WO2020262050A1 - リペア溶接検査装置およびリペア溶接検査方法 - Google Patents

リペア溶接検査装置およびリペア溶接検査方法 Download PDF

Info

Publication number
WO2020262050A1
WO2020262050A1 PCT/JP2020/023291 JP2020023291W WO2020262050A1 WO 2020262050 A1 WO2020262050 A1 WO 2020262050A1 JP 2020023291 W JP2020023291 W JP 2020023291W WO 2020262050 A1 WO2020262050 A1 WO 2020262050A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
inspection
repair welding
threshold value
repair
Prior art date
Application number
PCT/JP2020/023291
Other languages
English (en)
French (fr)
Inventor
和紀 花田
嵩宙 小松
隆太郎 門田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP20833069.6A priority Critical patent/EP3991911A4/en
Priority to JP2021528194A priority patent/JP7386461B2/ja
Priority to CN202080046823.1A priority patent/CN114025904B/zh
Publication of WO2020262050A1 publication Critical patent/WO2020262050A1/ja
Priority to US17/562,458 priority patent/US12078600B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0037Measuring of dimensions of welds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/133Means for feeding electrodes, e.g. drums, rolls, motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9515Objects of complex shape, e.g. examined with use of a surface follower device
    • G01N2021/9518Objects of complex shape, e.g. examined with use of a surface follower device using a surface follower, e.g. robot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/125Digital circuitry

