WO2020262348A1 - 非水電解質二次電池用正極活物質、及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質、及び非水電解質二次電池 Download PDF

Info

Publication number
WO2020262348A1
WO2020262348A1 PCT/JP2020/024534 JP2020024534W WO2020262348A1 WO 2020262348 A1 WO2020262348 A1 WO 2020262348A1 JP 2020024534 W JP2020024534 W JP 2020024534W WO 2020262348 A1 WO2020262348 A1 WO 2020262348A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
positive electrode
active material
lithium composite
electrode active
Prior art date
Application number
PCT/JP2020/024534
Other languages
English (en)
French (fr)
Inventor
良憲 青木
峻 野村
毅 小笠原
Original Assignee
パナソニック株式会社
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 三洋電機株式会社 filed Critical パナソニック株式会社
Priority to US17/621,874 priority Critical patent/US20220255074A1/en
Priority to JP2021526997A priority patent/JPWO2020262348A1/ja
Priority to EP20832877.3A priority patent/EP3992149A4/en
Priority to CN202080044528.2A priority patent/CN114008822A/zh
Publication of WO2020262348A1 publication Critical patent/WO2020262348A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery having a positive electrode, a negative electrode, and a non-aqueous electrolyte and charging / discharging by moving lithium ions or the like between the positive electrode and the negative electrode has been used. Widely used. From the viewpoint of lowering the resistance and increasing the capacity of the battery, it is required to improve the characteristics of the positive electrode active material contained in the positive electrode of the battery.
  • Patent Document 1 describes a lithium composite oxide having a layered structure and containing Mn, Ni, Co, Sr, and Mo, and has a Mo content of 0.1 mol% to 1.
  • the ratio of the content of 5 mol% and Mo / Sr is set to 0.5 to 2.0 in molar ratio, the positive electrode active material having improved charge / discharge cycle characteristics while coping with higher capacity is disclosed. ing.
  • the lithium composite oxide contained in the positive electrode active material it is conceivable to design the lithium composite oxide to increase the Ni content in order to obtain a high discharge capacity and decrease the Co content in order to reduce the manufacturing cost.
  • the ratio of Ni to the total number of moles of metal elements excluding Li is 85 mol% or more and the ratio of Co is 10 mol% or less
  • the layered structure of the lithium composite oxide becomes unstable.
  • the reaction resistance of the battery may increase.
  • the technique of Patent Document 1 does not consider the reaction resistance, and there is still room for improvement.
  • an object of the present disclosure is lithium in which the ratio of Ni to the total number of moles of metal elements excluding Li is 85 mol% or more and the ratio of Co is 10 mol% or less, and the reaction resistance of the battery is reduced. It is to provide a positive electrode active material containing a composite oxide.
  • a non-aqueous electrolyte secondary battery is characterized by including a positive electrode containing the positive electrode active material, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery which is one aspect of the present disclosure, it is possible to provide a non-aqueous electrolyte secondary battery having a low reaction resistance.
  • the layered structure of the lithium composite oxide has a transition metal layer such as Ni, a Li layer, and an oxygen layer, and the Li ions present in the Li layer reversibly move in and out, so that the charge / discharge reaction of the battery proceeds.
  • a transition metal layer such as Ni
  • Li layer a Li layer
  • an oxygen layer a transition metal layer
  • the Li ions present in the Li layer reversibly move in and out, so that the charge / discharge reaction of the battery proceeds.
  • the lithium composite oxide contained in the positive electrode active material when the ratio of Ni to the total number of moles of metal elements excluding Li is 85 mol% or more and the ratio of Co is 10 mol% or less, Since many Li ions are extracted from the Li layer when the battery is charged, the layered structure becomes unstable and the reaction resistance of the battery may increase.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery which is one form of the present disclosure
  • Al and Sr are contained in a predetermined amount
  • the Li layer contains a metal element other than Li in a predetermined amount.
  • a synergistic effect of the addition and the addition of Sr is generated, and the reaction resistance can be reduced.
  • the oxidation number of Al does not change during charging and discharging, it is presumed that the structure of the transition metal layer is stabilized by being contained in the transition metal layer.
  • Sr exists as a compound in the layered structure or on the surface of the lithium composite oxide, and it is presumed that the resistance can be lowered because the surface state of the lithium composite oxide is changed by electronic interaction. To.
  • the Li layer is held by the predetermined amount of metal element present in the Li layer to form a layered structure. It is presumed that this will be stabilized and the deterioration of charge / discharge cycle characteristics will be suppressed.
  • the metal element existing in the Li layer of the layered structure is mainly Ni, but the metal element other than Ni contained in the lithium composite oxide may also be present in the Li layer. is there.
  • a cylindrical battery in which a wound electrode body is housed in a cylindrical battery case is illustrated, but the electrode body is not limited to the wound type, and a plurality of positive electrodes and a plurality of negative electrodes are interposed via a separator. It may be a laminated type in which one sheet is alternately laminated one by one.
  • the battery case is not limited to a cylindrical shape, and may be, for example, a square shape, a coin shape, or the like, or may be a battery case made of a laminated sheet including a metal layer and a resin layer.
  • FIG. 1 is a cross-sectional view of the non-aqueous electrolyte secondary battery 10 which is an example of the embodiment.
  • the non-aqueous electrolyte secondary battery 10 includes an electrode body 14, a non-aqueous electrolyte (not shown), and a battery case 15 that houses the electrode body 14 and the non-aqueous electrolyte.
  • the electrode body 14 has a winding structure in which a positive electrode 11 and a negative electrode 12 are wound via a separator 13.
  • the battery case 15 is composed of a bottomed cylindrical outer can 16 and a sealing body 17 that closes the opening of the outer can 16.
  • the electrode body 14 includes a long positive electrode 11, a long negative electrode 12, two long separators 13, a positive electrode tab 20 bonded to the positive electrode 11, and a negative electrode bonded to the negative electrode 12. It is composed of tabs 21.
  • the negative electrode 12 is formed to have a size one size larger than that of the positive electrode 11 in order to prevent precipitation of lithium. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the longitudinal direction and the width direction (short direction).
  • the two separators 13 are formed at least one size larger than the positive electrode 11, and are arranged so as to sandwich the positive electrode 11, for example.
  • the non-aqueous electrolyte secondary battery 10 includes insulating plates 18 and 19 arranged above and below the electrode body 14, respectively.
  • the positive electrode tab 20 attached to the positive electrode 11 extends to the sealing body 17 side through the through hole of the insulating plate 18, and the negative electrode tab 21 attached to the negative electrode 12 passes through the outside of the insulating plate 19. It extends to the bottom side of the outer can 16.
  • the positive electrode tab 20 is connected to the lower surface of the bottom plate 23 of the sealing body 17 by welding or the like, and the cap 27 of the sealing body 17 electrically connected to the bottom plate 23 serves as the positive electrode terminal.
  • the negative electrode tab 21 is connected to the inner surface of the bottom of the outer can 16 by welding or the like, and the outer can 16 serves as a negative electrode terminal.
  • the outer can 16 is, for example, a bottomed cylindrical metal container.
  • a gasket 28 is provided between the outer can 16 and the sealing body 17, and the internal space of the battery case 15 is sealed.
  • the outer can 16 has a grooved portion 22 that supports the sealing body 17, which is formed by pressing, for example, a side surface portion from the outside.
  • the grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the outer can 16, and the sealing body 17 is supported on the upper surface thereof.
  • the sealing body 17 has a structure in which a bottom plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are laminated in this order from the electrode body 14 side.
  • Each member constituting the sealing body 17 has, for example, a disk shape or a ring shape, and each member except the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected to each other at their central portions, and an insulating member 25 is interposed between the peripheral portions thereof.
  • the positive electrode 11, the negative electrode 12, the separator 13, and the non-aqueous electrolyte constituting the non-aqueous electrolyte secondary battery 10 will be described in detail, and in particular, the positive electrode active material contained in the positive electrode active material layer 31 constituting the positive electrode 11 will be described in detail.
  • the positive electrode 11 has a positive electrode current collector 30 and a positive electrode active material layer 31 formed on both sides of the positive electrode current collector 30.
  • a metal foil that is stable in the potential range of the positive electrode 11, such as aluminum or an aluminum alloy, or a film in which the metal is arranged on the surface layer can be used.
  • the positive electrode active material layer 31 includes a positive electrode active material, a conductive material, and a binder. The thickness of the positive electrode active material layer 31 is, for example, 10 ⁇ m to 150 ⁇ m on one side of the positive electrode current collector 30.
  • a positive electrode slurry containing a positive electrode active material, a conductive material, a binder, and the like is applied to the surface of the positive electrode current collector 30, the coating film is dried, and then compressed to compress the positive electrode active material layer 31 into a positive electrode. It can be manufactured by forming it on both sides of the current collector 30.
  • Examples of the conductive material contained in the positive electrode active material layer 31 include carbon materials such as carbon black, acetylene black, ketjen black, and graphite.
  • Examples of the binder contained in the positive electrode active material layer 31 include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimides, acrylic resins, and polyolefins. These resins may be used in combination with carboxymethyl cellulose (CMC) or a salt thereof, polyethylene oxide (PEO) and the like.
  • Examples of the layered structure of the lithium composite oxide include a layered structure belonging to the space group R-3m and a layered structure belonging to the space group C2 / m.
  • a layered structure belonging to the space group R-3m is preferable in terms of increasing capacity, stability of crystal structure, and the like.
  • a indicating the ratio of Li in the lithium composite oxide satisfies 0.95 ⁇ a ⁇ 1.05 and 0.97 ⁇ a ⁇ 1.03.
  • the battery capacity may decrease as compared with the case where a satisfies the above range.
  • a is 1.05 or more, a larger amount of lithium compound is added as compared with the case where a satisfies the above range, so that it may not be economical from the viewpoint of production cost.
  • which indicates the ratio of Ni to the total number of moles of metal elements other than Li in the lithium composite oxide, is 0.85 ⁇ ⁇ ⁇ 0 in order to increase the capacity of the battery and add other metal elements. .95 is satisfied.
  • which indicates the ratio of Al to the total number of moles of metal elements excluding Li in the lithium composite oxide, satisfies 0 ⁇ ⁇ 0.08. Since the oxidation number of Al does not change during charging and discharging, it is considered that the structure of the transition metal layer is stabilized by being contained in the transition metal layer. On the other hand, if the Al content exceeds 8 mol%, Al impurities are generated and the battery capacity is lowered. Al may be uniformly dispersed in the layered structure of the lithium composite oxide, for example, or may be present in a part of the layered structure.
  • Co and M (M is at least one element selected from Mn, Fe, Ti, Si, Nb, Zr, Mo and Zn) are optional components.
  • ⁇ and ⁇ indicating the ratio of Co and M to the total number of moles of the metal element excluding Li in the lithium composite oxide satisfy 0 ⁇ ⁇ ⁇ 0.1 and 0 ⁇ ⁇ ⁇ 0.15, respectively. Since Co is expensive, it is desired to suppress the Co content from the viewpoint of manufacturing cost.
