WO2020262972A1 - 허피스 감염증 마우스 모델의 제조방법 - Google Patents

허피스 감염증 마우스 모델의 제조방법 Download PDF

Info

Publication number
WO2020262972A1
WO2020262972A1 PCT/KR2020/008248 KR2020008248W WO2020262972A1 WO 2020262972 A1 WO2020262972 A1 WO 2020262972A1 KR 2020008248 W KR2020008248 W KR 2020008248W WO 2020262972 A1 WO2020262972 A1 WO 2020262972A1
Authority
WO
WIPO (PCT)
Prior art keywords
mouse model
herpes
herpes infection
infection
mouse
Prior art date
Application number
PCT/KR2020/008248
Other languages
English (en)
French (fr)
Inventor
손성향
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Priority to US17/622,364 priority Critical patent/US20220232811A1/en
Publication of WO2020262972A1 publication Critical patent/WO2020262972A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/20Animals treated with compounds which are neither proteins nor nucleic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/30Animals modified by surgical methods
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0337Animal models for infectious diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16631Uses of virus other than therapeutic or vaccine, e.g. disinfectant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/01DNA viruses
    • G01N2333/03Herpetoviridae, e.g. pseudorabies virus
    • G01N2333/035Herpes simplex virus I or II
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5023Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on expression patterns