Definitions

  • This disclosure relates to a repair welding inspection device and a repair welding inspection method.
  • Patent Document 1 describes a shape inspection device that inspects the shape of an object to be inspected by using an imaging optical system, the projection means for projecting slit light onto the object to be inspected, and scanning the slit light on the object to be inspected.
  • An imaging means for imaging the shape lines sequentially formed in the above a point cloud data acquisition means for acquiring the three-dimensional shape of the object to be inspected as point cloud data based on the imaging data of the sequentially formed shape lines, and The object to be inspected in the cutting line is based on the cutting line setting means for setting the cutting line according to the input to the object to be inspected displayed based on the point cloud data and the point cloud data corresponding to the cutting line. It is disclosed that a cross-sectional shape calculating means for calculating a cross-sectional shape is provided.
  • the present disclosure provides a repair welding inspection apparatus and a repair welding inspection method capable of performing a repair welding inspection.
  • the present disclosure is a repair welding inspection apparatus including a processor, wherein the repair welding inspection is different from a first threshold value for inspection of welding performed before repair welding.
  • a repair welding inspection apparatus that acquires a second threshold value, which is a determination threshold value for use, and uses the second threshold value to perform an inspection after the repair welding.
  • the present disclosure is a repair welding inspection method using a device provided with a processor, and the processor is different from the first threshold value which is a determination threshold value for inspection of welding performed before performing repair welding.
  • a repair welding inspection method in which a second threshold value, which is a determination threshold value for inspection of repair welding, is acquired, and the inspection after repair welding is performed using the second threshold value.
  • repair welding inspection can be performed.
  • FIG. 1000 Schematic diagram showing a use case example of the repair welding system 1000 including the repair welding inspection apparatus according to the present disclosure.
  • Plan view showing after repair welding (c) AA cross-sectional view showing after repair welding It is a figure which shows the determination example of the inspection threshold value used in step St104 when repair welding is performed to the defective part which is a defect type "weld line deviation", (a) plan view which shows before repair welding, (b). ) Plan view showing after repair welding, (c) AA cross-sectional view showing after repair welding It is a figure which shows the determination example of the inspection threshold value used in step St104 when repair welding is performed to the defective part which is a defect type "perforation", (a) plan view which shows before repair welding, (b). A plan view showing after repair welding, (c) a cross-sectional view taken along the line AA showing after repair welding, and (d) a cross-sectional view taken along line BB showing after repair welding.
  • Patent Document 1 makes it possible to determine the shape quality of a welded portion after performing the main welding by using an appearance inspection device. However, if the shape is not good, it is possible to judge whether or not the repair can be performed by rewelding (repair welding), and the rewelding for correction (repair welding) is performed by a human welding worker. Is currently being done. Therefore, there is a potential problem that the quality is not stable due to the difference in skill level of workers and misjudgment.
  • the inspection conditions are different each time between the main welding and the repair welding.
  • the repair welding inspection device and the repair welding inspection method according to the present disclosure have values according to the defect type of the welding defective portion with respect to the judgment threshold value for the inspection of the welding (main welding, etc.) performed before the repair welding.
  • the changed (determined) judgment threshold for repair welding inspection is acquired, and the judgment threshold for repair welding inspection is used to judge the welding location after repair welding.
  • the quality of welding can be improved and the production efficiency can be improved.
  • FIG. 1 is a schematic view showing an example of a use case of the repair welding system 1000 including the repair welding inspection device according to the present disclosure.
  • the repair welding system 1000 according to the present disclosure inspects the welded portion of the main weld with respect to the work Wk and determines that the welded portion is defective based on the information input by the user or the information related to the preset welding. It is a system that performs correction welding (repair welding) of defective parts. In addition to the above-mentioned inspection and repair welding, the system may perform main welding.
  • the repair welding system 1000 may be broadly divided into three parts: a robot (RB0) used for welding and inspection of welding results, a controller for controlling the robot and the inspection function provided by the robot, and a host device for the controller. ..
  • the repair welding system 1000 includes a main welding robot MC1 that performs main welding, an inspection robot MC2 that inspects the appearance of welded parts after main welding, and defective parts in the welded parts after main welding. It may be provided with a repair welding robot MC3 that performs repair welding in the case of a failure. Further, the welding system may include a robot control device 2a, an inspection device 3, and a robot control device 2b as a controller for controlling the above-mentioned various robots and inspection functions included in the robots. In this use case example, the repair welding inspection apparatus according to the present disclosure corresponds to the inspection apparatus 3. Further, the repair welding system 1000 may include a higher-level device 1 for the above-mentioned controller. The host device 1 may be connected to the monitor MN1, the interface UI1, and the external storage ST.
  • the host device 1 or various control devices included in the controller may be provided with a communication interface (wired or wireless) for communicating with an external network.
  • a communication interface wireless or wireless
  • these devices When these devices are connected to an external network, they can communicate with other devices (typically servers, PCs, various sensor devices, etc.) existing on the external network.
  • the present welding robot MC1 is shown as a robot different from the repair welding robot MC3.
  • the main welding robot MC1 may be used. It may be omitted.
  • the present welding robot MC1 may be integrated with each of the repair welding robot MC3 and the inspection robot MC2.
  • the repair welding robot MC3 may execute the main welding for welding the work Wk and the repair welding for correcting the defective part among the welded parts welded by the main welding with the same robot.
  • the inspection robot MC2 may execute the main welding for welding the work Wk and the inspection for whether or not there is a defective portion among the welded portions welded by the main welding with the same robot.
  • the inspection robot MC2 and the repair welding robot MC3 may be integrated into one robot, and the main welding robot MC1, the inspection robot MC2, and the repair welding robot MC3 may be integrated into one robot.
  • the number of each of the main welding robot MC1, the inspection robot MC2, and the repair welding robot MC3 is not limited to the number shown in FIG.
  • the number of each of the present welding robot MC1, the inspection robot MC2, and the repair welding robot MC3 may be a plurality, and may not be the same.
  • the repair welding system 1000 may be configured to include one main welding robot MC1, three inspection robots MC2, and two repair welding robots MC3.
  • the repair welding system 1000 can be adaptively configured as needed according to the processing range or processing speed of each robot.
  • the host device 1 is communicably connected between the monitor MN1, the interface UI1, the external storage ST, the robot control device 2a, and the robot control device 2b. Further, although the host device 1 shown in FIG. 1 is connected to the inspection device 3 via the robot control device 2b, it may be directly communicable with the inspection device 3 without going through the robot control device 2b.
  • the host device 1 may be a terminal device P1 that includes the monitor MN1 and the interface UI1 and is integrally configured, or may be integrally configured including the external storage ST.
  • the terminal device P1 is, for example, a PC (Personal Computer) used by a user (worker) when performing welding.
  • the terminal device P1 is not limited to the PC described above, and may be a computer having a communication function such as a smartphone, a tablet terminal, or a PDA (Personal Digital Assist).
  • the host device 1 is for performing main welding on the work Wk, inspection of welded parts, and repair welding of defective parts based on an input operation by the user (worker) or information preset by the user (worker). Generate each of the control signals.
  • the host device 1 transmits a control signal for executing the main welding to the generated work Wk and a control signal for executing the repair welding of the defective portion to the robot control device 2a. Further, the host device 1 transmits a control signal for executing an inspection of the welded portion welded by the main welding to the robot control device 2b.
  • the host device 1 may collect the inspection result of the welded portion received from the inspection device 3 via the robot control device 2b.
  • the host device 1 transmits the received inspection result to the external storage ST and the monitor MN1.
  • the inspection device 3 shown in FIG. 1 is connected to the host device 1 via the robot control device 2b, but may be directly and communicably connected.
  • the monitor MN1 may be configured by using a display such as an LCD (Liquid Crystal Display) or an organic EL (Electroluminescence).
  • the monitor MN1 displays the inspection result and the alert of the welded portion received from the inspection device 3.
  • the monitor MN1 may be configured by using, for example, a speaker (not shown), and when an alert is received, the alert may be notified by voice. That is, the form for giving a notification is not limited to the notification by visual information.
  • the interface UI1 is a user interface (UI: User Interface) that detects an input operation of a user (worker), and is configured by using a mouse, a keyboard, a touch panel, or the like.
  • the interface UI1 transmits an input operation based on the user's input operation to the host device 1.
  • the interface UI1 accepts, for example, input of a welding line, setting of an inspection standard according to the welding line, an operation of starting or ending the operation of the repair welding system 1000, and the like.
  • the external storage ST is configured by using, for example, a hard disk (HDD: Hard Disk Drive) or a solid state drive (SSD: Solid State Drive).
  • the external storage ST may store the inspection result of the welded portion received from the host device 1.
  • the robot control device 2a is communicably connected to the host device 1, the main welding robot MC1, and the repair welding robot MC3.
  • the robot control device 2a receives the control information about the main welding received from the host device 1, controls the main welding robot MC1 based on the received control information, and causes the work Wk to perform the main welding.
  • the robot control device 2a receives the control information related to the repair welding received from the higher-level device 1, controls the repair welding robot MC3 based on the received control information, and causes the inspection device 3 among the welded parts to be defective. Repair welding is performed on the determined defective part.
  • the robot control device 2a shown in FIG. 1 controls each of the main welding robot MC1 and the repair welding robot MC3.
  • the repair welding system 1000 according to the first embodiment may control, for example, the main welding robot MC1 and the repair welding robot MC3 by using different control devices. Further, the repair welding system 1000 according to the first embodiment may control the main welding robot MC1, the inspection robot MC2, and the repair welding robot MC3 with one control device.
  • the robot control device 2b is communicably connected to the host device 1, the inspection device 3, and the inspection robot MC2.
  • the robot control device 2b receives information about the welded portion (for example, position information of the welded portion) received from the host device 1.
  • the welded portion includes a welded portion with respect to the work Wk (that is, a portion welded by main welding) and a welded portion modified and welded by repair welding.
  • the robot control device 2b controls the inspection robot MC2 based on the received information about the welded portion, and causes the shape of the weld bead at the welded portion to be detected. Further, the robot control device 2b transmits the received information about the welded portion to the inspection device 3 for inspecting the shape of the welded portion.
  • the robot control device 2b transmits the inspection result received from the inspection device 3 to the host device 1.
  • the inspection device 3 is communicably connected to the robot control device 2b and the inspection robot MC2.
  • the inspection device 3 inspects whether or not there is a welding defect in the welded part based on the information about the welded part received from the robot control device 2b and the shape data of the weld bead of the welded part generated by the shape detecting unit 500. judge.
  • the inspection device 3 transmits information on the defective portion determined to be defective among the welded portions (for example, including a defective section, position information of the defective section, a defective factor, etc.) to the robot control device 2b as an inspection result. ..
  • the inspection device 3 may also transmit information such as the type of correction and the parameters for performing repair welding to the robot control device 2b as the inspection result. ..
  • the inspection device 3 may be directly connected to the host device 1 in a communicable manner. In this case, the inspection device 3 may be able to transmit the above-mentioned information to the higher-level device 1 without going through the robot control device 2b.
  • robot control device 2b and the inspection device 3 are described as separate bodies in FIG. 1, the robot control device 2b and the inspection device 3 may be integrated into a single device.
  • the main welding robot MC1 is a robot that is communicably connected to the robot control device 2a and executes welding (main welding) on a workpiece that has not been welded.
  • the main welding robot MC1 executes the main welding on the work Wk based on the control signal received from the robot control device 2a.
  • the inspection robot MC2 is communicably connected to the robot control device 2b and the inspection device 3.
  • the inspection robot MC2 acquires the shape data of the weld bead at the welded portion based on the control signal received from the robot control device 2b.
  • the repair welding robot MC3 is communicably connected to the robot control device 2a.
  • the repair welding robot MC3 executes repair welding on the defective portion based on the inspection result of the welded portion (that is, information on the defective portion) received from the robot control device 2a.
  • FIG. 2 is a diagram showing an example of an internal configuration of a repair welding system 1000a including a repair welding inspection device regarding control of the inspection / repair welding robot MC23 according to the first embodiment.
  • the inspection / repair welding robot MC23 shown in FIG. 2 is a robot in which the inspection robot MC2 and the repair welding robot MC3 shown in FIG. 1 are integrated. Further, in order to make the explanation easy to understand, the configurations related to the monitor MN1, the interface UI1, and the external storage ST are omitted.
  • the inspection / repair welding robot MC23 executes an inspection of the welded portion in the work Wk after the main welding is performed, based on the control signal received from the robot control device 2. Further, the inspection / repair welding robot MC23 performs repair welding on the welding defective portion in the welding portion of the work Wk based on the control signal received from the robot control device 2.
  • the inspection / repair welding robot MC23 is a robot that performs arc welding.
  • the inspection / repair welding robot MC23 may be a robot that performs, for example, laser welding other than arc welding.
  • the laser head may be connected to the laser oscillator via an optical fiber instead of the welding torch 400.
  • the inspection / repair welding robot MC23 that performs arc welding includes a manipulator 200, a wire feeding device 300, a welding wire 301, a welding torch 400, and a shape detection unit 500.
  • the manipulator 200 includes an articulated arm, and this arm can move based on a control signal received from the robot control unit 26 of the robot control device 2. As a result, the positions of the welding torch 400 and the shape detection unit 500 can be controlled. The angle of the welding torch 400 with respect to the work Wk can also be changed by moving the arm.
  • the wire feeding device 300 controls the feeding speed of the welding wire 301 based on the control signal received from the robot control device 2.
  • the wire feeding device 300 may include a sensor capable of detecting the remaining amount of the welding wire 301.
  • the welding wire 301 is held by the welding torch 400, and when power is supplied to the welding torch 400 from the welding power supply device 4, an arc is generated between the tip of the welding wire 301 and the work Wk, and the arc is generated. Welding is done.
  • the configuration for supplying the shield gas to the welding torch 400 will be omitted from the illustration and description for convenience of explanation.
  • the shape detection unit 500 included in the inspection / repair welding robot MC23 detects the shape of the weld bead at the welded portion based on the control signal received from the robot control device 2, and shape data for each weld bead based on the detection result. To get.
  • the inspection / repair welding robot MC23 transmits the acquired shape data for each welding bead to the inspection device 3.
  • the shape detection unit 500 is, for example, a three-dimensional shape measurement sensor.
  • the shape detection unit 500 includes, for example, a laser light source (not shown) configured to be able to scan the welded portion on the work Wk based on the position information of the welded portion received from the robot control device 2, and the periphery of the welded portion.
  • the imaging region including the welded portion is arranged so as to be able to image, and is composed of a camera (not shown) that images the reflection locus (that is, the shape line of the welded portion) of the reflected laser light among the laser beams irradiated to the welded portion. Weld.
  • the shape detection unit 500 transmits the shape data (image data) of the welded portion based on the laser beam imaged by the camera to the inspection device 3.
  • the camera (not shown) described above includes at least a lens (not shown) and an image sensor (not shown).
  • the image sensor is, for example, a CCD (Charged-Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) solid-state image sensor, and converts an optical image imaged on an imaging surface into an electric signal.
  • CCD Charge-Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the host device 1 generates a control signal for executing repair welding based on an input operation by the user (worker) or information preset by the user (worker), and robot controls the generated control signal. It is transmitted to the device 2.
  • the host device 1 includes a communication unit 10, a processor 11, and a memory 12.
  • the communication unit 10 is communicably connected to the robot control device 2.
  • the communication unit 10 transmits a control signal for executing repair welding to the robot control device 2.
  • the control signal for executing the repair welding referred to here may include a control signal for controlling each of the manipulator 200, the wire feeding device 300, and the welding power supply device 4.
  • the processor 11 is configured by using, for example, a CPU (Central Processing unit) or an FPGA (Field Programmable Gate Array), and performs various processes and controls in cooperation with the memory 12. Specifically, the processor 11 refers to the program and data held in the memory 12 and executes the program to realize the function of the cell control unit 13.
  • a CPU Central Processing unit
  • FPGA Field Programmable Gate Array
  • the cell control unit 13 executes repair welding based on an input operation by the user (worker) using the interface UI1 and information preset by the user (worker) and stored in the external storage ST. Generates a control signal for.
  • the control signal generated by the cell control unit 13 is transmitted to the robot control device 2 via the communication unit 10.
  • the memory 12 includes, for example, a RAM (Random Access Memory) as a work memory used when executing each process of the processor 11 and a ROM (Read Only Memory) for storing a program and data defining the operation of the processor 11. Have. Data or information generated or acquired by the processor 11 is temporarily stored in the RAM. A program that defines the operation of the processor 11 is written in the ROM.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the memory 12 stores information types related to the work Wk, a work S / N (Serial Number) assigned in advance for each work Wk, a welding line ID assigned for each welding location (welding line) set by the user, and the like.
  • a work S / N Serial Number assigned in advance for each work Wk
  • a welding line ID assigned for each welding location (welding line) set by the user, and the like.
  • the robot control device 2 controls each of the manipulator 200, the wire feeding device 300, and the welding power supply device 4 based on the control signal received from the host device 1.
  • the robot control device 2 includes a communication unit 20, a processor 21, and a memory 22.
  • the processor 21 includes a program editing unit 23a, a program calling unit 23b, a program storage unit 23c, a calculation unit 24, an inspection device control unit 25, a robot control unit 26, and a welding power supply control unit 27. It is composed.
  • the communication unit 20 is communicably connected to the host device 1.
  • the communication unit 20 receives a control signal from the host device 1 for executing repair welding and visual inspection by the inspection device 3.
  • the processor 21 is configured by using, for example, a CPU or an FPGA, and performs various processes and controls in cooperation with the memory 22. Specifically, the processor 21 refers to the program and data held in the memory 22 and executes the program to realize the functions of each part.
  • Each unit is a program editing unit 23a, a program calling unit 23b, a program storage unit 23c, a calculation unit 24, an inspection device control unit 25, a robot control unit 26, and a welding power supply control unit 27.
  • the functions of each part are, for example, a function of editing and calling a repair welding program for executing a repair welding stored in advance, a manipulator 200, a wire feeder 300, and a welding power supply device based on the called repair welding program. It is a function of generating a control signal for controlling each of the four.
