WO2020261367A1 - 表示装置およびその駆動方法 - Google Patents

表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2020261367A1
WO2020261367A1 PCT/JP2019/025105 JP2019025105W WO2020261367A1 WO 2020261367 A1 WO2020261367 A1 WO 2020261367A1 JP 2019025105 W JP2019025105 W JP 2019025105W WO 2020261367 A1 WO2020261367 A1 WO 2020261367A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
signal line
initialization
scanning signal
pixel circuit
Prior art date
Application number
PCT/JP2019/025105
Other languages
English (en)
French (fr)
Inventor
諒 米林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2019/025105 priority Critical patent/WO2020261367A1/ja
Priority to US17/619,888 priority patent/US20220358880A1/en
Priority to CN201980097894.1A priority patent/CN114097022B/zh
Publication of WO2020261367A1 publication Critical patent/WO2020261367A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3283Details of drivers for data electrodes in which the data driver supplies a variable data current for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0248Precharge or discharge of column electrodes before or after applying exact column voltages
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present invention relates to a display device, and more particularly, to a display device such as an organic EL (Electro Luminescence) display device whose display brightness is controlled by a voltage held in a capacitance in a pixel circuit and a driving method thereof. ..
  • a display device such as an organic EL (Electro Luminescence) display device whose display brightness is controlled by a voltage held in a capacitance in a pixel circuit and a driving method thereof. ..
  • the pixel circuit of the organic EL display device includes a drive transistor, a write control transistor, a holding capacitor, and the like in addition to the organic EL element.
  • a thin film transistor Thin Film Transistor
  • a holding capacitor is connected to the gate terminal as the control terminal of the drive transistor. Therefore, a voltage corresponding to a video signal representing an image to be displayed (more specifically, a voltage indicating a gradation value of a pixel to be formed by the pixel circuit) is given as a data voltage.
  • the organic EL element is a self-luminous display element that emits light with brightness corresponding to the current flowing through it.
  • the drive transistor is provided in series with the organic EL element, and controls the current flowing through the organic EL element according to the voltage held in the holding capacitor.
  • Patent Document 1 describes a configuration example of a pixel circuit in an organic EL display device as described above.
  • the gate terminal of the drive transistor Q1 is connected to the detection trigger line 54 via the holding capacitor C1 and the detection trigger capacitor C2 connected in series with each other, and one terminal is connected.
  • Separation transistors Q5 as switching elements connected to the connection point between the holding capacitor C1 and the detection trigger capacitor C2 and the other terminal connected to the source terminal of the drive transistor Q1 are included (paragraphs [0075] to [0083] to [0083]. ], See FIG. 6).
  • the separation transistor Q5 is in the off state during the writing period, and the signal voltage Vdata is applied to the gate terminal of the drive transistor Q1 from the data line.
  • the gate terminal is separated from the data line and the separation transistor Q5 is turned on, so that the voltage of the holding capacitor C1 becomes the gate-source voltage Vgs, and this voltage Vgs is set.
  • the corresponding current flows through the drive transistor Q1 and the organic EL element D1 emits light (see paragraphs [0117] to [0126], FIGS. 10 and 11).
  • Patent Document 2 also describes a pixel circuit similar to this (see FIG. 5).
  • the pixel circuit described in Patent Document 2 gives a video signal to the capacitance means 510 (C1) and 509 (C2) connected in series with each other, and thereby transfers the voltage held by the capacitance means 501 (C1) to the TFT 506 (The voltage between the gate and source of the drive transistor) is set so that a current corresponding to the voltage flows through the TFT 50 and the EL element (see paragraphs [0022] to [0038]).
  • an organic EL display device provided with a pixel circuit including a drive transistor, a write control transistor, a holding capacitor, etc. in addition to the organic EL element, writing is performed on the holding capacitor of each pixel circuit during the data writing period. It is preferable to maintain the obtained data voltage as it is during the light emission period. For this purpose, the capacitance value of the holding capacitor may be increased. However, if the capacity value of the holding capacitor is increased, the time required for charging the holding capacitor becomes long, and as a result, if the holding capacity becomes insufficiently charged during the data writing period, the display quality deteriorates.
  • the charge is insufficient in data writing while using a capacitor having a large capacitance value. It is desirable to prevent.
  • the display device includes a plurality of data signal lines, a plurality of scanning signal lines intersecting the plurality of data signal lines, the plurality of data signal lines, and the plurality of scanning signal lines.
  • a display device having a plurality of pixel circuits arranged along the above.
  • a data signal line drive circuit that drives the plurality of data signal lines,
  • a scanning signal line driving circuit for selectively driving the plurality of scanning signal lines is provided.
  • Each pixel circuit Corresponding to any one of the plurality of data signal lines and corresponding to any one of the plurality of scanning signal lines, It includes a holding capacitor and a display element whose brightness is controlled by the holding voltage held in the holding capacitor.
  • the write voltage is held in the small-capacity capacitor by applying the voltage of the corresponding data signal line to the small-capacity capacitor whose capacitance value is smaller than that of the holding capacitor.
  • the holding voltage of the holding capacitor is determined based on the writing voltage of the small capacity capacitor.
  • the display device is Capacitive selection signal lines corresponding to the plurality of scanning signal lines, and Further provided with a capacitance selection control circuit for driving the plurality of capacitance selection signal lines, Each pixel circuit A write control switching element having a control terminal connected to the corresponding scan signal line, The writing auxiliary capacitor as the small capacity capacitor and A capacitance selection switching element having a control terminal connected to a capacitance selection signal line corresponding to the corresponding scanning signal line and connected in series with the holding capacitor. It further includes an initialization circuit for discharging and initializing the holding capacitor before the capacitance selection switching element is turned on.
  • each pixel circuit The holding capacitor and the capacitance selection switching element connected in series with each other and the writing auxiliary capacitor are connected in parallel.
  • the first terminal is connected to the corresponding data signal line via the write control switching element, and the second terminal is connected to the fixed potential line.
  • Each pixel circuit A write control switching element having a control terminal connected to the corresponding scan signal line, Further including the holding capacitor and a write auxiliary capacitor connected in series, The initialization circuit is initialized by discharging the holding capacitor and the writing auxiliary capacitor in a predetermined initialization period when the power of the display device is turned on.
  • the small-capacity capacitor is composed of the write auxiliary capacitor and the holding capacitor connected in series with each other. In each pixel circuit, the small-capacity capacitor has a first terminal connected to a corresponding data signal line via the write control switching element, and a second terminal connected to a fixed potential line.
  • the driving method includes a plurality of data signal lines, a plurality of scanning signal lines intersecting the plurality of data signal lines, the plurality of data signal lines, and the plurality of scanning.
  • a method of driving a display device having a plurality of pixel circuits arranged along a signal line.
  • Each pixel circuit Corresponding to any one of the plurality of data signal lines and corresponding to any one of the plurality of scanning signal lines, It includes a holding capacitor and a display element whose brightness is controlled by the holding voltage held in the holding capacitor.
  • the driving method is In each pixel circuit, when the corresponding scanning signal line is selected, the voltage of the corresponding data signal line is applied to the small capacitance capacitor having a capacitance value smaller than that of the holding capacitor to write to the small capacitance capacitor.
  • Data writing step to hold the voltage and The holding voltage determination step of determining the holding voltage of the holding capacitor based on the writing voltage of the small capacity capacitor is provided.
  • each pixel circuit is configured such that the brightness of the display element is controlled by the voltage held in the holding capacitor, and the corresponding scanning signal in the pixel circuit.
  • the write voltage is held in the small-capacity capacitor by applying the voltage of the corresponding data signal line to the small-capacity capacitor whose capacitance value is smaller than that of the holding capacitor, and the holding capacitor is held.
  • the voltage is determined based on the write voltage of the small capacity capacitor.
  • the data voltage which is the voltage of the corresponding data signal line, is written to the small-capacity capacitor instead of being written to the holding capacitor during the selection period of the corresponding scanning signal line.
  • each pixel circuit includes a write auxiliary capacitor as the small-capacity capacitor, and the holding capacitor is initialized in each pixel circuit.
  • the write auxiliary capacitor is charged with the data voltage which is the voltage of the corresponding data signal line
  • the holding capacitor and the write auxiliary capacitor are connected in parallel and the charge is redistributed between both capacitors.
  • the holding voltage of the holding capacitor is determined.
  • data can be written in a shorter time than before even if the capacitance value of the holding capacitor is large, so while using a holding capacitor with a large capacitance value to stabilize the holding voltage for luminance control. It is possible to prevent deterioration of display quality due to insufficient charging.
  • each pixel circuit includes a write-aid capacitor connected in series with a holding capacitor, which is referred to as a holding capacitor.
  • a small-capacity capacitor is configured by the built-in auxiliary capacitor, and when the corresponding scanning signal line is selected, the small-capacity capacitor is charged with the data voltage which is the voltage of the corresponding data signal line.
  • the holding voltage in the holding capacitor is determined by dividing the voltage held in the small-capacity capacitor between the writing auxiliary capacitor and the holding capacitor by writing the data voltage by this charging.
  • the gate terminal corresponds to the control terminal
  • one of the drain terminal and the source terminal corresponds to the first conduction terminal
  • the other corresponds to the second conduction terminal.
  • the transistor in each of the following embodiments is, for example, a thin film transistor, but the present invention is not limited thereto.
  • connection means "electrical connection” unless otherwise specified, and is not limited to the case where it means a direct connection without departing from the gist of the present invention. It also includes the case of meaning an indirect connection via an element.
  • FIG. 1 is a block diagram showing an overall configuration of the organic EL display device 10a according to the first embodiment.
  • the display device 10a includes a display unit 11, a display control circuit 20, a data side drive circuit 30, a scanning side drive circuit 40, and a power supply circuit 50.
  • the data side drive circuit functions as a data signal line drive circuit (also referred to as a "data driver”).
  • the scanning side drive circuit 40 functions as a scanning signal line drive circuit (also referred to as a “gate driver”) and a light emission control circuit (also referred to as an “emission driver”).
  • a scanning signal line drive circuit also referred to as a “gate driver”
  • a light emission control circuit also referred to as an “emission driver”.
  • the power supply circuit 50 includes a high-level power supply voltage EL VDD, a low-level power supply voltage ELVSS, and an initialization voltage Vini to be supplied to the display unit 11, a display control circuit 20, a data side drive circuit 30, and a scanning side drive circuit 40. Generates a power supply voltage (not shown) to be supplied to.
  • m data signal lines D1 to Dm (m is an integer of 2 or more) and n + 1 scanning signal lines G1 to Gn + 1 intersecting these (n is an integer of 2 or more) are displayed.
  • N lines of emission control lines (also referred to as "emission lines") E1 to En are arranged along the n scanning signal lines G1 to Gn, and n scanning signal lines G1 are arranged.
  • N capacitance selection signal lines CSW1 to CSWn are arranged along each of ⁇ Gn.
  • the display unit 11 is provided with m ⁇ n pixel circuits 15, and these m ⁇ n pixel circuits 15 have m data signal lines D1 to Dm and n lines.
  • each pixel circuit 15 Arranged in a matrix along the scanning signal lines G1 to Gn, each pixel circuit 15 corresponds to any one of m data signal lines D1 to Dm and n scanning signal lines G1 to Gn. (Hereinafter, when distinguishing each pixel circuit 15, the pixel circuit corresponding to the i-th scanning signal line Gi and the j-th data signal line Dj is referred to as "row i, column j". It is also referred to as a "pixel circuit” and is indicated by the reference numeral "Pix (i, j)").
  • each pixel circuit 15 corresponds to any one of n light emission control lines E1 to En, and also corresponds to any one of n capacitance selection signal lines CSW1 to CSWn.