Definitions

  • the present invention relates to a method of manufacturing a mouse model for herpes infection, and more specifically, the present invention relates to a method for preparing a mouse model for herpes infection using a Herpes virus and hydrocortisone, and a mouse model for herpes infection prepared by the method.
  • HSV-1 Herpes virus
  • oral or cleft lip infections have been reported to be more than 80% of infections caused by type 1 Herpes virus.
  • the Herpis virus When the Herpis virus is infected, it can be spread by contact with the skin mucosa even in the incubation period when symptoms do not appear, and can be reactivated after being infected with a ganglion, and incubation and reactivation are repeated throughout life depending on the patient's immune state.
  • the level of immunity decreases, it may cause fatal complications in the infected person. It is known that mothers infected with the Herpis virus in the genitals can transmit the Herpis virus to newborns through childbirth, and that newborns infected with the Herpis virus in the early stages of childbirth are likely to cause nerve damage and brain damage. Typically, when infected with the Herpis virus, infection symptoms appear for 15 to 23 days at the time of initial infection, and infection symptoms appear for 9 to 11 days at the time of recurrence. Accordingly, research to develop a vaccine against the Herpis virus is being actively conducted, but no significant results have yet been reported.
  • WO 2010/014241 discloses a method of preparing a model of herpes virus neuropathy in horses by inoculating a neuropathogenic Herpes virus after exposure to a Herpis virus-specific CTL precursor at a low level, by this method.
  • the manufactured animal model has not been used as an animal model because the herpes lesions appearing around the lips are unclear.
  • the inventors of the present invention have made extensive research efforts to develop an animal model in which the herpes lesions are clearly visible around the lips of an animal. And completed the present invention.
  • the main object of the present invention is to provide a method for preparing a mouse model of Herpes infection using the Herpes virus and hydrocortisone.
  • Another object of the present invention is to provide a mouse model for herpes infections prepared by the above method.
  • Another object of the present invention is to provide a use of the herpes infection mouse model for the development of a therapeutic agent for herpes infection.
  • FIG. 1 is a photograph of a blistered facial part of a Herpis Infectious Disease mouse model produced using 12 5-week-old ICR mice.
  • FIG. 2 is a photograph showing a result of comparing changes in skin lesions after applying Acyclovir ointment to a lesion site of a mouse model of herpes infection for 10 days.
  • Figure 3a is a normal 5-week-old ICR mouse (negative control group, N), the Herpis infection mouse model produced in Example 1 (positive control, Acy-), and the lesion of the herpes infection mouse model by the method of Example 2-1 10.
  • This is a graph showing the result of comparing the expression level of large subunit R1 (UL39) of HSV ribonucleotide reductase measured in lymph nodes and spleen tissues of mice (experimental group, Acy+) coated with Acyclovir ointment for 1 day.
  • Figure 3b is a normal 5-week-old ICR mouse (negative control group, N), the Herpis infection mouse model produced in Example 1 (positive control, Acy-) and the lesion of the Herpis infection mouse model by the method of Example 2-1 10.
  • a graph showing the result of comparing the expression level of small subunit R2 (UL40) of HSV ribonucleotide reductase measured in lymph nodes and spleen tissues of mice (experimental group, Acy+) coated with Acyclovir ointment for 1 day.
  • Figure 4a is a normal 5-week-old ICR mouse (negative control group, N), a Herpis infection mouse model produced in Example 1 (positive control, Acy-) and the lesions of the Herpes infection mouse model by the method of Example 2-1 10. It is a graph showing the result of comparing the expression level of T-bet measured in lymph nodes and spleen tissues of mice (experimental group, Acy+) coated with Acyclovir ointment for 1 day.
  • Figure 4b is a normal 5-week-old ICR mouse (negative control group, N), the Herpis infection mouse model produced in Example 1 (positive control, Acy-), and the lesion of the Herpis infection mouse model by the method of Example 2-1 10. It is a graph showing the result of comparing the expression level of FoxP3 measured in lymph nodes and spleen tissues of mice (experimental group, Acy+) applied with Acyclovir ointment for 1 day.
  • One embodiment of the present invention for achieving the above object is (a) damage to the skin of the mouse, inoculating the type 1 Herpis virus in the damaged area, and then breeding; And (b) injecting hydrocortisone into the reared mice, a method for preparing a mouse model for herpes infection and a mouse model for herpes infection prepared by the method.
  • the mouse to be used is not particularly limited thereto, but as an example, it may be an ICR mouse, and as another example, it may be an ICR mouse that is propagated and bred under a specific pathogen free (SPF) condition.
  • SPF pathogen free
  • the area to be inoculated with the type 1 herpes virus is not particularly limited thereto, but as an example, it may be a skin area of a mouse, and as another example, it may be a mouse auricle skin area.
  • the inoculation amount of the type 1 Herpes virus is also not particularly limited thereto, but as an example, it may be 1 x 10 3 to 1 x 10 5 pfu, and as another example, 1 x 10 4 to 5 x 10 4 pfu is And, as another example, 2 x 10 4 pfu.
  • the inoculation of the type 1 Herpis virus may be performed once or more. In the case of multiple inoculation, the inoculation may be performed repeatedly at 5 to 15 days after the previous inoculation was performed.
  • the injection method of hydrocortisone is not particularly limited thereto, but as an example, it may be performed by a method such as intramuscular injection, intraperitoneal injection, or vascular injection, and as another example, it may be performed by an intraperitoneal injection method.
  • hydrocortisone may be performed from the day after inoculation of the type 1 Herpes virus.
  • hydrocortisone may be injected daily for 3 to 15 days from the day after inoculation, and as another example, the day after inoculation. Hydrocortisone may be injected daily for 3 to 10 days from, and as another example, hydrocortisone may be injected daily for 3 to 5 days from the day after inoculation.
  • hydrocortisone when the inoculation of the type 1 Herpes virus is repeatedly performed, hydrocortisone may be injected daily for the time between the previous inoculation and the next inoculation, and hydrocortisone for 3 to 15 days from the day after the last inoculation is completed. Cortisone can be injected daily, hydrocortisone can be injected daily for 3 to 10 days, or hydrocortisone can be injected daily for 3 to 5 days.
  • the injection amount of hydrocortisone is not particularly limited thereto, but as an example, it may be 10 to 1000 ⁇ g/day per mouse average weight (25 g), and as another example, 150 to 500 per mouse average weight (25 g) It may be ⁇ g/day, and as another example, it may be 150 to 200 ⁇ g/day per average mouse weight (25g).
  • Another embodiment of the present invention provides a herpes infection mouse model prepared by the above method.
  • the Herpis Infectious Disease mouse model shows a blister form known as one of the major infection symptoms of Herpis virus on the face of the mouse, especially around the lips, and through this, it is possible to easily check the onset of infection of the Herpes virus, treatment, etc. have.
  • the Herpes infection mouse model increases the expression level of HSV ribonucleotide reductase involved in the proliferation of HSV-1 in immune-related tissues such as lymph nodes and spleen tissues compared to normal mice. do.
  • the Herpis Infectious Disease mouse model is significantly differentiated from that of normal mice in the expression level of immunoregulatory genes in immune-related tissues such as lymph nodes and spleen tissues.
  • the expression level of the T-bet gene which is a master regulator of T helper type 1 (Th1) cells, is increased. This was analyzed to increase the level of IFN- ⁇ secreted therefrom by rapidly increasing the level of Th1 so that the infected HSV-1 can be quickly removed.
  • the expression level of FoxP3 gene which is a major regulator of regulatory T cells (Treg) decreases in the mouse model of Herpes infection, and the expression level of FoxP3 gene increases after administration of the therapeutic agent.
  • regulatory T cells play a role in inhibiting the activity of inflammation-inducing immune cells, and administration of the therapeutic agent to the Herpes infection mouse model increased the expression level of the FoxP3 gene, thereby effectively removing inflammation.
  • the change in the expression level of the immunomodulatory gene is basically due to infection with HSV-1, but it was analyzed that hydrocortisone, which amplifies the level of infection symptoms of HSV-1, has a great influence.