  • the memory 22 has, for example, a RAM as a work memory used when executing each process of the processor 21, and a ROM for storing a program and data defining the operation of the processor 21. Data or information generated or acquired by the processor 21 is temporarily stored in the RAM. A program that defines the operation of the processor 21 is written in the ROM.
  • the program editing unit 23a is a program (control signal) for executing repair welding based on information regarding a defective portion received from the inspection device 3 via the communication unit 20 (for example, a determination result by the inspection device 3 described later). ) Is edited.
  • the program editing unit 23a refers to the repair welding basic program for executing repair welding stored in advance in the program storage unit 23c, and receives the position of the defective part, the defect factor, and the parameters for repair welding (correction). Edit the repair welding program according to the parameters).
  • the repair welding program after editing may be stored in the program storage unit 23c, or may be stored in a RAM or the like in the memory 22.
  • the repair welding program includes current, voltage, offset amount, etc. for controlling the welding power supply device 4, the manipulator 200, the wire feeder 300, the welding torch 400, the shape detection unit 500, etc. in executing the repair welding. Parameters such as speed, posture, and method may be included.
  • the program calling unit 23b calls various programs stored in the ROM included in the memory 22, the program storage unit 23c, and the like.
  • the program calling unit 23b may call the program on the inspection / repair welding robot MC23 side. Further, the program calling unit 23b can select and call an appropriate program from a plurality of programs according to the inspection result (determination result) by the inspection device 3. That is, the program calling unit 23b can change the program according to the inspection result (determination result) by the inspection device 3.
  • the program storage unit 23c stores various programs used by the robot control device 2.
  • the above-mentioned repair welding basic program, the repair welding program edited by the program editing unit 23a, and the like may be stored in the program storage unit 23c.
  • the calculation unit 24 is a functional block that performs various calculations.
  • the calculation unit 24 performs calculations for controlling the manipulator 200 and the wire feeding device 300 controlled by the robot control unit 26, for example, based on the repair welding program.
  • the calculation unit 24 may calculate the offset amount required for repair welding with respect to the defective portion based on the position of the defective portion.
  • the inspection device control unit 25 generates a control signal for controlling the inspection device 3. This control signal is transmitted to the inspection device 3 via the communication unit 20. On the contrary, the inspection device control unit 25 receives various information from the inspection device 3 via the communication unit 20, edits, for example, a repair welding program based on the information (program editing unit 23a), and notifies the host device 1 of the notification. Performs various processes such as sending to.
  • the robot control unit 26 is a manipulator 200 and a wire feeding device 300, respectively, based on the repair welding program called by the program calling unit 23b or stored in the program storage unit 23c and the calculation result from the calculation unit 24.
  • the welding power supply control unit 27 drives the welding power supply device 4 based on the repair welding program called by the program calling unit 23b or stored in the program storage unit 23c and the calculation result from the calculation unit 24.
  • the information regarding the defective portion is transmitted from the inspection device 3 connected to the inspection robot MC2 to the repair welding robot MC3 via the host device 1. It may be transmitted to the connected robot control device 2.
  • the program editing unit 23a of the robot control device 2 connected to the repair welding robot MC3 is based on the information regarding the defective portion received from the host device 1 via the communication unit 20 (for example, the determination result by the inspection device 3 described later). Then, the program (control signal) for executing the repair welding may be edited.
  • the form in which the program editing unit 23a and the program calling unit 23b are on the robot control device 2 side has been described.
  • a program editing unit and a program calling unit may be provided on the inspection device 3 side.
  • the inspection device 3 may call the above-mentioned program or edit the repair welding program.
  • the call source of the program is not limited to the inspection device 3, and the program may be called from the robot control device 2, the inspection / repair welding robot MC23 connected to the robot control device 2, or the like.
  • the called program is edited by the program editorial department.
  • the edited program is transmitted from the inspection device 3 to the robot control device 2 as a repair welding program, and the robot control device 2 can perform repair welding using this repair welding program.
  • the inspection device 3 inspects (determines) the welded portion of the work Wk based on the shape data of the weld bead for each welded portion acquired by the shape detecting unit 500.
  • the inspection device 3 includes a communication unit 30, a processor 31, a memory 32, a shape detection control unit 34, a data processing unit 35, a determination threshold storage unit 36, and a determination unit 37.
  • the communication unit 30 is communicably connected to the robot control device 2.
  • the communication unit 30 may be directly and communicably connected to the host device 1.
  • the communication unit 30 receives information about the welded portion (welded line) from the host device 1 or the robot control device 2.
  • the information about the welded portion may include, for example, the work type, the work S / N, the weld line ID, and the like.
  • the inspection device 3 transmits the inspection result of the welded portion to the host device 1 or the robot control device 2 via the communication unit 30.
  • the processor 31 is configured by using, for example, a CPU or an FPGA, and performs various processes and controls in cooperation with the memory 32. Specifically, the processor 31 refers to the program and data held in the memory 32, and executes the program to realize the functions of each part.
  • Each unit includes a shape detection control unit 34, a data processing unit 35, a determination threshold storage unit 36, and a determination unit 37.
  • the functions of each part include, for example, a function of controlling the shape detection unit 500 based on a control signal related to inspection according to the welding location received from the robot control device 2, and shape data of the weld bead received from the shape detection unit 500. Based on this, there is a function to generate image data, and a function to perform an inspection on the welded part based on the generated image data.
  • the processor 31 may be configured to include, for example, a plurality of GPUs for calculation. In this case, the processor 31 may be used in combination with the above-mentioned CPU or the like.
  • the memory 32 has, for example, a RAM as a work memory used when executing each process of the processor 31, and a ROM for storing a program and data defining the operation of the processor 31. Data or information generated or acquired by the processor 31 is temporarily stored in the RAM. A program that defines the operation of the processor 31 is written in the ROM. Further, the memory 32 may include, for example, a hard disk (HDD: Hard Disk Drive), a solid state drive (SSD: Solid State Drive), or the like.
  • HDD Hard Disk Drive
  • SSD Solid State Drive
  • the shape detection control unit 34 is based on the shape data of the weld bead at the welded portion received from the shape detection unit 500 and the control signal related to the inspection according to the welded portion received from the robot control device 2. Control 500.
  • the shape detection control unit 34 irradiates a laser beam to acquire shape data of the weld bead at the welded portion.
  • the shape detection control unit 34 receives the shape data acquired by the shape detection unit 500, the shape detection control unit 34 outputs the shape data to the data processing unit 35.
  • the data processing unit 35 converts the shape data of the weld bead at the welded portion input from the shape detection control unit 34 into image data.
  • the shape data is, for example, point cloud data of a shape line composed of a reflection locus of a laser beam applied to the surface of a weld bead.
  • the data processing unit 35 executes statistical processing on the input shape data and generates image data regarding the shape of the weld bead at the welded portion.
  • the data processing unit 35 may perform edge enhancement correction emphasizing the peripheral portion of the weld bead in order to emphasize the position and shape of the weld bead.
  • the determination threshold storage unit 36 stores each threshold value set according to the welding location in order to execute the determination according to the welding location.
  • Each threshold value is, for example, an allowable range (threshold value) regarding the displacement of the welded portion, a threshold value regarding the height of the weld bead, a threshold value regarding the width of the weld bead, and the like.
  • the determination threshold storage unit 36 stores, as each threshold value after repair welding, a permissible range (for example, a minimum permissible value and a maximum permissible value regarding the height of the weld bead) that satisfy the quality required by the customer. ..
  • the determination threshold storage unit 36 may store the upper limit of the number of inspections for each welded portion. As a result, the inspection device 3 determines that it is difficult or impossible to correct the defective part by repair welding if the number of times exceeds a predetermined number when correcting the defective part by repair welding, and the operating rate of the repair welding system 1000a. Can be suppressed.
  • the determination unit 37 makes a determination about the welded portion based on the shape data of the weld bead at the welded portion by referring to the threshold value stored in the determination threshold storage unit 36 and the like. This determination will be described later with reference to FIGS. 3 and later.
  • the determination unit 37 measures the position of the defective part (for example, the start position and the end position of the defective part, the position of the hole generated in the weld bead, the position of the undercut, etc.), analyzes the content of the defect, and analyzes the defect factor. To estimate.
  • the determination unit 37 generates the measured position of the defective portion and the estimated defect factor as an inspection result (determination result) for the welded portion, and generates the generated inspection result via the robot control device 2 in the host device 1 Send to.
  • the determination unit 37 determines that there is no defective part, it generates an alert notifying that there is no defective part, and transmits the generated alert to the higher-level device 1 via the robot control device 2.
  • the alert sent to the host device 1 is sent to the monitor MN1 and displayed.
  • the data processing unit 35 counts the number of inspections for each welding location, and if the welding inspection result is not good even if the number of inspections exceeds the number stored in the determination threshold storage unit 36, the defective portion due to repair welding is found. Judge that correction is difficult or impossible.
  • the determination unit 37 generates an alert including the position of the defective portion and the defect factor, and transmits the generated alert to the host device 1 via the robot control device 2.
  • the alert sent to the host device 1 is sent to the monitor MN1 and displayed.
  • the inspection device 3 may generate an alert with contents other than the above. This alert is also transmitted to the host device 1 via the robot control device 2. The alert sent to the host device 1 is sent to the monitor MN1 and displayed.
  • FIG. 3 is a flowchart showing an example of an operation procedure by the repair welding system 1000a including the repair welding inspection device according to the first embodiment. Note that this flowchart is based on the system configuration shown in FIG. 2, and shows an example in which inspection and repair welding are performed on the work Wk after the main welding is performed.
  • a visual inspection is performed on the work Wk after the main welding is performed (step St101). This visual inspection is performed using the above-mentioned shape data acquired by the shape detection unit 500.
  • one work Wk may have a plurality of welding points (welding lines).
  • the appearance inspection is performed on all the welded parts (welded lines) of the work Wk before the process shifts to the step St102 described later.
  • the shape data of the weld bead detected by the shape detection unit 500 may include a plurality of weld points (weld lines).
  • the data processing unit 35 detects each welding location (welding line) from this shape data. Conventional techniques may be used for this detection algorithm.
  • the inspection device 3 may acquire the work type, the work serial number (work S / N), the welding line ID, and the like in the work Wk in which the weld bead exists from the host device 1 or the robot control device 2. ..
  • the inspection device 3 can manage the above-mentioned shape data by associating it with a work type, a work S / N, a welding line ID, and the like.
  • the inspection device 3 may store these data in a memory 32 or the like.
  • the memory 32 may hold information indicating whether or not the welded portion (welded line) to be inspected has been determined to be a welding defect in the past in association with the above welded line ID.
  • the data processing unit 35 determines whether or not the welding portion (welding line) to be inspected has been determined to be welding defect in the past. By collating from the memory 32, it is determined whether the welded part (welding line) to be inspected is related to main welding or repair welding. Based on this determination, the inspection device 3 can determine whether the inspection to be performed on the welded portion (welding line) to be inspected is the main welding inspection or the repair welding inspection.
  • the inspection device 3 can manage the shape data of the welded portion (welding line) to be inspected by further linking the defect type, characteristic data, and the like.
  • the data that can be linked is not limited to the above.
  • the inspection device 3 may store these data in a memory 32 or the like.
  • the processor 31 performs the main welding inspection on the work Wk that has been visually inspected (St102).
  • This welding inspection can be performed by comparing the shape data of the weld bead for the work Wk, which is the inspection target detected by the shape detection unit 500, with the master data stored in the memory 32 or the like.
  • the threshold value stored in the determination threshold value storage unit 36 may be used.
  • a determination model is mounted on the determination unit 37 in the processor 31. For example, there are functions, methods, modules, etc. for determining the quality of welding.
  • the determination unit 37 makes a determination, for example, as follows.
  • various shape defects may occur at the welded portion.
  • a part of the welded part may melt down to form a hole or an undercut may occur.
  • the length of the welding bead along the welding line, the position of the welding bead in the direction orthogonal to the welding line, the height of the welding bead, and the like may deviate beyond the permissible range as compared with the reference value.
  • These "perforations”, “undercuts”, “bead length (deviation)”, “welding line deviation”, “bead height (deviation)”, etc. are expressed as welding defect types. There may be defective types other than those mentioned above.
  • the determination threshold storage unit 36 stores the threshold value for pass / fail determination used by the determination unit 37.
  • the threshold value is the hole diameter (the hole diameter is 0 in the master data) when there is a hole in the welded part.
  • FIG. 4 is a conceptual diagram showing a first example of a threshold value for each defect type, (a) a cross-sectional view showing a weld bead of master data, and (b) a cross-sectional view showing a weld bead to be inspected.
  • the height of the weld bead in the master data is H.
  • the upper limit allowable offset value OFH H and the lower limit allowable offset value OFH L can be set as the threshold values indicating the range in which the increase / decrease from the height H is allowed. It is assumed that the upper limit allowable offset value OFH H and the lower limit allowable offset value OFH L are positive values, respectively.
  • the processor 31 determines that the welding is good.
  • H T ⁇ H-OFH L or H + OFH H ⁇ H T
  • welding to be defective processor 31 can make a determination.
  • the type of defect at this time is "bead height (deviation)".
  • the determination unit 37 can use H-OFH L or H + OFH H as the determination threshold value.
  • the threshold value used by the determination unit 37 for determination may be generated each time the determination unit 37 uses the threshold value, and is stored in the memory 32 or the like.
  • the determination unit 37 may call and use the threshold value.
  • the threshold value that can be used by the determination unit 37 is not limited to the above value.
  • the allowable increment rate (1.1, etc.) when using the allowable reduction ratio (0.9, etc.) as a threshold value, a H T ⁇ H ⁇ allowable reduction ratio, or H ⁇ allowable increment index ⁇ H T
  • the processor 31 may determine that the welding is defective.
  • various threshold definitions may be used. For convenience of explanation, hereinafter, as a threshold for the height of the weld bead, and H-OFH L and H + OFH H will be described on the assumption that used.
  • FIG. 5 is a conceptual diagram showing a second example of the threshold value for each defect type, (a) a plan view showing a welding bead of master data, and (b) a plan view showing a welding bead to be inspected.
  • W be the distance (hereinafter, one-sided width) of the weld bead from the weld line to the end of the weld bead in the master data.
  • FIG. 5B the welding bead of the master data is shown by a broken line.
  • the thick lines (a) and (b) in FIG. 5 indicate welding lines.
  • the welding line is also shown by a thick line in FIGS. 6 and later.
  • the upper limit allowable offset value OFW H and the lower limit allowable offset value OFW L can be set as the threshold value indicating the range in which the increase / decrease from the reference is allowed with respect to the one-sided width W of the weld bead. It is assumed that the upper limit allowable offset value OFW H and the lower limit allowable offset value OFW L are positive values, respectively.
  • a piece width of the weld bead to be inspected when the W T for example, W-OFW if L ⁇ W T ⁇ W + OFW H, will be pieces width of the weld bead to be inspected is within the allowable range ,
  • the processor 31 determination unit 37 in) can determine that the welding is good.
  • W T case of W-OFW L or W + OFW H ⁇ W T, it means that the piece width of the weld bead of the test subject is out of tolerance, welding to be defective processor 31 (of in The determination unit 37) can make a determination.
  • the type of defect at this time is "welding line deviation". That is, the determination unit 37 can use W-OFW L or W + OFFW H as the determination threshold value.
  • the threshold value used by the determination unit 37 for determination may be generated each time the determination unit 37 uses the threshold value, and is stored in the memory 32 or the like.
  • the determination unit may call and use the threshold value 37.
  • the threshold value that can be used by the determination unit 37 is not limited to the above value.
  • the allowable increment rate (1.1, etc.) when using the allowable reduction ratio (0.9, etc.) as a threshold value, a W T ⁇ W ⁇ acceptable rate of decrease, or W ⁇ allowable increment index ⁇ W T
  • the processor 31 may determine that the welding is defective.
  • various threshold definitions may be used. For convenience of explanation, the threshold value for the width of one side of the weld bead will be described below on the assumption that W-OFW L and W + OFW H are used.
  • FIG. 6 is a conceptual diagram showing a third example of a threshold value for each defect type, (a) a plan view showing a weld bead of master data, and (b) a plan view showing a weld bead to be inspected.
  • (a) in FIG. 6 there is no hole on the surface of the weld bead.
  • FIG. 6B holes are formed.
  • a through hole is taken as an example, but a hole that does not penetrate may be handled in the same manner. The handling of non-penetrating holes may be determined by the quality required by the user.
  • the determination unit 37 may use, for example, the hole diameter D as a threshold value for evaluating the hole. However, the determination unit 37 may use a threshold value other than the hole diameter.
  • the processor 31 determines that the welding is good. can do.
  • D ⁇ DT it means that the welding bead to be inspected has a hole having a size exceeding the permissible range. Therefore, if the welding is defective, the processor 31 (inside the determination unit 37) ) Can be determined. The type of defect at this time is "perforated". In this way, the determination unit 37 can use the hole diameter D as the determination threshold value.
  • the threshold value used by the determination unit 37 for determination may be generated each time the determination unit 37 uses the threshold value, and is stored in the memory 32 or the like, and the determination unit 37 corresponds to the threshold value. You may call and use the threshold.
  • the determination unit 37 in the processor 31 makes a determination using such a threshold value to inspect the welded portion where the main welding has been performed. In this embodiment, inspection (good / bad judgment) is performed on all the welded parts of the work Wk.
  • step St102 if there are no defective portions in all the welded portions (steps St102, Y), it is not necessary to perform repair welding, so the process ends. On the other hand, when there is a defective welded portion in any of the welded portions (steps St102, N), the process transitions to step St103.
  • step St103 repair welding is performed on the poorly welded portion found in the preceding step St102.
  • the inspection / repair welding robot MC23 may perform this repair welding. That is, the robot control device 2 may control the inspection / repair welding robot MC23 to execute the repair welding under the overall control by the host device 1.
  • the inspection device 3 may alert the welding operator, and the welding operator may manually perform repair welding.
  • the processor 31 performs a repair welding inspection on the work Wk that has been repair-welded (St104). Similar to step St102 described above, this repair welding inspection is performed by comparing the shape data of the weld bead for the work Wk to be inspected detected by the shape detection unit 500 with the master data stored in the memory 32 or the like. obtain. A threshold is used for comparison with this master data.
  • the threshold value whose value has been changed may be used in step St104 with respect to the threshold value used in step St102.
  • the threshold value whose value has been changed will be described later.