  • X which indicates the ratio of Sr to the total number of moles of metal elements excluding Li in the lithium composite oxide, satisfies 0 ⁇ x ⁇ 0.015. It is considered that the inclusion of Sr changes the surface state of the lithium composite oxide by electronic interaction, so that the resistance can be lowered. Sr exists as a compound in the layered structure or on the surface of the lithium composite oxide, and can change the surface state of the lithium composite oxide in either form.
  • the content of the elements constituting the lithium composite oxide can be measured by an inductively coupled plasma emission spectrophotometer (ICP-AES), an electron beam microanalyzer (EPMA), an energy dispersive X-ray analyzer (EDX), or the like. it can.
  • ICP-AES inductively coupled plasma emission spectrophotometer
  • EPMA electron beam microanalyzer
  • EDX energy dispersive X-ray analyzer
  • metal elements other than Li are present in the Li layer of the layered structure.
  • the ratio of metal elements other than Li present in the Li layer of the layered structure is 1 mol% or more with respect to the total molar amount of the metal elements excluding Li in the lithium composite oxide in order to reduce the reaction resistance of the battery. It is in the range of 2.5 mol% or less, preferably 1 mol% or more and 2 mol% or less.
  • the ratio of metal elements other than Li in the layered Li layer is less than 1 mol%, the stability of the layered structure in the state where Li ions in the Li layer are extracted as compared with the case where the above range is satisfied. Decreases, and the reaction resistance of the battery increases.
  • the metal element existing in the Li layer of the layered structure is mainly Ni, but other metal elements may be contained.
  • the ratio of metal elements other than Li in the Li layer of the layered structure can be obtained from the Rietveld analysis result of the X-ray diffraction pattern by the X-ray diffraction measurement of the lithium composite oxide.
  • the X-ray diffraction pattern is obtained by a powder X-ray diffraction method under the following conditions using a powder X-ray diffractometer (manufactured by Rigaku Co., Ltd., trade name "RINT-TTR", radiation source Cu-K ⁇ ).
  • the lattice constant a indicating the a-axis length of the crystal structure obtained from the result of the X-ray diffraction pattern by the above X-ray diffraction is in the range of 2.870 ⁇ ⁇ a ⁇ 2.877 ⁇ , and the c-axis length is set.
  • the lattice constant c shown is preferably in the range of 14.18 ⁇ ⁇ c ⁇ 14.21 ⁇ .
  • the lattice constant a is 2.877 ⁇ or more
  • the interatomic distance in the crystal structure is wide and the structure becomes unstable, and the output characteristics of the battery may be deteriorated as compared with the case where the above range is satisfied. is there.
  • the lattice constant c is 14.18 ⁇ or less
  • the interatomic distance in the crystal structure is narrow and the structure becomes unstable, and the reaction resistance of the battery may be higher than when the above range is satisfied. is there.
  • the lattice constant c is 14.21 ⁇ or more
  • the interatomic distance in the crystal structure is wide and the structure becomes unstable, and the output characteristics of the battery may be deteriorated as compared with the case where the above range is satisfied. is there.
  • the crystallite size s calculated by Scherrer equation from the half width of the diffraction peak on the (104) plane of the X-ray diffraction pattern by the above X-ray diffraction is 400 ⁇ ⁇ s ⁇ 800 ⁇ . It is preferable to have.
  • the crystallite size s of the lithium composite oxide is smaller than 400 ⁇ , the crystallinity may decrease and the reaction resistance of the battery may increase as compared with the case where the above range is satisfied. Further, when the crystallite size s of the lithium composite oxide exceeds 800 ⁇ , the diffusibility of Li may be deteriorated and the output characteristics of the battery may be deteriorated as compared with the case where the above range is satisfied.
  • Scheller's equation is expressed by the following equation.
  • s K ⁇ / Bcos ⁇
  • s the crystallite size
  • the wavelength of the X-ray
  • B the half width of the diffraction peak of the (104) plane
  • the diffraction angle (rad)
  • K the Scherrer constant.
  • K is 0.9.
  • the content of the lithium composite oxide in the positive electrode active material is, for example, relative to the total mass of the positive electrode active material in terms of improving the capacity of the battery and effectively suppressing the deterioration of the charge / discharge cycle characteristics. It is preferably 90% by mass or more, and more preferably 99% by mass or more.
  • the positive electrode active material of the present embodiment may contain other lithium composite oxides in addition to the lithium composite oxide of the present embodiment.
  • other lithium composite oxides include lithium composite oxides having a Ni content of 0 mol% or more and less than 85 mol%.
  • the method for producing a lithium composite oxide is, for example, a first step of obtaining a composite oxide containing Ni, Al and an arbitrary metal element, and a mixture of the composite oxide obtained in the first step and a lithium compound.
  • a second step of obtaining the above and a third step of firing the mixture are provided.
  • Each parameter of the ratio of metal elements other than Li in the Li layer of the layered structure of the lithium composite oxide finally obtained, the lattice constant a, the lattice constant c, and the crystallite size s is, for example, the mixing of the raw materials in the second step. It is adjusted by controlling the ratio, the firing temperature and time in the third step, and the like.
  • an alkaline solution such as sodium hydroxide is added dropwise to adjust the pH to the alkaline side.
  • a composite hydroxide containing Ni, Al and any metal element is precipitated (co-precipitated), and the composite hydroxide is calcined to form Ni. , Al and a composite oxide containing any metal element.
  • the firing temperature is not particularly limited, but is, for example, in the range of 300 ° C. to 600 ° C.
  • the composite oxide obtained in the first step is mixed with a lithium compound and a strontium compound to obtain a mixture.
  • the lithium compound include Li 2 CO 3 , LiOH, Li 2 O 2 , Li 2 O, LiNO 3 , LiNO 2 , Li 2 SO 4 , LiOH ⁇ H 2 O, LiH, LiF and the like.
  • the strontium compound include Sr (OH) 2 , SrO, SrCo 3 , SrSO 4 , Sr (NO 3 ) 2, and the like.
  • the mixing ratio of the composite oxide and the lithium compound obtained in the first step is, for example, a metal element excluding Li: molar ratio of Li in that it is easy to adjust each of the above parameters to the above-specified range.
  • the ratio is in the range of 1: 0.98 to 1: 1.1.
  • another metal raw material may be added if necessary.
  • the other metal raw material is an oxide containing a metal element other than the metal element constituting the composite oxide obtained in the first step.
  • the mixture obtained in the second step is calcined at a predetermined temperature and time to obtain a lithium composite oxide according to the present embodiment.
  • the firing of the mixture in the third step includes, for example, a first firing step of firing in a firing furnace at a first heating rate to a first set temperature of 450 ° C. or higher and 680 ° C. or lower under an oxygen stream, and the first firing step.
  • a multi-step firing step including a second firing step in which the fired product obtained in the above method is fired in a firing furnace under an oxygen stream at a second firing rate up to a second set temperature of more than 680 ° C and 800 ° C or less. To be equipped.
  • the first temperature rising rate is in the range of 1.5 ° C./min or more and 5.5 ° C./min or less
  • the second temperature rising rate is slower than the first temperature rising rate and is 0.1 ° C./min or more.
  • the range is 3.5 ° C./min or less.
  • the ratio of metal elements other than Li present in the Li layer of the layered structure, the lattice constant a, the lattice constant c, and the crystals can be adjusted within the range specified above.
  • a plurality of the first temperature rising rate and the second temperature rising rate may be set for each temperature region as long as they are within the above-specified range.
  • the holding time of the first set temperature in the first firing step is preferably 0 hours or more and 5 hours or less, and 0 hours or more and 3 hours or less in terms of adjusting each of the above parameters of the lithium transition metal oxide to the above-specified range. More preferred.
  • the holding time of the first set temperature is the time for maintaining the first set temperature after reaching the first set temperature.
  • the holding time of the second set temperature in the second firing step is preferably 1 hour or more and 10 hours or less, preferably 1 hour or more and 5 hours or less, in terms of adjusting each of the above parameters of the lithium transition metal oxide to the above-specified range. More preferred.
  • the holding time of the second set temperature is the time for maintaining the second set temperature after reaching the second set temperature.
  • the negative electrode 12 has a negative electrode current collector 40 and a negative electrode active material layer 41 formed on both sides of the negative electrode current collector 40.
  • a metal foil stable in the potential range of the negative electrode 12 such as copper or a copper alloy, a film in which the metal is arranged on the surface layer, or the like can be used.
  • the negative electrode active material layer 41 contains a negative electrode active material and a binder. The thickness of the negative electrode active material layer 41 is, for example, 10 ⁇ m to 150 ⁇ m on one side of the negative electrode current collector 40.
  • a negative electrode slurry containing a negative electrode active material, a binder, and the like is applied to the surface of the negative electrode current collector 40, the coating film is dried, and then rolled to roll the negative electrode active material layer 41 into the negative electrode current collector 40. It can be produced by forming on both sides of.
  • the negative electrode active material contained in the negative electrode active material layer 41 is not particularly limited as long as it can reversibly occlude and release lithium ions, and a carbon material such as graphite is generally used.
  • the graphite may be any of natural graphite such as scaly graphite, massive graphite and earthy graphite, and artificial graphite such as massive artificial graphite and graphitized mesophase carbon microbeads.
  • a metal alloying with Li such as Si and Sn, a metal compound containing Si and Sn and the like, a lithium titanium composite oxide and the like may be used. Further, those provided with a carbon film may be used.
  • Si-containing compounds represented by SiO y (0.5 ⁇ y ⁇ 1.6) or lithium silicate phases represented by Li 2z SiO (2 + z) (0 ⁇ z ⁇ 2) contain fine particles of Si.
  • a dispersed Si-containing compound or the like may be used in combination with graphite.
  • the binder contained in the negative electrode active material layer 41 a fluororesin such as PTFE or PVdF, PAN, polyimide, acrylic resin, polyolefin or the like may be used as in the case of the positive electrode 11, but styrene is preferable. -Butadiene rubber (SBR) is used. Further, the negative electrode active material layer 41 may contain CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA) and the like.
  • PAN polyacrylic acid
  • PVA polyvinyl alcohol
  • a porous sheet having ion permeability and insulating property is used.
  • the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric.
  • the material of the separator polyolefins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator 13 may have a single-layer structure or a laminated structure. Further, the surface of the separator 13 may be provided with a resin layer having high heat resistance such as an aramid resin and a filler layer containing a filler of an inorganic compound.
  • the non-aqueous electrolyte includes, for example, a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • a non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used.
  • the non-aqueous solvent may contain a halogen substituent in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • halogen substituent examples include a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate, and a fluorinated chain carboxylic acid ester such as methyl fluoropropionate (FMP).
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylic acid ester
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and methylpropyl carbonate.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and methylpropyl carbonate.
  • Ethylpropyl carbonate chain carbonate such as methyl isopropyl carbonate, cyclic carboxylic acid ester such as ⁇ -butyrolactone (GBL), ⁇ -valerolactone (GVL), methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP) ), Chain carboxylic acid ester such as ethyl propionate (EP), and the like.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahexyl, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4.