  • mice administered with HSV-1 and hydrocortisone in combination compared to the mice administered with HSV-1 alone showed a relatively high synchronization rate with the actual infected mice.
  • the herpes infection mouse model prepared by administering HSV-1 and hydrocortisone complexly increased the synchronization rate with the actual infected mouse in proportion to the dose of hydrocortisone.
  • Another embodiment of the present invention provides the use of the herpes infection mouse model for the development of a therapeutic agent for herpes infection.
  • herpes infection mouse model provided by the present invention significantly increased the synchro rate with the mice infected with the Herpes virus compared to the conventional herpes infection model animals, and the herpes infection mouse model provided by the present invention If you use, you can more effectively develop a therapeutic agent for infectious diseases against the Herpes virus.
  • Example 1 Construction of a mouse model of herpes infection
  • HSV- 1 herpes simplex virus type 1, F strain
  • FIG. 1 is a photograph of a blistered facial part of a Herpis Infectious Disease mouse model produced using 12 5-week-old ICR mice.
  • Herpis Infectious Disease mouse model prepared in Example 1 can be used as an animal model reflecting the symptoms of Herpes Infectious Disease, changes according to treatment of an external agent for treating Herpes infection in the mouse model were analyzed.
  • Example 2-1 Treatment of external preparation for treatment of herpes infection
  • Acyclovir ointment known as a therapeutic agent for herpes infection was applied to the skin lesion site of the herpes infection mouse model prepared in Example 1 for 10 days once a day, and changes in skin lesions were compared (FIG. 2).
  • a mouse model of Herpes infection that was not treated with Acyclovir ointment was used as a control group.
  • FIG. 2 is a photograph showing a result of comparing changes in skin lesions after applying Acyclovir ointment to a lesion site of a mouse model of herpes infection for 10 days.
  • Example 2-2 Analysis of the expression level of HSV ribonucleotide reductase
  • HSV ribonucleotide reductase is involved in the proliferation of HSV-1, changes in the expression levels of large subunit R1 (UL39) and small subunit R2 (UL40) constituting the enzyme were analyzed.
  • Example 2-1 Normal 5-week-old ICR mice (negative control, N), Herpis infection mouse model prepared in Example 1 (positive control, Acy-) and Acyclovir for 10 days in the lesions of herpes infection mouse model by the method of Example 2-1. Lymph nodes and spleen tissues were extracted from the ointment-applied mice (experimental group, Acy+), and total RNA was extracted from each of the extracted spleen tissues, and cDNA was synthesized using the extracted total RNA. Using the synthesized cDNA as a template, Real-Time PCR was performed using the following primers (SEQ ID NOs: 1 and 2), and the expression level of large subunit R1 (UL39) was compared and analyzed (FIG. 3A).
  • UL-39_F 5'-GGCTGCAATCGGCCCTGAAGTA-3' (SEQ ID NO: 1)
  • Figure 3a is a normal 5-week-old ICR mouse (negative control group, N), the Herpis infection mouse model produced in Example 1 (positive control, Acy-), and the lesion of the herpes infection mouse model by the method of Example 2-1 10.
  • This is a graph showing the result of comparing the expression level of large subunit R1 (UL39) of HSV ribonucleotide reductase measured in lymph nodes and spleen tissues of mice (experimental group, Acy+) coated with Acyclovir ointment for 1 day.
  • Example 2-2-2 Small subunit R2 (UL40) expression level change
  • the expression level of small subunit R2 (UL40) was compared and analyzed by performing the same method as in Example 2-2-1, except that the primers of SEQ ID NOs: 3 and 4 were used (Fig. 3b).
  • UL-40_F 5'-CTTCCTCTTCGCTTTCCTGTCG-3' (SEQ ID NO: 3)
  • Figure 3b is a normal 5-week-old ICR mouse (negative control group, N), the Herpis infection mouse model produced in Example 1 (positive control, Acy-) and the lesion of the Herpis infection mouse model by the method of Example 2-1 10.
  • a graph showing the result of comparing the expression level of small subunit R2 (UL40) of HSV ribonucleotide reductase measured in lymph nodes and spleen tissues of mice (experimental group, Acy+) coated with Acyclovir ointment for 1 day.
  • Example 2-2 except that primers of SEQ ID NOs: 5 and 6 were used to analyze the change in the expression level of T-bet, a major regulator of T helper type 1 (Th1) cells. By performing the same method as -1, the expression level of T-bet was compared and analyzed (Fig. 4a).
  • Tbet_F 5'-ATGTTTGTGGATGTGGTCTTGGT-3' (SEQ ID NO: 5)
  • Tbet_R 5'-CGGTTCCCTGGCATGCT-3' (SEQ ID NO: 6)
  • Figure 4a is a normal 5-week-old ICR mouse (negative control group, N), a Herpis infection mouse model produced in Example 1 (positive control, Acy-) and the lesions of the Herpes infection mouse model by the method of Example 2-1 10. It is a graph showing the result of comparing the expression level of T-bet measured in lymph nodes and spleen tissues of mice (experimental group, Acy+) coated with Acyclovir ointment for 1 day.
  • Acyclovir ointment was applied to mice exhibiting symptoms of herpetic infection after inoculating the virus rather than the negative control group (Normal, N) of normal mice not inoculated with virus in both lymph nodes and spleen.
  • the expression level of T-bet was increased, and in the experimental group (Acy+) administered Acyclovir to mice showing symptoms of Herpis infection after inoculation with the virus, the level was higher than that of the positive control group (Acy-). It was confirmed that the expression level of T-bet was increased.
  • Th1 cells are known to secrete IFN- ⁇ to remove the infectious agent.In the symptomatic positive control (Acy-), it is rapidly increased to remove infected HSV-1, and Th1 cells when Acyclovir ointment is applied It was analyzed to play a role in increasing the secretion of IFN- ⁇ by further increasing the level of.
  • a major regulator of Regulatory T cells (Treg), the same as in Example 2-2-1, except that the primers of SEQ ID NOs: 7 and 8 were used.
  • the expression level of T-bet was compared and analyzed (Fig. 4b).
  • mFoxp3_F 5'-CACAATATGCGACCCCCTTTC-3' (SEQ ID NO: 7)
  • mFoxp3_R 5'-AACATGCGAGTAAACCAATGGTA-3' (SEQ ID NO: 8)
  • Figure 4b is a normal 5-week-old ICR mouse (negative control group, N), the Herpis infection mouse model produced in Example 1 (positive control, Acy-), and the lesion of the Herpis infection mouse model by the method of Example 2-1 10. It is a graph showing the result of comparing the expression level of FoxP3 measured in lymph nodes and spleen tissues of mice (experimental group, Acy+) applied with Acyclovir ointment for 1 day.
  • the expression level of FoxP3 was decreased in the positive control (Acy-) than in the negative control (N) in both lymph nodes and spleen, and the negative control (N) in the experimental group (Acy+). It was confirmed that the expression level of FoxP3 was increased to a higher level.
  • a mouse model of herpes infection was constructed using the method of Example 1, except that 50, 150, or 500 ⁇ g/day of hydrocortisone was administered. Then, peripheral blood was collected from each mouse model of herpes infection, obtained by separating peripheral blood leukocytes from the collected blood, and then the frequency of immune-related cells (CD4+, CD8+, and DX5+) contained in the peripheral blood leukocytes Measurements and comparative analysis were performed using flow cytometry (Tables 1 to 4). At this time, as a control, a Herpis infection mouse model prepared without administration of hydrocortisone was used.
  • mice of the control group to which HSV-1 was administered alone and mice of the experimental group to which HSV-1 and 150 ⁇ g/day of hydrocortisone were administered in combination were evaluated. Compared (Table 2).
  • the dose of hydrocortisone in the production of the mouse model for herpes infection is the main cause of the improvement of the synchro rate of the mouse model that simulates the symptoms of the herpes infection in an actual infected animal, and by administering the hydrocortisone, It was found that it was possible to efficiently create a mouse model for herpes infection.
  • hydrocortisone is a steroidal hormone drug, if administered in an excessive amount to a mouse, it may cause various side effects, and these side effects cause other symptoms other than infection against HSV-1, so that the herpes infection mouse It was expected that there would be a possibility to distort the experimental results using the model.
  • the appropriate dosage of hydrocortisone administered during the preparation of the mouse model for herpes infection of the present invention would be 150 to 200 ⁇ g/day per average mouse weight (25 g).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 허피스 바이러스와 하이드로코르티손을 이용한 허피스 감염증 마우스 모델의 제조방법 및 상기 방법으로 제조된 허피스 감염증 마우스 모델에 관한 것이다. 본 발명에서 제공하는 제조방법을 이용하면, 허피스 감염증상이 명확하게 나타나는 동물모델을 제조할 수 있으므로, 허피스 바이러스 감염증의 치료제 개발에 널리 활용될 수 있을 것이다.