  • step St104, Y If the judgment result of the repair welding inspection is good (step St104, Y), it means that the defective part has been properly repaired by the repair welding (step St103) for the defective part found on the work Wk. The process ends. On the other hand, when the determination result is defective (step St104, N), repair welding (step St103) is attempted again for this defective portion. It should be noted that the upper limit of the repair welding (step St103) and the repair welding inspection (step St104) at one work Wk or one welding point is determined, and even if the repair welding is performed for this upper limit, the welding inspection is determined. If is not good, further repair welding for the work Wk may be abandoned and the process may be terminated.
  • an appearance inspection is performed on all the welding points (welding lines) included in one work Wk, and a welding inspection (step) is performed on all the welding points (welding lines).
  • repair welding step St103
  • repair welding inspection step St104
  • the appearance inspection (step St101) and the main welding inspection step St102) are performed for each welded part (welded line) included in one work Wk, and each time a defective part is found, the welded part (welding) including the defective part is found.
  • Repair welding step St103) and repair welding inspection (step St104) for the wire) may be performed. In this case, if the inspection result is good in the welding inspection (main welding inspection or repair welding inspection) for one welding point (welding line), the welding inspection for the next welding point (welding line) is performed. You can do it.
  • step St102 and step St104 have in common that the determination unit 37 uses a threshold value for making a determination.
  • the difference in step St104 is that it is after the repair welding is further performed.
  • step St102 Repair welding is performed on the welded part where welding (main welding, previous repair welding, etc.) has already been performed. Therefore, the state of the weld bead on the work Wk is different between step St102 and step St104. For example, in the weld bead at the time of step St104, the height and width of the bead are increased. Therefore, even if the threshold value of the same value as that used in step St102 is used in step St104, it is not always possible to make a good or bad judgment.
  • step St104 pass / fail judgment is performed using the judgment threshold value for repair welding inspection.
  • the judgment threshold value for the repair welding inspection may be a value changed from the judgment threshold value for the welding performed before that.
  • this inspection threshold value will be described.
  • FIG. 7 is a diagram showing an example of determining an inspection threshold value used in step St104 when repair welding is performed on a defective portion having a defective type “bead break”, and FIG. 7A is a plan view showing before repair welding. , (B) A plan view showing after repair welding, and (c) a cross-sectional view taken along the line AA showing after repair welding. The shaded areas in (b) and (c) in FIG. 7 indicate the weld beads added by repair welding.
  • step St102 It is assumed that a welding defect of the defect type "bead break" is found in step St102.
  • the height H T of the bead during the welding defects discovered is that falls within the allowable range. That is, it is determined in the time of the step ST102, since it is H-OFH L ⁇ H T ⁇ H + OFH H, the determination unit 37, the weld is good for the bad type "height of the bead".
  • repair welding is performed in step St103. That is, additional welding is performed near the end of the welding bead.
  • FIG. 7 shows the state after repair welding.
  • FIG. 7C shows a sectional view taken along the line AA of FIG. 7B.
  • the bead length is increased by repair welding. Therefore, with respect to the defective type "bead cut", it is determined that the welding result is good in the repair welding inspection (step St104).
  • step St104 when the repair welding inspection (step St104) is performed using the threshold value used in the main welding inspection (step St102) as it is, as shown in (c) in FIG. 7, for example, as follows. There is a magnitude relationship between the values.
  • step St104 the determination result is good for the defective type "out of bead", but the determination result is defective for the defective type "welding bead height".
  • H + OFH H + ⁇ H which is obtained by adding the margin value ⁇ H to the conventional threshold value H + OFH H , is used for the repair welding inspection (new). It can be a threshold.
  • the processor 31 may store the new threshold H + OFH H + ⁇ H may be each time generating a new threshold H + OFH H + ⁇ H to the determination threshold storing unit 36.
  • step St104 the determination unit 37 performs the repair welding inspection using the (new) threshold value for the repair welding inspection.
  • the weld bead after repair welding height H T2 is compared to the value of the changed threshold. Then, the magnitude relation of the following values is obtained.
  • the determination unit 37 can determine that the determination result is good also for the defect type "welding bead height".
  • the repair welding inspection is performed using the judgment threshold value for the repair welding inspection whose value is changed (determined) according to the defect type of the welding defective portion.
  • the defect type of weld failed portion is "bead out", in accordance with the defect type "bead out", and change the value of the threshold for repair welding inspection from H + OFH H to H + OFH H + ⁇ H
  • the repair welding inspection is performed using the determination threshold value in which this value is changed. In this way, by adjusting the determination threshold value according to the type of defect, it is possible to correctly determine the quality according to the actual condition of repair welding. As a result, welding quality and production efficiency can be improved.
  • the amount of change in the threshold value may be a fixed value and may not be a fixed value. Further, the amount of change in the threshold value may be determined according to various information. For example, the amount of change in the threshold is the welding characteristic data (current, voltage, welding speed, welding control method, robot attitude, wire diameter, protrusion length) of the main welding / repair welding of the welding point (welding line) to be inspected. Etc.) may be determined accordingly.
  • the amount of change in the threshold value may be determined based on the information indicating the defect type, the shape data of the welding bead, the setting information for the repair welding inspection, and the like.
  • the setting information for repair welding inspection may include information indicating the specifications required by the factory or the user (for example, the maximum value of the amount of change that can be tolerated by the factory or the like), depending on the request of the factory or the user.
  • the amount of change in the threshold value may be determined. As an example, if there is a requirement specification that it is not permissible to change the criterion between main welding and repair welding, the threshold change amount ( ⁇ H) may be determined to be 0.
  • the first determination method is to add the above-mentioned change amount ( ⁇ H) of the threshold value to the determination threshold value used in the present welding inspection (step St102).
  • the processor 31 acquires the value of the determination threshold value (H + OFH H, etc.) used in the main welding inspection (step St102) from the determination threshold value storage unit 36.
  • the processor 31 can determine the determination threshold value for repair welding inspection used in step St104 by adding the above-mentioned threshold change amount ( ⁇ H) to this value.
  • the second method of determining the determination threshold value used in step St104 is to calculate the determination threshold value independently of the determination threshold value used in the main welding inspection (step St102). That is, if the processor 31 acquires the necessary information (the above-mentioned information for calculating ⁇ H, the value of H and the value of OFH H ), and directly derives the determination threshold value for the repair welding inspection used in step St104. Good.
  • the judgment threshold for limiting the change in the change direction of this size is a judgment for inspection of welding performed before repair welding.
  • the value may be changed so that the criterion is looser than the threshold value.
  • the determination threshold value H + OFH H corresponds to the determination threshold value to be changed. That is, it is as follows.
  • the height of the weld bead is changed from H T before and after repair welding to H T2. Since a H T ⁇ H T2, change the direction of this size, a direction in which the height increases. Since the determination threshold value H + OFH H is used as the upper limit value in the height direction, the change in the size change direction, that is, the change in the height increasing direction is limited. If the value of the determination threshold value H + OFH H is changed to H + OFH H + ⁇ H, the determination criterion will be relaxed.
  • the value of the determination threshold value H + OFH H regarding the height of the weld bead is changed so as to loosen the determination standard.
  • the height H T of the weld bead has been inspected by comparing the master bead height H, the position coordinates relative to the workpiece in the upper end of the weld bead, the position relative to the upper end of the work of master beads
  • the inspection may be performed by comparing with the coordinates. In this case, if the difference between the position coordinates of the upper end of the weld bead with respect to the workpiece and the position coordinates of the upper end of the master bead with respect to the workpiece is within or less than OFH H at the time of the main welding inspection, it can be judged to be good, and at the time of the repair welding inspection, OFH H If it is within or less than + ⁇ H, it can be judged to be good. Further, the inspection device 3 may score the height of the welding bead and the position coordinates of the upper end of the welding bead described above, and set a threshold value based on the score.
  • FIG. 8 is a diagram showing an example of determining the inspection threshold value used in step St104 when repair welding is performed on a defective portion of the defect type “welding line deviation”, and FIG. 8A is a plan showing before repair welding.
  • FIG. 3B is a plan view showing after repair welding, and
  • FIG. 3C is a sectional view taken along line AA showing after repair welding.
  • the shaded areas in (b) and (c) in FIG. 8 indicate the weld beads added by repair welding.
  • step St102 It is assumed that a welding defect of the defect type "welding line deviation" is found in step St102.
  • the height H T of the bead during the welding defects discovered is that falls within the allowable range. That is, in the time of step ST102, since it is H-OFH L ⁇ H T ⁇ H + OFH H, the determination unit 37 determines that good weld for defects type "height of the bead".
  • FIG. 8 shows the state after repair welding. As a result of the repair welding, a welding bead is newly formed in the portion indicated by the cross in FIG. 8A.
  • (C) in FIG. 8 shows a cross-sectional view taken along the line AA of FIG. 8 (b). Since additional welding was performed on the portion on the welding line where the welding bead was not formed, the welding strength is ensured.
  • step St104 when the repair welding inspection (step St104) is performed by using the threshold value used in the main welding inspection (step St102) as it is, as shown in (c) in FIG. 8, for example, the following values are obtained. It becomes the size relationship of.
  • step St104 the determination result of the defect type "welding bead height" becomes defective.
  • step St103 the weld bead newly formed by repair welding exceeds the allowable value in the left side direction of (a) in FIG. It has been closed. That is, since it is W + OFW H ⁇ W T, the determination unit 37 in Step St104 determines that welding defects for defect type "weld line deviation".
  • H + OFH H + ⁇ H which is obtained by adding the margin value ⁇ H to the conventional threshold value H + OFH H
  • W + OFW H + ⁇ W which is obtained by adding a margin value ⁇ W to the conventional threshold value W + OFW H
  • the processor 31 may generate these new threshold values H + OFH H + ⁇ H and W + OFW H + ⁇ W each time, and may store the new threshold values H + OFH H + ⁇ H and W + OFW H + ⁇ W in the determination threshold storage unit 36.
  • step St104 the determination unit 37 performs the repair welding inspection using the (new) threshold value for the repair welding inspection. That is, compared to the modified threshold height H T2 values of the weld bead after repair welding, compared with the changed threshold migraine width W T of the weld bead after repair welding values. Then, the magnitude relation of the following values is obtained.
  • step St104 it is possible to determine that the determination result is good for both the defect type "welding bead height" and the defect type "welding line deviation".
  • the inspection device 3 performs the repair welding inspection using the determination threshold value for the repair welding inspection whose value is changed (determined) according to the defect type of the welding defective portion.
  • the defect type of weld failed portion is "weld line deviation", depending on the failure type "weld line deviation”
  • the threshold value for the repair welding inspection the H + OFH H to H + OFH H + ⁇ H And, and W + OFW H are changed to W + OFW H + ⁇ W, respectively, and the inspection device 3 performs the repair welding inspection using the determination threshold value in which this value is changed.
  • the amount of change in the threshold value may or may not be a fixed value, a method for determining the amount of change in the threshold value, and a determination used in step St104.
  • the method of determining the threshold value may be the same as in the example of FIG.
  • the judgment threshold for limiting the change in the change direction of this size is judged for the inspection of welding performed before repair welding.
  • the value may be changed so that the criterion is looser than the threshold value.
  • the determination threshold value H + OFH H and the determination threshold value W + OFW H correspond to the determination threshold values to be changed. Since the determination threshold value H + OFH H is the same as that described in FIG. 7, the description thereof will be omitted.
  • the determination threshold value W + OFW H is as follows.
  • the width of one side of the weld bead changes before and after repair welding.
  • the direction of change of this size is the direction in which the weld bead piece width (W T of (b) in FIG. 8) increases .
  • the determination threshold value W + OFW H is used as an upper limit value in the one-sided width direction, the change in the size change direction, that is, the change in the one-sided width increasing direction is limited. If the value of the determination threshold value W + OFW H is changed to W + OFW H + ⁇ W, the determination criterion will be relaxed.
  • the judgment criteria H + OFH H regarding the height of the weld bead and the judgment threshold W + OFW H regarding the width of one side of the weld bead are set so as to loosen the judgment criteria. Is changed.
  • the strip width W T of the weld bead has been inspected as compared to the single width W of the master bead, the position coordinates relative to the workpiece at one end of the weld bead, at one end of the master bead work
  • the inspection may be performed by comparing with the position coordinates with respect to. In that case, if the difference between the position coordinate of the weld bead with respect to the work at one end and the position coordinate of the master bead with respect to the work at one end is within or less than OFW H at the time of the main welding inspection, it can be judged to be good, and at the time of the repair welding inspection, OFW H If it is within or less than + ⁇ W, it can be judged to be good. Further, the inspection device 3 may score the width of one side of the welding bead and the position coordinates of one end of the welding bead described above, and set a threshold value based on the score.
  • FIG. 9 is a diagram showing an example of determining an inspection threshold value used in step St104 when repair welding is performed on a defective portion of the defect type “perforated”, and FIG. 9A is a plan view showing before repair welding.
  • the shaded areas in FIGS. 9B to 9D indicate the welding beads added by the repair welding.
  • step St102 It is assumed that a welding defect of the defect type "perforated" is found in step St102. In the example shown in the figure, two holes have been found.
  • the height H T of the bead during the welding defects discovered is that falls within the allowable range. That is, at the time of step St102, since H-OFH L ⁇ H T ⁇ H + OFH H , the determination unit 37 determines that the welding is good for the defect type "bead height".
  • the diameters of the two holes in the bead when the welding defect was discovered are not within the permissible range.
  • the determination unit 37 determines that the defect type "perforated" is a welding defect. Therefore, repair welding is performed in step St103.
  • FIG. 9 shows the state after repair welding.
  • C in FIG. 9 shows a cross-sectional view taken along the line AA of FIG. 9 (b).
  • FIG. 9D shows a sectional view taken along line BB in FIG. 9B. Since additional welding was performed on the two perforated portions in FIG. 9A to close the holes, it is determined that the welding is good for the defective type "perforated".
  • step St104 when the repair welding inspection (step St104) is performed using the threshold value used in the main welding inspection (step St102) as it is, for example, the following values are shown as shown in (c) in FIG. It becomes the size relationship of.
  • step St104 the determination result of the defect type "welding bead height" becomes defective.
  • the weld bead when a hole is present at the end of the weld bead in the width direction, if the hole is closed by repair welding, the weld bead may spread to the periphery of the hole. is there. That is, the piece width of the weld bead before repair welding and W T, when the strip width of the weld bead after repair welding was W T2, it may be a magnitude of the following values.
  • step St104 since a W + OFW H ⁇ W T2, in step St104, for even defective type "weld line deviation", the determination result becomes poor.
  • H + OFH H + ⁇ H which is obtained by adding the margin value ⁇ H to the conventional threshold value H + OFH H
  • W + OFW H + ⁇ W which is obtained by adding a margin value ⁇ W to the conventional threshold value W + OFW H
  • the processor 31 may generate these new threshold values H + OFH H + ⁇ H and W + OFW H + ⁇ W each time, and may store the new threshold values H + OFH H + ⁇ H and W + OFW H + ⁇ W in the determination threshold storage unit 36.
  • step St104 the determination unit 37 performs the repair welding inspection using the (new) threshold value for the repair welding inspection. That is, compared to the weld bead after repair welding height H T2 values of the changed threshold is compared with a single width W T2 of the weld bead after repair welding values of the changed threshold. Then, the magnitude relation of the following values is obtained.
  • step St104 it is possible to determine that the determination result is good for both the defect type "welding bead height" and the defect type "welding line deviation".
  • the inspection device 3 performs the repair welding inspection using the determination threshold value for the repair welding inspection whose value is changed (determined) according to the defect type of the welding defective portion.
  • the defect type of weld failed portion is "holey", depending on the failure type "perforated”, the threshold value for the repair weld inspection, and the H + OFH H to H + OFH H + ⁇ H, And W + OFW H is changed to W + OFW H + ⁇ W, respectively, and the repair welding inspection is performed using the determination threshold values in which these values are changed.
  • the determination threshold value according to the type of defect, it is possible to correctly determine the quality according to the actual condition of repair welding. As a result, welding quality and production efficiency can be improved.
  • the amount of change in the threshold value may or may not be a fixed value, a method for determining the amount of change in the threshold value, and a determination used in step St104.
  • the method of determining the threshold value may be the same as in the example of FIG.
  • the judgment threshold for limiting the change in the change direction of this size is judged for the inspection of welding performed before repair welding.
  • the value may be changed so that the criterion is looser than the threshold value.
  • the determination threshold value H + OFH H and the determination threshold value W + OFW H correspond to the determination threshold values to be changed. Since the determination threshold value H + OFH H is the same as that described in FIG. 7, the description thereof will be omitted.
  • the determination threshold value W + OFW H is as follows.
  • the width of one side of the weld bead changes before and after repair welding. That is, since closes the hole on the end in the width direction by repair welding, as a result of widespread weld bead until around the hole, migraine width is increased from W T to W T2.
  • the direction of change in this size is the direction in which the width of one side increases. Since the determination threshold value W + OFW H is used as an upper limit value in the one-sided width direction, the change in the size change direction, that is, the change in the one-sided width increasing direction is limited. If the value of the determination threshold value W + OFW H is changed to W + OFW H + ⁇ W, the determination criteria will be relaxed.
  • the values of the judgment threshold value H + OFH H regarding the height of the weld bead and the judgment threshold value W + OFW H regarding the width of one side of the weld bead are set so as to loosen the judgment criteria. Be changed.
  • the value of the determination threshold value used in step St104 may be changed according to the actual condition of repair welding for the defective type.
  • the second threshold value which is the judgment threshold value for the inspection of repair welding, is determined according to the defect type of the welding defective portion.
  • the second threshold value which is a determination threshold value for inspection of repair welding, can be appropriately adjusted according to various types of defects.
  • the processor is a judgment threshold value that limits the change in the size change direction when the size of the welding bead changes before and after repair welding at the welding defective part, and is a judgment criterion rather than the first threshold value. Acquire at least one second threshold whose value has been changed to loosen. As a result, it is possible to correctly determine the quality of the repair welding according to the actual situation. As a result, welding quality and production efficiency can be improved.
  • the processor acquires the first threshold value and adds a value indicating the amount of change in the threshold value to acquire the determination threshold value for repair welding inspection.
  • the determination threshold value for repair welding can be adjusted according to the conditions of the main welding based on the determination threshold value of the welding (main welding or the like) performed before the repair welding is performed.
  • the processor acquires a second threshold value calculated independently of the judgment threshold value for welding inspection performed before performing repair welding.
  • the determination threshold value for repair welding can be flexibly adjusted in consideration of conditions that were not found in the main welding.
  • the present disclosure is useful as a repair welding inspection device and a repair welding inspection method capable of performing repair welding inspection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Manipulator (AREA)