  • the capacitance selection signal CSW (i) to be applied to each capacitance selection signal line CSWi a emission control signal to be applied to the emission control line Ei corresponding to the capacitance selection signal line CSWi may be used. In this case, the capacitance selection signal lines CSW1 to CSWn are unnecessary.
  • the display unit 11 is provided with a power line (not shown) common to each pixel circuit 15. That is, the first power supply line for supplying the high-level power supply voltage EL VDD for driving the organic EL element described later (hereinafter referred to as “high-level power supply line”, which is indicated by the code “EL VDD” like the high-level power supply voltage). , And the second power supply line for supplying the low-level power supply voltage ELVSS for driving the organic EL element (hereinafter referred to as “low-level power supply line”, which is indicated by the code “ELVSS” like the low-level power supply voltage). It is arranged.
  • the display unit 11 is also provided with an initialization voltage supply line INI (not shown) for supplying a fixed voltage as the initialization voltage Vini used for the initialization operation for the initialization of each pixel circuit 15.
  • the high level power supply voltage EL VDD, the low level power supply voltage ELVSS, and the initialization voltage Vini are supplied from the power supply circuit 50.
  • the high-level power supply line EL VDD, the low-level power supply line ELVSS, and the initialization voltage supply line INI are all voltage supply lines that supply a fixed potential, that is, fixed potential lines.
  • the display control circuit 20 receives an input signal Sin including image data representing an image to be displayed and timing control information for displaying the image from the outside of the display device 10a, and based on this input signal Sin, the data side control signal Scd and scanning.
  • the side control signal Scs is generated, the data side control signal Scd is sent to the data side drive circuit (data signal line drive circuit) 30, and the scanning side control signal Scs is sent to the scanning side drive circuit (scan signal line drive / light emission control circuit) 40. Output each.
  • the data side drive circuit 30 drives the data signal lines D1 to Dm based on the data side control signal Scd from the display control circuit 20. That is, the data side drive circuit 30 outputs m data signals D (1) to D (m) representing an image to be displayed in parallel to the data signal lines D1 to Dm, respectively, based on the data side control signal Scd. Apply.
  • the scanning side drive circuit 40 is a scanning signal line driving circuit that drives the scanning signal lines G1 to Gn + 1 and a light emitting control circuit that drives the light emitting control lines E1 to En based on the scanning side control signals Scs from the display control circuit 20. , And functions as a capacitance selection control circuit for driving the capacitance selection signal lines CSW1 to CSWn.
  • the emission control signal to be applied to the emission control line Ei corresponding to the capacitance selection signal line CSWi is used as the capacitance selection signal CSW (i) to be applied to each capacitance selection signal line CSWi, the capacitance selection is performed. Since the signal lines CSW1 to CSWn are not required, the function of the capacitance selection control circuit is also unnecessary.
  • the scanning side drive circuit 40 as a scanning signal line driving circuit, is based on the scanning side control signal Scs, and scan signal lines G1 to Gn + 1 are overlapped for one horizontal period in each frame period for two horizontal periods. Select sequentially, an active signal is applied to the selected scan signal line Gk, and an inactive signal is applied to the non-selected scan signal line. That is, the scanning signal lines G1 to Gn + 1 are driven so that the i-th scanning signal line is in the selected state during the i-1st horizontal period and the i-th horizontal period (hereinafter, such as this).
  • the drive of the scanning signal line is called "double pulse drive").
  • the "horizontal period” is generally a period of a portion corresponding to one line of the displayed image in the video signal based on the horizontal scanning and the vertical scanning, and here, one line of the displayed image from the data side drive circuit 30. It corresponds to a period in which minute image data (data representing m pixels constituting one line) is output as data signals D (1) to D (m).
  • minute image data data representing m pixels constituting one line
  • each of the period t4 to t5 is one horizontal period.
  • the corresponding m pixel circuits (hereinafter, also referred to as “pixel circuits on the i-th line”) Pix (i, 1) to Pix (i, m) are collectively performed. Is selected.
  • i-th scanning selection period m data signals D (1) to Dm applied to the data signal lines D1 to Dm from the data side drive circuit 30.
  • the voltage of D (m) (hereinafter, may be simply referred to as "data voltage” without distinguishing between these voltages) is used as pixel data in the pixel circuits Pix (i, 1) to Pix (i, m).
  • This predetermined capacitor corresponds to the holding capacity in the conventional pixel circuit, but as described later, in the present embodiment, it is a write auxiliary capacitor Cwa as a small capacity capacitor in the configuration shown in, for example, FIG.
  • the i-th and i + 1th scanning signal lines Gi and Gi + 1 are both selected in the i-th horizontal period (FIG. 3 described later).
  • the predetermined capacitors (write auxiliary capacitors Cwa in the example shown in FIG. 3 described later) of the pixel circuits Pix (i, 1) to Pix (i, m) on the i-th line are the data signals D (1) to D
  • the predetermined capacitors of the pixel circuits Pix (i + 1,1) to Pix (i + 1, m) on the i + 1 line are also charged with the voltages of the data signals D (1) to D (m), respectively. Will be done.
  • each predetermined capacitor of the pixel circuit Pix (i, 1) to Pix (i, m) in the i-th row is charged with the data voltage to be written to it, but the pixel circuit Pix (i + 1, m) in the i + 1 line is charged.
  • Each predetermined capacitor of Pix (i + 1, m) is charged with the data voltage to be written in the pixel circuit in the immediately preceding line.
  • Charging the predetermined capacitor in the pixel circuit of the i + 1 line corresponds to "preliminary charging", which improves the charging rate of the predetermined capacitor in writing the data voltage to each pixel circuit 15.
  • the scanning side drive circuit 40 as a light emitting control circuit, emits light indicating inactivity with respect to the i-th light emitting control line Ei for a predetermined period including at least the i-th selective scanning period, based on the scanning side control signal Scs. A control signal is applied, and an active light emission control signal indicating light emission is applied during other periods (see FIG. 3 described later).
  • the organic EL elements in the pixel circuits Pix (i, 1) to Pix (i, m) on the i-th line are connected to the pixel circuit Pix (i, m) on the i-th line while the light emission control signal of the light emission control line Ei is active.
  • the scanning side drive circuit 40 is a capacitance selection transistor in the pixel circuits Pix (i, 1) to Pix (i, m) on the i-th line with respect to the i-th capacitance selection signal line CSWi based on the scanning side control signal Scs.
  • a capacitance selection signal which will be described later, to be given to the gate terminal of The above-mentioned light emission control signal may be used as the capacitance selection signal, but in the present embodiment, in order to stabilize the operation of writing the data voltage to the holding capacitance (holding capacitor Cst described later) of each pixel circuit 15.
  • the timing at which the capacitance selection signal CSW (i) applied to each capacitance selection signal line CSWi changes from the inactive state (low level voltage) to the active state (high level voltage) corresponds to the capacitance selection signal line CSWi.
  • FIG. 28 and FIG. 28 and FIG. 28 show the configuration and operation of the pixel circuit 14 in the conventional organic EL display device (hereinafter referred to as “conventional example”) for comparison. This will be described with reference to FIG. 29.
  • This conventional example is basically the same as the configuration shown in FIG. 1, but differs from the configuration shown in FIG. 1 in the following points.
  • the pixel The circuit 14 does not include a transistor for light emission control, and the light emission control lines E1 to En are not arranged on the display unit 11 (see FIG. 28). Further, a circuit for driving the capacitance selection signal lines CSW1 to CSWn and the capacitance selection signal lines CSW1 to CSWn in the first embodiment, and components controlled by the capacitance selection signal lines CSW1 to CSWn (described later). The capacitance selection transistor) is also not included in the conventional example.
  • FIG. 28 is a circuit diagram showing the configuration of the pixel circuit 14 in the conventional example, more specifically, the pixel circuit 14 corresponding to the i-th scanning signal line Gi and the j-th data signal line Dj, that is, the i-th row and j-th column. It is a circuit diagram which shows the structure of the pixel circuit Pix (i, j) (1 ⁇ i ⁇ n, 1 ⁇ j ⁇ m).
  • the pixel circuit 14 includes an organic EL element OL as a display element, a drive transistor M1, a write control transistor M2, and a holding capacitor Cst.
  • the capacitance parasitic on the gate terminal of the drive transistor M1 hereinafter, simply referred to as “parasitic capacitance”
  • the write control transistor M2 functions as a switching element.
  • the pixel circuit 14 includes a corresponding scanning signal line (hereinafter, also referred to as “corresponding scanning signal line” in the description focusing on the pixel circuit) Gi, and a corresponding data signal line (hereinafter, referred to as “corresponding scanning signal line” in the description focusing on the pixel circuit).
  • Dj also referred to as "corresponding data signal line”
  • high-level power supply line EL VDD high-level power supply line
  • ELVSS low-level power supply line
  • the drive transistor M1 has its drain terminal connected to the high-level power supply line EL VDD and its gate terminal connected to the corresponding data signal line Dj via the write control transistor M2.
  • the source terminal is connected to the source terminal via the holding capacitor Cst, and the source end is connected to the anode electrode of the organic EL element OL.
  • the cathode electrode of the organic EL element OL is connected to the low level power supply line ELVSS.
  • the gate terminal of the write control transistor M2 is connected to the corresponding scanning signal line Gi.
  • the drive transistor M1 is an N-channel type transistor that operates in the saturation region during the light emission period, and a current corresponding to the voltage held in the holding capacitor Cst, that is, the gate-source voltage Vgs flows between the source and drain. , This current also flows to the organic EL element OL as the drive current Id. As a result, the organic EL element OL emits light with a brightness corresponding to the driving current Id.
  • the organic EL element OL emits light with a brightness corresponding to the gate-source voltage Vgs of the drive transistor M1, so that the gate-source voltage Vgs is immediately before the light emitting period. It is preferable that the voltage is maintained at a desired voltage determined by the data signal D (j) during the data writing period.
  • the parasitic capacitance Csc exists at the gate terminal of the drive transistor M1
  • Vg the voltage of the gate terminal
  • the capacitance values of the parasitic capacitance Ccs and the holding capacitor Cst are also indicated by the symbols “Csc” and “Cst”, respectively).
  • the time constant ⁇ cnv when the gate terminal of the drive transistor M1 is charged by the data signal D (j) can be approximated as follows. It can. ⁇ cnv ⁇ Cdata ⁇ Rdata / 2 + (Rdata + RTr) Csc + (Rdata + RTr) Cst... (2)
  • the data signal line Dj is treated as a transmission line by the distribution constant circuit of resistance and capacitance, and Cdata and Rdata are from the input point of the data signal D (j) to the data signal line Dj to the write control transistor M2.
  • RTr indicates the on-resistance of the write control transistor.
  • FIG. 29 is a signal waveform diagram for explaining the driving of the display device according to the conventional example, and is a data document of the pixel circuit 14 shown in FIG. 28, that is, the pixel circuit Pix (i, j) in the i-th row and the j-th column. It shows changes in the voltage of the corresponding scanning signal line Gi, the voltage of the corresponding data signal line Dj (voltage of the data signal D (j)), and the voltage (gate voltage) Vg of the gate terminal of the drive transistor M1 in the built-in operation. ..
  • the period during which the voltage of the corresponding scanning signal line Gi is at a high level is the selection period of the corresponding scanning signal line Gi.
  • the data signal D (j) is the pixel circuit Pix (i, j) of the i-th row and the j-th column from the voltage to be written to the pixel circuit Pix (i-1, j) of the i-1st row and the j-th column at time t1. ) Changes to the voltage to be written.