  • -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxy Chain ethers such as ethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-m (C n F 2n + 1 ) m (1 ⁇ m ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B 4 O 7 , borates such as Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2p + 1 SO 2 ) (C q F 2q + 1 SO 2 ) ⁇ p , Q is an integer of 0 or more ⁇ and other imide salts.
  • lithium salt these may be used alone, or a plurality of types may be mixed and used. Of these, LiPF 6 is preferably used from the viewpoint of ionic conductivity, electrochemical stability, and the like.
  • concentration of the lithium salt is, for example, 0.8 mol to 1.8 mol per 1 L of the non-aqueous solvent. Further, a vinylene carbonate or a propane sultone-based additive may be further added.
  • Example 1-1 The composite hydroxide represented by [Ni 0.86 Al 0.03 Co 0.03 Mn 0.08 ] (OH) 2 obtained by the coprecipitation method was fired at 500 ° C. for 8 hours, and the composite oxide ( Ni 0.86 Al 0.03 Co 0.03 Mn 0.08 O 2 ) was obtained. LiOH, Sr (OH) 2 , Ti (OH) 4 and the above composite oxide are mixed so that the molar ratio of Li to the total amount of Ni, Al, Co, Mn, Ti and Sr is 1.03: 1. Mixing gave a mixture. After firing the mixture at a heating rate of 2.0 ° C./min from room temperature to 650 ° C.
  • Example 1-1 Under an oxygen stream with an oxygen concentration of 95% (flow rate of 2 mL / min per 10 cm 3 and 5 L / min per kg of the mixture). , The temperature was raised from 650 ° C. to 780 ° C. at a heating rate of 0.5 ° C./min. Impurities were removed from this fired product by washing with water to obtain a lithium composite oxide.
  • the composition of the obtained lithium composite oxide using an ICP emission spectroscopic analyzer (manufactured by Thermo Fisher Scientific, trade name "iCAP6300"), the composition was LiNi 0.85 Al 0.03 Co 0. It was 03 Mn 0.08 Ti 0.01 Sr 0.001 O 2 . This was used as the positive electrode active material of Example 1-1.
  • a lithium composite oxide was obtained in the same manner as in Example 1-1 except that the mixture was mixed so as to have a molar ratio of 1.03: 1.
  • the composition of the obtained lithium composite oxide was LiNi 0.85 Al 0.03 Co 0.03 Mn 0.08 Ti 0.01 O 2 . This was used as the positive electrode active material of Comparative Example 1-1.
  • Example 1-5 Using the composite hydroxide represented by [Ni 0.88 Al 0.09 Co 0.03 ] (OH) 2 , LiOH, Sr (OH) 2 and the composite oxide (Ni 0.88 Al 0.09) Co 0.03 O 2 ) was mixed with Example 1-1 except that Li was mixed so that the molar ratio of Li to the total amount of Ni, Al, Co and Sr was 1.03: 1 to obtain a mixture. A lithium composite oxide was obtained in the same manner. The composition of the obtained lithium composite oxide was LiNi 0.88 Al 0.09 Co 0.03 Sr 0.01 O 2 . This was used as the positive electrode active material of Comparative Example 1-5.
  • Example 2-1 [Ni 0.94 Al 0.05 Co 0.01 ] (OH)
  • the composite hydroxide represented by 2 calcining at 500 ° C. for 8 hours, the composite oxide (Ni 0.94 Al 0.05) Co 0.01 O 2 ) was obtained.
  • LiOH, Sr (OH) 2 and the above composite oxide were mixed so that the molar ratio of Li to the total amount of Ni, Al, Co and Sr was 1.03: 1 to obtain a mixture.
  • Example 2-1 It was fired from 650 ° C. to 700 ° C. at a heating rate of 0.5 ° C./min. Impurities were removed from this fired product by washing with water to obtain a lithium composite oxide.
  • the composition of the obtained lithium composite oxide was LiNi 0.94 Al 0.05 Co 0.01 Sr 0.001 O 2 . This was used as the positive electrode active material of Example 2-1.
  • Example 2-2 Using the composite hydroxide represented by [Ni 0.94 Co 0.05 Mn 0.005 ] (OH) 2 , LiOH, Nb 2 O 5 , Sr (OH) 2 and the composite oxide (Ni 0. 94 Co 0.05 Mn 0.005 O 2 ) was mixed so that the molar ratio of Li to the total amount of Ni, Co, Mn, Nb, and Sr was 1.03: 1 to obtain a mixture. Examples except that the mixture was fired at a heating rate of 1.5 ° C./min from room temperature to 650 ° C. and then at a heating rate of 1.0 ° C./min from 650 ° C. to 700 ° C. A lithium composite oxide was obtained in the same manner as in 2-1. The composition of the obtained lithium composite oxide was LiNi 0.94 Al 0.05 Mn 0.005 Nb 0.005 Sr 0.01 O 2 . This was used as the positive electrode active material of Example 2-2.
  • a lithium composite oxide was obtained in the same manner as in Example 2-1 except that the mixture was obtained.
  • the composition of the obtained lithium composite oxide was LiNi 0.94 Al 0.05 Co 0.01 O 2 . This was used as the positive electrode active material of Comparative Example 2-1.
  • Example 3-1 [Ni 0.91 Al 0.04 Co 0.05 ] (OH)
  • the composite hydroxide represented by 2 calcining at 500 ° C. for 8 hours, the composite oxide (Ni 0.91 Al 0.04) Co 0.05 O 2 ) was obtained.
  • LiOH, Sr (OH) 2 and the above composite oxide were mixed so that the molar ratio of Li to the total amount of Ni, Al, Co and Sr was 1.03: 1 to obtain a mixture. After firing the mixture at a heating rate of 2.0 ° C./min from room temperature to 650 ° C. under an oxygen stream with an oxygen concentration of 95% (flow rate of 2 mL / min per 10 cm 3 and 5 L / min per kg of the mixture).
  • the temperature was raised from 650 ° C. to 720 ° C. at a heating rate of 0.5 ° C./min. Impurities were removed from this fired product by washing with water to obtain a lithium composite oxide.
  • the composition of the obtained lithium composite oxide was LiNi 0.91 Al 0.04 Co 0.05 Sr 0.0005 O 2 . This was used as the positive electrode active material of Example 3-1.
  • Example 3-2 The molar ratio of LiOH, Sr (OH) 2 and the composite oxide (Ni 0.91 Al 0.04 Co 0.05 O 2 ) to the total amount of Li and Ni, Al, Co and Sr is 1.01: A lithium composite oxide was obtained in the same manner as in Example 3-1 except that the mixture was mixed so as to be 1. The composition of the obtained lithium composite oxide was LiNi 0.91 Al 0.04 Co 0.05 Sr 0.013 O 2 . This was used as the positive electrode active material of Example 3-2.
  • Example 3-3 Using the composite hydroxide represented by [Ni 0.915 Al 0.04 Co 0.045 ] (OH) 2 , LiOH, Sr (OH) 2 , SiO and the composite oxide (Ni 0.91 Al 0) Examples except that .04 Co 0.045 O 2 ) was mixed so that the molar ratio of Li to the total amount of Ni, Al, Co, Si and Sr was 1.03: 1 to obtain a mixture.
  • a lithium composite oxide was obtained in the same manner as in 3-1.
  • the composition of the obtained lithium composite oxide was LiNi 0.91 Al 0.04 Co 0.045 Si 0.005 Sr 0.001 O 2 . This was used as the positive electrode active material of Example 3-3.
  • a lithium composite oxide was obtained in the same manner as in Example 3-1 except that the mixture was obtained.
  • the composition of the obtained lithium composite oxide was LiNi 0.91 Al 0.04 Co 0.05 O 2 . This was used as the positive electrode active material of Comparative Example 3-1.
  • ⁇ Comparative Example 3-2> The molar ratio of LiOH, Sr (OH) 2 and the composite oxide (Ni 0.91 Al 0.04 Co 0.05 O 2 ) to the total amount of Li and Ni, Al, Co and Sr is 1.03 :. It was mixed so as to be 1, and after firing from room temperature to 650 ° C. at a heating rate of 3.0 ° C./min, it was fired from 650 ° C. to 750 ° C. at a heating rate of 1.0 ° C./min. A lithium composite oxide was obtained in the same manner as in Example 3-1 except for the above. The composition of the obtained lithium composite oxide was LiNi 0.91 Al 0.04 Co 0.05 Sr 0.02 O 2 . This was used as the positive electrode active material of Comparative Example 3-2.
  • Example 4-1 [Ni 0.88 Al 0.03 Co 0.08 Fe 0.01 ] (OH)
  • the composite hydroxide represented by 2 calcined at 400 ° C. for 8 hours, and the composite oxide (Ni 0.88) Al 0.03 Co 0.03 Fe 0.01 O 2 ) was obtained.
  • LiOH, Sr (OH) 2 and the above composite oxide were mixed so that the molar ratio of Li to the total amount of Ni, Al, Co, Fe and Sr was 1.03: 1 to obtain a mixture.
  • the mixture was heated from room temperature to 670 ° C.
  • ⁇ Comparative Example 4-1> The molar ratio of LiOH and the composite oxide (Ni 0.88 Al 0.03 Co 0.08 Fe 0.01 O 2 ) to the total amount of Li and Ni, Al, Co and Fe is 1.03: 1.
  • a lithium composite oxide was obtained in the same manner as in Example 4-1 except that the mixture was mixed so as to be.
  • the composition of the obtained lithium composite oxide was LiNi 0.88 Al 0.03 Co 0.08 Fe 0.01 O 2 . This was used as the positive electrode active material of Comparative Example 4-1.
  • Powder X-ray diffraction measurement was performed on the lithium composite oxide (positive electrode active material) of Examples and Comparative Examples under the above-mentioned conditions to obtain an X-ray diffraction pattern. Diffraction lines showing a layered structure were confirmed from all the X-ray diffraction patterns of Examples and Comparative Examples.
  • test cells were prepared as follows.
  • a positive electrode slurry was prepared by mixing with (NMP). Next, the slurry was applied to a positive electrode current collector made of an aluminum foil having a thickness of 15 ⁇ m, the coating film was dried, and then the coating film was rolled with a rolling roller to prepare a positive electrode.
  • a positive electrode was prepared in the same manner in the other examples and comparative examples.
  • Ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) were mixed in a volume ratio of 3: 3: 4.
  • a non-aqueous electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) in the mixed solvent at a concentration of 1.2 mol / liter.
  • Example 1-1 The positive electrode of Example 1-1 and the negative electrode made of lithium metal leaf were laminated so as to face each other via a separator, and wound around this to prepare an electrode body (about 66 mAh). Next, the electrode body and the non-aqueous electrolyte were inserted into an aluminum outer body to prepare a test cell. A positive electrode was prepared in the same manner in the other examples and comparative examples.
  • test cell is measured with an AC impedance of 20 kHz to 0.01 Hz using an AC impedance measuring device, a call call plot is drawn from the measurement data, and the reaction resistance is determined from the size of the arc between 10 Hz and 0.1 Hz. Asked.
  • the reaction resistances of Examples and Comparative Examples are shown separately in Tables 2-5.
  • the reaction resistance of the test cell of Example 1-1 shown in Table 2 is relatively expressed with the reaction resistance of the test cell of Comparative Example 1-1 as 100.
  • the reaction resistance of the test cell of Comparative Example 1-3 is relatively expressed with the reaction resistance of the test cell of Comparative Example 1-2 as 100, and the reaction of the test cell of Comparative Example 1-5.
  • the resistance is expressed relatively with the reaction resistance of the test cell of Comparative Example 1-4 as 100.
  • reaction resistances of the test cells of Examples 2-1 to 2-2 and Comparative Examples 2-2-2-3 shown in Table 3 are relative, where the reaction resistance of the test cells of Comparative Example 2-1 is 100. It is represented in.
  • reaction resistances of the test cells of Examples 3-1 to 3-3 and Comparative Examples 3-2 to 3-4 shown in Table 4 are relative, where the reaction resistance of the test cells of Comparative Example 3-1 is 100. It is represented in.
  • the reaction resistance of the test cell of Example 4-1 shown in Table 5 is relatively expressed with the reaction resistance of the test cell of Comparative Example 4-1 as 100.
  • Example 1-1 containing 0.1 mol% of Sr had a lower reaction resistance than Comparative Example 1-1 not containing Sr, indicating the effect of containing Sr.
  • the Al content was 0 mol% or 9 mol%, which was not in the range of 0 ⁇ 0.08, so that the reaction resistance did not change depending on the presence or absence of Sr. ..
  • the lithium composite oxide positive electrode active material
  • Example 2-1 having a proportion of metal elements other than Li in the Li layer of 1.2 had a lower reaction resistance than Comparative Example 2-1 due to the effect of containing Sr.
  • the lithium composite oxide positive electrode active material
  • Example 4-1 the reaction resistance of Example 4-1 containing 0.08 mol% of Sr was lower than that of Comparative Example 4-1 containing no Sr, indicating the effect of containing Sr. Further, from Example 4-1 it is inferred that the lithium composite oxide (positive electrode active material) may contain Fe.
  • Non-aqueous electrolyte secondary battery 11 Positive electrode 12 Negative electrode 13 Separator 14 Electrode body 15 Battery case 16 Exterior can 17 Sealing body 18, 19 Insulation plate 20 Positive electrode tab 21 Negative electrode tab 22 Grooved part 23 Bottom plate 24 Lower valve body 25 Insulation member 26 Valve body 27 Cap 28 Gasket 30 Positive electrode current collector 31 Positive electrode active material layer 40 Negative electrode current collector 41 Negative electrode active material layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解質二次電池用正極活物質は、Li層を含む層状構造を有する、一般式LiNiαAlβCoγδSr2-w(式中、0.95<a<1.05、0.85≦α≦0.95、0<β≦0.08、0≦γ≦0.1、0≦δ≦0.15、0<x≦0.015、0≦w<0.05、α+β+γ+δ=1、Mは、Mn、Fe、Ti、Si、Nb、Zr、Mo及びZnから選ばれる少なくとも1種の元素)で表されるリチウム複合酸化物を含み、Li層に存在するLi以外の金属元素の割合は、リチウム複合酸化物中のLiを除く金属元素の総モル量に対して、1モル%以上2.5モル%以下の範囲である。