Abstract

プロセッサ(31)を備えたリペア溶接検査装置(3)において、前記プロセッサ(31)は、リペア溶接を行う前に行った溶接の検査用の判定閾値である第1の閾値とは異なる、前記リペア溶接の検査用の判定閾値である第2の閾値を取得し、前記第2の閾値を用いて、前記リペア溶接後の検査を行う。

Description

リペア溶接検査装置およびリペア溶接検査方法
 本開示は、リペア溶接検査装置およびリペア溶接検査方法に関する。
 特許文献1には、撮像光学系を用いて被検査物の形状を検査する形状検査装置であって、被検査物にスリット光を投射する投射手段と、前記スリット光の走査により被検査物上に順次形成される形状線を撮像する撮像手段と、前記順次形成された各形状線の撮像データに基いて、被検査物の三次元形状を点群データとして取得する点群データ取得手段と、前記点群データに基いて表示された被検査物に、入力に応じて切断線を設定する切断線設定手段と、前記切断線に対応した前記点群データにより、前記切断線における被検査物の断面形状を算出する断面形状算出手段とを備えることが開示されている。
日本国特開2012-037487号公報
 本開示は、リペア溶接検査を行うことができるリペア溶接検査装置およびリペア溶接検査方法を提供する。
 本開示は、プロセッサを備えたリペア溶接検査装置であって、前記プロセッサは、リペア溶接を行う前に行った溶接の検査用の判定閾値である第1の閾値とは異なる、前記リペア溶接の検査用の判定閾値である第2の閾値を取得し、前記第2の閾値を用いて、前記リペア溶接後の検査を行う、リペア溶接検査装置を提供する。
 また、本開示は、プロセッサを備えた装置による、リペア溶接検査方法であって、前記プロセッサは、リペア溶接を行う前に行った溶接の検査用の判定閾値である第1の閾値とは異なる、前記リペア溶接の検査用の判定閾値である第2の閾値を取得し、前記第2の閾値を用いて、前記リペア溶接後の検査を行う、リペア溶接検査方法を提供する。
 本開示によれば、リペア溶接検査を行うことができる。
本開示に係るリペア溶接検査装置を含んだリペア溶接システム1000のユースケース例を示す概略図 実施の形態1に係る検査・リペア溶接ロボットMC23の制御に関する、リペア溶接検査装置を含んだリペア溶接システム1000aの内部構成例を示す図 実施の形態1に係るリペア溶接検査装置を含んだリペア溶接システム1000aによる動作手順例を示すフローチャート 不良種別毎の閾値の第1の例を示す概念図であり、(a)マスタデータの溶接ビードを示す断面図、(b)検査対象の溶接ビードを示す断面図 不良種別毎の閾値の第2の例を示す概念図であり、(a)マスタデータの溶接ビードを示す平面図、(b)検査対象の溶接ビードを示す平面図 不良種別毎の閾値の第3の例を示す概念図であり、(a)マスタデータの溶接ビードを示す平面図、(b)検査対象の溶接ビードを示す平面図 不良種別「ビード切れ」である不良個所に対してリペア溶接を行った場合の、ステップSt104において用いる検査閾値の決定例を示す図であり、(a)リペア溶接前を示す平面図、(b)リペア溶接後を示す平面図、(c)リペア溶接後を示すA-A断面図 不良種別「溶接線ずれ」である不良個所に対してリペア溶接を行った場合の、ステップSt104において用いる検査閾値の決定例を示す図であり、(a)リペア溶接前を示す平面図、(b)リペア溶接後を示す平面図、(c)リペア溶接後を示すA-A断面図 不良種別「穴あき」である不良個所に対してリペア溶接を行った場合の、ステップSt104において用いる検査閾値の決定例を示す図であり、(a)リペア溶接前を示す平面図、(b)リペア溶接後を示す平面図、(c)リペア溶接後を示すA-A断面図、(d)リペア溶接後を示すB-B断面図
(本開示に至る経緯)
 特許文献1の技術は、外観検査装置により、本溶接を行った後の溶接個所の形状良否判定を行うことが可能である。しかし、形状が良好で無かった場合に、再溶接(リペア溶接)によって修正を行い得るか否かを判定する可否判定や、修正の為の再溶接(リペア溶接)は、人間である溶接作業者が行っているのが現状である。そのため、作業者の技能レベル差や誤判断により品質が安定しないという潜在的な課題があった。
 さらに、近年、溶接対象となるワークが多様化している。ワークの多様化に比例して、リペア溶接を行う溶接作業者の負担が大きくなっている。
 また、リペア溶接を行う対象であるワークには、本溶接が既に行われているため、本溶接とリペア溶接とでは、検査の条件が都度異なるものである。
 そこで、本開示に係るリペア溶接検査装置およびリペア溶接検査方法は、リペア溶接の前に行った溶接(本溶接など)の検査用の判定閾値に対し、溶接不良個所の不良種別に応じて値が変更(決定)された、リペア溶接検査用の判定閾値を取得し、リペア溶接検査用の判定閾値を用いて、リペア溶接後の溶接個所の判定を行う。これにより、溶接の品質が向上し、生産効率を向上させることができる。
 以下、適宜図面を参照しながら、本開示に係るリペア溶接検査装置およびリペア溶接検査方法の構成および動作を具体的に開示した実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるものであり、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
 図1は、本開示に係るリペア溶接検査装置を含んだリペア溶接システム1000のユースケース例を示す概略図である。本開示に係るリペア溶接システム1000は、ユーザにより入力された情報あるいは予め設定された溶接に関する情報に基づいて、ワークWkに対して本溶接された溶接個所の検査と、溶接個所のうち不良と判定された不良個所の修正溶接(リペア溶接)とを行うシステムである。なお、当該システムは、前述の検査とリペア溶接に加えて、本溶接を行ってもよい。
 リペア溶接システム1000は、大きく分けると、溶接や溶接結果の検査に用いるロボット(RB0)と、ロボットやロボットが備える検査機能を制御するコントローラと、コントローラに対する上位装置との3つを備えていてよい。
 より具体的に列挙すると、リペア溶接システム1000は、本溶接を行う本溶接ロボットMC1と、本溶接後の溶接個所の外観検査を行う検査ロボットMC2と、本溶接後の溶接個所に不良個所が含まれていた場合のリペア溶接を行うリペア溶接ロボットMC3とを備えていてよい。また、溶接システムは、上述の各種のロボットやロボットが備える検査機能を制御するためのコントローラとして、ロボット制御装置2aと、検査装置3と、ロボット制御装置2bを備えていてよい。このユースケース例においては、本開示に係るリペア溶接検査装置は、検査装置3に相当する。また、リペア溶接システム1000は、上述のコントローラに対する上位装置1を備えていてよい。上位装置1は、モニタMN1と、インターフェースUI1と、外部ストレージSTとに接続されていてよい。
 図示は省略したが、上位装置1、あるいはコントローラに含まれる各種の制御装置は、外部ネットワークとの通信を行う通信インターフェース(有線、あるいは無線)を備えていてよい。これらの装置は、外部ネットワークに接続されている場合、外部ネットワーク上に存在する他の機器(典型的にはサーバやPC、種々のセンサ装置等)と通信を行うことができる。
 図1において、本溶接ロボットMC1は、リペア溶接ロボットMC3と別のロボットとして示されている。しかし、別のシステムを用いて本溶接を行うか、あるいは手作業で本溶接を行った上で、リペア溶接システム1000が検査とリペア溶接とを実行するような場合には、本溶接ロボットMC1は省略されてもよい。
 さらに、本溶接ロボットMC1は、リペア溶接ロボットMC3あるいは検査ロボットMC2のそれぞれと一体であってもよい。例えば、リペア溶接ロボットMC3は、ワークWkを溶接する本溶接と、本溶接によって溶接された溶接個所のうち不良個所を修正するリペア溶接とを、同一のロボットで実行してもよい。また、例えば、検査ロボットMC2は、ワークWkを溶接する本溶接と、本溶接によって溶接された溶接個所のうち不良個所があるか否かの検査とを、同一のロボットで実行してもよい。
 検査ロボットMC2とリペア溶接ロボットMC3とが1つのロボットに統合されてよく、本溶接ロボットMC1と、検査ロボットMC2と、リペア溶接ロボットMC3とが1つのロボットに統合されてもよい。
 図1に示すリペア溶接システム1000は、本溶接ロボットMC1、検査ロボットMC2およびリペア溶接ロボットMC3のそれぞれの台数は、図1に示す数に限定されない。例えば、本溶接ロボットMC1、検査ロボットMC2およびリペア溶接ロボットMC3のそれぞれの台数は、複数台であってもよく、また同じ台数でなくてよい。例えば、リペア溶接システム1000は、本溶接ロボットMC1を1台、検査ロボットMC2を3台、リペア溶接ロボットMC3を2台含んで構成されてよい。これにより、リペア溶接システム1000は、各ロボットの処理範囲あるいは処理速度などに必要に応じて適応的に構成可能である。
 上位装置1は、モニタMN1と、インターフェースUI1と、外部ストレージSTと、ロボット制御装置2aと、ロボット制御装置2bとの間で通信可能に接続される。また、図1示す上位装置1は、ロボット制御装置2bを介して検査装置3と接続されるが、ロボット制御装置2bを介さず、検査装置3と直接通信可能に接続されてもよい。
 なお、上位装置1は、モニタMN1およびインターフェースUI1を含んで一体に構成される端末装置P1であってもよく、さらに外部ストレージSTを含んで一体に構成されてもよい。この場合、端末装置P1は、例えば溶接を実行するにあたってユーザ(作業者)によって使用されるPC(Personal Computer)である。なお、端末装置P1は、上述したPCに限らず、例えばスマートフォン、タブレット端末、PDA(Personal Digital Assistat)などの通信機能を有するコンピュータであってよい。
 上位装置1は、ユーザ(作業者)による入力操作あるいはユーザ(作業者)によって予め設定された情報に基づいて、ワークWkに対する本溶接、溶接個所の検査および不良個所のリペア溶接を実行するための制御信号のそれぞれを生成する。上位装置1は、生成されたワークWkに対する本溶接を実行するための制御信号および不良個所のリペア溶接を実行するための制御信号をロボット制御装置2aに送信する。また、上位装置1は、本溶接によって溶接された溶接個所の検査を実行するための制御信号をロボット制御装置2bに送信する。
 上位装置1は、ロボット制御装置2bを介して検査装置3から受信された溶接個所の検査結果を収集してよい。上位装置1は、受信された検査結果を外部ストレージSTおよびモニタMN1に送信する。なお、図1に示されている検査装置3は、ロボット制御装置2bを介して上位装置1と接続されるが、直接的に通信可能に接続されてもよい。
 モニタMN1は、例えばLCD(Liquid Crystal Display)または有機EL(Electroluminescence)などのディスプレイを用いて構成されてよい。モニタMN1は、検査装置3から受信された溶接個所の検査結果およびアラートを表示する。また、モニタMN1は、例えばスピーカ(不図示)を用いて構成されてよく、アラートを受信した際に音声によるアラートの通知を行ってもよい。すなわち、通知を行うための形態は、視覚情報による通知には限られない。
 インターフェースUI1は、ユーザ(作業者)の入力操作を検出するユーザインターフェース(UI:User Interface)であり、マウス、キーボードまたはタッチパネルなどを用いて構成される。インターフェースUI1は、ユーザの入力操作に基づく入力操作を上位装置1に送信する。インターフェースUI1は、例えば溶接線の入力、溶接線に応じた検査基準の設定、リペア溶接システム1000の動作開始あるいは動作終了の操作などを受け付ける。
 外部ストレージSTは、例えばハードディスク(HDD:Hard Disk Drive)またはソリッドステートドライブ(SSD:Solid State Drive)を用いて構成される。外部ストレージSTは、上位装置1から受信された溶接個所の検査結果を記憶してよい。
 ロボット制御装置2aは、上位装置1、本溶接ロボットMC1およびリペア溶接ロボットMC3との間で通信可能に接続される。ロボット制御装置2aは、上位装置1から受信された本溶接に関する制御情報を受信し、受信された制御情報に基づいて本溶接ロボットMC1を制御し、ワークWkに対する本溶接を実行させる。
 また、ロボット制御装置2aは、上位装置1から受信されたリペア溶接に関する制御情報を受信し、受信された制御情報に基づいてリペア溶接ロボットMC3を制御し、溶接個所のうち検査装置3によって不良と判定された不良個所に対して、リペア溶接を実行させる。
 図1に示されているロボット制御装置2aは、本溶接ロボットMC1およびリペア溶接ロボットMC3のそれぞれを制御する。しかし、実施の形態1に係るリペア溶接システム1000は、例えば本溶接ロボットMC1およびリペア溶接ロボットMC3のそれぞれを異なる制御装置を用いて制御してもよい。さらに、実施の形態1に係るリペア溶接システム1000は、1つの制御装置で本溶接ロボットMC1と、検査ロボットMC2と、リペア溶接ロボットMC3と、を制御してもよい。
 ロボット制御装置2bは、上位装置1、検査装置3および検査ロボットMC2との間で通信可能に接続される。ロボット制御装置2bは、上位装置1から受信された溶接個所に関する情報(例えば、溶接個所の位置情報など)を受信する。なお、溶接個所は、ワークWkに対する溶接個所(つまり、本溶接により溶接された個所)とリペア溶接によって修正溶接された溶接個所とを含む。ロボット制御装置2bは、受信された溶接個所に関する情報に基づいて検査ロボットMC2を制御し、溶接個所の溶接ビードの形状を検出させる。また、ロボット制御装置2bは、受信された溶接個所に関する情報を溶接個所の形状を検査する検査装置3に送信する。ロボット制御装置2bは、検査装置3から受信された検査結果を上位装置1に送信する。
 検査装置3は、ロボット制御装置2bおよび検査ロボットMC2との間で通信可能に接続される。検査装置3は、ロボット制御装置2bから受信された溶接個所に関する情報と、形状検出部500によって生成された溶接個所の溶接ビードの形状データとに基づいて、溶接個所に対する溶接不良の有無を検査(判定)する。検査装置3は、溶接個所のうち不良であると判定された不良個所に関する情報(例えば、不良区間、不良区間の位置情報、不良要因などを含み得る)を検査結果としてロボット制御装置2bに送信する。検査装置3は、不良個所が自動リペア溶接可能であると判定された場合に、修正の種別や、リペア溶接を行うためのパラメータ等の情報も、検査結果としてロボット制御装置2bに送信してよい。なお、検査装置3は、直接上位装置1と通信可能に接続されてもよい。この場合、検査装置3は、ロボット制御装置2bを介さず、上述の情報を上位装置1に送信可能でもよい。
 図1においてはロボット制御装置2bと検査装置3を別体として説明しているが、ロボット制御装置2bと検査装置3とが単一の装置へと統合されてもよい。
 本溶接ロボットMC1は、ロボット制御装置2aとの間で通信可能に接続され、溶接処理されていないワークに溶接(本溶接)を実行するロボットである。本溶接ロボットMC1は、ロボット制御装置2aから受信された制御信号に基づいて、ワークWkに対して本溶接を実行する。
 検査ロボットMC2は、ロボット制御装置2bおよび検査装置3との間で通信可能に接続される。検査ロボットMC2は、ロボット制御装置2bから受信された制御信号に基づいて、溶接個所の溶接ビードの形状データを取得する。
 リペア溶接ロボットMC3は、ロボット制御装置2aとの間で通信可能に接続される。リペア溶接ロボットMC3は、ロボット制御装置2aから受信された溶接個所の検査結果(つまり、不良個所に関する情報)に基づいて、不良個所に対してリペア溶接を実行する。
<実施の形態1>
 図2は、実施の形態1に係る検査・リペア溶接ロボットMC23の制御に関する、リペア溶接検査装置を含んだリペア溶接システム1000aの内部構成例を示す図である。なお、図2に示す検査・リペア溶接ロボットMC23は、図1に示した検査ロボットMC2およびリペア溶接ロボットMC3が一体となったロボットである。また、説明をわかりやすくするためにモニタMN1、インターフェースUI1、外部ストレージSTに関する構成を省略する。
(検査・リペア溶接ロボットMC23の構成例)
 検査・リペア溶接ロボットMC23は、ロボット制御装置2から受信された制御信号に基づいて、本溶接が行われた後のワークWkにおける溶接個所の検査を実行する。また、検査・リペア溶接ロボットMC23は、ロボット制御装置2から受信された制御信号に基づいて、ワークWkの前記溶接個所における、溶接不良個所について、リペア溶接を行う。
 本実施の形態においては、検査・リペア溶接ロボットMC23はアーク溶接を行うロボットである。しかし、検査・リペア溶接ロボットMC23は、アーク溶接以外の、例えばレーザ溶接等を行うロボットであってもよい。この場合、図示は省略するが、溶接トーチ400に代わって、レーザヘッドを、光ファイバを介してレーザ発振器に接続してもよい。
 本例においてはアーク溶接を行う検査・リペア溶接ロボットMC23は、マニピュレータ200と、ワイヤ送給装置300と、溶接ワイヤ301と、溶接トーチ400と、形状検出部500と、を含んで構成される。
 マニピュレータ200は多関節のアームを備え、ロボット制御装置2のロボット制御部26から受信された制御信号に基づいて、このアームが可動する。その結果、溶接トーチ400と形状検出部500の位置を制御することができる。なお、ワークWkに対する溶接トーチ400の角度も、上記アームの可動によって変更することができる。
 ワイヤ送給装置300は、ロボット制御装置2から受信された制御信号に基づいて、溶接ワイヤ301の送給速度を制御する。なお、ワイヤ送給装置300は、溶接ワイヤ301の残量を検出可能なセンサを備えていてもよい。
 溶接ワイヤ301は溶接トーチ400に保持されており、また、溶接トーチ400に溶接電源装置4から電力が供給されることで、溶接ワイヤ301の先端とワークWkとの間にアークが発生し、アーク溶接が行われる。なお、溶接トーチ400にシールドガスを供給するための構成等は、説明の便宜上、これらの図示及び説明を省略する。
 検査・リペア溶接ロボットMC23が備える形状検出部500は、ロボット制御装置2から受信された制御信号に基づいて、溶接個所の溶接ビードの形状を検出し、検出結果に基づいて溶接ビードごとの形状データを取得する。検査・リペア溶接ロボットMC23は、取得された溶接ビードごとの形状データを検査装置3に送信する。
 形状検出部500は、例えば3次元形状計測センサである。形状検出部500は、例えば、ロボット制御装置2から受信された溶接個所の位置情報に基づいて、ワークWk上の溶接個所を走査可能に構成されたレーザ光源(不図示)と、溶接個所の周辺を含む撮像領域を撮像可能に配置され、溶接個所に照射されたレーザ光のうち反射されたレーザ光の反射軌跡(つまり、溶接個所の形状線)を撮像するカメラ(不図示)とによって構成される。形状検出部500は、カメラによって撮像されたレーザ光に基づく溶接個所の形状データ(画像データ)を検査装置3に送信する。
 上述したカメラ(不図示)は、少なくともレンズ(不図示)とイメージセンサ(不図示)とを有して構成される。イメージセンサは、例えばCCD(Charged-Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)の固体撮像素子であり、撮像面に結像した光学像を電気信号に変換する。
(上位装置)
 次に、上位装置1について説明する。上位装置1は、ユーザ(作業者)による入力操作あるいはユーザ(作業者)によって予め設定された情報に基づいて、リペア溶接を実行するための制御信号を生成し、生成された制御信号をロボット制御装置2に送信する。上位装置1は、通信部10と、プロセッサ11と、メモリ12と、を含んで構成される。
 通信部10は、ロボット制御装置2との間で通信可能に接続される。通信部10は、リペア溶接を実行させるための制御信号をロボット制御装置2に送信する。なお、ここでいうリペア溶接を実行させるための制御信号は、マニピュレータ200、ワイヤ送給装置300および溶接電源装置4のそれぞれを制御するための制御信号を含んでよい。
 プロセッサ11は、例えばCPU(Central Processing unit)またはFPGA(Field Programmable Gate Array)を用いて構成されて、メモリ12と協働して、各種の処理および制御を行う。具体的には、プロセッサ11は、メモリ12に保持されたプログラムおよびデータを参照し、そのプログラムを実行することにより、セル制御部13の機能を実現する。
 セル制御部13は、インターフェースUI1を用いたユーザ(作業者)による入力操作と、ユーザ(作業者)によって予め設定され、外部ストレージSTに記憶された情報とに基づいて、リペア溶接を実行するための制御信号を生成する。セル制御部13によって生成された制御信号は、通信部10を介してロボット制御装置2に送信される。
 メモリ12は、例えばプロセッサ11の各処理を実行する際に用いられるワークメモリとしてのRAM(Random Access Memory)と、プロセッサ11の動作を規定したプログラムおよびデータを格納するROM(Read Only Memory)とを有する。RAMには、プロセッサ11により生成あるいは取得されたデータもしくは情報が一時的に保存される。ROMには、プロセッサ11の動作を規定するプログラムが書き込まれている。
 また、メモリ12は、ワークWkに関する情報種別、ワークWkごとに予め付与されたワークS/N(Serial Number)、ユーザによって設定された溶接個所(溶接線)ごとに付与された溶接線IDなどを記憶する。
(ロボット制御装置2)
 次に、ロボット制御装置2について説明する。ロボット制御装置2は、上位装置1から受信された制御信号に基づいてマニピュレータ200、ワイヤ送給装置300、および溶接電源装置4のそれぞれを制御する。ロボット制御装置2は、通信部20と、プロセッサ21と、メモリ22とを含んで構成される。プロセッサ21は、プログラム編集部23aと、プログラム呼出部23bと、プログラム記憶部23cと、演算部24と、検査装置制御部25と、ロボット制御部26と、溶接電源制御部27と、を含んで構成される。
 通信部20は、上位装置1との間で通信可能に接続される。通信部20は、上位装置1から、リペア溶接や、検査装置3による外観検査を実行させるための制御信号を受信する。
 プロセッサ21は、例えばCPUまたはFPGAを用いて構成されて、メモリ22と協働して、各種の処理および制御を行う。具体的には、プロセッサ21はメモリ22に保持されたプログラムおよびデータを参照し、そのプログラムを実行することにより、各部の機能を実現する。各部は、プログラム編集部23a、プログラム呼出部23b、プログラム記憶部23c、演算部24、検査装置制御部25、ロボット制御部26および溶接電源制御部27である。各部の機能は、例えば、予め記憶されたリペア溶接を実行するためのリペア溶接プログラムを編集して呼び出す機能、呼び出されたリペア溶接プログラムに基づいて、マニピュレータ200、ワイヤ送給装置300および溶接電源装置4のそれぞれを制御するための制御信号を生成する機能などである。
 メモリ22は、例えばプロセッサ21の各処理を実行する際に用いられるワークメモリとしてのRAMと、プロセッサ21の動作を規定したプログラムおよびデータを格納するROMとを有する。RAMには、プロセッサ21により生成あるいは取得されたデータもしくは情報が一時的に保存される。ROMには、プロセッサ21の動作を規定するプログラムが書き込まれている。
 プログラム編集部23aは、通信部20を介して検査装置3から受信された不良個所に関する情報(例えば、後述の検査装置3による判定結果)に基づいて、リペア溶接を実行するためのプログラム(制御信号)を編集する。プログラム編集部23aは、プログラム記憶部23cに予め記憶されているリペア溶接を実行するためのリペア溶接基本プログラムを参照し、受信された不良個所の位置および不良要因、リペア溶接の為のパラメータ(修正パラメータ)等に応じてリペア溶接プログラムを編集する。編集後のリペア溶接プログラムは、プログラム記憶部23cに記憶してよく、また、メモリ22内のRAM等に記憶してもよい。
