステル系熱可塑性エラストマーを1.0~10.0質量%含有するポリアミド系樹脂組成物からなる未延伸フィルムを、水分率が2~10%になるように吸水させる工程。
    (b)吸水した未延伸フィルムの少なくとも一方の面にポリ塩化ビニリデン樹脂を含有する樹脂層形成液を塗布する工程。
    (c)樹脂層形成液を塗布した未延伸フィルムを、MD延伸倍率(X)とTD延伸倍率(Y)がそれぞれ2.2~3.8倍の範囲で、かつ延伸倍率の比(X/Y)が0.8~1.2になるように二軸延伸する工程。
PCT/JP2020/025777 2019-07-03 2020-07-01 積層フィルムおよびその製造方法 WO2021002380A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080047759.9A CN114096597A (zh) 2019-07-03 2020-07-01 层叠膜及其制造方法
JP2021529155A JPWO2021002380A1 (ja) 2019-07-03 2020-07-01
KR1020227000492A KR20220027942A (ko) 2019-07-03 2020-07-01 적층 필름 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019124551 2019-07-03
JP2019-124551 2019-07-03

Publications (1)

Publication Number Publication Date
WO2021002380A1 true WO2021002380A1 (ja) 2021-01-07

Family

ID=74101340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025777 WO2021002380A1 (ja) 2019-07-03 2020-07-01 積層フィルムおよびその製造方法

Country Status (5)

Country Link
JP (1) JPWO2021002380A1 (ja)
KR (1) KR20220027942A (ja)
CN (1) CN114096597A (ja)
TW (1) TW202110638A (ja)
WO (1) WO2021002380A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112999A (ja) * 2005-09-21 2007-05-10 Mitsubishi Gas Chem Co Inc ポリアミド延伸フィルム
WO2008075461A1 (ja) * 2006-12-18 2008-06-26 Unitika Ltd. 二軸延伸ポリアミド樹脂フィルムおよびその製造方法
JP2011083894A (ja) * 2009-10-13 2011-04-28 Mitsubishi Plastics Inc 表面処理ポリアミド系積層フィルム及びその製造方法
JP2017002114A (ja) * 2015-06-04 2017-01-05 グンゼ株式会社 ポリアミド系フィルム
WO2019131752A1 (ja) * 2017-12-28 2019-07-04 ユニチカ株式会社 ポリアミド系フィルムおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112999A (ja) * 2005-09-21 2007-05-10 Mitsubishi Gas Chem Co Inc ポリアミド延伸フィルム
WO2008075461A1 (ja) * 2006-12-18 2008-06-26 Unitika Ltd. 二軸延伸ポリアミド樹脂フィルムおよびその製造方法
JP2011083894A (ja) * 2009-10-13 2011-04-28 Mitsubishi Plastics Inc 表面処理ポリアミド系積層フィルム及びその製造方法
JP2017002114A (ja) * 2015-06-04 2017-01-05 グンゼ株式会社 ポリアミド系フィルム
WO2019131752A1 (ja) * 2017-12-28 2019-07-04 ユニチカ株式会社 ポリアミド系フィルムおよびその製造方法

Also Published As

Publication number Publication date
TW202110638A (zh) 2021-03-16
JPWO2021002380A1 (ja) 2021-01-07
CN114096597A (zh) 2022-02-25
KR20220027942A (ko) 2022-03-08

Similar Documents

Publication Publication Date Title
US11326032B2 (en) Polyamide film and production method for same
KR20050045865A (ko) 산소막을 가지는 필러블 폴리에스테르 필름, 그 제조 방법및 그 용도
TWI606913B (zh) 雙軸配向聚醯胺系樹脂膜
JPWO2018225559A1 (ja) 二軸配向ポリエステルフィルム
KR101531591B1 (ko) 가스 배리어성 2축 연신 폴리아미드 수지 필름 및 그 제조 방법
EP4043214A1 (en) Biaxially stretched polyamide film and laminated body
TWI607869B (zh) 聚醯胺系樹脂膜
TW201615404A (zh) 氣體屏蔽性積層膜及包裝袋
JP6879473B2 (ja) 二軸配向ポリエステルフィルム
WO2021002380A1 (ja) 積層フィルムおよびその製造方法
US20170210105A1 (en) Biaxially-stretched layer polyamide film and packaging bag
WO2021149815A1 (ja) ポリアミド樹脂フィルムの製造方法
US7364786B2 (en) Biaxially oriented polyester film
JP4102584B2 (ja) 積層体およびそれを用いた包装袋
JP6191302B2 (ja) ポリアミド系樹脂積層フィルム、及び、該フィルムを用いた包装体
JPH06190969A (ja) 薄膜積層柔軟性ポリエステルフイルム
JP4294916B2 (ja) 易裂き性フィルム
JPH0679776A (ja) 柔軟性ポリエステルフィルム
JP2023152950A (ja) 二軸延伸積層フィルムおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529155

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835588

Country of ref document: EP

Kind code of ref document: A1