Description

非水電解質二次電池用正極活物質、及び非水電解質二次電池
 本開示は、非水電解質二次電池用正極活物質、及び非水電解質二次電池に関する。
 近年、高出力、高エネルギー密度の二次電池として、正極、負極、及び非水電解質を備え、正極と負極との間でリチウムイオン等を移動させて充放電を行う非水電解質二次電池が広く利用されている。電池の低抵抗化、高容量化等の観点から、電池の正極に含まれる正極活物質の特性向上が求められている。
 例えば、特許文献1には、層状構造を有し、且つ、Mn、Ni、Co、Sr、及びMoを含有するリチウム複合酸化物であって、Moの含有量を0.1モル%~1.5モル%、Mo/Srの含有量の比率を、モル比で0.5~2.0とすることで、高容量化に対応しつつ、充放電サイクル特性を改善した正極活物質が開示されている。
特許第5245210号
 ところで、正極活物質に含まれるリチウム複合酸化物において、高い放電容量を得るためにNiの含有率を多くしつつ、製造コストを低減するためにCoの含有率を少なくするという設計が考えられる。しかし、Liを除く金属元素の総モル数に対してNiの割合が85モル%以上で且つCoの割合が10モル%以下の場合には、リチウム複合酸化物の層状構造が不安定になり、電池の反応抵抗が高くなることがある。特許文献1の技術は、反応抵抗については考慮しておらず、未だ改善の余地がある。
 そこで、本開示の目的は、Liを除く金属元素の総モル数に対してNiの割合が85モル%以上で且つCoの割合が10モル%以下であって、電池の反応抵抗を低減したリチウム複合酸化物を含む正極活物質を提供することである。
 本開示の一態様である非水電解質二次電池用正極活物質は、層状構造を有する、一般式LiNiαAlβCoγδSr2-w(式中、0.95<a<1.05、0.85≦α≦0.95、0<β≦0.08、0≦γ≦0.1、0≦δ≦0.15、0<x≦0.015、0≦w<0.05、α+β+γ+δ=1、Mは、Mn、Fe、Ti、Si、Nb、Zr、Mo及びZnから選ばれる少なくとも1種の元素)で表されるリチウム複合酸化物を含み、層状構造は、Li以外の金属元素を含有するLi層を含み、且つ、Li層に存在するLi以外の金属元素の割合は、リチウム複合酸化物中のLiを除く金属元素の総モル量に対して、1モル%以上2.5モル%以下の範囲であることを特徴とする。
 本開示の一態様である非水電解質二次電池は、上記正極活物質を含む正極と、負極と、非水電解質とを備えることを特徴とする。
 本開示の一態様である非水電解質二次電池用正極活物質によれば、反応抵抗が低い非水電解質二次電池を提供することができる。
実施形態の一例である非水電解質二次電池の断面図である。
 リチウム複合酸化物の層状構造は、Ni等の遷移金属層、Li層、酸素層が存在し、Li層に存在するLiイオンが可逆的に出入りすることで、電池の充放電反応が進行する。ここで、正極活物質に含まれるリチウム複合酸化物において、Liを除く金属元素の総モル数に対してNiの割合が85モル%以上で且つCoの割合が10モル%以下の場合には、電池の充電時にLi層から多くのLiイオンが引き抜かれるため層状構造が不安定になり、電池の反応抵抗が高くなることがある。しかし、本開示の一形態である非水電解質二次電池用正極活物質のように、Al及びSrを所定量含有し、さらにLi層にLi以外の金属元素を所定量含有することで、Al添加とSr添加との相乗効果が生じて反応抵抗を低減することができる。Alは、充放電中にも酸化数変化が生じないため、遷移金属層に含有されることで遷移金属層の構造が安定化すると推察される。Srは、層状構造内又はリチウム複合酸化物の表面に化合物として存在していると考えられ、電子的相互作用によりリチウム複合酸化物の表面状態に変化を与えるため抵抗を下げることができると推察される。また、Li層に金属元素が所定量存在することで、電池の充電時にLi層から多くのLiイオンが引き抜かれてもLi層に存在する所定量の金属元素によりLi層が保持されて層状構造の安定化が図られ、充放電サイクル特性の低下が抑えられると推察される。なお、本開示のリチウム複合酸化物において、層状構造のLi層に存在する金属元素は、主にNiであるが、リチウム複合酸化物に含まれるNi以外の金属元素もLi層に存在する場合がある。
 以下、本開示に係る非水電解質二次電池の実施形態の一例について詳細に説明する。以下では、巻回型の電極体が円筒形の電池ケースに収容された円筒形電池を例示するが、電極体は、巻回型に限定されず、複数の正極と複数の負極がセパレータを介して交互に1枚ずつ積層されてなる積層型であってもよい。また、電池ケースは円筒形に限定されず、例えば角形、コイン形等であってもよく、金属層及び樹脂層を含むラミネートシートで構成された電池ケースであってもよい。
 図1は、実施形態の一例である非水電解質二次電池10の断面図である。図1に例示するように、非水電解質二次電池10は、電極体14と、非水電解質(図示せず)と、電極体14及び非水電解質を収容する電池ケース15とを備える。電極体14は、正極11と負極12とがセパレータ13を介して巻回された巻回構造を有する。電池ケース15は、有底円筒形状の外装缶16と、外装缶16の開口部を塞ぐ封口体17とで構成されている。
 電極体14は、長尺状の正極11と、長尺状の負極12と、長尺状の2枚のセパレータ13と、正極11に接合された正極タブ20と、負極12に接合された負極タブ21とで構成される。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11より長手方向及び幅方向(短手方向)に長く形成される。2枚のセパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば正極11を挟むように配置される。
 非水電解質二次電池10は、電極体14の上下にそれぞれ配置された絶縁板18,19を備える。図1に示す例では、正極11に取り付けられた正極タブ20が絶縁板18の貫通孔を通って封口体17側に延び、負極12に取り付けられた負極タブ21が絶縁板19の外側を通って外装缶16の底部側に延びている。正極タブ20は封口体17の底板23の下面に溶接等で接続され、底板23と電気的に接続された封口体17のキャップ27が正極端子となる。負極タブ21は外装缶16の底部内面に溶接等で接続され、外装缶16が負極端子となる。
 外装缶16は、例えば有底円筒形状の金属製容器である。外装缶16と封口体17との間にはガスケット28が設けられ、電池ケース15の内部空間が密閉される。外装缶16は、例えば側面部を外部からプレスして形成された、封口体17を支持する溝入部22を有する。溝入部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。
 封口体17は、電極体14側から順に、底板23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材25が介在している。異常発熱で電池の内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断し、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 以下、非水電解質二次電池10を構成する正極11、負極12、セパレータ13及び非水電解質について、特に正極11を構成する正極活物質層31に含まれる正極活物質について詳説する。
 [正極]
 正極11は、正極集電体30と、正極集電体30の両面に形成された正極活物質層31とを有する。正極集電体30には、アルミニウム、アルミニウム合金など、正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極活物質層31は、正極活物質、導電材、及び結着材を含む。正極活物質層31の厚みは、例えば正極集電体30の片側で10μm~150μmである。正極11は、正極集電体30の表面に正極活物質、導電材、及び結着材等を含む正極スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極活物質層31を正極集電体30の両面に形成することにより作製できる。
 正極活物質層31に含まれる導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。正極活物質層31に含まれる結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィンなどが例示できる。これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩、ポリエチレンオキシド(PEO)などが併用されてもよい。
 正極活物質は、層状構造を有する、一般式LiNiαAlβCoγδSr2-w(式中、0.95<a<1.05、0.85≦α≦0.95、0<β≦0.08、0≦γ≦0.1、0≦δ≦0.15、0<x≦0.015、0≦w<0.05、α+β+γ+δ=1、Mは、Mn、Fe、Ti、Si、Nb、Zr、Mo及びZnから選ばれる少なくとも1種の元素)で表されるリチウム複合酸化物を含む。
 リチウム複合酸化物の層状構造は、例えば、空間群R-3mに属する層状構造、空間群C2/mに属する層状構造等が挙げられる。これらの中では、高容量化、結晶構造の安定性等の点で、空間群R-3mに属する層状構造であることが好ましい。
 リチウム複合酸化物中のLiの割合を示すaは、0.95≦a<1.05を満たし、0.97≦a≦1.03を満たすことがより好ましい。aが0.95未満の場合、aが上記範囲を満たす場合と比較して、電池容量が低下する場合がある。aが1.05以上の場合、aが上記範囲を満たす場合と比較して、リチウム化合物をより多く添加することになるため、生産コストの観点から経済的ではない場合がある。
 リチウム複合酸化物中のLiを除く金属元素の総モル数に対するNiの割合を示すαは、電池の高容量化を図り、且つ他の金属元素を添加するために、0.85≦α≦0.95を満たす。
 リチウム複合酸化物中のLiを除く金属元素の総モル数に対するAlの割合を示すβは、0<β≦0.08を満たす。Alは、充放電中にも酸化数変化が生じないため、遷移金属層に含有されることで遷移金属層の構造が安定化すると考えられる。一方、Alの含有率が8モル%超では、Al不純物が生成され電池容量が低下してしまう。Alは、例えば、リチウム複合酸化物の層状構造内に均一に分散していてもよいし、層状構造内の一部に存在していてもよい。