 リペア溶接プログラムには、リペア溶接を実行するにあたって、溶接電源装置4、マニピュレータ200、ワイヤ送給装置300、溶接トーチ400、形状検出部500、などを制御するための、電流、電圧、オフセット量、速度、姿勢、方法等のパラメータが含まれていてよい。
 プログラム呼出部23bは、メモリ22に含まれるROMや、プログラム記憶部23c等に記憶されている各種プログラムを呼び出す。なお、プログラム呼出部23bは、検査・リペア溶接ロボットMC23側にあるプログラムを呼び出してもよい。また、プログラム呼出部23bは、複数のプログラムから、検査装置3による検査結果(判定結果)に応じて、適切なプログラムを選択して呼び出すことができる。すなわち、プログラム呼出部23bは、検査装置3による検査結果(判定結果)に応じてプログラムを変更することができる。
 プログラム記憶部23cは、ロボット制御装置2が使用する各種プログラムを記憶する。例えば、上述のリペア溶接基本プログラムや、プログラム編集部23aによって編集済のリペア溶接プログラム等がプログラム記憶部23cに記憶されてよい。
 演算部24は、各種の演算を行う機能ブロックである。演算部24は、例えば、リペア溶接プログラムに基づいて、ロボット制御部26によって制御されるマニピュレータ200およびワイヤ送給装置300を制御するための演算等を行う。その他、演算部24は、不良個所の位置に基づいて、不良個所に対するリペア溶接に必要なオフセット量を演算してもよい。
 検査装置制御部25は、検査装置3を制御するための制御信号を生成する。この制御信号は通信部20を介して検査装置3へと送信される。反対に、検査装置制御部25は、検査装置3から各種情報を通信部20経由で受信し、当該情報に基づき、例えばリペア溶接プログラムの編集を行う(プログラム編集部23a)、通知を上位装置1に送信する、等の各種処理を行う。
 ロボット制御部26は、プログラム呼出部23bによって呼び出された、あるいはプログラム記憶部23cに記憶されたリペア溶接プログラムや、演算部24からの演算結果に基づいて、マニピュレータ200およびワイヤ送給装置300のそれぞれを駆動させる。溶接電源制御部27は、プログラム呼出部23bによって呼び出された、あるいはプログラム記憶部23cに記憶されたリペア溶接プログラムや、演算部24からの演算結果に基づいて、溶接電源装置4を駆動させる。
 検査ロボットMC2とリペア溶接ロボットMC3を別体にする構成の場合、前記の不良個所に関する情報は、検査ロボットMC2と接続された検査装置3から、上位装置1を経由して、リペア溶接ロボットMC3と接続されたロボット制御装置2へと送信されてよい。リペア溶接ロボットMC3と接続されたロボット制御装置2のプログラム編集部23aは、通信部20を介して上位装置1から受信された不良個所に関する情報(例えば、後述の検査装置3による判定結果)に基づいて、リペア溶接を実行するためのプログラム(制御信号)を編集してよい。
 上記の構成例においては、プログラム編集部23aやプログラム呼出部23bがロボット制御装置2側にある形態を説明した。しかし、プログラム編集部やプログラム呼出部が、検査装置3側に設けられてもよい。この場合、上述のプログラムの呼出しや、リペア溶接プログラムの編集を検査装置3が行ってよい。プログラムの呼出し元は、検査装置3内に限られず、ロボット制御装置2、あるいはロボット制御装置2に接続された検査・リペア溶接ロボットMC23等からプログラムを呼び出してもよい。呼び出されたプログラムは、プログラム編集部で編集される。編集後のプログラムが、リペア溶接プログラムとして検査装置3からロボット制御装置2へと送信され、ロボット制御装置2はこのリペア溶接プログラムを用いて、リペア溶接を行うことができる。
(検査装置3)
 次に、検査装置3について説明する。検査装置3は、形状検出部500によって取得された溶接個所ごとの溶接ビードの形状データに基づいて、ワークWkの溶接個所を検査(判定)する。
 検査装置3は、通信部30と、プロセッサ31と、メモリ32と、形状検出制御部34と、データ処理部35と、判定閾値記憶部36と、判定部37と、を含んで構成される。
 通信部30は、ロボット制御装置2との間で通信可能に接続される。なお、通信部30は、上位装置1との間を直接、通信可能に接続されてもよい。通信部30は、上位装置1またはロボット制御装置2から、溶接個所(溶接線)に関する情報を受信する。溶接個所に関する情報には、例えば、ワーク種別、ワークS/N、溶接線ID等が含まれていてよい。
 また、検査装置3は、溶接個所の検査結果を、通信部30を介して、上位装置1またはロボット制御装置2に送信する。
 プロセッサ31は、例えばCPUまたはFPGAを用いて構成されて、メモリ32と協働して、各種の処理および制御を行う。具体的には、プロセッサ31はメモリ32に保持されたプログラムおよびデータを参照し、そのプログラムを実行することにより、各部の機能を実現する。各部は、形状検出制御部34、データ処理部35、判定閾値記憶部36および判定部37を含む。各部の機能は、例えば、ロボット制御装置2から受信された溶接個所に応じた検査に関する制御信号に基づいて形状検出部500を制御する機能、形状検出部500から受信された溶接ビードの形状データに基づいて、画像データを生成する機能、および生成された画像データに基づいて、溶接個所に対する検査を実行する機能などである。
 機械学習を行う場合、プロセッサ31は、例えば、計算用のGPUを複数備える構成としてよい。この場合、プロセッサ31は、上述のCPU等と併用してもよい。
 メモリ32は、例えばプロセッサ31の各処理を実行する際に用いられるワークメモリとしてのRAMと、プロセッサ31の動作を規定したプログラムおよびデータを格納するROMとを有する。RAMには、プロセッサ31により生成あるいは取得されたデータもしくは情報が一時的に保存される。ROMには、プロセッサ31の動作を規定するプログラムが書き込まれている。また、メモリ32には、例えばハードディスク(HDD:Hard Disk Drive)やソリッドステートドライブ(SSD:Solid State Drive)等が含まれていてよい。
 形状検出制御部34は、形状検出部500から受信された溶接個所における溶接ビードの形状データと、ロボット制御装置2から受信された溶接個所に応じた検査に関する制御信号とに基づいて、形状検出部500を制御させる。形状検出制御部34は、形状検出部500が溶接個所を撮像可能(形状検出可能)な位置に位置すると、レーザ光線を照射させて溶接個所における溶接ビードの形状データを取得させる。形状検出制御部34は、形状検出部500によって取得された形状データを受信すると、この形状データをデータ処理部35に出力する。
 データ処理部35は、形状検出制御部34から入力された溶接個所における溶接ビードの形状データを画像データに変換する。形状データは、例えば、溶接ビードの表面に照射されたレーザ光線の反射軌跡からなる形状線の点群データである。データ処理部35は、入力された形状データに対して統計処理を実行し、溶接個所における溶接ビードの形状に関する画像データを生成する。なお、データ処理部35は、溶接ビードの位置および形状を強調するために、溶接ビードの周縁部分を強調したエッジ強調補正を行ってもよい。
 判定閾値記憶部36は、溶接個所に応じて判定を実行するために、溶接個所に応じて設定された各閾値を記憶する。各閾値は、例えば溶接個所の位置ずれに関する許容範囲(閾値)、溶接ビードの高さに関する閾値、溶接ビードの幅に関する閾値などである。また、判定閾値記憶部36は、リペア溶接後の各閾値として、顧客から要求される品質を満たす程度の許容範囲(例えば、溶接ビードの高さに関する最小許容値、最大許容値など)を記憶する。
 判定閾値記憶部36は、溶接個所ごとに検査回数の上限値を記憶してよい。これにより、検査装置3は、リペア溶接によって不良個所を修正する際に所定の回数を上回るものに関して、リペア溶接による不良個所の修正が困難あるいは不可能と判定して、リペア溶接システム1000aの稼働率の低下を抑制することができる。
 判定部37は、判定閾値記憶部36に記憶された閾値を参照する等して、溶接個所における溶接ビードの形状データに基づいて、溶接個所についての判定を行う。この判定については、図3以降を参照しつつ後述する。
 判定部37は、不良個所の位置(例えば、不良個所の開始位置と終了位置や、溶接ビードに生じた穴あきの位置や、アンダーカットの位置等)を計測し、不良内容を分析して不良要因を推定する。判定部37は、計測された不良個所の位置および推定された不良要因を溶接個所に対する検査結果(判定結果)として生成し、生成された検査結果を、ロボット制御装置2を介して、上位装置1に送信する。
 判定部37は、不良個所がないと判定した場合には、不良個所がないことを通知するアラートを生成し、生成されたアラートを、ロボット制御装置2を介して、上位装置1に送信する。上位装置1に送信されたアラートは、モニタMN1に送信されて表示される。
 また、データ処理部35は、溶接個所ごとに検査回数をカウントし、検査回数が判定閾値記憶部36に記憶された回数を超えても溶接検査結果が良好にならない場合、リペア溶接による不良個所の修正が困難あるいは不可能と判定する。この場合、判定部37は、不良個所の位置および不良要因を含むアラートを生成し、生成されたアラートを、ロボット制御装置2を介して、上位装置1に送信する。上位装置1に送信されたアラートは、モニタMN1に送信されて表示される。
 なお、検査装置3は、上記以外の内容のアラートを生成してもよい。このアラートもまた、ロボット制御装置2を介して、上位装置1に送信される。上位装置1に送信されたアラートは、モニタMN1に送信されて表示される。
 図3は、実施の形態1に係るリペア溶接検査装置を含んだリペア溶接システム1000aによる動作手順例を示すフローチャートである。なお、このフローチャートは、図2に示したシステム構成に基づいており、本溶接が行われた後のワークWkについて、検査とリペア溶接とを行う例を示している。
 まず、本溶接が行われた後のワークWkについて、外観検査を行う(ステップSt101)。この外観検査は、形状検出部500によって取得された上述の形状データを用いて行う。ここで、1つのワークWkには、複数の溶接個所(溶接線)が存在し得る。本実施の形態では、後述のステップSt102に処理が遷移する前に、ワークWkについての全ての溶接個所(溶接線)について外観検査が行われている。
 ここで、処理内部でのデータの状態について例示する。形状検出部500が検出した、溶接ビードの形状データには、複数の溶接個所(溶接線)が含まれ得る。データ処理部35が、この形状データから各溶接個所(溶接線)を検出する。この検出アルゴリズムは従来技術を用いてよい。また、検査装置3は、その溶接ビードが存在するワークWkにおける、ワーク種別、ワークのシリアルナンバー(ワークS/N)、溶接線IDなどを、上位装置1またはロボット制御装置2から取得してよい。検査装置3は、前述の形状データに、ワーク種別、ワークS/N、溶接線ID等を紐付けて管理することができる。検査装置3はこれらのデータをメモリ32等に記憶してよい。
 メモリ32は、検査対象の溶接個所(溶接線)が、過去に溶接不良と判定されていたか否かを示す情報を、上記の溶接線IDに紐づけて保持してよい。データ処理部35は、後述の本溶接検査(ステップSt102)およびリペア溶接検査(ステップSt104)を行う際に、検査対象の溶接個所(溶接線)が過去に溶接不良と判定されていたか否かをメモリ32から照合し、検査対象の溶接個所(溶接線)が、本溶接に係るものなのか、リペア溶接に係るものなのかを判断する。この判断により検査装置3は、検査対象のその溶接個所(溶接線)に対して行うべき検査が、本溶接検査なのか、リペア溶接検査なのかを決定することができる。
 また、検査装置3は、検査対象の溶接個所(溶接線)についての形状データに、不良種別、特性データ等をさらに紐づけて管理することができる。ただし、紐づけ可能なデータは前述のものには限られない。検査装置3は、これらのデータを、メモリ32等に記憶しておいてよい。
 次に、プロセッサ31は、外観検査が行われたワークWkについて、本溶接検査を行う(St102)。この本溶接検査は、形状検出部500で検出した検査対象であるワークWkについての溶接ビードの形状データを、メモリ32等に記憶されているマスタデータと比較することで行い得る。このマスタデータとの比較について、判定閾値記憶部36に記憶された閾値を用いてよい。
 プロセッサ31内の判定部37には、判定モデルが実装されている。例えば、溶接の良否判定を行うための関数やメソッド、モジュール等である。この判定部37が、例えば以下のようにして判定を行う。
 ワークWkの溶接個所にアーク溶接等を行った場合、その溶接個所には、種々の形状不良が生じ得る。例えば、溶接個所の一部が溶け落ちてできる穴あきや、アンダーカットが生じることがある。また、溶接線に沿った溶接ビードの長さや、溶接線に直交する方向についての溶接ビードの位置、溶接ビードの高さ等が、基準値と比較して許容範囲を超えてずれる場合もある。これら「穴あき」「アンダーカット」「ビードの長さ(のずれ)」「溶接線ずれ」「ビードの高さ(のずれ)」等を、溶接の不良種別と表現する。前述したもの以外の不良種別も存在し得る。
 判定閾値記憶部36には、判定部37が用いる、良否判定のための閾値が記憶されている。例えば不良種別「ビードの高さ(の基準値からのずれ)」については、外観検査が行われた溶接個所のビードの高さの、マスタデータにおけるビードの高さに対する許容誤差が閾値となる。不良種別「穴あき」については、溶接個所に穴あきが存在した場合の穴径(マスタデータにおいては穴径は0)が閾値となる。
 ここで、図4を参照する。図4は、不良種別毎の閾値の第1の例を示す概念図であり、(a)マスタデータの溶接ビードを示す断面図、(b)検査対象の溶接ビードを示す断面図である。図4中の(a)に示すように、マスタデータにおける溶接ビードの高さをHとする。
 実際に溶接を行った場合、マスタデータの溶接ビードの高さHと全く同じ高さで溶接ができるとは限らない。そこで、高さHからの増減を許容する範囲を示す閾値として、上限許容オフセット値OFHおよび下限許容オフセット値OFHが設定されることができる。なお、上限許容オフセット値OFHおよび下限許容オフセット値OFHはそれぞれ、正の値であるとする。
 検査対象の溶接ビードの高さをHとしたときに、例えばH-OFH≦H≦H+OFHであれば、検査対象の溶接ビードの高さが許容範囲内に収まっていることになり、溶接は良好であるとプロセッサ31(の中の判定部37)が判定することができる。
 一方、H<H-OFHまたはH+OFH<Hである場合、検査対象の溶接ビードの高さが許容範囲外にあることになるので、溶接は不良であるとプロセッサ31(の中の判定部37)が判定することができる。この時の不良種別は「ビードの高さ(のずれ)」である。このように、判定部37は判定閾値としてH-OFHやH+OFHを用いることができる。
 判定部37が判定に用いる閾値(例えば上記の閾値H-OFHやH+OFH等)は、判定部37が当該閾値を使用する際に都度生成してよく、メモリ32等に保存しておき、判定部37が当該閾値を呼び出して使用してもよい。
 なお、判定部37が使用できる閾値は、上記の値には限られない。たとえば、許容増分率(1.1等)、許容減少率(0.9等)を閾値として用いて、H<H×許容減少率、またはH×許容増分率<Hである場合に、溶接は不良であるとプロセッサ31(の中の判定部37)が判定してもよい。その他、種々の閾値の定義が用いられてよい。説明の便宜上、以後、溶接ビードの高さについての閾値として、H-OFHとH+OFHとが用いられるという前提で説明する。
 次に、図5を参照する。図5は、不良種別毎の閾値の第2の例を示す概念図であり、(a)マスタデータの溶接ビードを示す平面図、(b)検査対象の溶接ビードを示す平面図である。マスタデータにおける溶接ビードの、溶接線から溶接ビードの端部までの距離(以下、片幅)をWとする。また、図5中の(b)には、マスタデータの溶接ビードを破線で示してある。図5中の(a)および(b)の太線は、溶接線を示している。なお、図6以降においても、溶接線が太線で示されている。
 実際に溶接を行った場合、マスタデータの溶接ビードの片幅Wと全く同じ片幅で溶接ができるとは限らない。また、図5中の(b)の実線で示したように、溶接線に対して位置ずれ(角度ずれも含む)が発生することがあり得る。そこで、溶接ビードの片幅Wを基準として、基準からの増減を許容する範囲を示す閾値として、上限許容オフセット値OFWおよび下限許容オフセット値OFWが設定されることができる。なお、上限許容オフセット値OFWおよび下限許容オフセット値OFWはそれぞれ、正の値であるとする。
 検査対象の溶接ビードの片幅をWとしたときに、例えばW-OFW≦W≦W+OFWであれば、検査対象の溶接ビードの片幅が許容範囲内に収まっていることになり、溶接は良好であるとプロセッサ31(の中の判定部37)が判定することができる。
 一方、W<W-OFWまたはW+OFW<Wである場合、検査対象の溶接ビードの片幅が許容範囲外にあることになるので、溶接は不良であるとプロセッサ31(の中の判定部37)が判定することができる。この時の不良種別は「溶接線ずれ」である。すなわち、判定部37は判定閾値としてW-OFWやW+OFWを用いることができる。
 判定部37が判定に用いる閾値(例えば上記の閾値W-OFWやW+OFW等)は、判定部37が当該閾値を使用する際に都度生成してよく、メモリ32等に保存しておき、判定部が37当該閾値を呼び出して使用してもよい。
 なお、判定部37が使用できる閾値は、上記の値には限られない。たとえば、許容増分率(1.1等)、許容減少率(0.9等)を閾値として用いて、W<W×許容減少率、またはW×許容増分率<Wである場合に、溶接は不良であるとプロセッサ31(の中の判定部37)が判定してもよい。その他、種々の閾値の定義が用いられてよい。説明の便宜上、以後、溶接ビードの片幅についての閾値は、W-OFWとW+OFWとが用いられるという前提で説明する。
 次に、図6を参照する。図6は、不良種別毎の閾値の第3の例を示す概念図であり、(a)マスタデータの溶接ビードを示す平面図、(b)検査対象の溶接ビードを示す平面図である。図6中の(a)においては、溶接ビードの表面に穴が無い。一方、図6中の(b)に示した検査対象の溶接ビードにおいては、穴あきが発生している。本実施の形態では、貫通孔を例としているが、貫通しない穴についても同様に扱ってもよい。貫通しない穴の扱いについては、ユーザが求める品質によって決定されてよい。
 判定部37は、この穴あきを評価するための閾値として、例えば、穴径Dを用いてよい。ただし、判定部37は穴径以外の閾値を用いてもよい。穴径Dは、穴あきの長径をD、穴あきの短径をDとしたときに、次の式で定義される。
 D=(D+D)/2
 なお、マスタデータにおける穴径は0である。
 検査対象の溶接ビードに穴あきがあった場合の穴径をDとしたときに、例えばD<Dであれば、溶接は良好であるとプロセッサ31(の中の判定部37)が判定することができる。一方、D≦Dである場合、検査対象の溶接ビードに許容範囲を超える大きさの穴あきが発生していることになるので、溶接は不良であるとプロセッサ31(の中の判定部37)が判定することができる。この時の不良種別は「穴あき」である。このように、判定部37は判定閾値として穴径Dを用いることができる。
 判定部37が判定に用いる閾値(例えば上記の穴径D等)は、判定部37が当該閾値を使用する際に都度生成してよく、メモリ32等に保存しておき、判定部37が当該閾値を呼び出して使用してもよい。
 なお、上記の不良種別や上記の閾値の定義はあくまで一例であり、これら以外の不良種別(例えば、アンダーカットやビード切れ等)や、その不良種別に応じた種々の閾値が用いられてよい。図3のステップSt102においては、プロセッサ31内の判定部37がこのような閾値を用いて判定を行うことで、本溶接が行われた溶接個所についての検査を行う。なお、本実施の形態においては、ワークWkが有するすべての溶接個所についての検査(良否判定)を行っている。
 判定部37による判定(ステップSt102)の結果、全ての溶接個所について不良個所が存在しない場合(ステップSt102、Y)、リペア溶接を行う必要が無いので、処理が終了する。一方、溶接個所のいずれかに溶接の不良個所が存在する場合(ステップSt102、N)、ステップSt103へと処理が遷移する。
 ステップSt103においては、先行するステップSt102において発見された溶接不良個所について、リペア溶接が行われる。このリペア溶接を、検査・リペア溶接ロボットMC23が行ってよい。すなわち、上位装置1による全体制御の下、ロボット制御装置2が検査・リペア溶接ロボットMC23を制御して、リペア溶接を実行してよい。なお、検査装置3から溶接作業者に対してアラートを行い、溶接作業者が手溶接でリペア溶接を行ってもよい。
 次に、プロセッサ31は、リペア溶接が行われたワークWkについて、リペア溶接検査を行う(St104)。前述のステップSt102と同様に、このリペア溶接検査は、形状検出部500で検出した検査対象であるワークWkについての溶接ビードの形状データを、メモリ32等に記憶したマスタデータと比較することで行い得る。このマスタデータとの比較について、閾値が用いられる。
 ただし、ステップSt102で用いた閾値に対して、値の変更された閾値をステップSt104で用いてよい。値の変更された閾値については後述する。
 リペア溶接検査の判定結果が良好である場合(ステップSt104、Y)、ワークWk上で発見された不良個所についてのリペア溶接(ステップSt103)によって、不良個所が適切にリペアされたことになるので、処理が終了する。一方、判定結果が不良である場合(ステップSt104、N)、この不良個所について、再度のリペア溶接(ステップSt103)を試みる。なお、1つのワークWkあるいは1つの溶接個所における、リペア溶接(ステップSt103)およびリペア溶接検査(ステップSt104)の上限回数を決定しておき、この上限回数だけリペア溶接を行っても溶接検査の判定が良好にならない場合は、そのワークWkについての更なるリペア溶接を放棄し、処理を終了してよい。
 図3に示したフローチャートにおいては、1つのワークWkに含まれる全ての溶接個所(溶接線)についての外観検査(ステップSt101)が行われ、全ての溶接個所(溶接線)についての溶接検査(ステップSt102)が行われた後で、リペア溶接(ステップSt103)とリペア溶接検査(ステップSt104)とが行われている。しかしながら、1つのワークWkに含まれる溶接個所(溶接線)毎に外観検査(ステップSt101)および本溶接検査(ステップSt102)が行われて、不良個所が見つかる都度、不良個所を含む溶接個所(溶接線)についてのリペア溶接(ステップSt103)とリペア溶接検査(ステップSt104)とが行われてもよい。この場合、1つの溶接個所(溶接線)についての溶接検査(本溶接検査またはリペア溶接検査)において検査結果が良好であった場合に、次の溶接個所(溶接線)についての溶接検査が行われてよい。
 ここで、ステップSt102とステップSt104とは、判定部37が判定を行うために閾値を用いる点が共通している。しかし、ステップSt104においては、さらにリペア溶接が行われた後である、という点が異なっている。
 リペア溶接は、既に溶接(本溶接や、前回のリペア溶接など)が行われた溶接個所に対して行われる。従って、ワークWk上の溶接ビードの状態は、ステップSt102とステップSt104との間で異なる。例えば、ステップSt104の時点における溶接ビードは、ビードの高さや片幅等が増えている。従って、ステップSt104において、ステップSt102で用いたものと同じ値の閾値を用いても、うまく良否判定ができるとは限らない。
 そこで、ステップSt104において、リペア溶接検査用の判定閾値を用いて良否判定を行う。リペア溶接検査用の判定閾値は、その前に行われた溶接用の判定閾値に対して値が変更されたものであってよい。以下、この検査閾値の生成について説明する。