Description

허피스 감염증 마우스 모델의 제조방법
본 발명은 허피스 감염증 마우스 모델의 제조방법에 관한 것으로, 보다 구체적으로 본 발명은 허피스 바이러스와 하이드로코르티손을 이용한 허피스 감염증 마우스 모델의 제조방법 및 상기 방법으로 제조된 허피스 감염증 마우스 모델에 관한 것이다.
세계보건기구의 보고에 의하면 2015년 현재, 50세 이하의 세계 인구 중에서 37억명 혹은 전체 인구의 67%가 제1형 허피스 바이러스(HSV-1)에 감염되어 있으며, 전 세계적으로 매년 1억명 이상이 제1형 허피스 바이러스에 감염되고 있는 것으로 추정되고 있다. 특히, 구강 또는 구순 감염증은 제1형 허피스 바이러스에 의한 감염이 80% 이상인 것으로 보고되었다. 상기 허피스 바이러스가 감염되면 증상이 나타나지 않는 잠복기에도 피부점막의 접촉에 의해 전파될 수 있고, 신경절에 감염된 후 재활성화될 수 있으며, 환자의 면역상태에 따라 평생동안 잠복과 재활성화가 반복되는데, 특히 면역수준이 저하될 경우, 감염자에게 치명적인 합병증을 유발시킬 수도 있다. 성기에 허피스 바이러스가 감염된 산모는 출산을 통해 신생아에게 허피스 바이러스를 전파시킬 수 있고, 이처럼 출산 초기에 허피스 바이러스에 감염된 신생아는 신경손상, 뇌손상 등이 유발될 가능성이 높다고 알려져 있다. 통상적으로, 허피스 바이러스에 감염되면, 최초 감염시 15 내지 23일 동안 감염증상이 나타나고, 재발시에는 9 내지 11일 동안 감염증상이 나타난다고 알려져 있다. 이에 따라, 허피스 바이러스에 대한 백신을 개발하려는 연구가 활발히 진행되고 있으나, 아직까지는 별다른 성과가 보고되지 않고 있는 실정이다.
허피스 바이러스의 감염증을 치료하려는 또 다른 연구방향은 제1형 허피스 바이러스에 대한 백신을 개발하기 위하여, 감염증상을 나타내는 동물모델의 개발이다. 예를 들어, WO 2010/014241에는 허피스 바이러스 특이적 CTL 전구체에 낮은 수준으로 노출된 후, 신경병원성 허피스 바이러스를 접종하여 말의 허피스바이러스성 신경병증 모델을 제조하는 방법이 개시되어 있는데, 이러한 방법으로 제조된 동물모델은 입술 주변에 나타나는 허피스 병변이 불분명하여, 동물모델로서 사용되지 못하고 있는 실정이다.
본 발명자들은 동물의 입술 주위에 허피스 병변이 뚜렷하게 나타나는 동물모델을 개발하고자 예의 연구노력한 결과, 허피스 바이러스와 하이드로코르티손을 사용할 경우, 동물의 입술 주위에 허피스 병변이 뚜렷하게 나타나는 동물모델을 제조할 수 있음을 확인하고, 본 발명을 완성하였다.
본 발명의 주된 목적은 허피스 바이러스와 하이드로코르티손을 사용하여 허피스 감염증 마우스 모델을 제조하는 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 방법으로 제조된 허피스 감염증 마우스 모델을 제공하는 것이다.
본 발명의 또 다른 목적은 허피스 감염증의 치료제 개발을 위한 상기 허피스 감염증 마우스 모델의 용도를 제공하는 것이다.
본 발명에서 제공하는 제조방법을 이용하면, 허피스 감염증상이 명확하게 나타나는 동물모델을 제조할 수 있으므로, 허피스 바이러스 감염증의 치료제 개발에 널리 활용될 수 있을 것이다.
도 1은 12마리의 5주령 ICR 마우스를 이용하여 제작한 허피스 감염증 마우스 모델의 물집이 형성된 안면 부분을 촬영한 사진이다.
도 2는 허피스 감염증 마우스 모델의 병변 부위에 Acyclovir 연고를 10일 동안 도포한 후, 피부병변의 변화를 비교한 결과를 나타내는 사진이다.
도 3a는 정상의 5주령 ICR 마우스(음성대조군, N), 실시예 1에서 제작한 허피스 감염증 마우스 모델(양성대조군, Acy-) 및 실시예 2-1의 방법으로 허피스 감염증 마우스 모델의 병변에 10일 동안 Acyclovir 연고를 도포한 마우스(실험군, Acy+)의 림프절(Lymph node) 및 비장조직(Spleen)에서 측정된 HSV ribonucleotide reductase의 large subunit R1(UL39)의 발현수준을 비교한 결과를 나타내는 그래프이다.
도 3b는 정상의 5주령 ICR 마우스(음성대조군, N), 실시예 1에서 제작한 허피스 감염증 마우스 모델(양성대조군, Acy-) 및 실시예 2-1의 방법으로 허피스 감염증 마우스 모델의 병변에 10일 동안 Acyclovir 연고를 도포한 마우스(실험군, Acy+)의 림프절(Lymph node) 및 비장조직(Spleen)에서 측정된 HSV ribonucleotide reductase의 small subunit R2(UL40)의 발현수준을 비교한 결과를 나타내는 그래프이다.
도 4a는 정상의 5주령 ICR 마우스(음성대조군, N), 실시예 1에서 제작한 허피스 감염증 마우스 모델(양성대조군, Acy-) 및 실시예 2-1의 방법으로 허피스 감염증 마우스 모델의 병변에 10일 동안 Acyclovir 연고를 도포한 마우스(실험군, Acy+)의 림프절(Lymph node) 및 비장조직(Spleen)에서 측정된 T-bet의 발현수준을 비교한 결과를 나타내는 그래프이다.
도 4b는 정상의 5주령 ICR 마우스(음성대조군, N), 실시예 1에서 제작한 허피스 감염증 마우스 모델(양성대조군, Acy-) 및 실시예 2-1의 방법으로 허피스 감염증 마우스 모델의 병변에 10일 동안 Acyclovir 연고를 도포한 마우스(실험군, Acy+)의 림프절(Lymph node) 및 비장조직(Spleen)에서 측정된 FoxP3의 발현수준을 비교한 결과를 나타내는 그래프이다.
상술한 목적을 달성하기 위한 본 발명의 일 실시양태는 (a) 마우스의 피부를 손상시키고, 손상된 부위에 제1형 허피스 바이러스를 접종시킨 다음, 사육하는 단계; 및 (b) 상기 사육된 마우스를 대상으로 하이드로코르티손을 주사하는 단계를 포함하는, 허피스 감염증 마우스 모델의 제조방법 및 상기 방법으로 제조된 허피스 감염증 마우스 모델을 제공한다.
본 발명에 있어서, 사용되는 마우스는 특별히 이에 제한되지 않으나, 일 예로서, ICR 마우스가 될 수 있고, 다른 예로서, SPF(Specific pathogen free) 조건에서 번식 및 사육된 ICR 마우스가 될 수 있다.
또한, 제1형 허피스 바이러스를 접종하는 부위는 특별히 이에 제한되지 않으나, 일 예로서, 마우스의 피부영역이 될 수 있고, 다른 예로서, 마우스 귓바퀴 피부영역이 될 수 있다.
아울러, 제1형 허피스 바이러스의 접종량 역시 특별히 이에 제한되지 않으나, 일 예로서, 1 x 103 내지 1 x 105 pfu가 될 수 있고, 다른 예로서, 1 x 104 내지 5 x 104 pfu가 될 수 있으며, 또 다른 예로서, 2 x 104 pfu가 될 수 있다.
상기 제1형 허피스 바이러스의 접종은 1회 또는 그 이상 수행될 수 있는데, 여러번 접종할 경우, 전회 접종이 수행된 후 5 내지 15일이 경과된 시점에서 반복하여 접종하는 방식으로 수행될 수 있다.
상기 하이드로코르티손의 주사방법은 특별히 이에 제한되지 않으나, 일 예로서, 근육주사, 복강주사, 혈관주사 등의 방법으로 수행될 수 있고, 다른 예로서, 복강주사의 방법으로 수행될 수 있다.
또한, 상기 하이드로코르티손의 주사는 상기 제1형 허피스 바이러스를 접종한 다음날로부터 수행할 수 있다.
일 양태로서, 상기 제1형 허피스 바이러스의 접종을 단 1회 수행한 경우에는, 일 예로서, 접종한 다음날로부터 3 내지 15일 동안 하이드로코르티손을 매일 주사할 수 있고, 다른 예로서, 접종한 다음날로부터 3 내지 10일 동안 하이드로코르티손을 매일 주사할 수 있으며, 또 다른 예로서, 접종한 다음날로부터 3 내지 5일 동안 하이드로코르티손을 매일 주사할 수 있다.
다른 양태로서, 상기 제1형 허피스 바이러스의 접종을 반복하여 수행한 경우에는, 전회 접종과 차회 접종 사이의 시간동안 하이드로코르티손을 매일 주사할 수 있고, 마지막 접종이 완료된 다음날로부터 3 내지 15일 동안 하이드로코르티손을 매일 주사하거나, 3 내지 10일 동안 하이드로코르티손을 매일 주사하거나 또는 3 내지 5일 동안 하이드로코르티손을 매일 주사할 수 있다.
아울러, 상기 하이드로코르티손의 주사량은 특별히 이에 제한되지 않으나, 일 예로서, 마우스 평균체중(25g)당 10 내지 1000 μg/day이 될 수 있고, 다른 예로서, 마우스 평균체중(25g)당 150 내지 500 μg/day이 될 수 있으며, 또 다른 예로서, 마우스 평균체중(25g)당 150 내지 200 μg/day이 될 수 있다.