 Co及びM(Mは、Mn、Fe、Ti、Si、Nb、Zr、Mo及びZnから選ばれる少なくとも1種の元素)は、任意成分である。リチウム複合酸化物中のLiを除く金属元素の総モル数に対するCo及びMの割合を示すγ及びδは、それぞれ、0≦γ≦0.1、0≦δ≦0.15を満たす。Coは高価であるため、製造コストの観点から、Coの含有率を抑えることが望まれている。
 リチウム複合酸化物中のLiを除く金属元素の総モル数に対するSrの割合を示すxは、0<x≦0.015を満たす。Srを含有することで電子的相互作用によりリチウム複合酸化物の表面状態に変化を与えるため、抵抗を下げることができると考えられる。Srは、層状構造内又はリチウム複合酸化物の表面に化合物として存在しており、どちらの形態においてもリチウム複合酸化物の表面状態に変化を与えることができる。
 リチウム複合酸化物を構成する元素の含有率は、誘導結合プラズマ発光分光分析装置(ICP-AES)や電子線マイクロアナライザー(EPMA)、エネルギー分散型X線分析装置(EDX)等により測定することができる。
 リチウム複合酸化物は、層状構造のLi層にLi以外の金属元素が存在している。そして、層状構造のLi層に存在するLi以外の金属元素の割合は、電池の反応抵抗を下げるために、リチウム複合酸化物中のLiを除く金属元素の総モル量に対して1モル%以上2.5モル%以下の範囲であり、好ましくは1モル%以上2モル%以下の範囲である。層状構造のLi層におけるLi以外の金属元素の割合が、1モル%未満の場合、上記範囲を満たす場合と比較して、Li層中のLiイオンが引き抜かれた状態での層状構造の安定性が低下し、電池の反応抵抗が高くなる。また、層状構造のLi層におけるLi以外の金属元素の割合が2.5モル%を超える場合、上記範囲を満たす場合と比較して、Li層中のLiイオンの拡散性が低下し、電池容量の低下と共に電池の反応抵抗が高くなる。層状構造のLi層に存在する金属元素は、主にNiであるが、他の金属元素を含んでもよい。
 層状構造のLi層におけるLi以外の金属元素の割合は、リチウム複合酸化物のX線回折測定によるX線回折パターンのリートベルト解析結果から得られる。
 X線回折パターンは、粉末X線回折装置(株式会社リガク製、商品名「RINT-TTR」、線源Cu-Kα)を用いて、以下の条件による粉末X線回折法によって得られる。
測定範囲:15-120°
スキャン速度:4°/min
解析範囲:30-120°
バックグラウンド:B-スプライン
プロファイル関数:分割型擬Voigt関数
束縛条件:Li(3a)+Ni(3a)=1
     Ni(3a)+Ni(3b)=α(αは各々のNi含有割合)
ICSD No.:98-009-4814
 また、X線回折パターンのリートベルト解析には、リートベルト解析ソフトであるPDXL2(株式会社リガク)が使用される。
 リチウム複合酸化物は、上記X線回折によるX線回折パターンの結果から得られる結晶構造のa軸長を示す格子定数aが2.870Å<a<2.877Åの範囲であり、c軸長を示す格子定数cが14.18Å<c<14.21Åの範囲であることが好ましい。上記格子定数aが2.870Å以下である場合、上記範囲を満たす場合と比較して、結晶構造中の原子間距離が狭く不安定な構造になり、電池の反応抵抗が高くなる場合がある。また、上記格子定数aが2.877Å以上である場合、結晶構造中の原子間距離が広く不安定な構造になり、上記範囲を満たす場合と比較して、電池の出力特性が低下する場合がある。また、上記格子定数cが14.18Å以下である場合、結晶構造中の原子間距離が狭く不安定な構造になり、上記範囲を満たす場合と比較して、電池の反応抵抗が高くなる場合がある。また、上記格子定数cが14.21Å以上である場合、結晶構造中の原子間距離が広く不安定な構造になり、上記範囲を満たす場合と比較して、電池の出力特性が低下する場合がある。
 リチウム複合酸化物は、上記X線回折によるX線回折パターンの(104)面の回折ピークの半値幅からシェラーの式(Scherrer equation)により算出される結晶子サイズsが、400Å≦s≦800Åであることが好ましい。リチウム複合酸化物の上記結晶子サイズsが400Åより小さい場合、上記範囲を満たす場合と比較して、結晶性が低下して、電池の反応抵抗が高くなる場合がある。また、リチウム複合酸化物の上記結晶子サイズsが800Åを越える場合、上記範囲を満たす場合と比較して、Liの拡散性が悪くなり、電池の出力特性が低下する場合がある。シェラーの式は、下式で表される。
 s=Kλ/Bcosθ
 上式において、sは結晶子サイズ、λはX線の波長、Bは(104)面の回折ピークの半値幅、θは回折角(rad)、KはScherrer定数である。本実施形態においてKは0.9とする。
 正極活物質におけるリチウム複合酸化物の含有率は、例えば、電池の容量を向上させることや充放電サイクル特性の低下を効果的に抑制すること等の点で、正極活物質の総質量に対して90質量%以上であることが好ましく、99質量%以上であることがさらに好ましい。
 また、本実施形態の正極活物質は、本実施形態のリチウム複合酸化物以外に、その他のリチウム複合酸化物を含んでいても良い。その他のリチウム複合酸化物としては、例えば、Niの含有率が0モル%以上85モル%未満のリチウム複合酸化物が挙げられる。
 次に、リチウム複合酸化物の製造方法の一例について説明する。
 リチウム複合酸化物の製造方法は、例えば、Ni、Al及び任意の金属元素を含む複合酸化物を得る第1工程と、第1工程で得られた複合酸化物とリチウム化合物とを混合して混合物を得る第2工程と、当該混合物を焼成する第3工程と、を備える。最終的に得られるリチウム複合酸化物の層状構造のLi層におけるLi以外の金属元素の割合、格子定数a、格子定数c、結晶子サイズsの各パラメータは、例えば、第2工程における原料の混合割合、第3工程における焼成温度や時間等を制御することにより調整される。
 第1工程においては、例えば、Ni、Al及び任意の金属元素(Co、Mn、Fe等)を含む金属塩の溶液を撹拌しながら、水酸化ナトリウム等のアルカリ溶液を滴下し、pHをアルカリ側(例えば8.5~12.5)に調整することにより、Ni、Al及び任意の金属元素を含む複合水酸化物を析出(共沈)させ、当該複合水酸化物を焼成することにより、Ni、Al及び任意の金属元素を含む複合酸化物を得る。焼成温度は、特に制限されるものではないが、例えば、300℃~600℃の範囲である。
 第2工程においては、第1工程で得られた複合酸化物と、リチウム化合物とストロンチウム化合物とを混合して、混合物を得る。リチウム化合物としては、例えば、LiCO、LiOH、Li、LiO、LiNO、LiNO、LiSO、LiOH・HO、LiH、LiF等が挙げられる。ストロンチウム化合物としては、Sr(OH)、SrO、SrCo、SrSO、Sr(NO等が挙げられる。第1工程で得られた複合酸化物とリチウム化合物との混合割合は、上記各パラメータを上記規定した範囲に調整することを容易とする点で、例えば、Liを除く金属元素:Liのモル比が、1:0.98~1:1.1の範囲となる割合とすることが好ましい。第2工程では、第1工程で得られた複合酸化物とリチウム化合物とストロンチウム化合物とを混合する際、必要に応じて他の金属原料を添加してもよい。他の金属原料は、第1工程で得られた複合酸化物を構成する金属元素以外の金属元素を含む酸化物等である。
 第3工程においては、第2工程で得られた混合物を所定の温度及び時間で焼成し、本実施形態に係るリチウム複合酸化物を得る。第3工程における混合物の焼成は、例えば焼成炉内で、酸素気流下、450℃以上680℃以下の第1設定温度まで第1昇温速度で焼成する第1焼成工程と、前記第1焼成工程により得られた焼成物を、焼成炉内で、酸素気流下で、680℃超800℃以下の第2設定温度まで第2昇温速度で焼成する第2焼成工程とを含む、多段階焼成工程を備える。ここで、第1昇温速度は1.5℃/min以上5.5℃/min以下の範囲であり、第2昇温速度は、第1昇温速度より遅く、0.1℃/min以上3.5℃/min以下の範囲である。このような多段階焼成により、最終的に得られる本実施形態のリチウム遷移金属酸化物において、その層状構造のLi層に存在するLi以外の金属元素の割合、格子定数a、格子定数c、結晶子サイズs等の各パラメータ等を上記規定した範囲に調整することができる。なお、第1昇温速度、第2昇温速度は、上記規定した範囲内であれば、温度領域毎に複数設定してもよい。第1焼成工程における第1設定温度の保持時間は、リチウム遷移金属酸化物の上記各パラメータを上記規定した範囲に調整する点で、0時間以上5時間以下が好ましく、0時間以上3時間以下がより好ましい。第1設定温度の保持時間とは、第1設定温度に達した後、第1設定温度を維持する時間である。第2焼成工程における第2設定温度の保持時間は、リチウム遷移金属酸化物の上記各パラメータを上記規定した範囲に調整する点で、1時間以上10時間以下が好ましく、1時間以上5時間以下がより好ましい。第2設定温度の保持時間とは、第2設定温度に達した後、第2設定温度を維持する時間である。混合物の焼成の際には、上記各パラメータを上記規定した範囲に調整する点で、例えば、酸素濃度60%以上の酸素気流中で行い、酸素気流の流量を、焼成炉10cmあたり、0.2mL/min~4mL/minの範囲及び混合物1kgあたり0.3L/min以上とすることができる。
 [負極]
 負極12は、負極集電体40と、負極集電体40の両面に形成された負極活物質層41とを有する。負極集電体40には、銅、銅合金等の負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルムなどを用いることができる。負極活物質層41は、負極活物質、及び結着材を含む。負極活物質層41の厚みは、例えば負極集電体40の片側で10μm~150μmである。負極12は、負極集電体40の表面に負極活物質、結着材等を含む負極スラリーを塗布し、塗膜を乾燥させた後、圧延して負極活物質層41を負極集電体40の両面に形成することにより作製できる。