  • the scanning signal line Gi is in a non-selected state (low level voltage) before the gate voltage Vg reaches the target voltage (voltage to be written to the pixel circuit Pix (i, j)). Become.
  • FIG. 30 is a circuit diagram for explaining the basic configuration and operation of the pixel circuit for solving the above problem
  • FIG. 31 is a circuit diagram for explaining the basic operation of the pixel circuit for solving the above problem. It is a signal waveform diagram for this.
  • the pixel circuit (hereinafter referred to as “basic pixel circuit”) 15 shown in FIGS. 30 (A) and 30 (B) is an organic EL element OL as a display element and a drive transistor M1 as in the pixel circuit 14 in the conventional example shown in FIG. 28. Although it includes a write control transistor M2 and a holding capacitor Cst, it differs from the conventional example in that it further includes a capacitance selection transistor M3 that functions as a switching element. That is, in the basic pixel circuit 15, the capacitance selection transistor M3 is connected in series to the holding capacitor Cst, and the gate terminal of the drive transistor M1 is connected to the source terminal of the drive transistor M1 via the capacitance selection transistor M3 and the holding capacitor Cst. It is connected.
  • a capacitance selection signal line CSWi is connected to the gate terminal of the capacitance selection transistor M3, whereby the voltage of the capacitance signal line CSi is given as the capacitance selection signal CSW (i).
  • the capacitance selection signal CSW (i) is a signal that becomes active (high level) after the time t2 when the corresponding scanning signal line Gi changes to the non-selection state (low level).
  • the data signal D (j) is the pixel circuit of the i-1st row and the jth column at time t1 within the selection period of the corresponding scanning signal line Gi, as shown in FIG.
  • the voltage to be written to the Pix (i-1, j) changes to the voltage to be written to the pixel circuit Pix (i, j) in the i-th row and the j-th column.
  • the capacitance selection signal CSW (i) is at a low level, the capacitance selection transistor M3 is in the off state.
  • the parasitic capacitance is caused by the voltage of the data signal D (j). Only Csc is charged and the holding capacitor Cst is not charged (see FIG. 30 (A)).
  • the capacitance value of the parasitic capacitance Csc is sufficiently smaller than the capacitance value of the holding capacitor Cst. Therefore, the data writing by the data signal D (j) after the time t1 and the charging of the parasitic capacitance Csc are performed at a higher speed than the conventional example because the time constant is small.
  • the gate voltage Vg reaches the target potential (voltage corresponding to the voltage to be written to Pix (i, j) in the pixel circuit 14) Vw1.
  • the capacitance value is smaller than that of the holding capacitor Cst (here, “parasitic capacitance”). Since the voltage of the data signal line Dj corresponding to Ccs is written as the data voltage Vw1, the data voltage Vw1 can be written in a shorter time than before, and insufficient charging can be avoided. However, after writing the data voltage Vw1, the capacitance selection transistor M3 is turned on, so that the charge is redistributed between the parasitic capacitance Ccs and the holding capacitor Cst, and the charge is held by the holding capacitor Cst. The voltage Vw2 is determined. Therefore, the voltage of the corresponding data signal line Dj needs to be higher than the voltage to be held in the holding capacitor Cst (see Equation (3), FIG. 31).
  • FIG. 2 is a circuit diagram showing a first configuration example of the pixel circuit in the present embodiment
  • FIG. 3 is a signal waveform diagram for explaining the operation of the pixel circuit 15a according to the first configuration example in the present embodiment. ..
  • FIG. 2 shows the configuration of the pixel circuit 15a corresponding to the i-th scanning signal line Gi and the j-th data signal line Dj in the present embodiment, that is, the pixel circuit Pix (i, j) in the i-th row and j-th column. (1 ⁇ i ⁇ n, 1 ⁇ j ⁇ m).
  • the pixel circuit 15a includes an organic EL element OL as a display element, a write auxiliary capacitor Cwa and a holding capacitor Cst, a drive transistor M1, a write control transistor M2, a capacitance selection transistor M3, and a first initialization transistor. It includes M4 and a light emission control transistor M5.
  • the transistors M2 to M5 other than the drive transistor M1 function as switching elements. All the transistors included in the pixel circuit 15a are N-channel type, but some or all of them may be P-channel type (see FIGS. 16 and 18 to 21 described later). Further, the light emission control transistor M5 may be short-circuited and removed.
  • the capacitance value of the write auxiliary capacitor Cwa is smaller than the capacitance value of the holding capacitor Cst, and corresponds to the parasitic capacitance Csc in the basic pixel circuit 15 shown in FIG. 30, but is formed separately from the parasitic capacitance Ccs. It may be a capacitor having a capacitance value, or it may be a capacitor having a small capacitance value corresponding to the combined capacitance of the capacitance and the parasitic capacitance formed separately from the parasitic capacitance Ccs.
  • the pixel circuit 15a includes the corresponding scanning signal line (corresponding scanning signal line) Gi, and the scanning signal line following the corresponding scanning signal line Gi (scanning signal line G1 to Gn + 1 in the scanning order).
  • Gi scanning signal line
  • Gi + 1 scanning signal line
  • the corresponding emission control line (corresponding emission control line) Ei the corresponding data signal line.
  • corresponding capacitance selection signal line (Corresponding data signal line) Dj, corresponding capacitance selection signal line (hereinafter, also referred to as "corresponding capacitance selection signal line” in the description focusing on the pixel circuit) CSWi, initialization voltage supply line INI, high level power supply line EL VDD, And the low level power supply line ELVSS is connected.
  • n capacitance selection signal lines CSW1 to CSWn corresponding to n scanning signal lines G1 to Gn are displayed.
  • the part 11 is arranged.
  • the light emission control lines E1 to En may be used as the capacitance selection signal lines CSW1 to CSWn.
  • the initialization voltage Vini may be a voltage different from the low level power supply voltage ELVSS, but a voltage equal to the low level power supply voltage ELVSS can be selected as the initialization voltage Vini.
  • the low-level power supply line ELVSS is also used as the initialization voltage supply line INI without providing the initialization voltage supply line INI.
  • the drain terminal as the first conduction terminal of the drive transistor M1 is connected to the high level power supply line EL VDD as the first power supply line via the light emission control transistor M5 to drive.
  • the gate terminal as the control terminal of the transistor M1 is connected to the corresponding data signal line Dj via the write control transistor M2, and the drive transistor M1 is connected via the capacitance selection transistor M3 and the holding capacitor Cst connected in series with each other. It is connected to the source terminal of. Further, the source terminal as the second conduction terminal of the drive transistor M1 is connected to the anode electrode of the organic EL element OL.
  • the cathode electrode of the organic EL element OL is connected to the low level power supply line ELVSS as the second power supply line.
  • the first terminal is connected to the gate terminal of the drive transistor M1 and the second terminal is connected to the source terminal of the drive transistor M1.
  • the gate terminals of the write control transistor M2, the capacitance selection transistor M3, the first initialization transistor M4, and the light emission control transistor M5 are the corresponding scanning signal line Gi, the corresponding capacitance selection signal line CSWi, and the subsequent scanning signal line Gi +. It is connected to 1 and the corresponding light emission control line Ei, respectively.
  • FIG. 3 shows each signal line (corresponding light emission control) in the initialization operation, data writing operation, and light emission operation of the pixel circuit Pix (i, j) in the i-th row and the j-th column, which is the pixel circuit 15a shown in FIG. Line Ei, corresponding scanning signal line Gi, subsequent scanning signal line Gi + 1, corresponding data signal line Dj, corresponding capacitance selection signal line CSWi) voltage, gate voltage Vg of drive transistor M1, holding capacitor Cst and capacitance selection transistor M3 It shows the change of Vst of the voltage at the connection point (hereinafter referred to as "holding capacity voltage").
  • holding capacity voltage shows the change of Vst of the voltage at the connection point (hereinafter referred to as "holding capacity voltage").
  • the period from time t4 to t6 is the selection period of the i-th scanning signal line Gi, that is, the i-th scanning selection period, and the period from time t5 to t8 is the i + 1th scanning signal line (subsequent scanning signal).
  • Gi + 1 selection period that is, the i + 1 scan selection period.
  • the i-th scan selection period (t4 to t6) corresponds to the data writing period Tw of the pixel circuits Pix (i, 1) to Pix (i, m) on the i-th row.
  • the end time (t8) of the non-emission period coincides with the end time of the selection period of the subsequent scanning signal line Gi + 1, but the end time of the subsequent scanning signal line Gi + 1
  • the non-emission period may end after the end (the same applies to FIGS. 5, 7, 11, and 17 described later).
  • an initialization voltage Vini is applied to both ends of the write auxiliary capacitor Cwa and the holding capacitor Cst, whereby the write auxiliary capacitor Cwa and the holding capacitor Cst are initialized in the initialization period Tini (t1 to t2).
  • both the write auxiliary capacitor Cwa and the holding capacitor Cst are discharged and do not accumulate electric charges, and the holding voltage in both the write auxiliary capacitor Cwa and the holding capacitor Cst becomes zero.
  • the first initialization transistor M4 together with the capacitance selection transistor M3 and the write control transistor M2, constitutes an initialization circuit for initializing by discharging the holding capacitor Cst or the like during the initialization period Tini. ..
  • the voltages of the corresponding scanning signal line Gi, the succeeding scanning signal line Gi + 1, and the corresponding capacitance selection signal line CSWi change to a low level, and then the scanning signal lines G1 to Gn Sequential scanning is started.
  • the voltage of the corresponding light emission control line Ei is low level at the start time t1 of the initialization period Tini, and is maintained at the low level until the end time t8 of the selection period (i + 1 scan selection period) of the subsequent scan signal line Gi + 1. Will be done. Therefore, the organic EL element OL is in a non-light emitting state from time t1 to time t8.
  • the voltage of the corresponding scanning signal line Gi changes to a high level at the start time t4 of the i-scan selection period.
  • the built-in control transistor M2 is turned on. Therefore, the voltage of the corresponding data signal line Dj, that is, the data voltage to be written to the pixel circuit Pix (i-1, j) of the i-1st row and the jth column is the gate terminal of the drive transistor M1 (the first writing auxiliary capacitor Cwa). 1 terminal) is given.
  • the capacitance selection transistor M3 is maintained in the off state, and the holding capacitor Cst is electrically disconnected from the gate terminal of the drive transistor M1.
  • the write auxiliary capacitor Cwa is charged by the data voltage to be written to the pixel circuit Pix (i-1, j) in the i-1 row and the j column, which corresponds to the data voltage.
  • the voltage is held in the write-holding capacitor Cwa as the write voltage.
  • the voltage of the corresponding data signal line Dj changes to the data voltage to be written to the pixel circuit Pix (i, j) in the i-th row and the j-th column, and only the auxiliary capacitor Cwa is charged by the data voltage.
  • the first initialization transistor M4 since the voltage of the subsequent scanning signal line Gi + 1 changes from the low level to the high level, the first initialization transistor M4 changes to the ON state, so that the second terminal of the write auxiliary capacitor Cwa and the holding capacitor Cst An initialization voltage Vini is applied to (a terminal connected to the source terminal of the drive transistor M1). Further, the initialization voltage Vini is also applied to the anode electrode of the organic EL element OL, and the parasitic capacitance (not shown) of the organic EL element OL is discharged.
  • the voltage of the corresponding scan signal line Gi changes to a low level, so that the write control transistor M2 is turned off and the gate of the drive transistor M1 is turned off.
  • the terminal is electrically disconnected from the corresponding data signal line Dj.
  • the voltage of the corresponding capacitance selection signal line CSWi changes from a low level to a high level, so that the capacitance selection transistor M3 is turned on.