 図7は、不良種別「ビード切れ」である不良個所に対してリペア溶接を行った場合の、ステップSt104において用いる検査閾値の決定例を示す図であり、(a)リペア溶接前を示す平面図、(b)リペア溶接後を示す平面図、(c)リペア溶接後を示すA-A断面図である。なお、図7中の(b)および(c)における斜線部は、リペア溶接によって追加された溶接ビードを示している。
 ステップSt102において不良種別「ビード切れ」の溶接不良が発見されたとする。この溶接不良発覚時のビードの高さHは、許容範囲内に収まっているとする。すなわち、ステップSt102の時点においては、H-OFH≦H≦H+OFHであるので、判定部37は、不良種別「ビードの高さ」について溶接は良好であると判定する。
 不良種別「ビード切れ」についての溶接不良が発見されたので、ステップSt103で、リペア溶接が行われる。すなわち、溶接ビードの端部付近に対して、追加で溶接を行う。
 図7中の(b)は、リペア溶接を行った後の状態を示している。図7中の(c)は、図7中の(b)のA-A断面図を示している。図7中の(b)に示したように、リペア溶接によってビードの長さが増加している。従って、不良種別「ビード切れ」については、リペア溶接検査(ステップSt104)において、溶接結果は良好であると判定される。
 しかし、図7中の(b)および(c)に示したように、前回の溶接(本溶接など)によって形成された溶接ビードと、リペア溶接(ステップSt103)によって新たに形成された溶接ビードとで、重複部分(A-A断面の部分)が生じ得る。従って、リペア溶接後の溶接ビードの全体の高さHT2は、この重複部分があることで、従前の高さHよりも高くなっている。すなわちH<HT2である。
 すると、本溶接検査(ステップSt102)の際に用いた閾値をそのまま用いて、リペア溶接検査(ステップSt104)を行うと、図7中の(c)に示されているように、例えば以下のような値の大小関係となる。
 H-OFH≦H≦H+OFH<HT2
 すなわち、リペア溶接を行った結果、溶接ビードの高さHT2が許容範囲を超えてしまうことがあり得る。この場合、ステップSt104において、不良種別「ビード切れ」については判定結果は良好となるものの、不良種別「溶接ビードの高さ」について、判定結果が不良となる。
 しかしながら、リペア溶接の実情を考えると、リペア溶接を行うことによって、上述のような溶接ビードの重複部分がある程度発生することは、実際には避けられない。そこで、リペア溶接(ステップSt103)を行った後のリペア溶接検査(ステップSt104)においては、従前の閾値H+OFHに対して余裕値ΔHを加算した、H+OFH+ΔHを、リペア溶接検査用の(新たな)閾値とすることができる。なお、プロセッサ31がこの新たな閾値H+OFH+ΔHを都度生成してもよく、新たな閾値H+OFH+ΔHを判定閾値記憶部36に記憶してもよい。
 ステップSt104において判定部37は、リペア溶接検査用の(新たな)閾値を用いて、リペア溶接検査を行う。すなわち、リペア溶接後の溶接ビードの高さHT2を、値の変更された閾値と比較する。すると、以下のような値の大小関係となる。
 H-OFH≦H≦H+OFH<HT2<H+OFH+ΔH
 すなわち、判定部37は、リペア溶接検査(ステップSt104)において、不良種別「溶接ビードの高さ」についても、判定結果を良好と判定することができる。
 以上のように、溶接不良個所の不良種別に応じて値が変更(決定)された、リペア溶接検査用の判定閾値を用いて、リペア溶接検査を行う。上記の例においては、溶接不良個所の不良種別が「ビード切れ」であるので、不良種別「ビード切れ」に応じて、リペア溶接検査用の閾値の値をH+OFHからH+OFH+ΔHへと変更して、この値が変更された判定閾値を用いて、リペア溶接検査を行う。このように、不良種別に応じて判定閾値を調整することにより、リペア溶接の実情に応じて正しく良否判定を行うことができる。その結果、溶接の品質および生産効率を向上させることができる。
 閾値の変化量(上記の例においては余裕値ΔH)は、固定値であってよく、固定値でなくてもよい。また、閾値の変化量が、種々の情報に応じて決定されてよい。例えば、閾値の変化量は、検査対象となっている溶接個所(溶接線)の本溶接/リペア溶接の溶接特性データ(電流、電圧、溶接速度、溶接制御方法、ロボット姿勢、ワイヤ径、突き出し長等)に応じて決定されもよい。
 さらに、閾値の変化量は、前記の不良種別を示す情報、溶接ビードの形状データ、リペア溶接検査用の設定情報等に基づいて決定されてもよい。リペア溶接検査用の設定情報には、工場やユーザの要求仕様を示す情報(例えば、工場等により認容可能な変化量の最大値等)が含まれていてよく、工場やユーザの要求に応じて閾値の変化量が決定されてよい。一例を挙げると、本溶接とリペア溶接との間で判定基準を変えるのは許されないという要求仕様がある場合には、閾値の変化量(ΔH)が0と決定されてもよい。
 また、ステップSt104で用いる判定閾値の決定方法には、複数の態様が存在する。第1の決定方法は、本溶接検査(ステップSt102)で用いる判定閾値に、上述の閾値の変化量(ΔH)を加算することである。
 例えば、プロセッサ31が、本溶接検査(ステップSt102)で用いる判定閾値(H+OFH等)の値を判定閾値記憶部36から取得する。プロセッサ31がこの値に、上述の閾値の変化量(ΔH)を加算することにより、ステップSt104で用いるリペア溶接検査用の判定閾値を決定することができる。
 ステップSt104で用いる判定閾値の第2の決定方法は、判定閾値を、本溶接検査(ステップSt102)で用いる判定閾値とは独立に演算することである。すなわち、プロセッサ31が必要な情報(ΔHを計算するための上述の情報や、Hの値やOFHの値)を取得し、直接、ステップSt104で用いるリペア溶接検査用の判定閾値を導出すればよい。
 なお、溶接不良個所において、溶接ビードのサイズがリペア溶接の前後で変化する場合、このサイズの変化方向についての変化を限定する判定閾値について、リペア溶接を行う前に行った溶接の検査用の判定閾値よりも判定基準を緩めるように値が変更されてよい。上述の例においては、判定閾値H+OFHが、値を変更する対象となる判定閾値に該当する。すなわち、以下の通りである。
 溶接不良個所において、溶接ビードの高さがリペア溶接の前後でHからHT2へと変化している。H<HT2であるため、このサイズの変化方向は、高さが増加する方向である。判定閾値H+OFHは高さ方向についての上限値として用いられているため、サイズの変化方向についての変化、すなわち高さが増加する方向についての変化を限定している。この判定閾値H+OFHの値を、H+OFH+ΔHへと変更すれば、判定基準が緩められることになる。
 すなわち、溶接不良個所の不良種別が「ビード切れ」の場合は、溶接ビードの高さに関する判定閾値H+OFHについて、判定基準を緩めるように値が変更される。
 本実施の形態では、溶接ビードの高さHを、マスタービードの高さHと比較して検査を行ったが、溶接ビードの上端のワークに対する位置座標を、マスタービードの上端のワークに対する位置座標と比較して検査を行ってもよい。この場合、溶接ビードの上端のワークに対する位置座標とマスタービードの上端のワークに対する位置座標との差が、本溶接検査時にはOFH以内または未満であれば良好と判断でき、リペア溶接検査時にはOFH+ΔH以内または未満であれば良好と判定できる。さらに、検査装置3が、先述の溶接ビードの高さや溶接ビードの上端の位置座標をスコア化し、スコアによる閾値を設けてもよい。
 図8は、不良種別「溶接線ずれ」である不良個所に対してリペア溶接を行った場合の、ステップSt104において用いる検査閾値の決定例を示す図であり、(a)リペア溶接前を示す平面図、(b)リペア溶接後を示す平面図、(c)リペア溶接後を示すA-A断面図である。なお、図8中の(b)および(c)における斜線部は、リペア溶接によって追加された溶接ビードを示している。
 ステップSt102において不良種別「溶接線ずれ」の溶接不良が発見されたとする。この溶接不良発覚時のビードの高さHは、許容範囲内に収まっているとする。すなわち、ステップSt102の時点においては、H-OFH≦H≦H+OFHであるので、判定部37は、不良種別「ビードの高さ」について溶接良好と判定する。
 一方、この溶接不良発覚時のビードの片幅Wは、許容範囲内に収まっていない。図8中の(a)の×印で示した部分は、溶接線の周りに溶接ビードが形成されていないので、ステップSt102の時点においてW<W-OFWとなり、判定部37は、不良種別「溶接線ずれ」については、溶接不良と判定する。従って、ステップSt103でリペア溶接が行われる。
 図8中の(b)は、リペア溶接を行った後の状態を示している。リペア溶接を行った結果、図8中の(a)の×印で示した部分に新たに溶接ビードが形成されている。図8中の(c)は、図8中の(b)のA-A断面図を示している。溶接ビードが形成されていなかった溶接線上の部分に追加で溶接が行われたので、溶接の強度が確保されている。
 しかし、図8中の(b)および(c)に示したように、前回の溶接(本溶接など)によって形成された溶接ビードと、リペア溶接(ステップSt103)によって新たに形成された溶接ビードとで、重複部分が生じ得る。従って、リペア溶接後の溶接ビードの全体の高さHT2は、この重複部分があることで、従前の高さHよりも高くなっている。すなわちH<HT2である。
 すると、本溶接検査(ステップSt102)の際に用いた閾値をそのまま用いて、リペア溶接検査(ステップSt104)を行うと、図8中の(c)に示したように、例えば以下のような値の大小関係となる。
 H-OFH≦H≦H+OFH<HT2
 すなわち、リペア溶接を行った結果、溶接ビードの高さHT2が許容値を超えてしまうことがあり得る。この場合、ステップSt104において、不良種別「溶接ビードの高さ」について、判定結果が不良となる。
 また、リペア溶接後の状態を示す図8中の(b)において、リペア溶接(ステップSt103)によって新たに形成された溶接ビードが、図8中の(a)の左側方向の許容値を超えてしまっている。すなわち、W+OFW<Wであるので、ステップSt104において判定部37は、不良種別「溶接線ずれ」について溶接不良と判定する。
 しかしながら、リペア溶接の実情を考えると、リペア溶接を行うことによって、上述のような溶接ビードの重複部分がある程度発生することは、実際には避けられない。また、「溶接線ずれ」に対するリペア溶接の場合は、溶接ビードが形成されていなかった溶接線上の部分に溶接ビードが追加的に形成されるので、溶接の強度が確保され、品質は向上する。
 そこで、リペア溶接(ステップSt103)を行った後のリペア溶接検査(ステップSt104)においては、従前の閾値H+OFHに対して余裕値ΔHを加算した、H+OFH+ΔHを、リペア溶接検査用の(新たな)閾値とすることができる。同様に、従前の閾値W+OFWに対して余裕値ΔWを加算した、W+OFW+ΔWを、リペア溶接検査用の(新たな)閾値とすることができる。なお、プロセッサ31がこれらの新たな閾値H+OFH+ΔHやW+OFW+ΔWを都度生成してもよく、新たな閾値H+OFH+ΔHやW+OFW+ΔWを判定閾値記憶部36に記憶してもよい。
 ステップSt104において判定部37は、リペア溶接検査用の(新たな)閾値を用いて、リペア溶接検査を行う。すなわち、リペア溶接後の溶接ビードの高さHT2を値の変更された閾値と比較し、リペア溶接後の溶接ビードの片幅Wを値の変更された閾値と比較する。するとそれぞれ、以下のような値の大小関係となる。
 H-OFH≦H≦H+OFH<HT2<H+OFH+ΔH
 W-OFW<W+OFW<W<W+OFW+ΔW
 すなわち、リペア溶接検査(ステップSt104)において、不良種別「溶接ビードの高さ」についても、不良種別「溶接線ずれ」についても、判定結果を良好と判定することができる。
 以上のように、溶接不良個所の不良種別に応じて値が変更(決定)された、リペア溶接検査用の判定閾値を用いて、検査装置3がリペア溶接検査を行う。上記の例においては、溶接不良個所の不良種別が「溶接線ずれ」であるので、不良種別「溶接線ずれ」に応じて、リペア溶接検査用の閾値の値を、H+OFHからH+OFH+ΔHへと、およびW+OFWからW+OFW+ΔWへとそれぞれ変更して、この値が変更された判定閾値を用いて、検査装置3がリペア溶接検査を行う。このように、不良種別に応じて判定閾値を調整することにより、リペア溶接の実情に応じて正しく良否判定を行うことができる。その結果、溶接の品質および生産効率を向上させることができる。
 なお、閾値の変化量(上記の例においては余裕値ΔHおよびΔW)が、固定値であってよく、固定値でなくてもよいことや、閾値の変化量の決定方法、ステップSt104で用いる判定閾値の決定方法については、図7の例と同様であってよい。
 また、溶接不良個所において、溶接ビードのサイズがリペア溶接の前後で変化する場合、このサイズの変化方向についての変化を限定する判定閾値について、リペア溶接を行う前に行った溶接の検査用の判定閾値よりも判定基準を緩めるように値が変更されてよい。上述の例においては、判定閾値H+OFHと判定閾値W+OFWとが、値を変更する対象となる判定閾値に該当する。判定閾値H+OFHについては、図7において説明したのと同様であるので説明を省略する。判定閾値W+OFWについて、以下の通りである。
 溶接不良個所において、溶接ビードの片幅がリペア溶接の前後で変化している。図8中の(a)と(b)とを対比すればわかるように、このサイズの変化方向は、溶接ビードの片幅(図8中の(b)のW)が増加する方向である。判定閾値W+OFWは片幅方向における上限値として用いられているため、サイズの変化方向についての変化、すなわち片幅が増加する方向についての変化を限定している。この判定閾値W+OFWの値を、W+OFW+ΔWへと変更すれば、判定基準が緩められることになる。
 すなわち、溶接不良個所の不良種別が「溶接線ずれ」の場合は、溶接ビードの高さに関する判定閾値H+OFHと、溶接ビードの片幅に関する判定閾値W+OFWとについて、判定基準を緩めるように値が変更される。
 なお、本実施の形態では、溶接ビードの片幅Wを、マスタービードの片幅Wと比較して検査を行ったが、溶接ビードの片端のワークに対する位置座標を、マスタービードの片端のワークに対する位置座標と比較して検査を行ってもよい。その場合、溶接ビードの片端のワークに対する位置座標とマスタービードの片端のワークに対する位置座標との差が、本溶接検査時にはOFW以内または未満であれば良好と判定でき、リペア溶接検査時にはOFW+ΔW以内または未満であれば良好と判定できる。さらに、検査装置3が、先述の溶接ビードの片幅や溶接ビードの片端の位置座標をスコア化し、スコアによる閾値を設けてもよい。
 図9は、不良種別「穴あき」である不良個所に対してリペア溶接を行った場合の、ステップSt104において用いる検査閾値の決定例を示す図であり、(a)リペア溶接前を示す平面図、(b)リペア溶接後を示す平面図、(c)リペア溶接後を示すA-A断面図、(d)リペア溶接後を示すB-B断面図である。なお、図9中の(b)から(d)における斜線部は、リペア溶接によって追加された溶接ビードを示している。
 ステップSt102において不良種別「穴あき」の溶接不良が発見されたとする。図の例では、2個所の穴あきが発見されている。この溶接不良発覚時のビードの高さHは、許容範囲内に収まっているとする。すなわち、ステップSt102の時点において、H-OFH≦H≦H+OFHであるので、判定部37は、不良種別「ビードの高さ」について溶接は良好であると判定する。
 一方、この溶接不良発覚時のビードに存在する2個所の穴あきの穴径は、許容範囲内に収まっていない。判定部37は、不良種別「穴あき」については、溶接不良と判定する。従って、ステップSt103でリペア溶接が行われる。
 図9中の(b)は、リペア溶接を行った後の状態を示している。図9中の(c)は、図9中の(b)のA-A断面図を示している。図9中の(d)は、図9中の(b)のB-B断面図を示している。図9中の(a)における2個所の穴あき部分に追加で溶接を行い、穴を塞いだので、不良種別「穴あき」については、溶接は良好であると判定される。
 しかし、図9中の(c)に示したように、穴あき部分に追加で行った溶接によって、リペア溶接後の溶接ビードの全体の高さHT2は、従前の高さHよりも高くなっている。すなわちH<HT2である。
 すると、本溶接検査(ステップSt102)の際に用いた閾値をそのまま用いて、リペア溶接検査(ステップSt104)を行うと、図9中の(c)に示したように、例えば以下のような値の大小関係となる。
 H-OFH≦H≦H+OFH<HT2
 すなわち、リペア溶接を行った結果、溶接ビードの高さHT2が許容値を超えてしまうことがあり得る。この場合、ステップSt104において、不良種別「溶接ビードの高さ」について、判定結果が不良となる。
 また、図9中の(d)に示したように、穴あきが溶接ビードの幅方向の端部に存在する場合、リペア溶接によってこの穴を塞ぐと、穴の周囲まで溶接ビードが広がることがある。すなわち、リペア溶接前の溶接ビードの片幅をWとし、リペア溶接後の溶接ビードの片幅をWT2としたとき、以下のような値の大小関係となり得る。
 W<W+OFW<WT2
 すなわちW+OFW<WT2であるため、ステップSt104において、不良種別「溶接線ずれ」についても、判定結果が不良となる。
 しかしながら、リペア溶接の実情を考えると、リペア溶接によって穴を塞ぐのに付随して、溶接ビードの高さや片幅がある程度増加するのは避けられない。また、穴あきが塞がったのであるから、品質も向上している。
 そこで、リペア溶接(ステップSt103)を行った後のリペア溶接検査(ステップSt104)においては、従前の閾値H+OFHに対して余裕値ΔHを加算した、H+OFH+ΔHを、リペア溶接検査用の(新たな)閾値とすることができる。同様に、従前の閾値W+OFWに対して余裕値ΔWを加算した、W+OFW+ΔWを、リペア溶接検査用の(新たな)閾値とすることができる。なお、プロセッサ31がこれらの新たな閾値H+OFH+ΔHやW+OFW+ΔWを都度生成してもよく、新たな閾値H+OFH+ΔHやW+OFW+ΔWを判定閾値記憶部36に記憶してもよい。
 ステップSt104において判定部37は、リペア溶接検査用の(新たな)閾値を用いて、リペア溶接検査を行う。すなわち、リペア溶接後の溶接ビードの高さHT2を値の変更された閾値と比較し、リペア溶接後の溶接ビードの片幅WT2を値の変更された閾値と比較する。するとそれぞれ、以下のような値の大小関係となる。
 H-OFH≦H≦H+OFH<HT2<H+OFH+ΔH
 W-OFW≦W≦W+OFW<WT2<W+OFW+ΔW
 すなわち、リペア溶接検査(ステップSt104)において、不良種別「溶接ビードの高さ」についても、不良種別「溶接線ずれ」についても、判定結果を良好と判定することができる。
 以上のように、溶接不良個所の不良種別に応じて値が変更(決定)された、リペア溶接検査用の判定閾値を用いて、検査装置3がリペア溶接検査を行う。上記の例においては、溶接不良個所の不良種別が「穴あき」であるので、不良種別「穴あき」に応じて、リペア溶接検査用の閾値の値を、H+OFHからH+OFH+ΔHへと、およびW+OFWからW+OFW+ΔWへとそれぞれ変更して、これらの値が変更された判定閾値を用いて、リペア溶接検査を行う。このように、不良種別に応じて判定閾値を調整することにより、リペア溶接の実情に応じて正しく良否判定を行うことができる。その結果、溶接の品質および生産効率を向上させることができる。
 なお、閾値の変化量(上記の例においては余裕値ΔHおよびΔW)が、固定値であってよく、固定値でなくてもよいことや、閾値の変化量の決定方法、ステップSt104で用いる判定閾値の決定方法については、図7の例と同様であってよい。
 また、溶接不良個所において、溶接ビードのサイズがリペア溶接の前後で変化する場合、このサイズの変化方向についての変化を限定する判定閾値について、リペア溶接を行う前に行った溶接の検査用の判定閾値よりも判定基準を緩めるように値が変更されてよい。上述の例においては、判定閾値H+OFHと判定閾値W+OFWとが、値を変更する対象となる判定閾値に該当する。判定閾値H+OFHについては、図7において説明したのと同様であるので説明を省略する。判定閾値W+OFWについて、以下の通りである。
 溶接不良個所において、溶接ビードの片幅がリペア溶接の前後で変化している。すなわち、リペア溶接によって幅方向の端部にある穴を塞いだので、穴の周囲まで溶接ビードが広がった結果、片幅がWからWT2へと増加している。このサイズの変化方向は、片幅が増加する方向である。判定閾値W+OFWは片幅方向についての上限値として用いられているため、サイズの変化方向についての変化、すなわち片幅が増加する方向についての変化を限定している。この判定閾値W+OFWの値をW+OFW+ΔWへと変更すれば、判定基準が緩められることになる。
 すなわち、溶接不良個所の不良種別が「穴あき」の場合は、溶接ビードの高さに関する判定閾値H+OFHと、溶接ビードの片幅に関する判定閾値W+OFWとについて、判定基準を緩めるように値が変更される。
 なお、上記で図示した以外の不良種別(アンダーカット、割れ、ピット等)についても、その不良種別に対するリペア溶接の実情に応じて、ステップSt104で用いる判定閾値の値を変更してよい。
 以上により、リペア溶接の検査用の判定閾値である第2の閾値は、溶接不良個所の不良種別に応じて決定される。これにより、リペア溶接の検査用の判定閾値である第2の閾値を、種々の不良種別に応じて、適切に調整することができる。
 また、プロセッサは、溶接不良個所において、溶接ビードのサイズがリペア溶接の前後で変化する場合の、サイズの変化方向についての変化を限定する判定閾値であって、第1の閾値よりも判定基準を緩めるように値が変更された、第2の閾値を、少なくとも1つ取得する。これにより、リペア溶接の実情に応じて正しく良否判定を行うことができる。その結果、溶接の品質および生産効率を向上させることができる。
 また、プロセッサは、第1の閾値を取得し、閾値の変化量を示す値を加えることにより、リペア溶接検査用の判定閾値を取得する。これにより、リペア溶接を行う前に行った溶接(本溶接等)の判定閾値に基づいて、本溶接の条件に沿ったリペア溶接用の判定閾値の調整を行うことができる。
 また、プロセッサは、リペア溶接を行う前に行った溶接の検査用の判定閾値とは独立に演算された、第2の閾値を取得する。これにより、本溶接には無かった条件も加味して、リペア溶接用の判定閾値の調整を柔軟に行うことができる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上述した各種の実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2019年6月28日出願の日本特許出願(特願2019-122451)に基づくものであり、その内容は本出願の中に参照として援用される。
 本開示は、リペア溶接検査を行うことができるリペア溶接検査装置およびリペア溶接検査方法として有用である。
1    上位装置
2    ロボット制御装置
2a   ロボット制御装置
2b   ロボット制御装置
3    検査装置
4    溶接電源装置
10   通信部
11   プロセッサ
12   メモリ
13   セル制御部
20   通信部
21   プロセッサ
22   メモリ
23a  プログラム編集部
23b  プログラム呼出部
23c  プログラム記憶部
24   演算部
25   検査装置制御部
26   ロボット制御部
27   溶接電源制御部
30   通信部
31   プロセッサ
32   メモリ
34   形状検出制御部
35   データ処理部
36   判定閾値記憶部
37   判定部
200  マニピュレータ
300  ワイヤ送給装置
301  溶接ワイヤ
400  溶接トーチ
500  形状検出部
MC1  本溶接ロボット
MC2  検査ロボット
MC3  リペア溶接ロボット
MC23 検査・リペア溶接ロボット
MN1  モニタ
P1   端末装置
ST   外部ストレージ
UI1  インターフェース
Wk   ワーク