 負極活物質層41に含まれる負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、一般的には黒鉛等の炭素材料が用いられる。黒鉛は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛のいずれであってもよい。また、負極活物質として、Si、Sn等のLiと合金化する金属、Si、Sn等を含む金属化合物、リチウムチタン複合酸化物などを用いてもよい。また、これらに炭素被膜を設けたものを用いてもよい。例えば、SiO(0.5≦y≦1.6)で表されるSi含有化合物、又はLi2zSiO(2+z)(0<z<2)で表されるリチウムシリケート相中にSiの微粒子が分散したSi含有化合物などが、黒鉛と併用されてもよい。
 負極活物質層41に含まれる結着材には、正極11の場合と同様に、PTFE、PVdF等の含フッ素樹脂、PAN、ポリイミド、アクリル樹脂、ポリオレフィンなどを用いてもよいが、好ましくはスチレン-ブタジエンゴム(SBR)が用いられる。また、負極活物質層41には、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)などが含まれていてもよい。
 [セパレータ]
 セパレータ13には、例えば、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータ13は、単層構造であってもよく、積層構造を有していてもよい。また、セパレータ13の表面には、アラミド樹脂等の耐熱性の高い樹脂層、無機化合物のフィラーを含むフィラー層が設けられていてもよい。
 [非水電解質]
 非水電解質は、例えば、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステルなどが挙げられる。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテルなどが挙げられる。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-m(C2n+1(1<m<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2p+1SO)(C2q+1SO){p,qは0以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、例えば非水溶媒1L当り0.8モル~1.8モルである。また、さらにビニレンカーボネートやプロパンスルトン系添加剤を添加してもよい。
 以下、実施例及び比較例により本開示をさらに説明するが、本開示は以下の実施例に限定されるものではない。なお、比較を容易にするため、リチウム複合酸化物中のLiを除く金属元素の総モル量が1とならない比較例も含む。
 [正極活物質の作製]
 <実施例1-1>
 共沈法により得られた[Ni0.86Al0.03Co0.03Mn0.08](OH)で表される複合水酸化物を500℃で8時間焼成し、複合酸化物(Ni0.86Al0.03Co0.03Mn0.08)を得た。LiOH、Sr(OH)、Ti(OH)及び上記複合酸化物を、Liと、Ni、Al、Co、Mn、Ti及びSrの総量とのモル比が1.03:1になるように混合して混合物を得た。酸素濃度95%の酸素気流下(10cmあたり2mL/min及び混合物1kgあたり5L/minの流量)で、当該混合物を、昇温速度2.0℃/minで、室温から650℃まで焼成した後、昇温速度0.5℃/minで、650℃から780℃まで焼成した。この焼成物を水洗により不純物を除去し、リチウム複合酸化物を得た。ICP発光分光分析装置(Thermo Fisher Scientific社製、商品名「iCAP6300」)を用いて、上記得られたリチウム複合酸化物の組成を測定した結果、組成はLiNi0.85Al0.03Co0.03Mn0.08Ti0.01Sr0.001であった。これを実施例1-1の正極活物質とした。
 <比較例1-1>
 LiOH、Ti(OH)及び複合酸化物(Ni0.86Al0.03Co0.03Mn0.08)を、Liと、Ni、Al、Co、Mn、及びTiの総量とのモル比が1.03:1になるように混合して混合物を得た以外は実施例1-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.85Al0.03Co0.03Mn0.08Ti0.01であった。これを比較例1-1の正極活物質とした。
 <比較例1-2>
 [Ni0.85Co0.05Mn0.1](OH)で表される複合水酸化物を使用し、LiOHと複合酸化物(Ni0.85Co0.05Mn0.1)とを、LiとNi、Co、及びMnの総量とのモル比が1.1:1になるように混合して混合物を得た以外は実施例1-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.85Co0.05Mn0.1であった。これを比較例1-2の正極活物質とした。
 <比較例1-3>
 [Ni0.85Co0.05Mn0.1](OH)で表される複合水酸化物を使用し、LiOH、Sr(OH)及び複合酸化物(Ni0.85Co0.05Mn0.1)を、Liと、Ni、Co、Mn及びSrの総量とのモル比が1.08:1になるように混合して混合物を得た以外は実施例1-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.85Co0.05Mn0.1Sr0.01であった。これを比較例1-3の正極活物質とした。
 <比較例1-4>
 [Ni0.88Al0.09Co0.03](OH)で表される複合水酸化物を使用し、LiOHと複合酸化物(Ni0.88Al0.09Co0.03)とを、Liと、Ni、Al及びCoの総量とのモル比が1.03:1になるように混合して混合物を得た以外は実施例1-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.88Al0.09Co0.03であった。これを比較例1-4の正極活物質とした。
 <比較例1-5>
 [Ni0.88Al0.09Co0.03](OH)で表される複合水酸化物を使用し、LiOH、Sr(OH)及び複合酸化物(Ni0.88Al0.09Co0.03)を、Liと、Ni、Al、Co及びSrの総量とのモル比が1.03:1になるように混合して混合物を得た以外は実施例1-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.88Al0.09Co0.03Sr0.01であった。これを比較例1-5の正極活物質とした。
 <実施例2-1>
 [Ni0.94Al0.05Co0.01](OH)で表される複合水酸化物を使用し、500℃で8時間焼成し、複合酸化物(Ni0.94Al0.05Co0.01)を得た。LiOHとSr(OH)と上記複合酸化物とを、Liと、Ni、Al、Co及びSrの総量とのモル比が1.03:1になるように混合して混合物を得た。酸素濃度95%の酸素気流下(10cmあたり2mL/min及び混合物1kgあたり5L/minの流量)で、当該混合物を、昇温速度3.0℃/minで、室温から650℃まで焼成した後、昇温速度0.5℃/minで、650℃から700℃まで焼成した。この焼成物を水洗により不純物を除去し、リチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.94Al0.05Co0.01Sr0.001であった。これを実施例2-1の正極活物質とした。
 <実施例2-2>
 [Ni0.94Co0.05Mn0.005](OH)で表される複合水酸化物を使用し、LiOH、Nb、Sr(OH)及び複合酸化物(Ni0.94Co0.05Mn0.005)を、Liと、Ni、Co、Mn、Nb、及びSrの総量とのモル比が1.03:1になるように混合して混合物を得たこと、当該混合物を、昇温速度1.5℃/minで、室温から650℃まで焼成した後、昇温速度1.0℃/minで、650℃から700℃まで焼成したこと以外は実施例2-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.94Al0.05Mn0.005Nb0.005Sr0.01であった。これを実施例2-2の正極活物質とした。
 <比較例2-1>
 LiOHと複合酸化物(Ni0.94Al0.05Co0.01)とを、Liと、Ni、Al及びCoの総量とのモル比が1.03:1になるように混合して混合物を得た以外は実施例2-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.94Al0.05Co0.01であった。これを比較例2-1の正極活物質とした。
 <比較例2-2>
 LiOH、Sr(OH)及び複合酸化物(Ni0.94Al0.05Co0.01)を、Liと、Ni、Al、Co及びSrの総量とのモル比が1.13:1になるように混合して混合物を得た以外は実施例2-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.94Al0.05Co0.01Sr0.01であった。これを比較例2-2の正極活物質とした。
 <比較例2-3>
 昇温速度6.0℃/minで、室温から650℃まで焼成した後、昇温速度5.0℃/minで、650℃から750℃まで焼成した以外は実施例2-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.94Al0.05Co0.01Sr0.01であった。これを比較例2-3の正極活物質とした。
 <実施例3-1>
 [Ni0.91Al0.04Co0.05](OH)で表される複合水酸化物を使用し、500℃で8時間焼成し、複合酸化物(Ni0.91Al0.04Co0.05)を得た。LiOH、Sr(OH)及び上記複合酸化物を、Liと、Ni、Al、Co及びSrの総量とのモル比が1.03:1になるように混合して混合物を得た。酸素濃度95%の酸素気流下(10cmあたり2mL/min及び混合物1kgあたり5L/minの流量)で、当該混合物を、昇温速度2.0℃/minで、室温から650℃まで焼成した後、昇温速度0.5℃/minで、650℃から720℃まで焼成した。この焼成物を水洗により不純物を除去し、リチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.91Al0.04Co0.05Sr0.0005であった。これを実施例3-1の正極活物質とした。
 <実施例3-2>