  • the holding capacitor Cst is connected in parallel to the writing auxiliary capacitor Cwa, and the charge is redistributed between the parasitic capacitance, Csc, and the holding capacitor Cst.
  • the gate voltage Vg becomes a voltage lower than the data voltage Vdata written in the write auxiliary capacitor Cwa during the data write period Tw (t4 to t6).
  • Vdata written to the write auxiliary capacitor Cwa in the data write period Tw is Vw1
  • the gate voltage Vg (i, j) and the holding capacitance voltage Vst (i,) of the drive transistor M1 after the charge redistribution j) is the voltage Vw2 represented by the following equation (6).
  • Vg (i, j) When the gate voltage Vg in the pixel circuit Pix (i, j) is distinguished from the gate voltage Vg in other pixel circuits, the reference numeral “Vg (i, j)” is used in the pixel circuit Pix (i, j).
  • the code "Vst (i, j)" shall be used to distinguish the holding capacitance voltage Vst from the holding capacitance voltage Vst in other pixel circuits (the same shall apply hereinafter).
  • Vw2 ⁇ Cwa / (Cwa + Cst) ⁇ (Vw1-Vini) + Vini ... (6)
  • the gate-source voltage Vgs in the drive transistor M1 corresponds to the voltage held in the holding capacitor Cst and is represented by the following equation.
  • the capacitance selection transistor M3 is on, the holding capacitor Cst and the writing auxiliary capacitor Cwa are connected in parallel, and the gate-source voltage Vgs is the holding capacitor Cst and the writing auxiliary capacitor Cwa. It can be said that it corresponds to the voltage held by.
  • the voltage of the subsequent scanning signal line Gi + 1 changes to a low level, so that the first initialization transistor M4 is turned off.
  • the voltage of the corresponding light emission control line Ei changes from a low level to a high level, so that the light emission control transistor M5 changes to the ON state. Therefore, a current flows from the high-level power supply line EL VDD to the low-level power supply line ELVSS via the drive transistor M1 and the organic EL element OL to cause the organic EL element to emit light, and the initialization operation starts from time t8 in the next blanking period. It will be a light emission period until it is done.
  • the gate voltage Vg and the holding capacitance voltage Vst change from Vw2 to Vw2 + Vf, but the gate-source voltage Vgs in the drive transistor M1, that is, the holding voltage of the holding capacitor Cst is It does not change (see equation (7) above).
  • Vf is the forward voltage of the organic EL element OL.
  • the drive transistor M1 is an N-channel type transistor that operates in the saturation region during this light emission period, and a current corresponding to the voltage held in the holding capacitor Cst, that is, the gate-source voltage Vgs, is applied between the source and drain. This current also flows to the organic EL element OL as a drive current Id.
  • This drive current Id is given by the following equation (8).
  • Vth, ⁇ , W, L, and Cox are the threshold voltage, mobility, gate width, gate length, and unit area of the drive transistor M1, respectively. Represents the gate insulating film capacity.
  • the organic EL element OL emits light according to the above-mentioned drive current Id, and this light emission continues until the initialization operation is started in the next blanking period.
  • the initialization operation, the data writing operation, and the light emitting operation are similarly performed according to the sequential scanning of the scanning signal lines G1 to Gn + 1 in each frame period (see FIG. 3). ..
  • the image represented by the image data in the input signal Sin from the outside is displayed on the display unit 11.
  • the voltage of the data signal D (j) is written as the data voltage Vdata to the write auxiliary capacitor Cwa having a capacitance value smaller than that of the holding capacitor Cst, and then.
  • the capacitance selection transistor M3 changes to the ON state, the charge is redistributed between the write auxiliary capacitor Cwa and the holding capacitor Cst, so that the charge is held in the holding capacitor Cst for driving the organic EL element OL.
  • the voltage (hereinafter referred to as "holding voltage for driving”) is determined.
  • the time constant in charging the write auxiliary capacitor Cwa by writing the data voltage Vdata is determined by the capacitance value of the data write auxiliary capacitor Cwa regardless of the capacitance value of the holding capacitor Cst, and is smaller than the conventional one ( See equation (2) above). As a result, the charging speed in data writing is improved. Therefore, according to the present embodiment, it is possible to prevent deterioration of display quality due to insufficient charging while using a holding capacitor Cst having a large capacitance value for stabilizing the holding voltage for driving.
  • the gate terminal of the first initialization transistor element M4 is connected to the subsequent scanning signal line Gi + 1, and the write control transistor M2 is turned off from the on state.
  • the on state is turned on before the time point t6 when the state changes, and the off state is turned on after the time point t6 (see FIG. 3).
  • the charge is redistributed between the write auxiliary capacitor Cwa and the holding capacitor Cst during the light emission period, and the gate terminal of the drive transistor M1
  • the organic EL element OL may emit light when the potential (gate voltage) Vg is high, which may shorten the life of the organic EL element OL or make its brightness brighter than desired. is there.
  • the double pulse drive is performed, and in each pixel circuit 15a, after the corresponding scanning signal line Gi changes to the non-selected state and before the subsequent scanning signal line Gi + 1 changes to the non-selected state.
  • the signal of the corresponding capacitance selection signal line changes to the active state (see FIG. 3). Therefore, the above-mentioned charge redistribution is performed during the non-emission period, and thus it is possible to avoid such problems related to the life and brightness of the organic EL element OL.
  • a pixel circuit having a configuration other than the first configuration example shown in FIG. 2 can also be used.
  • any of the pixel circuits according to the second to fifth configuration examples described below may be used.
  • FIG. 4 is a circuit diagram showing a second configuration example of the pixel circuit in the present embodiment
  • FIG. 5 is a signal waveform diagram for explaining the operation of the pixel circuit according to the second configuration example in the present embodiment.
  • the pixel circuit 15b according to the present configuration example includes the second initialization transistor M6 having a gate terminal connected to the corresponding scanning signal line Gi, except that the first configuration example according to the present embodiment includes the second initialization transistor M6.
  • the second initialization transistor M6 functions as a switching element, and the capacitance selection transistor M3 and the holding capacitor Cst are connected to each other. The point (the first terminal of the holding capacitor Cst) is connected to the initialization voltage supply line INI via the second initialization transistor M6.
  • the data side drive circuit 30 and the scanning side drive circuit 40 include data signal lines D1 to Dm, scanning signal lines G1 to Gn + 1, light emission control lines E1 to En, and ,
  • the capacitance selection signal lines CSW1 to CSWn are configured to be driven as shown in FIG.
  • FIG. 5 shows each signal line in the initialization operation, the data writing operation, and the light emitting operation of the pixel circuit Pix (i, j) in the i-th row and the j-th column, which is the pixel circuit 15b according to the present configuration example shown in FIG.
  • Voltage of (corresponding light emission control line Ei, corresponding scanning signal line Gi, subsequent scanning signal line Gi + 1, corresponding data signal line Dj, corresponding capacitance selection signal line CSWi), gate voltage Vg of drive transistor M1, holding capacitor Cst and capacitance
  • the change of the voltage (holding capacity voltage) Vst of the connection point with the selection transistor M3 is shown.
  • FIG. 1 shows a change of the voltage (holding capacity voltage) Vst of the connection point with the selection transistor M3 .
  • each pixel circuit 15b is used for each line of the pixel circuit. It is initialized at different timings. That is, in each pixel circuit 15, the initialization operation is performed in the periods t5 to t6 included in the data writing period Tw (t4 to t6).
  • Tw data writing period
  • the voltage of the corresponding light emission control line Ei is low level only in a predetermined period including the selection period of the corresponding scanning signal line Gi and the selection period of the subsequent scanning signal line Gi + 1. It becomes inactive) and becomes high level (active) in other periods. That is, the period from the time t3 immediately before the data writing period Tw to the end time t8 of the subsequent scanning signal line Gi + 1 is the non-emission period of the pixel circuits Pix (i, 1) to Pix (i, m) on the i-th line. The period from time t8 to immediately before the data writing period Tw in the next frame period is the light emitting period of the pixel circuits Pix (i, 1) to Pix (i, m) on the i-th row.
  • the voltage of the corresponding light emission control line Ei changes from a high level to a low level, so that the light emission control transistor M5 changes to an off state and the voltage of the corresponding capacitance selection signal line CSWi becomes high.
  • the capacitance selection transistor M3 changes to the off state by changing from the level to the low level.
  • the voltage of the corresponding scan signal line Gi changes to a high level, so that the write control transistor M2 is turned on.
  • the voltages of the corresponding scanning signal line Gi, the succeeding scanning signal line Gi + 1, the corresponding data signal line Dj, and the corresponding capacitance selection signal line CSWi from this time t4 to the end time t8 of the i + 1 scanning selection period t5 to t8 are The change is the same as in the case of the first configuration example, and therefore, the change in the gate voltage Vg is also the same as in the case of the first configuration example (see FIGS. 3 and 4). However, the gate voltage Vg at time t4 is equal to the initialization voltage Vini in the first configuration example, but is equal to the gate voltage corresponding to the drive holding voltage in the immediately preceding frame period in this configuration example.
  • the holding capacitance voltage (voltage at the connection point between the holding capacitor Cst and the capacitance selection transistor M3) Vst changes to the initialization voltage Vini.
  • the first initialization transistor M4 and the second initialization transistor M6 constitute an initialization circuit that initializes the holding capacitor Cst and the like by discharging them during the initialization period Tini. That is, in the initialization period Tini, the first initialization transistor M4 and the second initialization transistor M6 constitute a holding capacitor discharge switching element that discharges and initializes the holding capacitor Cst.
  • the capacitance selection transistor M3 is turned on by changing the voltage of the corresponding capacitance selection signal line CSWi from a low level to a high level.
  • the voltages of the corresponding scanning signal line Gi, the succeeding scanning signal line Gi + 1, the corresponding data signal line Dj, and the corresponding capacitance selection signal line CSWi from this time t7 to the end time t8 of the i + 1 scanning selection period t5 to t8 are The changes are the same as in the case of the first configuration example, and therefore, the changes in the gate voltage Vg and the holding capacitance voltage Vst are also the same as in the case of the first configuration example (see FIGS. 3 and 5).
  • the voltage of the subsequent scanning signal line Gi + 1 changes to a low level, so that the first initialization transistor M4 is turned off and the corresponding light emission control line is turned off.
  • the voltage of Ei changes from a low level to a high level
  • the light emission control transistor M5 changes to the ON state.
  • the drive current Id given by the above-described equation (8) flows through the drive transistor M1 and the organic EL element OL.
  • the organic EL element OL emits light according to the above-mentioned drive current Id, and this light emission continues until immediately before the selection period of the corresponding scanning signal line Gi in the next frame period.
  • the initialization operation, the data writing operation, and the light emitting operation are similarly performed according to the sequential scanning of the scanning signal lines G1 to Gn + 1 in each frame period (see FIG. 4). ..
  • the image represented by the image data in the input signal Sin from the outside is displayed on the display unit 11.
  • each pixel circuit 15b holding capacitor Cst in
  • Tw data writing period
  • FIG. 6 is a circuit diagram showing a third configuration example of the pixel circuit in the present embodiment
  • FIG. 7 is a signal waveform diagram for explaining the operation of the pixel circuit according to the third configuration example in the present embodiment.
  • one of the conduction terminals (drain terminal) of the second initialization transistor M6 is connected to the connection point between the capacitance selection transistor M3 and the holding capacitor Cst, and the other (source terminal). ) Is connected to the source terminal of the drive transistor M1, which is different from the case of the second configuration example (see FIG. 4).
  • the other configurations in the display device using the pixel circuit 15c according to the present configuration example are the same as the display device using the pixel circuit 15b according to the second configuration example, the same reference numerals are given to the same parts. The explanation will be omitted.