Claims (6)

  1.  プロセッサを備えたリペア溶接検査装置であって、
     前記プロセッサは、
     リペア溶接を行う前に行った溶接の検査用の判定閾値である第1の閾値とは異なる、前記リペア溶接の検査用の判定閾値である第2の閾値を取得し、
     前記第2の閾値を用いて、前記リペア溶接後の検査を行う、
     リペア溶接検査装置。
  2.  前記第2の閾値は、溶接不良個所の不良種別に応じて決定される、
     請求項1に記載のリペア溶接検査装置。
  3.  前記プロセッサは、
     溶接不良個所において、溶接ビードのサイズが前記リペア溶接の前後で変化する場合の、前記サイズの変化方向についての変化を限定する判定閾値であって、前記第1の閾値よりも判定基準を緩めるように値が変更された、前記第2の閾値を、少なくとも1つ取得する、
     請求項1または請求項2に記載のリペア溶接検査装置。
  4.  前記プロセッサは、
     前記第1の閾値を取得し、閾値の変化量を示す値を加えることにより、前記第2の閾値を取得する、
     請求項1から請求項3のいずれか1項に記載のリペア溶接検査装置。
  5.  前記プロセッサは、
     前記リペア溶接を行う前に行った溶接の検査用の判定閾値とは独立に演算された、前記第2の閾値を取得する、
     請求項1から請求項3のいずれか1項に記載のリペア溶接検査装置。
  6.  プロセッサを備えた装置による、リペア溶接検査方法であって、
     前記プロセッサは、
     リペア溶接を行う前に行った溶接の検査用の判定閾値である第1の閾値とは異なる、前記リペア溶接の検査用の判定閾値である第2の閾値を取得し、
     前記第2の閾値を用いて、前記リペア溶接後の検査を行う、
     リペア溶接検査方法。
PCT/JP2020/023291 2019-06-28 2020-06-12 リペア溶接検査装置およびリペア溶接検査方法 WO2020262050A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20833069.6A EP3991911A4 (en) 2019-06-28 2020-06-12 WELDING REPAIR INSPECTION DEVICE AND WELDING REPAIR INSPECTION PROCEDURE
JP2021528194A JP7386461B2 (ja) 2019-06-28 2020-06-12 リペア溶接検査装置およびリペア溶接検査方法
CN202080046823.1A CN114025904B (zh) 2019-06-28 2020-06-12 补焊检查装置和补焊检查方法
US17/562,458 US12078600B2 (en) 2019-06-28 2021-12-27 Repair welding inspection device and repair welding inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-122451 2019-06-28
JP2019122451 2019-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/562,458 Continuation US12078600B2 (en) 2019-06-28 2021-12-27 Repair welding inspection device and repair welding inspection method

Publications (1)

Publication Number Publication Date
WO2020262050A1 true WO2020262050A1 (ja) 2020-12-30

Family

ID=74061952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023291 WO2020262050A1 (ja) 2019-06-28 2020-06-12 リペア溶接検査装置およびリペア溶接検査方法

Country Status (5)

Country Link
US (1) US12078600B2 (ja)
EP (1) EP3991911A4 (ja)
JP (1) JP7386461B2 (ja)
CN (1) CN114025904B (ja)
WO (1) WO2020262050A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11498157B2 (en) * 2020-01-31 2022-11-15 GM Global Technology Operations LLC System and method of enhanced automated welding of first and second workpieces
JP2023124755A (ja) * 2022-02-25 2023-09-06 ゼネラル・エレクトリック・カンパニイ 溶接品質を分析するためのシステムおよび方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7369981B2 (ja) * 2019-06-28 2023-10-27 パナソニックIpマネジメント株式会社 リペア溶接システム、リペア溶接方法、検査装置およびロボット制御装置
DE102023001602A1 (de) 2023-04-21 2024-10-24 Mercedes-Benz Group AG Verfahren zum Verschweißen zweier Bauteile
CN117538334B (zh) * 2024-01-09 2024-05-24 宁德时代新能源科技股份有限公司 缺陷检测方法、装置、电子设备以及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167666A (ja) * 1998-12-04 2000-06-20 Hitachi Ltd 自動溶接及び欠陥補修方法並びに自動溶接装置
JP2007203322A (ja) * 2006-01-31 2007-08-16 Jfe Steel Kk 突合せ溶接部の良否検出方法および装置
JP2010253538A (ja) * 2009-04-28 2010-11-11 Toyota Motor Corp 溶接方法及び溶接装置
JP2012037487A (ja) 2010-08-11 2012-02-23 Koatec Kk 形状検査装置及び形状検査方法
JP2016075586A (ja) * 2014-10-07 2016-05-12 日立Geニュークリア・エナジー株式会社 金属キャスク溶接構造物の溶接不良部補修方法及び伝熱銅フィン付き金属キャスク
JP2017148841A (ja) * 2016-02-24 2017-08-31 株式会社東芝 溶接処理システム及び溶接不良検知方法
JP2019122451A (ja) 2018-01-12 2019-07-25 健司 佐原 履物台及びこれを用いた履物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289966A (ja) * 2006-04-20 2007-11-08 Toyota Motor Corp 溶接品質の判定方法及び溶接装置
US8803024B2 (en) * 2007-12-12 2014-08-12 GM Global Technology Operations LLC Online weld inspection and repair method for resistance welding and weld-bonding
US20150273604A1 (en) 2014-03-25 2015-10-01 Comau Llc Material joining inspection and repair
JP6348137B2 (ja) 2016-03-24 2018-06-27 ファナック株式会社 工作物の良否を判定する加工機械システム
CN108356436A (zh) * 2017-12-28 2018-08-03 江苏朗锐茂达铸造有限公司 一种铸钢件焊补工艺可靠性评定方法
CN109664008B (zh) * 2018-12-19 2021-03-23 北京航空材料研究院有限公司 一种补焊系统及智能补焊方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167666A (ja) * 1998-12-04 2000-06-20 Hitachi Ltd 自動溶接及び欠陥補修方法並びに自動溶接装置
JP2007203322A (ja) * 2006-01-31 2007-08-16 Jfe Steel Kk 突合せ溶接部の良否検出方法および装置
JP2010253538A (ja) * 2009-04-28 2010-11-11 Toyota Motor Corp 溶接方法及び溶接装置
JP2012037487A (ja) 2010-08-11 2012-02-23 Koatec Kk 形状検査装置及び形状検査方法
JP2016075586A (ja) * 2014-10-07 2016-05-12 日立Geニュークリア・エナジー株式会社 金属キャスク溶接構造物の溶接不良部補修方法及び伝熱銅フィン付き金属キャスク
JP2017148841A (ja) * 2016-02-24 2017-08-31 株式会社東芝 溶接処理システム及び溶接不良検知方法
JP2019122451A (ja) 2018-01-12 2019-07-25 健司 佐原 履物台及びこれを用いた履物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11498157B2 (en) * 2020-01-31 2022-11-15 GM Global Technology Operations LLC System and method of enhanced automated welding of first and second workpieces
JP2023124755A (ja) * 2022-02-25 2023-09-06 ゼネラル・エレクトリック・カンパニイ 溶接品質を分析するためのシステムおよび方法
JP7403907B2 (ja) 2022-02-25 2023-12-25 ゼネラル・エレクトリック・カンパニイ 溶接品質を分析するためのシステムおよび方法

Also Published As

Publication number Publication date
EP3991911A4 (en) 2022-09-28
JP7386461B2 (ja) 2023-11-27
JPWO2020262050A1 (ja) 2020-12-30
CN114025904B (zh) 2023-09-12
US20220120697A1 (en) 2022-04-21
CN114025904A (zh) 2022-02-08
EP3991911A1 (en) 2022-05-04
US12078600B2 (en) 2024-09-03

Similar Documents

Publication Publication Date Title
WO2020262050A1 (ja) リペア溶接検査装置およびリペア溶接検査方法
WO2020262049A1 (ja) リペア溶接制御装置およびリペア溶接制御方法
WO2020251038A1 (ja) リペア溶接制御装置およびリペア溶接制御方法
JP7369981B2 (ja) リペア溶接システム、リペア溶接方法、検査装置およびロボット制御装置
US20220297241A1 (en) Repair welding device and repair welding method
US20220297246A1 (en) Repair welding device and repair welding method
JP2024056076A (ja) 制御装置、表示装置の制御方法およびプログラム
JP7220383B2 (ja) リペア溶接制御装置およびリペア溶接制御方法
US20220412728A1 (en) Bead appearance inspection device, bead appearance inspection method, program, and bead appearance inspection system
US20220410323A1 (en) Bead appearance inspection device, bead appearance inspection method, program, and bead appearance inspection system
JP2020203294A (ja) 自動リペア溶接システムおよび自動リペア溶接方法
JP6990869B1 (ja) 外観検査方法および外観検査装置
JP7496540B2 (ja) ロボット制御装置およびオフライン教示システム
JP7365623B1 (ja) オフライン教示装置およびオフライン教示システム
US20240123537A1 (en) Offline teaching device and offline teaching method
JP7555042B2 (ja) ビード外観検査装置、ビード外観検査方法、プログラムおよびビード外観検査システム
WO2021177361A1 (ja) ビード外観検査装置およびビード外観検査システム
JP2021007959A (ja) リペア溶接システム、リペア溶接方法、検査装置およびロボット制御装置
JP2021137848A (ja) ビード外観検査装置およびビード外観検査システム
JP2021137849A (ja) ビード外観検査装置、ビード外観検査方法、ビード外観検査プログラムおよびビード外観検査システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020833069

Country of ref document: EP