 LiOH、Sr(OH)及び複合酸化物(Ni0.91Al0.04Co0.05)を、Liと、Ni、Al、Co及びSrの総量とのモル比が1.01:1になるように混合して混合物を得た以外は実施例3-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.91Al0.04Co0.05Sr0.013であった。これを実施例3-2の正極活物質とした。
 <実施例3-3>
 [Ni0.915Al0.04Co0.045](OH)で表される複合水酸化物を使用し、LiOH、Sr(OH)、SiO及び複合酸化物(Ni0.91Al0.04Co0.045)を、Liと、Ni、Al、Co、Si及びSrの総量とのモル比が1.03:1になるように混合して混合物を得た以外は実施例3-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.91Al0.04Co0.045Si0.005Sr0.001であった。これを実施例3-3の正極活物質とした。
 <比較例3-1>
 LiOHと複合酸化物(Ni0.91Al0.04Co0.05)とを、Liと、Ni、Al及びCoの総量とのモル比が1.03:1になるように混合して混合物を得た以外は実施例3-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.91Al0.04Co0.05であった。これを比較例3-1の正極活物質とした。
 <比較例3-2>
 LiOH、Sr(OH)及び複合酸化物(Ni0.91Al0.04Co0.05)を、Liと、Ni、Al、Co及びSrの総量とのモル比が1.03:1になるように混合したこと、及び、昇温速度3.0℃/minで、室温から650℃まで焼成した後、昇温速度1.0℃/minで、650℃から750℃まで焼成したこと以外は実施例3-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.91Al0.04Co0.05Sr0.02であった。これを比較例3-2の正極活物質とした。
 <比較例3-3>
 [Ni0.92Al0.04Co0.04](OH)で表される複合水酸化物を使用し、LiOH、Mg(OH)及び複合酸化物(Ni0.92Al0.04Co0.04)を、Liと、Ni、Al、Co及びMgの総量とのモル比が1.03:1になるように混合して混合物を得た以外は実施例3-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.91Al0.04Co0.04Mg0.01であった。これを比較例3-3の正極活物質とした。
 <比較例3-4>
 [Ni0.92Al0.04Co0.04](OH)で表される複合水酸化物を使用し、LiOH、Ba(OH)及び複合酸化物(Ni0.92Al0.04Co0.04)を、Liと、Ni、Al、Co及びBaの総量とのモル比が1.03:1になるように混合して混合物を得た以外は実施例1-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.91Al0.04Co0.04Ba0.01であった。これを比較例3-4の正極活物質とした。
 <実施例4-1>
 [Ni0.88Al0.03Co0.08Fe0.01](OH)で表される複合水酸化物を使用し、400℃で8時間焼成し、複合酸化物(Ni0.88Al0.03Co0.03Fe0.01)を得た。LiOH、Sr(OH)及び上記複合酸化物を、Liと、Ni、Al、Co、Fe及びSrの総量とのモル比が1.03:1になるように混合して混合物を得た。当該混合物を酸素濃度95%の酸素気流下(10cmあたり2mL/min及び混合物1kgあたり5L/minの流量)で、当該混合物を、昇温速度2.0℃/minで、室温から670℃まで焼成した後、昇温速度0.5℃/minで、670℃から760℃まで焼成した。この焼成物を水洗により不純物を除去し、リチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.88Al0.03Co0.08Fe0.01Sr0.0008であった。これを実施例4-1の正極活物質とした。
 <比較例4-1>
 LiOHと複合酸化物(Ni0.88Al0.03Co0.08Fe0.01)とを、Liと、Ni、Al、Co及びFeの総量とのモル比が1.03:1になるように混合した以外は実施例4-1と同様にしてリチウム複合酸化物を得た。得られたリチウム複合酸化物の組成はLiNi0.88Al0.03Co0.08Fe0.01であった。これを比較例4-1の正極活物質とした。
 実施例及び比較例のリチウム複合酸化物(正極活物質)に対して、既述の条件で粉末X線回折測定を行い、X線回折パターンを得た。実施例及び比較例の全てのX線回折パターンから、層状構造を示す回折線が確認された。
 各実施例及び各比較例のX線回折パターンから、Li以外の金属元素の割合、格子定数a、格子定数c、結晶子サイズsを求めた。その結果を表1にまとめた。測定方法は既述の通りである。
Figure JPOXMLDOC01-appb-T000001
 実施例及び比較例のリチウム複合酸化物(正極活物質)を用いて、以下のように試験セルを作製した。
 [正極の作製]
 実施例1-1の正極活物質を91質量部、導電材としてアセチレンブラックを7質量部、結着剤としてポリフッ化ビニリデンを2質量部の割合で混合し、これをN-メチル-2-ピロリドン(NMP)と混合して正極スラリーを調製した。次いで、当該スラリーを厚み15μmのアルミニウム箔からなる正極集電体に塗布し、塗膜を乾燥した後、圧延ローラにより、塗膜を圧延して、正極を作製した。その他の実施例及び比較例も同様にして正極を作製した。
 [非水電解質の調製]
 エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)とを、3:3:4の体積比で混合した。当該混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1.2モル/リットルの濃度となるように溶解させて、非水電解質を調製した。
 [試験セルの作製]
 実施例1-1の正極と、リチウム金属箔からなる負極とを、セパレータを介して互いに対向するように積層し、これを巻回して、電極体を作製した(約66mAh)。次いで、電極体及び上記非水電解質をアルミニウム製の外装体に挿入し、試験セルを作製した。その他の実施例及び比較例も同様にして正極を作製した。
 [反応抵抗の測定]
 上記試験セルについて、25℃の温度条件下で、セル電圧が4.3Vになるまで13.2mAで定電流充電を行い、その後、電流値が0.66mAになるまで4.3Vで定電圧充電を行った。続いて、セル電圧が2.5Vになるまで13.2mAで定電流放電を行った。その後、再び25℃の温度条件下で、セル電圧が4.3Vになるまで13.2mAで定電流充電を行い、その後、電流値が0.66mAになるまで4.3Vで定電圧充電を行った。次いで、試験セルを交流インピーダンス測定器を用いて20kHz~0.01Hzの交流インピーダンスを測定し、測定データからコールコールプロットを描画し、10Hz~0.1Hzの間の円弧の大きさから、反応抵抗を求めた。
 実施例及び比較例の反応抵抗を表2~5に分けて示す。表2に示した実施例1-1の試験セルの反応抵抗は、比較例1-1の試験セルの反応抵抗を100として、相対的に表したものである。また、同様に、比較例1-3の試験セルの反応抵抗は比較例1-2の試験セルの反応抵抗を100として相対的に表したものであり、比較例1-5の試験セルの反応抵抗は比較例1-4の試験セルの反応抵抗を100として相対的に表したものである。
 表3に示した実施例2-1~2-2、及び比較例2-2~2-3の試験セルの反応抵抗は、比較例2-1の試験セルの反応抵抗を100として、相対的に表したものである。
 表4に示した実施例3-1~3-3、及び比較例3-2~3-4の試験セルの反応抵抗は、比較例3-1の試験セルの反応抵抗を100として、相対的に表したものである。
 表5に示した実施例4-1の試験セルの反応抵抗は、比較例4-1の試験セルの反応抵抗を100として、相対的に表したものである。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表2において、Srを0.1モル%含む実施例1-1は、Srを含有しない比較例1-1よりも反応抵抗が低く、Sr含有の効果が示された。また、比較例1-2~1-5は、Alの含有率が0モル%又は9モル%と、0<β≦0.08の範囲にないので、Srの有無で反応抵抗は変わらなかった。また、実施例1-1から、リチウム複合酸化物(正極活物質)はMn、Tiを含有してもよいと推察される。
 表3において、Li層におけるLi以外の金属元素の割合が1.2の実施例2-1は、Sr含有の効果により反応抵抗が比較例2-1よりも低かった。しかし、Li層におけるLi以外の金属元素の割合がそれぞれ0.4及び3.0の比較例2-2及び2-3は、Srを含有しているが比較例2-1よりも反応抵抗が高かった。また、実施例2-2から、リチウム複合酸化物(正極活物質)はMn、Nbを含有してもよいと推察される。
 表4において、実施例3-1~3-3は、Sr含有の効果により反応抵抗が比較例3-1よりも低かった。一方、比較例3-2は、Srを2モル%と多く含有したため、比較例3-1よりも反応抵抗が高かった。また、比較例3-3及び3-4は、Srに代わってそれぞれMg、Baを含有しているが、比較例3-1と反応抵抗は略変わらなかった。また、実施例3-3から、リチウム複合酸化物(正極活物質)はSiを含有してもよいと推察される。
 表5においても、Srを0.08モル%含む実施例4-1は、Srを含有しない比較例4-1よりも反応抵抗が低く、Sr含有の効果が示された。また、実施例4-1から、リチウム複合酸化物(正極活物質)はFeを含有してもよいと推察される。
 10 非水電解質二次電池
 11 正極
 12 負極
 13 セパレータ
 14 電極体
 15 電池ケース
 16 外装缶
 17 封口体
 18,19 絶縁板
 20 正極タブ
 21 負極タブ
 22 溝入部
 23 底板
 24 下弁体
 25 絶縁部材
 26 上弁体
 27 キャップ
 28 ガスケット
 30 正極集電体
 31 正極活物質層
 40 負極集電体
 41 負極活物質層