  • the first terminal and the second terminal of the holding capacitor Cst are connected to each other via the second initialization transistor M6, and the second initialization transistor M6
  • the gate terminal of is connected to the corresponding scanning signal line Gi. Therefore, as shown in FIG. 7, during the selection period (t4 to t5) of the corresponding scanning signal line Gi, the holding capacitor Cst is discharged via the second initialization transistor M6, and the holding voltage of the holding capacitor Cst is initially set to zero. Be transformed. That is, the second initialization transistor M6 functions as a holding capacitor discharge switching element that discharges the holding capacitor Cst (this also applies to the fourth configuration example shown in FIG. 8 described later).
  • the period from time t4 to t6 corresponding to the data writing period Tw also corresponds to the initialization period Tini, and in this respect, the period from time t5 to t6 is the initialization period Tini.
  • the holding capacitance voltage Vst is slightly different from the case of the second configuration example, but the gate voltage Vg changes as in the case of the second configuration example, and the light emission period. Is the same as in the case of the second configuration example (see FIG. 5).
  • the first initialization transistor M4 and the second initialization transistor M6 form an initialization circuit that initializes the holding capacitor Cst or the like by discharging it during the initialization period Tini.
  • FIG. 8 is a circuit diagram showing a fourth configuration example of the pixel circuit in the present embodiment
  • FIG. 9 is a signal waveform diagram for explaining the operation of the pixel circuit according to the fourth configuration example in the present embodiment.
  • the gate terminals of the first and second initialization transistors M4 and M6 are both connected to the corresponding scanning signal line Gi, and in this respect, the third It is different from the pixel circuit 15c according to the configuration example (see FIG. 6). Since the other configurations of the pixel circuit 15d according to this configuration example are the same as those of the pixel circuit 15c according to the third configuration example, the same reference numerals are given to the same parts and the description thereof will be omitted.
  • FIG. 9 shows each signal line in the initialization operation, the data writing operation, and the light emitting operation of the pixel circuit Pix (i, j) in the i-th row and the j-th column, which is the pixel circuit 15d according to the present configuration example shown in FIG.
  • the changes in the voltage of (corresponding light emission control line Ei, corresponding scanning signal line Gi, corresponding data signal line Dj, and corresponding capacitance selection signal line CSWi), the gate voltage Vg of the drive transistor M1, and the holding capacitance voltage Vst are shown.
  • the driving method of the display device using the pixel circuit 15d according to the present configuration example is different from the display device using the pixel circuit 15c according to the third configuration example.
  • the scanning signal lines G1 to Gn are arranged on the display unit 11, and the scanning side drive circuit 40 has the scanning signal lines G1 to Gn in each frame period. Is configured to be sequentially and alternately selected for each horizontal period (hereinafter, the driving of such a scanning signal line is scanned in a display device using the pixel circuit according to the first to third configuration examples. It is called “single pulse drive" to distinguish it from the signal line drive). Further, the data side drive circuit 30 is configured to drive the data signal lines D1 to Dm in conjunction with the drive of the scanning signal lines G1 to Gn.
  • the period from time t3 to t8 is the non-emission period of the pixel circuits Pix (i, 1) to Pix (i, m) on the i-th row.
  • the period from time t4 to t6 is the i-horizontal period, and the period from time t5 to t6 is the selection period of the i-th scanning signal line (corresponding scanning signal line) Gi, that is, the i-th scanning selection period.
  • This i-th scan selection period corresponds to the data writing period Tw of the pixel circuits Pix (i, 1) to Pix (i, m) in the i-th row, and also corresponds to the initialization period Tini.
  • the light emission control transistor M5 starts from the on state.
  • the state changes to the off state, and the organic EL element OLED becomes a non-light emitting state.
  • the capacitance selection transistor M3 also changes from the on state to the off state, and the holding capacitor Cst is electrically operated from the gate terminal of the drive transistor M1. Is separated.
  • the data side drive circuit 30 applies the data signal D (j) as the data voltage of the pixels in the i-th row and the j-th column to the data signal line Dj, and applies the scanning signal line immediately before the corresponding scanning signal line Gi (preceding scanning). Signal line) Between the time when Gi-1 is in the non-selected state and the time when the corresponding scanning signal line Gi is in the selected state, that is, from the end of the i-1 scan selection period to the start of the i scan selection period. It starts at time t4 between and continues at least until the end of the i-scan selection period t6.
  • the voltage of the corresponding scanning signal line Gi changes from a low level to a high level and the corresponding scanning signal line Gi is in the selected state, so that the write control transistor M2 and the first initialization transistor M4 are turned on. Change.
  • the capacitance selection transistor M3 is maintained in the off state.
  • the voltage of the corresponding data signal line Dj that is, the voltage of the data signal D (j) is given as the data voltage Vdata to the write auxiliary capacitor Cwa via the write control transistor M2, but is given to the holding capacitor Cst. Absent.
  • the parasitic capacitance of the organic EL element OL is discharged, and the voltage (anode voltage) Va of the anode electrode of the organic EL element is initialized to the initialization voltage Vini.
  • the second initialization transistor M6 is also changed to the ON state.
  • the initialization voltage Vini is also applied to the first terminal of the holding capacitor Cst (the connection point between the holding capacitor Cst and the capacitance selection transistor M3) via the first and second initialization transistors M4 and M6, and is also held. Both ends of the capacitor Cst are short-circuited by the second initialization transistor M6.
  • the holding capacitor Cst is discharged and its holding voltage is initialized to zero.
  • the initialization voltage Vini is equal to the low level power supply voltage ELVSS.
  • the data voltage Vdata Vw1 is written only to the write auxiliary capacitor Cwa in the pixel circuit Pix (i, j).
  • the voltage of the corresponding scanning signal line Gi changes to a low level, so that the write control transistor M2 is turned off.
  • the period (t5 to t6) also corresponds to the initialization period Tini.
  • the voltage of the corresponding capacitance selection signal line CSWi changes from a low level to a high level, so that the capacitance selection transistor M3 is turned on.
  • the holding capacitor Cst is connected in parallel to the writing auxiliary capacitor Cwa, and the charge is redistributed between the parasitic capacitance, Csc, and the holding capacitor Cst. Due to this charge redistribution, the voltage Vg (i, j) and the holding capacitance voltage Vst (i, j) of the gate terminal in the drive transistor M1 are set to the same as in the case where the pixel circuit according to the first to third configuration examples is used.
  • the voltage Vw2 is represented by the above-mentioned equation (6).
  • a drive current Id flows from the high-level power supply line EL VDD to the low-level power supply line ELVSS via the light emission control transistor M5, the drive transistor M1, and the organic EL element OL, and the organic EL is generated by this drive current Id.
  • the element OL emits light. The light emission of the organic EL element OL by this drive current Id continues until immediately before the start of the data writing operation and the initialization operation in the next frame period.
  • the initialization operation, the data writing operation, and the light emitting operation are similarly performed according to the sequential scanning of the scanning signal lines G1 to Gn in each frame period (see FIG. 9). As a result, the image represented by the image data in the input signal Sin from the outside is displayed on the display unit 11.
  • FIG. 10 is a circuit diagram showing a fifth configuration example of the pixel circuit in the present embodiment
  • FIG. 11 is a signal waveform diagram for explaining the operation of the pixel circuit according to the fifth configuration example in the present embodiment.
  • the pixel circuit 15e has a write auxiliary capacitor Cwa, a holding capacitor Cst, a drive transistor M1, and a write control transistor in addition to the organic EL element OL, as in the fourth configuration example. It includes M2, a first initialization transistor M4, a light emission control transistor M5, and a second initialization transistor M6.
  • the write auxiliary capacitor Cwa and the holding capacitor Cst are connected in series with each other, and in this configuration example, the write auxiliary capacitor Cwa and the holding capacitor Cst are connected in parallel. It is different from the above other configuration examples (FIGS. 2, FIG. 4, FIG. 6, FIG. 8).
  • the pixel circuit 15e according to this configuration example does not include the capacitance selection transistor M3, and charge redistribution between the write auxiliary capacitor Cwa and the holding capacitor Cst is not performed. Further, when the pixel circuit 15e according to this configuration example is used, the capacitance selection signal lines CSW1 to CSWn are not provided, but the initialization signal line CLR for transmitting the initialization signal used in the initialization operation described later is provided. It is arranged on the display unit 11.
  • the drain terminal of the drive transistor M1 is connected to the high-level power supply line EL VDD via the light emission control transistor M5, and the source of the drive transistor M1 is connected, as in the other configuration examples.
  • the terminal is connected to the low level power line ELVSS via the organic EL element OL.
  • the gate terminal of the drive transistor M1 is connected to and held in the corresponding data signal line Dj via the write auxiliary capacitor Cwa and the write control transistor M2 connected in series with each other. It is connected to the source terminal of the drive transistor M1 via the capacitor Cst.
  • the write auxiliary capacitor Cwa and the holding capacitor Cst are connected in series with each other, and the gate terminal of the drive transistor M1 is connected to the connection point between the write auxiliary capacitor Cwa and the holding capacitor Cst. Further, the gate terminal of the drive transistor M1 is also connected to the source terminal via the second initialization transistor M6, and the second initialization transistor M6 and the holding capacitor Cs are connected in parallel with each other. There is.
  • the gate terminals of the write control transistor M2 and the first initialization transistor M4 are connected to the corresponding scanning signal line Gi
  • the gate terminal of the light emission control transistor M5 is connected to the corresponding light emission control line Ei
  • the gate of the second initialization transistor M6 The terminal is connected to the initialization signal line CLR.
  • FIG. 11 shows each signal line in the initialization operation, the data writing operation, and the light emitting operation of the pixel circuit Pix (i, j) in the i-th row and the j-th column, which is the pixel circuit 15e according to the present configuration example shown in FIG.
  • the changes in the voltage of (corresponding light emission control line Ei, corresponding scanning signal line Gi, corresponding data signal line Dj, and initialization signal line CLR) and the gate voltage Vg of the drive transistor M1 are shown.
  • the period from time t1 to t2 is the initialization period Tini
  • the period from time t5 to t7, that is, the selection period of the corresponding scanning signal line Gi (the i-th scanning selection period) is the data writing period Tw.
  • the non-emission period is from the time t4 immediately before the selection period of the corresponding scanning signal line Gi to the end time t7 of the selection period, and other than that period, immediately after the power is turned on (including the initialization period Tini). Except for a predetermined period, it is a light emitting period.
  • the initialization operation is performed only immediately after the power of the display device is turned on, and then the initialization operation is performed until the power is turned off. Not done.
  • the initialization signal line CLR is set to a high level from time t1 to time t2 immediately after the power is turned on (initialization period Tini), and all the scanning signal lines G1 to G1 to The voltage of Gn is set to a high level by the scanning side drive circuit 40, and all the data signal lines D1 to Dm are set to a voltage equal to the voltage of the initialization voltage supply line INI by the data side drive circuit 30, that is, the initialization voltage Vini. ..
  • the write control transistor M2, the first initialization transistor M4, and the second initialization transistor M6 are turned on during the initialization period Tini (t1 to t2).
  • the write auxiliary capacitor Cwa and the holding capacitor Cst are discharged, and the holding voltage in the write auxiliary capacitor Cwa and the holding capacitor Cst is initialized to zero.
  • the first initialization transistor M4 and the second initialization transistor M6 together with the write control transistor M2 constitute an initialization circuit for initializing by discharging the holding capacitor Cst and the like during the initialization period Tini.
  • the second initialization transistor M6 functions as a holding capacitor discharge switching element that discharges the holding capacitor Cst.