본 발명의 다른 실시양태는 상기 방법으로 제조된 허피스 감염증 마우스 모델을 제공한다.
일 실시예에 의하면, 상기 허피스 감염증 마우스 모델은 마우스의 얼굴 특히 입술 주위에 허피스 바이러스의 주요 감염증상의 하나로 알려진 물집형태가 나타나며, 이를 통해 허피스 바이러스의 감염증의 발병여부, 치료여부 등을 용이하게 확인할 수 있다.
다른 실시예에 의하면, 상기 허피스 감염증 마우스 모델은 정상 마우스에 비하여 림프절, 비장조직과 같은 면역관련 조직에서, HSV-1의 증식에 관여하는 HSV 리보뉴클레오티드 리덕타제(HSV ribonucleotide reductase)의 발현수준이 증가된다.
또 다른 실시예에 의하면, 상기 허피스 감염증 마우스 모델은 림프절, 비장조직과 같은 면역관련 조직에서, 면역조절 유전자의 발현수준이 정상 마우스의 것과 현저히 구별된다.
일 예로서, 정상 마우스에 비하여 상기 허피스 감염증 마우스 모델에서는, T helper type 1(Th1) 세포의 주요 조절자(master regulator)인 T-bet 유전자의 발현수준이 증가한다. 이는 감염된 HSV-1을 신속하게 제거할 수 있도록, Th1의 수준이 급격히 증가되어 이로부터 분비되는 IFN-γ의 수준을 증가시키기 위한 것으로 분석되었다.
다른 예로서, 정상 마우스에 비하여 상기 허피스 감염증 마우스 모델에서는, regulatory T 세포(Treg) 의 주요 조절자(master regulator)인 FoxP3 유전자의 발현수준이 감소하고, 치료제 투여 후 FoxP3 유전자의 발현 수준이 증가 한다. 이는 regulatory T 세포가 염증 유발 면역 세포의 활성을 억제하는 역할을 수행하기 때문인데, 상기 허피스 감염증 마우스 모델에 치료제를 투여하면 FoxP3 유전자의 발현 수준이 증가하여 염증 제거가 효율적으로 진행되는 것으로 분석되었다.
한편, 이 같은 면역 조절 유전자의 발현수준 변화는 기본적으로 HSV-1의 감염에 의한 것이지만, HSV-1의 감염증상의 수준을 증폭시키는 하이드로코르티손이 큰 영향을 미치는 것으로 분석되었다.
실제로, 본 발명에서 제공하는 허피스 감염증 마우스 모델의 제조시에 HSV-1 만을 단독으로 투여한 마우스 보다는 HSV-1과 하이드로코르티손을 복합적으로 투여한 마우스가, 실제 감염마우스와 상대적으로 높은 싱크로율을 나타냄을 확인하였다. 뿐만 아니라, HSV-1과 하이드로코르티손을 복합적으로 투여하여 제조된 허피스 감염증 마우스 모델은, 하이드로코르티손의 투여량에 비례하여 실제 감염마우스와의 싱크로율이 증가됨을 확인하였다.
본 발명의 또 다른 실시양태는 허피스 감염증의 치료제 개발을 위한 상기 허피스 감염증 마우스 모델의 용도를 제공한다.
상술한 바와 같이, 본 발명에서 제공하는 허피스 감염증 마우스 모델은 종래의 허피스 감염증 모델동물에 비하여, 허피스 바이러스에 감염된 마우스와의 싱크로율이 현저히 증가됨을 확인하였는 바, 본 발명에서 제공하는 허피스 감염증 마우스 모델을 사용하면 보다 효과적으로 허피스 바이러스에 대한 감염증 치료제를 개발할 수 있다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 허피스 감염증 마우스 모델의 제작
SPF(Specific pathogen free) 조건에서 번식 및 사육된 다수의 5주령 ICR 마우스의 귓바퀴 (ear inner conch)에 주사 바늘로 혈액이 배어나오지 않을 정도의 강도로 스크래치하여 상처를 낸 후, 상처 부위에 HSV-1(herpes simplex virus type 1, F strain) 용액(1x106 pfu/ml) 20 uL를 1차 접종하고 10일 동안 사육하였다. 이어, 동일한 상처부위에 동일한 용량의 HSV-1를 2차 접종하였다. 1차 접종이 수행된 다음날부터 매일 1 회씩 5일간, 그리고 2차 접종이 수행된 다음날부터 매일 1 회씩 5일간, 각 마우스당 50 내지 500 μg/day의 하이드로코르티손(hydrocortisone)을 복강에 주사하였다. 이후, 마우스의 얼굴을 관찰하여 입술 근처에 물집이 형성되는 마우스를 선발하고, 이를 허피스 감염증 마우스 모델로 사용하였다(도 1).
도 1은 12마리의 5주령 ICR 마우스를 이용하여 제작한 허피스 감염증 마우스 모델의 물집이 형성된 안면 부분을 촬영한 사진이다.
실시예 2: 허피스 감염증 마우스 모델의 검증
상기 실시예 1에서 제작한 허피스 감염증 마우스 모델이 허피스 감염증의 증상을 반영한 동물모델로서 사용할 수 있는 것인지의 여부를 확인하기 위하여, 상기 마우스 모델에 허피스 감염증 치료용 외용제를 처리에 따른 변화를 분석하였다.
실시예 2-1: 허피스 감염증 치료용 외용제의 처리
허피스 감염증의 치료제로 알려진 Acyclovir 연고 1 mg을, 상기 실시예 1에서 제작한 허피스 감염증 마우스 모델의 피부 병변 부위에 1 일 1 회 10일간 도포하고, 피부병변의 변화를 비교하였다(도 2). 이때, 대조군으로는 Acyclovir 연고를 처리하지 않은 허피스 감염증 마우스 모델을 사용하였다.
도 2는 허피스 감염증 마우스 모델의 병변 부위에 Acyclovir 연고를 10일 동안 도포한 후, 피부병변의 변화를 비교한 결과를 나타내는 사진이다.
도 2에서 보듯이, 대조군의 경우에는 시간이 경과하여도 피부 병변 부위에 변화가 나타나지 않았으나, 허피스 감염증 마우스 모델의 병변 부위에 Acyclovir 연고를 도포한 경우에는 도포한 시간이 경과함에 따라, 상기 병변 부위가 감소되어, 증상이 호전됨을 확인하였다.
실시예 2-2: HSV ribonucleotide reductase의 발현수준 분석
공지된 바에 의하면, HSV-1의 증식에 HSV ribonucleotide reductase가 관여한다고 알려져 있으므로, 상기 효소를 구성하는 large subunit R1(UL39) 및 small subunit R2(UL40)의 발현수준의 변화를 분석하였다.
실시예 2-2-1: large subunit R1(UL39)의 발현수준 변화
정상의 5주령 ICR 마우스(음성대조군, N), 실시예 1에서 제작한 허피스 감염증 마우스 모델(양성대조군, Acy-) 및 실시예 2-1의 방법으로 허피스 감염증 마우스 모델의 병변에 10일 동안 Acyclovir 연고를 도포한 마우스(실험군, Acy+) 로부터 각각 림프절 및 비장조직을 적출하고, 적출된 각각의 비장조직으로부터 총 RNA를 추출하였으며, 상기 추출된 총 RNA를 이용하여 cDNA를 합성하였다. 상기 합성된 cDNA를 주형으로 하고, 하기 프라이머(서열번호 1 및 2)를 사용한 Real-Time PCR을 수행하여, large subunit R1(UL39)의 발현수준을 비교분석하였다(도 3a).
UL-39_F: 5'-GGCTGCAATCGGCCCTGAAGTA-3'(서열번호 1)
UL-39_R 5'-GGTGGTCGTAGAGGCGGTGGAA-3'(서열번호 2)
도 3a는 정상의 5주령 ICR 마우스(음성대조군, N), 실시예 1에서 제작한 허피스 감염증 마우스 모델(양성대조군, Acy-) 및 실시예 2-1의 방법으로 허피스 감염증 마우스 모델의 병변에 10일 동안 Acyclovir 연고를 도포한 마우스(실험군, Acy+)의 림프절(Lymph node) 및 비장조직(Spleen)에서 측정된 HSV ribonucleotide reductase의 large subunit R1(UL39)의 발현수준을 비교한 결과를 나타내는 그래프이다.
도 3a에서 보듯이, 림프절(Lymph node) 및 비장조직(Spleen) 모두에서 음성대조군(N)에서는 UL39가 발현되지 않거나 또는 소량으로 발현되었으나, 양성대조군(Acy-)에서는 UL39의 발현수준이 급격히 증가됨을 확인하였다. 그러나, 실험군(Acy+)에서는 양성대조군에서 증가된 UL39의 발현수준이 감소됨을 확인하였다.
실시예 2-2-2: small subunit R2(UL40)의 발현수준 변화
하기 서열번호 3 및 4의 프라이머를 사용한 것을 제외하고는, 상기 실시예 2-2-1과 동일한 방법을 수행하여 small subunit R2(UL40)의 발현수준을 비교분석하였다(도 3b).
UL-40_F: 5'-CTTCCTCTTCGCTTTCCTGTCG-3'(서열번호 3)
UL-40_R 5'-CGCTTCCAGCCAGTCCACCTT-3'(서열번호 4)