Claims (4)

  1.  層状構造を有する、一般式LiNiαAlβCoγδSr2-w(式中、0.95<a<1.05、0.85≦α≦0.95、0<β≦0.08、0≦γ≦0.1、0≦δ≦0.15、0<x≦0.015、0≦w<0.05、α+β+γ+δ=1、Mは、Mn、Fe、Ti、Si、Nb、Zr、Mo及びZnから選ばれる少なくとも1種の元素)で表されるリチウム複合酸化物を含み、
     前記層状構造は、Li以外の金属元素を含有するLi層を含み、且つ、前記Li層に存在するLi以外の金属元素の割合は、前記リチウム複合酸化物中のLiを除く金属元素の総モル量に対して、1モル%以上2.5モル%以下の範囲である、非水電解質二次電池用正極活物質。
  2.  前記リチウム複合酸化物は、X線回折によるX線回折パターンの解析結果から得られる結晶構造のa軸長を示す格子定数a及びc軸長を示す格子定数cが、2.870Å<a<2.877Å、14.18Å<c<14.21Åの範囲である、請求項1に記載の非水電解質二次電池用正極活物質。
  3.  前記リチウム複合酸化物は、X線回折によるX線回折パターンの(104)面の回折ピークの半値幅からシェラーの式により算出される結晶子サイズsが、400Å≦s≦800Åの範囲である、請求項1又は2に記載の非水電解質二次電池用正極活物質。
  4.  請求項1~3のいずれか1項に記載の非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質とを備える、非水電解質二次電池。
PCT/JP2020/024534 2019-06-27 2020-06-23 非水電解質二次電池用正極活物質、及び非水電解質二次電池 WO2020262348A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/621,874 US20220255074A1 (en) 2019-06-27 2020-06-23 Cathode active material for non-aqueous-electrolyte secondary battery and non-aqueous-electrolyte secondary battery
JP2021526997A JPWO2020262348A1 (ja) 2019-06-27 2020-06-23
EP20832877.3A EP3992149A4 (en) 2019-06-27 2020-06-23 ACTIVE MATERIAL OF CATHODE FOR SECONDARY NON-AQUEOUS ELECTROLYTE BATTERY AND SECONDARY NON-AQUEOUS ELECTROLYTE BATTERY
CN202080044528.2A CN114008822A (zh) 2019-06-27 2020-06-23 非水电解质二次电池用正极活性物质及非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-119298 2019-06-27
JP2019119298 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020262348A1 true WO2020262348A1 (ja) 2020-12-30

Family

ID=74061354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024534 WO2020262348A1 (ja) 2019-06-27 2020-06-23 非水電解質二次電池用正極活物質、及び非水電解質二次電池

Country Status (5)

Country Link
US (1) US20220255074A1 (ja)
EP (1) EP3992149A4 (ja)
JP (1) JPWO2020262348A1 (ja)
CN (1) CN114008822A (ja)
WO (1) WO2020262348A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172446A1 (ja) * 2020-02-28 2021-09-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021172445A1 (ja) * 2020-02-28 2021-09-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021241077A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極、及び非水電解質二次電池
WO2021241076A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極、及び非水電解質二次電池
EP4063329A1 (en) * 2021-03-25 2022-09-28 SK On Co., Ltd. Cathode active material for lithium secondary battery and lithium secondary battery including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245210B2 (ja) 1973-07-28 1977-11-14
WO2005099022A1 (ja) * 2004-04-07 2005-10-20 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池
JP2007335405A (ja) * 2006-05-19 2007-12-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2009129820A (ja) * 2007-11-27 2009-06-11 Toyota Central R&D Labs Inc リチウムニッケル複合酸化物及びそれを用いたリチウムイオン二次電池並びにリチウムニッケル複合酸化物の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4781004B2 (ja) * 2005-04-28 2011-09-28 パナソニック株式会社 非水電解液二次電池
JP5143568B2 (ja) * 2005-12-20 2013-02-13 パナソニック株式会社 非水電解質二次電池
JP5245210B2 (ja) * 2006-05-01 2013-07-24 日亜化学工業株式会社 非水電解質電池用正極活物質とそれを用いた非水電解質電池
WO2007135973A1 (ja) * 2006-05-19 2007-11-29 Panasonic Corporation 非水電解質二次電池
US9543055B2 (en) * 2010-12-27 2017-01-10 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing the positive active material, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery
US10290869B2 (en) * 2014-03-20 2019-05-14 Washington University Doped lithium-rich layered composite cathode materials
JP6624885B2 (ja) * 2015-02-19 2019-12-25 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
CN108292750A (zh) * 2015-12-25 2018-07-17 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质和非水电解质二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245210B2 (ja) 1973-07-28 1977-11-14
WO2005099022A1 (ja) * 2004-04-07 2005-10-20 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池
JP2007335405A (ja) * 2006-05-19 2007-12-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2009129820A (ja) * 2007-11-27 2009-06-11 Toyota Central R&D Labs Inc リチウムニッケル複合酸化物及びそれを用いたリチウムイオン二次電池並びにリチウムニッケル複合酸化物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3992149A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172446A1 (ja) * 2020-02-28 2021-09-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021172445A1 (ja) * 2020-02-28 2021-09-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021241077A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極、及び非水電解質二次電池
WO2021241076A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極、及び非水電解質二次電池
EP4063329A1 (en) * 2021-03-25 2022-09-28 SK On Co., Ltd. Cathode active material for lithium secondary battery and lithium secondary battery including the same

Also Published As

Publication number Publication date
EP3992149A1 (en) 2022-05-04
EP3992149A4 (en) 2022-08-17
US20220255074A1 (en) 2022-08-11
CN114008822A (zh) 2022-02-01
JPWO2020262348A1 (ja) 2020-12-30

Similar Documents

Publication Publication Date Title
WO2021106324A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2020262348A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021241075A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022130982A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2022070649A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021100305A1 (ja) 非水電解質二次電池
WO2021039239A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP7300610B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2021152996A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2020262100A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2020262101A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2021241078A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2021172442A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JPWO2020110590A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池
WO2021095360A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021152997A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022138840A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022138919A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022138846A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022138031A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2021210444A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2024004626A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020832877

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020832877

Country of ref document: EP

Effective date: 20220127