  • the voltage of the light emission control lines E1 to En is low level until the time t3 after the power is turned on, and after the time t3, the voltage of each light emission control line Ei changes according to the drive of the light emission control lines E1 to En during each frame period.
  • the low level is set only for a predetermined period corresponding to the two horizontal periods corresponding to the data writing period Tw, and the high level is set for the other periods.
  • the voltage of the corresponding light emission control line Ei is at a high level at time t4 immediately before the selection period of the corresponding scanning signal line Gi.
  • the organic EL element OL is put into a non-light emitting state when the light emitting control transistor M5 is turned off by changing from
  • the voltage of the corresponding scanning signal line Gi changes from a low level to a high level and the corresponding scanning signal line Gi is in the selected state, so that the write control transistor M2 and the first initialization transistor M4 are turned on. Change to state. Since double pulse drive is performed for the scanning signal lines G1 to Gn as described above, the first half of the selection period (t5 to t7) of the corresponding scanning signal line Gi, that is, the period of time t5 to t6 is the i-1 horizontal period.
  • the data voltages to be written to the pixel circuit Pix (i-1, j) in the i-1st row and the jth column are in series with each other from the corresponding data signal line Dj via the writing control transistor M2. It is applied to one end of a small-capacity capacitor as a combined capacitor (hereinafter referred to as “series combined capacitor", which is indicated by the reference numeral "Cser”) composed of a writing auxiliary capacitor Cwa and a holding capacitor Cst connected to.
  • series combined capacitor which is indicated by the reference numeral "Cser”
  • the capacitance value of the series combined capacitor Cser is given by the following equation (hereinafter, the capacitance values of the write auxiliary capacitor Cwa, the holding capacitor Cst, and the series combined capacitor Cser are also referred to as "Cwa”, “Cst”, and “Cser”. It shall be indicated by ". The same shall apply hereinafter).
  • the initialization voltage Vini is given from the initialization voltage supply line INI to the other end of the small capacitance capacitor as the series combined capacitance Cser. Be done. Further, the initialization voltage Vini is also applied to the anode electrode of the organic EL element OL, and the parasitic capacitance (not shown) of the organic EL element OL is discharged.
  • the voltage of the corresponding data signal line Dj changes to the data voltage Vw1 to be written in the pixel circuit Pix (i, j) in the i-th row and the j-th column, and the series combined capacitance Cser is charged at the data voltage Vw1.
  • the gate voltage Vg is determined by the capacitance voltage division by the write auxiliary capacitor Cwa and the holding capacitor Cst with respect to the voltage held in the series combined capacitance Cser by this charging. That is, after this charging, the gate voltage Vg in the drive transistor M1 becomes the voltage Vw2 represented by the following equation.
  • the voltage of the corresponding scanning signal line Gi changes to a low level, so that the write control transistor M2 is turned off and the gate terminal of the drive transistor M1 is electrically disconnected from the corresponding data signal line Dj.
  • the first initialization transistor M4 is also turned off, and the supply of the initialization voltage Vini to the other end of the small-capacity capacitor as the series combined capacitance Cser is cut off.
  • the voltage of the corresponding light emission control line Ei changes to a high level, and the light emission control transistor M5 is turned on.
  • a current flows from the high-level power supply line EL VDD to the low-level power supply line ELVSS via the light emission control transistor M5, the drive transistor M1, and the organic EL element OL.
  • This current is the drive current Id represented by the above-mentioned equation (8), and the organic EL element OL emits light by this drive current Id, and this light emission continues until immediately before the data writing period in the next frame period.
  • the voltage at the other end and the gate voltage Vg of the small-capacity capacitor as the series combined capacitance Cser increase by the forward voltage Vf of the organic EL element OL, but the holding capacitor Cst
  • the holding voltage that is, the gate-source voltage Vgs, does not change.
  • the initialization operation, the data writing operation, and the light emitting operation are similarly performed according to the sequential scanning of the scanning signal lines G1 to Gn in each frame period (see FIG. 11).
  • the image represented by the image data in the input signal Sin from the outside is displayed on the display unit 11.
  • the series combined capacitance Cser (see equation (11)) having a capacitance value smaller than that of the holding capacitor Cst in the data writing period Tw is the data voltage Vdata.
  • the pixel circuit 15e using this configuration example unlike the case where the pixel circuits 15a to 15d according to the first to fourth configuration examples are used, the charge is redistributed between the write auxiliary capacitor Cwa and the holding capacitor Cst. Since distribution is not performed, the capacitance selection transistor M3 and the signal lines and circuits for controlling the capacitance selection transistor M3 are not required, and the configuration is simplified.
  • the write auxiliary capacitor Cwa and the holding capacitor Cst are set to a state in which electric charges are not accumulated by the initialization operation immediately after the power is turned on (write). Auxiliary capacitor Cwa and holding capacitor Cst are initialized).
  • a thin film transistor is used as a drive transistor in a pixel circuit in an organic EL display device.
  • the gain of a MOS (Metal-Oxide-Semiconductor) transistor such as a TFT is determined by the mobility, channel width, channel length, gate insulating film capacitance, etc., and the amount of current flowing through the MOS transistor is the gate-source voltage and gain. , It changes according to the threshold voltage and the like.
  • the threshold voltage, mobility, and the like vary, and as a result, the amount of drive current flowing through the organic EL element also varies. As a result, the displayed image has uneven brightness, and the display quality is deteriorated.
  • the drive current to be supplied from the drive transistor to the organic EL element is taken out from the pixel circuit and measured, and the data voltage to be written to each pixel circuit is determined based on the measurement result in order to compensate for the characteristic variation. Some are configured to correct. Compensation for variations in the characteristics of the drive transistor with such a configuration is called "external compensation".
  • an embodiment of an organic EL display device that performs such external compensation will be described as a second embodiment.
  • the display device according to the second embodiment has a normal display mode for displaying an image based on an external input signal and a characteristic for detecting the characteristics of a drive transistor in a pixel circuit for external compensation. It has a detection mode.
  • FIG. 12 is a block diagram showing the overall configuration of the organic EL display device 10b according to the second embodiment.
  • the display device 10b also includes a display unit 11, a display control circuit 20, a data side drive circuit 30, a scanning side drive circuit 40, and a power supply circuit 50, as in the first embodiment. ing.
  • the same or corresponding parts as those of the display device 10a according to the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the display unit 11 in the present embodiment has m (m is an integer of 2 or more) data signal lines D1 to Dm and n + 1 lines (n is an integer of 2 or more) in the same manner as in the first embodiment. ) Scanning signal lines G1 to Gn + 1, and n emission control lines E1 to En are arranged, along m data signal lines D1 to Dm and n scanning signal lines G1 to Gn. M ⁇ n pixel circuits 16a arranged in a matrix are provided. Each pixel circuit 16a corresponds to any one of m data signal lines D1 to Dm, corresponds to any one of n scanning signal lines G1 to Gn, and corresponds to n light emission control lines E1 to. Corresponds to any one of En.
  • n monitor control lines MON1 to MONn are arranged along the n scanning signal lines G1 to Gn on the display unit 11 in the present embodiment.
  • Each pixel circuit 16a corresponds to any one of n monitor control lines MON1 to MONn.
  • the capacitance selection signal lines CSW1 to CSWn are required.
  • the light emission control lines E1 to En are also used as the capacitance selection signal lines CSW1 to CSWn.
  • the capacitance selection signal lines CSW1 to CSWn may be formed on the display unit 11 separately from the light emission control lines E1 to En (see FIG. 1).
  • the power supply lines EL VDD, ELVSS and the initialization voltage supply line INI arranged on the display unit 11 are the same as those in the first embodiment, and thus the description thereof will be omitted.
  • the display control circuit 20 in the present embodiment receives an input signal Sin including image data representing an image to be displayed and timing control information for displaying the image from the outside of the display device, and a data side control signal based on this input signal Sin. Scd and scanning side control signal Scs are generated, and the data side control signal Scd is output to the data side drive circuit 30 and the scanning side control signal Scs is output to the scanning side drive circuit 40, respectively.
  • the display control circuit 20 receives the measurement data MD from the data side drive circuit 30 for external compensation (details will be described later), and based on this measurement data MD, the characteristics of the drive transistor in each pixel circuit 16a The image data is corrected so that the variation is compensated, and the data side control signal Scd is generated based on the corrected image data.
  • the data side drive circuit 30 functions as a data signal line drive circuit and drives the data signal lines D1 to Dm based on the data side control signal Scd from the display control circuit 20.
  • the data side drive circuit 30 functions as a data signal line drive circuit and also as a current measurement circuit, and the current in each pixel circuit 16a is transmitted via the data signal line Dj connected to the data signal line Dj. Measure.
  • the scanning side drive circuit 40 is a scanning signal line driving circuit that drives the scanning signal lines G1 to Gn + 1 and a light emitting control circuit that drives the light emitting control lines E1 to En based on the scanning side control signals Scs from the display control circuit 20. , And functions as a monitor control line drive circuit for driving the monitor control lines MON1 to MONn. More specifically, in the normal display mode, the scanning side drive circuit 40 corresponds to one horizontal period of scanning signal lines G1 to Gn + 1 in each frame period based on the scanning side control signal Scs as the scanning signal line driving circuit.
  • the scanning side drive circuit 40 selectively drives the scanning signal lines G1 to Gn + 1 as the scanning signal line driving circuit based on the scanning side control signal Scs, and also serves as the monitor control line driving circuit.
  • the monitor control lines MON1 to MONn are selectively driven based on the scanning side control signal Scs.
  • FIG. 13 is a circuit diagram showing a configuration example of the pixel circuit 16a in the present embodiment together with the configuration of a main part of the data side drive circuit 30. That is, FIG. 13 shows the data side together with the electrical configuration of the pixel circuit 16a corresponding to the i-th scanning signal line Gi and the j-th data signal line Dj, that is, the pixel circuit Pix (i, j) in the i-th row and j-th column. The electrical configuration of the main part corresponding to the j-th data signal line in the drive circuit 30 is shown.
  • the pixel circuit 16a in the present embodiment includes the monitor control transistor M8 having a gate terminal connected to the corresponding monitor control line MONi, but the pixel circuit 16a in the first embodiment is described above. It is the same as 15a (see FIG. 2), the same reference numerals are given to the same parts, and the description thereof will be omitted.
  • the monitor control transistor M8 functions as a switching element, and the source terminal of the drive transistor M1 (drive transistor M1 and organic EL).
  • the connection point with the element OL) is connected to the corresponding data signal line Dj via the monitor control transistor M8.
  • the data side drive circuit 30 in the present embodiment includes an input / output buffer unit, an AD conversion unit, a DA conversion unit, and a series-parallel conversion unit.
  • FIG. 13 shows the corresponding data signal line connected to the pixel circuit Pix (i, j) of the i-th row and j-th column of the input / output buffer unit, the AD conversion unit, and the DA conversion unit in the data side drive circuit 30. The detailed configuration of the part corresponding to Dj is shown.
  • the data side drive circuit 30 includes an input / output buffer 28, a DA converter (DAC) 25, and an AD converter (ADC) 26 as the relevant parts.
  • DAC DA converter
  • ADC AD converter
  • the digital image signal d (j) is a digital signal indicating a data voltage to be applied to the pixel circuit Pix (i, j).
  • the data side control signal Scd described above includes an input / output control signal DWT in addition to the serial format digital image signal, and this input / output control signal DWT is input to the input / output buffer 28.
  • the input / output buffer 28 includes an operational amplifier 21, a capacitor 22, a first switch 23a, and a second switch 23b.