도 3b는 정상의 5주령 ICR 마우스(음성대조군, N), 실시예 1에서 제작한 허피스 감염증 마우스 모델(양성대조군, Acy-) 및 실시예 2-1의 방법으로 허피스 감염증 마우스 모델의 병변에 10일 동안 Acyclovir 연고를 도포한 마우스(실험군, Acy+)의 림프절(Lymph node) 및 비장조직(Spleen)에서 측정된 HSV ribonucleotide reductase의 small subunit R2(UL40)의 발현수준을 비교한 결과를 나타내는 그래프이다.
도 3b에서 보듯이, 림프절(Lymph node) 및 비장조직(Spleen) 모두에서 음성대조군(N)에서는 UL40이 소량으로 발현되었으나, 양성대조군(Acy-)에서는 UL40의 발현수준이 급격히 증가됨을 확인하였다. 그러나, 실험군(Acy+)에서는 양성대조군에서 증가된 UL40의 발현수준이 감소됨을 확인하였다.
실시예 2-3: 면역조절 유전자의 발현수준 분석
HSV-1의 감염에 의해 ICR 마우스의 면역관련 유전자가 활성화 될 것으로 예상되는 바, 이들 면역관련 유전자(T-bet, FoxP3, GATA3 및 RORgt)의 발현수준 변화를 분석하였다.
실시예 2-3-1: T-bet 유전자의 발현수준 변화
T helper type 1(Th1) 세포의 주요 조절자(master regulator)인 T-bet의 발현수준 변화를 분석하기 위하여, 하기 서열번호 5 및 6의 프라이머를 사용한 것을 제외하고는, 상기 실시예 2-2-1과 동일한 방법을 수행하여 T-bet의 발현수준을 비교분석하였다(도 4a).
Tbet_F: 5'-ATGTTTGTGGATGTGGTCTTGGT-3'(서열번호 5)
Tbet_R: 5'-CGGTTCCCTGGCATGCT-3'(서열번호 6)
도 4a는 정상의 5주령 ICR 마우스(음성대조군, N), 실시예 1에서 제작한 허피스 감염증 마우스 모델(양성대조군, Acy-) 및 실시예 2-1의 방법으로 허피스 감염증 마우스 모델의 병변에 10일 동안 Acyclovir 연고를 도포한 마우스(실험군, Acy+)의 림프절(Lymph node) 및 비장조직(Spleen)에서 측정된 T-bet의 발현수준을 비교한 결과를 나타내는 그래프이다.
도 4a에서 보듯이, 림프절(Lymph node) 및 비장조직(Spleen) 모두에서 바이러스를 접종하지 않은 정상 마우스 음성대조군(Normal, N) 보다는 바이러스를 접종한 후 허피스 감염 증상이 나타난 마우스에 Acyclovir 연고를 도포하지 않은 양성대조군(Acy-)에서 T-bet의 발현수준이 증가되었고, 바이러스를 접종한 후 허피스 감염 증상이 나타난 마우스에 Acyclovir를 투여한 실험군(Acy+)에서는 양성대조군(Acy-) 보다 높은 수준으로 T-bet의 발현수준이 증가됨을 확인하였다.
Th1 세포는 IFN-γ를 분비하여 감염원을 제거하는 역할을 수행한다고 알려져 있는데, 증상이 있는 양성대조군(Acy-)에서는 감염된 HSV-1을 제거하기 위해 급격히 증가되고, Acyclovir 연고를 도포하였을 때 Th1 세포의 수준이 더 증가하여 IFN-γ를 분비를 증가시키는 역할을 수행하는 것으로 분석되었다.
실시예 2-3-2: FoxP3 유전자의 발현수준 변화
Regulatory T 세포(Treg) 의 주요 조절자(master regulator)인 FoxP3의 발현수준 변화를 분석하기 위하여, 하기 서열번호 7 및 8의 프라이머를 사용한 것을 제외하고는, 상기 실시예 2-2-1과 동일한 방법을 수행하여 T-bet의 발현수준을 비교분석하였다(도 4b).
mFoxp3_F: 5'-CACAATATGCGACCCCCTTTC-3'(서열번호 7)
mFoxp3_R: 5'-AACATGCGAGTAAACCAATGGTA-3'(서열번호 8)
도 4b는 정상의 5주령 ICR 마우스(음성대조군, N), 실시예 1에서 제작한 허피스 감염증 마우스 모델(양성대조군, Acy-) 및 실시예 2-1의 방법으로 허피스 감염증 마우스 모델의 병변에 10일 동안 Acyclovir 연고를 도포한 마우스(실험군, Acy+)의 림프절(Lymph node) 및 비장조직(Spleen)에서 측정된 FoxP3의 발현수준을 비교한 결과를 나타내는 그래프이다.
도 4b에서 보듯이, 림프절(Lymph node) 및 비장조직(Spleen) 모두에서 음성대조군(N) 보다는 양성대조군(Acy-)에서 FoxP3의 발현수준이 감소되었고, 실험군(Acy+)에서는 음성대조군(N) 보다 높은 수준으로 FoxP3의 발현수준이 증가됨을 확인하였다.
상기 결과로부터, 실험군(Acy+)에서 Regulatory T 세포(Treg)의 항염증 기능으로 인한 염증의 완화가 허피스 감염증상의 호전에 영향을 주었을 것으로 분석되었다.
실시예 3: 허피스 감염증 마우스 모델에 대한 하이드로코르티손의 역할 분석
실시예 1의 방법으로 제조된 허피스 감염증 마우스 모델의 제조에 있어서, 하이드로코르티손의 영향을 분석하고자 하였다.
대략적으로, 50, 150 또는 500 μg/day의 하이드로코르티손을 투여하는 것을 제외하고는, 실시예 1의 방법을 이용하여 각각의 허피스 감염증 마우스 모델을 제작하였다. 그런 다음, 상기 각 허피스 감염증 마우스 모델로부터 말초혈액을 채혈하고, 채혈된 혈액으로부터 peripheral blood leukocyte를 분리하여 수득한 다음, 상기 peripheral blood leukocyte에 포함된 면역 관련 세포(CD4+, CD8+ 및 DX5+)의 빈도를 유세포 분석을 이용하여 측정 및 비교분석하였다(표 1 내지 4). 이때, 대조군으로는 하이드로코르티손을 투여하지 않고 제작된 허피스 감염증 마우스 모델을 사용하였다.
하이드로코르티손 투여량에 따른 면역 관련 세포 발현 빈도 비교 (단위: %)
하이드로코르티손 투여량(μg/day) CD4+ CD8+ DX5+
대조군50 150500 27.4±6.515.8±8.812.4±7.812.3±4.7 7.2±1.26.44±2.64.78±1.74.2±1.7 5.1±1.04.4±2.42.89±1.92.5±1.9
상기 표 1에서 보듯이, 허피스 감염증 마우스 모델의 제작시에 투여된 하이드로코르티손의 투여량이 증가할 수록, 혈액내 면역 관련 세포의 빈도가 감소됨을 확인하였다.
허피스 감염증 마우스 모델에 있어서, 혈액내 면역관련 세포의 수준이 감소할 수록, 자연상태에서 HSV-1에 감염된 동물과의 싱크로율이 높다고 간주할 수 있다.
상기 결과로부터, 본 발명에서 제공하는 허피스 감염증 마우스 모델의 제작시에 하이드로코르티손의 투여량은 상기 모델과 실제 감염동물의 싱크로율에 관여하는 주요한 요인이 될 것이라고 분석되었다.
이에, 상기 분석결과를 검증하기 위하여, HSV-1을 단독 투여한 상기 대조군의 마우스와, HSV-1과 150 μg/day의 하이드로코르티손을 복합 투여한 실험군의 마우스를 대상으로, 허피스 감염증상의 유병율을 비교하였다(표 2).
HSV 단독투여 또는 HSV+하이드로코르티손 복합투여된 마우스의 허피스 감염증상 유병율(증상 마우스/전체 마우스) 비교 (단위: %)
유병율
HSV 단독투여HSV+하이드로코르티손 복합투여 5.8%(3/45)14.7%(14/95)
상기 표 2에서 보듯이, HSV-1을 단독 투여한 마우스의 허피스 감염증상 유병율 보다는 HSV-1과 하이드로코르티손을 복합 투여한 마우스의 허피스 감염증상 유병율이 약 2.5배 수준임을 확인하였다.
따라서, 본 발명에서 제공하는 허피스 감염증 마우스 모델의 제작시에 하이드로코르티손의 투여량이 실제 감염동물의 허피스 감염증상을 모사하는 마우스 모델의 싱크로율 향상에 미치는 주요한 원인이며, 상기 하이드로코르티손을 투여함으로써, 보다 효율적으로 허피스 감염증 마우스 모델을 제작할 수 있음을 알 수 있었다.
한편, 상기 표 1 및 2의 결과만으로 본다면, 자연상태에서 HSV-1에 감염된 동물과 싱크로율이 높은 허피스 감염증 마우스 모델을 제작하기 위하여는 가급적 높은 수준의 하이드로코르티손을 투여함이 바람직하고, 실험적으로는 150 내지 500 μg/day의 하이드로코르티손을 투여함이 바람직함을 알 수 있었다.
다만, 하이드로코르티손은 스테로이드성 호르몬제제이기 때문에, 마우스에 과량으로 투여할 경우, 다양한 부작용을 유발시킬 가능성이 있고, 이러한 부작용에 의하여 HSV-1에 대한 감염증 이외의 다른 증상을 유발시켜서, 허피스 감염증 마우스 모델을 이용한 실험결과를 왜곡시킬 가능성이 있을 것으로 예상되었다.
따라서, 본 발명의 허피스 감염증 마우스 모델의 제작시에 투여되는 하이드로코르티손의 적절한 투여량은 마우스 평균체중(25g)당 150 내지 200 μg/day일 것으로 분석되었다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (11)