  • the inverting input terminal of the operational amplifier 21 is connected to the data signal line Dj, and the non-inverting input terminal of the operational amplifier 21 is connected to the second switch 23b as a selection switch.
  • the non-inverting input terminal of the operational amplifier 21 is connected to the output terminal of the DA converter 25 when the input / output control signal DWT is at a high level (H level), and the input / output control signal DWT is at a low level (H level). When it is (L level), it is connected to the low level power supply line ELVSS.
  • the capacitor 22 is provided between the inverting input terminal and the output terminal of the operational amplifier 21, and the output terminal of the operational amplifier 21 is connected to the inverting input terminal of the operational amplifier 21 via the capacitor 22.
  • the first switch 23a is provided between the inverting input terminal and the output terminal of the operational amplifier 21, and is connected in parallel with the capacitor 22.
  • the capacitor 22 functions as a current-voltage conversion element.
  • the first switch 23a is in the ON state when the input / output control signal DWT is at the H level, and is in the OFF state when the input / output control signal DWT is at the L level.
  • the output terminal of the operational capacitor 21 is connected to the input terminal of the AD converter 26, and is a digital signal (also referred to as “current monitor signal”) indicating the current flowing through the data signal line Dj when the input / output control signal DWT is at L level. ) Im (j) is output from the AD converter 26.
  • the input / output buffer 28 having such a configuration, when the input / output control signal DWT is at H level, the first switch 23a is in the ON state, and the output terminal and the inverting input terminal of the operational amplifier 21 are directly connected (short circuit). Will be). Further, the non-inverting input terminal of the operational amplifier 21 is connected to the output terminal of the DA converter 25 by the second switch 23b. At this time, the input / output buffer 28 functions as a voltage hollower, and the digital signal d (j) input to the DA converter 25 is converted into an analog voltage signal and given to the data signal line Dj with a low output impedance.
  • the first switch 23a is in the off state, and the output terminal of the operational amplifier 21 is connected to the non-inverting input terminal via the capacitor 22. Further, the non-inverting input terminal of the operational amplifier 21 is connected to the low level power supply line ELVSS by the second switch 23b.
  • the operational amplifier 21 and the capacitor 22 function as integrators. That is, the operational amplifier 21 outputs a voltage corresponding to the integrated value of the current flowing through the data signal line Dj connected to the inverting input terminal, and this voltage is converted into a digital signal by the AD converter 26 and the current monitor signal im.
  • the input / output buffer 28 corresponding to each data signal line Dj is connected to the j-th column.
  • Signals d (j) indicating the data voltage Vdata to be written to the pixel circuits Pix (1, j) to Pix (n, j) are sequentially given via the DA converter 25.
  • the scanning signal lines G1 to Gn + 1 are scanned so that the scanning signal lines G1 to Gn + 1 are sequentially selected for a predetermined period in each frame period. It is driven by the side drive circuit 40.
  • the side drive circuit 40 By driving the data signal lines D1 to Dm and the scanning signal lines G1 to Gn + 1 in the display unit 11 in this way, the corresponding data voltage Vdata is written in each pixel circuit Pix (i, j). Later, the light emission control transistor M5 is turned on, whereby the image represented by the image data in the external input signal Sin is displayed on the display unit 11.
  • each pixel circuit Pix (i, j) in the display device 10b of the present embodiment in the characteristic detection mode, the same as in the case where the pixel circuit 15a according to the first configuration example is used in the first embodiment (FIG. 3). (See), after the data voltage Vdata is written, the capacitance selection transistor M3 is turned on, the first initialization transistor M4 is turned off, and the light emission control transistor M5 is turned on, thereby driving. A current flows through the transistor M1.
  • the input / output buffer 38 is connected to the corresponding data signal line Dj by changing the input / output control signal DWT from the H level to the L level in the data side drive circuit 30.
  • the monitor control transistor M8 flows through the drive transistor M1 of the pixel circuit Pix (i, j) turned on by the monitor control line MONi.
  • the current is measured via the monitor control transistor M8 and the data signal line Dj.
  • the signal im (j) indicating the measurement result is sequentially output via the AD converter 26 and sent to the display control circuit 20 as the measurement data MD via the series-parallel conversion unit.
  • the characteristic of the drive transistor M1 in each pixel circuit Pix (i, j) is obtained by using the measurement data MD, and the data indicating the characteristic is saved / updated.
  • These data are input signals from the outside so as to compensate for variations and fluctuations in the characteristics of the drive transistor M1 in the pixel circuits Pix (1,1) to Pix (n, m) in the above-mentioned normal display mode. It is used to correct the image data contained in the Sin.
  • the data side control signal Scd given to the data side drive circuit 30 is generated based on the corrected image data.
  • FIG. 14A is a circuit diagram showing a first modification of the pixel circuit 16a according to the present embodiment.
  • the terminals on the low voltage side of the write auxiliary capacitor Cwa and the holding capacitor Cst are connected to the source terminal of the drive transistor M1 (see FIG. 13), but FIG. 14 (A) shows.
  • the pixel circuit 16b according to this modification all the terminals on the low voltage side are connected to the low level power supply line ELVSS. Even if such a pixel circuit 16b is used instead of the pixel circuit 16a of FIG. 13 in the present embodiment, the same effect as that of the first embodiment can be obtained while performing external compensation.
  • FIG. 14B is a circuit diagram showing a second modification of the pixel circuit 16a in this embodiment.
  • the terminals on the low voltage side of the write auxiliary capacitor Cwa and the holding capacitor Cst are connected to the source terminal of the drive transistor M1 (see FIG. 13).
  • the pixel circuit 16c according to the second modification all the terminals on the low voltage side are connected to the initialization voltage supply line INI. Even if such a pixel circuit 16c is used instead of the pixel circuit 16a of FIG. 13 in the second embodiment, the same effect as that of the first embodiment can be obtained while performing external compensation.
  • FIG. 15 is a circuit diagram showing a third modification of the pixel circuit 16a in the present embodiment.
  • the write auxiliary capacitor Cwa, the holding capacitor Cst, and the capacitance selection transistor M3 are connected between the gate terminal and the source terminal of the drive transistor M1 (see FIG. 13).
  • the write auxiliary capacitor Cwa, the holding capacitor Cst, and the capacitance selection transistor M3 are connected between the gate terminal of the drive transistor M1 and the high level power supply line EL VDD. ing. Even if such a pixel circuit 16d is used instead of the pixel circuit 16a of FIG. 2 in the second embodiment, the same effect as that of the first embodiment can be obtained while performing external compensation.
  • the pixel circuit 16a according to the first embodiment and the pixel circuits 16b to 16d according to the first to third modifications have characteristics based on the pixel circuit 15a (FIG. 2) according to the first configuration example according to the first embodiment.
  • a monitor control transistor M8 for measuring the current flowing through the drive transistor M1 in the detection mode is added.
  • the characteristic detection mode is based on any one of the pixel circuits 15b to 15e (FIGS. 4, FIG. 6, FIG. 8, and FIG. 10) according to the second to fifth configuration examples in the first embodiment.
  • a monitor control transistor M8 for measuring the current flowing through the drive transistor M1 may be added.
  • FIG. 16 is a circuit diagram showing a configuration example of a pixel circuit in the organic EL display device according to the third embodiment.
  • the pixel circuits 15a to 15e in the first embodiment and the pixel circuits 16a in the second embodiment use N-channel transistors, but the pixel circuits 17a in the present embodiment use P-channel transistors. in use.
  • the same or corresponding parts of the display device 10a according to the first embodiment of the configuration of the display device according to the present embodiment are designated by the same reference numerals, and detailed description thereof will be omitted, and the detailed description will be omitted.
  • the present embodiment will be described with a focus on the configuration of.
  • the pixel circuit 17a in the present embodiment is also the same as the pixel circuit 15c according to the third configuration example in the first embodiment (FIG. 6), the organic EL element OL as a display element, and the writing assist. It includes a capacitor Cwa and a holding capacitor Cst, a drive transistor M1, a write control transistor M2, a capacitance selection transistor M3, a first initialization transistor M4, a light emission control transistor M5, and a second initialization transistor M6.
  • the transistors M1 to M6 are all P-channel type, and these transistors M1 to M6 are connected as shown in FIG. In the configuration of FIG. 16, the initialization voltage Vini is assumed to be equal to the high level power supply voltage EL VDD.
  • the pixel circuit Pix (i, j) in the i-th row and the j-th column which is the pixel circuit 17a corresponding to the i-th scanning signal line Gi and the j-th data signal line Dj in the present embodiment, is driven.
  • the source terminal of the transistor M1 is connected to the high-level power supply line EL VDD as the first power supply line via the light emission control transistor M5, and the gate terminal of the drive transistor M1 is a corresponding data signal via the write control transistor M2. It is connected to the source terminal of the drive transistor M1 via the capacitance selection transistor M3 and the holding capacitor Cst connected in series with the line Dj.
  • the source terminal is connected to the initialization voltage supply line INI via the first initialization transistor M4, and at the connection point between the capacitance selection transistor M3 and the holding capacitor Cst via the second initialization transistor M6. It is connected.
  • the drain terminal of the drive transistor M1 is connected to the anode electrode of the organic EL element OL.
  • the cathode electrode of the organic EL element OL is connected to the low level power supply line ELVSS.
  • the first terminal is connected to the gate terminal of the drive transistor M1 and the second terminal is connected to the source terminal of the drive transistor M1.
  • the gate terminals of the write control transistor M2 and the second initialization transistor M6 are connected to the corresponding scanning signal line Gi, the gate terminal of the first initialization transistor M4 is connected to the subsequent scanning signal line Gi + 1, and the capacitance selection transistor M3 The gate terminal of is connected to the corresponding capacitance selection signal line CSWi.
  • FIG. 17 shows each signal line (corresponding light emission control) in the initialization operation, the data writing operation, and the light emission operation of the pixel circuit Pix (i, j) in the i-th row and the j-th column, which is the pixel circuit 17a shown in FIG.
  • Line Ei corresponding scanning signal line Gi, subsequent scanning signal line Gi + 1, corresponding data signal line Dj, corresponding capacitance selection signal line CSWi) voltage, gate voltage Vg of drive transistor M1, holding capacitor Cst and capacitance selection transistor M3 It shows the change of the voltage (holding capacity voltage) Vst of the connection point of.
  • FIG. 17 shows each signal line (corresponding light emission control) in the initialization operation, the data writing operation, and the light emission operation of the pixel circuit Pix (i, j) in the i-th row and the j-th column, which is the pixel circuit 17a shown in FIG.
  • Line Ei corresponding scanning signal line Gi, subsequent scanning signal line Gi + 1, corresponding data signal line Dj, corresponding capacitance
  • the period from time t4 to t6 is the selection period of the i-th scanning signal line Gi, that is, the i-th scanning selection period, and the pixel circuits Pix (i, 1) to Pix (i, m) on the i-th line.
  • the initialization period Tini and the data writing period Tw corresponds to the initialization period Tini and the data writing period Tw.
  • the period from time t5 to t8 is the selection period of the i + 1th scan signal line (subsequent scan signal line) Gi + 1, that is, the i + 1 scan selection period.
  • the light emitting period is from time t8 to immediately before the data writing period in the next frame period.
  • the transistors M1 to M6 are of the P channel type, the signals of the light emission control line Ei, the scanning signal line Gi, and the capacitance selection signal line CSWi are all negative logic. Yes, the gate voltage Vg of the drive transistor M1 decreases in the data writing period Tw (t4 to t6).
  • the pixel circuit 17a in the present embodiment operates substantially in the same manner as the pixel circuit 15c according to the third configuration example in the first embodiment. To do. Therefore, according to the present embodiment, the same effect as when the pixel circuit 15c according to the third configuration example is used in the first embodiment can be obtained.