  1. (a) 마우스의 피부를 손상시키고, 손상된 부위에 제1형 허피스 바이러스(herpes simplex virus type 1, HSV-1)를 접종시킨 다음, 사육하는 단계; 및
    (b) 상기 사육된 마우스를 대상으로 하이드로코르티손을 주사하는 단계를 포함하는, 허피스 감염증 마우스 모델의 제조방법.
  2. 제1항에 있어서,
    상기 제1형 허피스 바이러스를 접종하는 부위는 마우스의 피부영역인 것인, 허피스 감염증 마우스 모델의 제조방법.
  3. 제1항에 있어서,
    상기 제1형 허피스 바이러스의 접종량은 1 x 10^3 내지 1 x 10^5 pfu인 것인, 허피스 감염증 마우스 모델의 제조방법.
  4. 제1항에 있어서,
    상기 하이드로코르티손의 주사방법은 근육주사, 복강주사 또는 혈관주사인 것인, 허피스 감염증 마우스 모델의 제조방법.
  5. 제1항에 있어서,
    상기 하이드로코르티손의 주사는 상기 제1형 허피스 바이러스의 접종이 종료된 다음날로부터 3 내지 10일 동안 매일 수행하는 것인, 허피스 감염증 마우스 모델의 제조방법.
  6. 제1항에 있어서,
    상기 하이드로코르티손의 주사량은 마우스 평균체중(25g)당 10 내지 1000 μg/day인 것인, 허피스 감염증 마우스 모델의 제조방법.
  7. 제1항 내지 제6항 중 어느 한 항의 방법으로 제조된 허피스 감염증 마우스 모델.
  8. 제7항에 있어서,
    상기 허피스 감염증 마우스 모델은 정상 마우스에 비하여 HSV 리보뉴클레오티드 리덕타제(HSV ribonucleotide reductase)의 발현수준이 증가된 것인, 허피스 감염증 마우스 모델.
  9. 제7항에 있어서,
    상기 허피스 감염증 마우스 모델은 정상 마우스에 비하여 T-bet 유전자의 발현수준이 증가된 것인, 허피스 감염증 마우스 모델.
  10. 제7항에 있어서,
    상기 허피스 감염증 마우스 모델은 정상 마우스에 비하여 FoxP3 유전자의 발현수준이 감소된 것인, 허피스 감염증 마우스 모델.
  11. 허피스 감염증의 치료제 개발을 위한 제7항의 허피스 감염증 마우스 모델의 용도.
PCT/KR2020/008248 2019-06-25 2020-06-25 허피스 감염증 마우스 모델의 제조방법 WO2020262972A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/622,364 US20220232811A1 (en) 2019-06-25 2020-06-25 Method of preparing mouse model of herpes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0075872 2019-06-25
KR20190075872 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020262972A1 true WO2020262972A1 (ko) 2020-12-30

Family

ID=74060298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008248 WO2020262972A1 (ko) 2019-06-25 2020-06-25 허피스 감염증 마우스 모델의 제조방법

Country Status (3)

Country Link
US (1) US20220232811A1 (ko)
KR (1) KR102478608B1 (ko)
WO (1) WO2020262972A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170281751A1 (en) * 2008-07-30 2017-10-05 University Of Kentucky Research Foundation Equine disease model for herpesvirus neurologic disease and uses thereof
CN109769748A (zh) * 2019-02-21 2019-05-21 昆明理工大学 戊型肝炎病毒慢性化小鼠模型的构建方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170281751A1 (en) * 2008-07-30 2017-10-05 University Of Kentucky Research Foundation Equine disease model for herpesvirus neurologic disease and uses thereof
CN109769748A (zh) * 2019-02-21 2019-05-21 昆明理工大学 戊型肝炎病毒慢性化小鼠模型的构建方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANOWER A K M M; SHIM JU A; CHOI BUNSOON; KWON HYUK JAE; SOHN SEONGHYANG: "The role of classical and alternative macrophages in the immunopathogenesis of herpes simplex virus-induced inflammation in a mouse model.", JOURNAL OF DERMATOLOGICAL SCIENCE, vol. 73, no. 3, 11 November 2013 (2013-11-11), pages 198 - 208, XP028608229, ISSN: 0923-1811, DOI: 10.1016/j.jdermsci.2013.11.001 *
CLAYTON E WHEELER, HARVIE EDWIN J, CANBY CHARLES M: "The Effect of Hydrocortisone on the Production of Herpes Simplex Virus in Tissue Culture", JOURNAL OF INVESTIGATIVE DERMATOLOGY, vol. 36, no. 2, 1 February 1969 (1969-02-01), pages 89 - 97, XP055770638, ISSN: 0022-202X, DOI: 10.1038/jid.1961.18 *
JOSEPH M. BLONDEAU, EMBIL JUAN A., SANDRA MCFARLANE E: "Herpes simplex virus infections in male and female mice following pinna inoculation: Responses to primary infection and artificially induced recurrent disease", JOURNAL OF MEDICAL VIROLOGY, vol. 29, no. 4, 1 December 1989 (1989-12-01), pages 320 - 326, XP055770642, ISSN: 0146-6615, DOI: 10.1002/jmv.1890290419 *

Also Published As

Publication number Publication date
US20220232811A1 (en) 2022-07-28
KR102478608B1 (ko) 2022-12-19
KR20210001938A (ko) 2021-01-06

Similar Documents

Publication Publication Date Title
Weiner et al. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens
WO2020059895A1 (ko) 스팅 작용자를 포함하는 면역항원보강제 및 백신 조성물
WO2021210924A1 (ko) 아프리카돼지열병 백신 조성물
WO2020262972A1 (ko) 허피스 감염증 마우스 모델의 제조방법
REDDY et al. Changes Produced by Kanamycin: Early Histologic Manifestations in the Inner Ears of Cats
Abe et al. Induction of intestinal mastocytosis in nude mice by repeated injection of interleukin-3
WO2017200192A1 (ko) 항바이러스 활성을 가지는 사료 첨가제 조성물
WO2017048038A1 (en) Combination vaccine composition for multiple-dosage
AU2021212021B2 (en) Pharmaceutical composition for preventing or treating atopic disease containing Akkermansia muciniphila strain
Emery et al. Studies of stage-specific immunity against Trichostrongylus colubriformis in sheep: immunization by normal and truncated infections
KR101209141B1 (ko) 독성약화된 토끼 믹소마바이러스를 기본으로 한모노파라뮤니티 유발인자
WO2017200317A1 (ko) 삼차신경통을 예방 또는 치료하기 위한 카바메이트 화합물의 용도
WO2022108306A1 (ko) 인터류킨-33을 처리하여 면역원성이 향상된 cd103+ fcgr3+ 수지상세포의 제조방법 및 상기 수지상세포를 포함하는 면역항암치료용 약학적 조성물
WO2020166820A1 (ko) 피나스테라이드를 포함하는 마이크로 입자를 함유한 피하 주사용 조성물
WO2016137267A2 (ko) 법랑모세포 배양액을 포함하는 치주질환 치료용 약학 조성물
WO2022108094A1 (ko) 경구용 항바이러스제 및 리포펩타이드와 폴리(i:c) 아쥬반트를 포함한 치료백신을 유효성분으로 포함하는 만성 b형 간염의 예방 또는 치료용 약제학적 조성물, 약제학적 병용제제, 병용제 키트
WO2021157968A1 (ko) 난청 치료용 제어 방출형 제제 및 이의 제조방법
WO2022131603A1 (ko) 현초 추출물을 유효성분으로 포함하는 항바이러스 조성물
Loria Beta-androstenes and resistance to viral and bacterial infections
WO2022045502A1 (en) Pharmaceutical composition for preventing or treating atopic disease containing faecalibacterium prausnitzii strain
CN1098687C (zh) 氨基嘌呤抗病毒剂在治疗和预防潜伏性疱疹病毒感染中的用途
Hale et al. Atypical herpes simplex can mimic a flare of disease activity in patients with pemphigus vulgaris
WO2023243934A1 (ko) 기능강화 줄기세포를 포함하는 관절염 예방 또는 치료용 조성물
WO2020138560A1 (ko) 백내장 예방 또는 치료용 약학적 조성물 및 건강기능식품
WO2022177054A1 (ko) 제2형 중증급성호흡기증후군 코로나바이러스 감염증 예방 또는 치료용 약학 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20830516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20830516

Country of ref document: EP

Kind code of ref document: A1