  • the first initialization transistor M4 and the second initialization transistor M6 form an initialization circuit for initializing by discharging the holding capacitor Cst during the initialization period Tini.
  • the second initialization transistor M6 functions as a holding capacitor discharge switching element that discharges the holding capacitor Cst (this also applies to the modified examples shown in FIGS. 18 to 20 described later).
  • the configuration of the pixel circuit in this embodiment is not limited to the configuration shown in FIG. 16, and various modifications can be made.
  • the pixel circuit shown in FIG. 18 (hereinafter referred to as “pixel circuit according to the first modification”) 17b may be used.
  • the light emission control transistor M5 is connected between the drive transistor M1 and the high-level power supply line EL VDD, but in the pixel circuit 17b according to the first modification, as shown in FIG. , The light emission control transistor M5 is connected between the drive transistor M1 and the organic EL element OL.
  • the pixel circuit 17b does not include the first initialization transistor M4, and the initialization voltage supply line INI is unnecessary. Even when the pixel circuit 17b according to the present modification is used instead of the pixel circuit 17a of FIG. 16, the same effect as that of the second embodiment can be obtained.
  • the second initialization transistor M6 constitutes an initialization circuit for initializing by discharging the holding capacitor Cst during the initialization period Tini. This also applies to the pixel circuits 17c and 17d according to the second and third modifications shown in FIGS. 19 and 20, which will be described later.
  • FIG. 19 is a circuit diagram showing a second modification of the pixel circuit 17a according to the present embodiment.
  • the light emission control transistor M5 is connected between the drive transistor M1 and the high-level power supply line EL VDD, as in the pixel circuit 17a of FIG. 16, but the write auxiliary capacitor Cwa and the holding capacitor The terminal on the high voltage side of Cst is directly connected to the high level power supply line EL VDD, which is different from the pixel circuit 17a of FIG.
  • the pixel circuit 17c does not include the first initialization transistor M4, and the initialization voltage supply line INI is unnecessary. Even when the pixel circuit 17c according to the present modification is used instead of the pixel circuit 17a of FIG. 16, the same effect as that of the second embodiment can be obtained.
  • FIG. 20 is a circuit diagram showing a third modification of the pixel circuit 17a in the present embodiment
  • FIG. 21 is a pixel circuit of the i-th row and column j, which is the pixel circuit 17d according to the present modification shown in FIG.
  • signal line corresponding emission control line Ei, corresponding scanning signal line Gi, corresponding data signal line Dj, corresponding capacitance selection signal line CSWi
  • the pixel circuit 17d according to the present modification does not include the first initialization transistor M4 and does not require the initialization voltage supply line INI, but the pixel circuit 17a of FIG. 16 according to the present embodiment. It has the same configuration as.
  • the non-emission period in which the light emission control transistor M5 is off is the period from time t3 to time t5, and the second modification according to this modification.
  • the light emission control transistor M5 is on during the i-th horizontal period (t5 to t6) when the data voltage Vdata to be written to the pixel circuit Pix (i, j) in the i-th row and j-th column is output to the corresponding data signal line Dj. ..
  • the operation of the pixel circuit 17d according to this modification is different from the operation of the pixel circuit 17a in the present embodiment (FIG. 17).
  • the gate voltage Vg of the drive transistor M1 changes substantially in the same manner as when the pixel circuit 17a of FIG. 16 is used. Therefore, even when the pixel circuit 17d according to the present modification is used instead of the pixel circuit 17a of FIG. 16, the same effect as that of the second embodiment can be obtained.
  • FIG. 22 is a circuit diagram showing another configuration example of the pixel circuit in the present embodiment
  • FIG. 23 is a signal waveform diagram for explaining the operation of the pixel circuit 17e according to the other configuration example in the present embodiment. is there.
  • the writing auxiliary capacitor Cwa, the holding capacitor Cst, the driving transistor M1, and the writing The built-in control transistor M2, the light emission control transistor M5, and the initialization transistor M6 are included.
  • the write auxiliary capacitor Cwa and the holding capacitor Cst are connected in series with each other, and in this configuration example, the write auxiliary capacitor Cwa and the holding capacitor Cst are connected in parallel. It is different from the first modification (FIG. 18).
  • the pixel circuit 17e according to this configuration example does not include the capacitance selection transistor M3, and the charge is not redistributed between the write auxiliary capacitor Cwa and the holding capacitor Cst. Further, when the pixel circuit 17e according to this configuration example is used, the capacitance selection signal lines CSW1 to CSWn are not provided, but the initialization signal line CLR for transmitting the initialization signal used in the initialization operation described later is provided. It is arranged on the display unit 11.
  • the source terminal of the drive transistor M1 is directly connected to the high-level power supply line EL VDD as in the first modification (FIG. 18), and the drain terminal of the drive transistor M1 is connected. Is connected to the anode electrode of the organic EL element OL via the light emission control transistor M5. The cathode electrode of the organic EL element OL is connected to the low level power line ELVSS.
  • the gate terminal of the drive transistor M1 is connected to and held by the corresponding data signal line Dj in order via the write auxiliary capacitor Cwa and the write control transistor M2 connected in series with each other. It is connected to the source terminal of the drive transistor M1 via the capacitor Cst.
  • the write auxiliary capacitor Cwa and the holding capacitor Cst are connected in series with each other, and the gate terminal of the drive transistor M1 is connected to the connection point between the write auxiliary capacitor Cwa and the holding capacitor Cst. Further, the gate terminal of the drive transistor M1 is also connected to the source terminal via the initialization transistor M6, and the initialization transistor M6 and the holding capacitor Cs are connected in parallel with each other.
  • the gate terminal of the write control transistor M2 is connected to the corresponding scanning signal line Gi
  • the gate terminal of the light emission control transistor M5 is connected to the corresponding light emission control line Ei
  • the gate terminal of the initialization transistor M6 is connected to the initialization signal line CLR. Has been done.
  • FIG. 23 shows each signal line in the initialization operation, the data writing operation, and the light emitting operation of the pixel circuit Pix (i, j) in the i-th row and the j-th column, which is the pixel circuit 17e according to the present configuration example shown in FIG.
  • the changes in the voltage of (corresponding light emission control line Ei, corresponding scanning signal line Gi, corresponding data signal line Dj, and initialization signal line CLR) and the gate voltage Vg of the drive transistor M1 are shown.
  • the period from time t1 to t2 is the initialization period Tini
  • the period from time t5 to t7, that is, the selection period of the corresponding scanning signal line Gi (the i-th scanning selection period) is the data writing period Tw.
  • the non-emission period is from the time t4 immediately before the selection period of the corresponding scanning signal line Gi to the end time t7 of the selection period, and other than that period, immediately after the power is turned on (including the initialization period Tini). Except for a predetermined period, it is a light emitting period.
  • the pixel circuit 17e according to the present configuration example is a pixel circuit 15e according to the fifth configuration example according to the first embodiment, that is, an N-channel transistor. It operates substantially in the same manner as the pixel circuit 15e configured as shown in FIG.
  • the second initialization transistor M6 constitutes an initialization circuit for initializing by discharging the holding capacitor Cst during the initialization period Tini.
  • the second initialization transistor M6 functions as a holding capacitor discharge switching element that discharges the holding capacitor Cst.
  • the first to third embodiments have been related to an organic EL display device, but the present invention is not limited to this, and the display brightness is determined by the voltage held in the capacitor provided in the pixel circuit. It is also applicable to other display devices in which is controlled, for example, a liquid crystal display device.
  • a liquid crystal display device as a fourth embodiment will be described.
  • the liquid crystal display device Similar to the organic EL display device shown in FIG. 1, the liquid crystal display device according to the present embodiment also includes a display unit 11, a display control circuit 20, a data side drive circuit 30, a scanning side drive circuit 40, and a power supply circuit 50. Further, the back surface of the display unit 11 as a liquid crystal panel is provided with a backlight that irradiates light.
  • the data side drive circuit 30 is configured to AC drive the display unit 11, and the scanning side drive circuit 40 functions only as a scanning signal line drive circuit (gate driver) and emits light control circuit (emission driver). ) Does not have a function.
  • the power supply circuit 50 generates a common voltage Vcom to be supplied to the display unit 11, and a power supply voltage (not shown) to be supplied to the data side drive circuit 30 and the scanning side drive circuit 40.
  • the display unit 11 in the present embodiment has m (m is an integer of 2 or more) data signal lines D1 to Dm, and n + 1 lines (n is an integer of 2 or more) of scanning signal lines G1 to Gn intersecting the data signal lines D1 to Dm. +1 is arranged, and no light emission control line, capacitance selection signal line, etc. are provided. Further, the display unit 11 is provided with m ⁇ n pixel circuits arranged in a matrix along m data signal lines D1 to Dm and n scanning signal lines G1 to Gn, and each pixel is provided.
  • the circuit corresponds to any one of m data signal lines D1 to Dm and corresponds to any one of n scanning signal lines G1 to Gn (hereinafter, when each pixel circuit is distinguished, it corresponds to any one).
  • the pixel circuit corresponding to the i-th scanning signal line Gi and the j-th data signal line Dj is also referred to as “the pixel circuit of the i-th row and the j-th column” and is indicated by the reference numeral “Pix (i, j)”.
  • the display unit 11 is provided with a common electrode line COM for supplying a common voltage Vcom to all the pixel circuits.
  • the display control circuit 20 receives an input signal Sin including image data representing an image to be displayed and timing control information for displaying the image from the outside of the display device, and based on this input signal Sin, the data side control signal Scd and the scanning side.
  • the control signal Scs is generated, and the data side control signal Scd is output to the data side drive circuit 30, and the scanning side control signal Scs is output to the scanning side drive circuit 40.
  • the data side drive circuit 30 drives the data signal lines D1 to Dm based on the data side control signal Scd from the display control circuit 20. That is, the data side drive circuit 30 outputs m data signals D (1) to D (m) representing an image to be displayed in parallel to the data signal lines D1 to Dm, respectively, based on the data side control signal Scd. Apply.
  • the present embodiment relates to a liquid crystal display device, and AC drive is performed. In the following, it is assumed that the AC drive method in which the polarities of the data signals D (1) to D (m) are inverted every frame period and also every one horizontal period is adopted, but other AC drives are adopted. The method may be adopted.
  • the scanning side drive circuit 40 drives the scanning signal lines G1 to Gn + 1 based on the scanning side control signal Scs from the display control circuit 20. That is, the scanning side drive circuit 40 sequentially selects scanning signal lines G1 to Gn + 1 in each frame period based on the scanning side control signal Scs, and is an active signal with respect to the selected scanning signal line Gk (this embodiment). In the embodiment, a high level voltage) is applied, and an inactive signal (low level voltage in the present embodiment) is applied to the non-selective scanning signal line. In this embodiment as well, as in the first embodiment, both double pulse drive and single pulse drive are possible for the scanning signal lines G1 to Gn + 1.
  • the scanning signal line G1 is used in the scanning side drive circuit 40 when performing double pulse driving.
  • the scanning signals G (1) to G (n) to be applied to the Gn are generated so that the scanning signals G (1) to G (n) include a drive pulse suitable for the polarity reversal.
  • the data side drive circuit 30 drives the data signal lines D1 to Dm
  • the scanning side drive circuit 40 drives the scanning signal lines G1 to Gn + 1, and the back light (backlight) on the back surface of the display unit 11.
  • the image represented by the image data in the external input signal Sin is displayed on the display unit 11.
  • FIG. 24 is a circuit diagram showing a first configuration example of the pixel circuit according to the present embodiment
  • FIG. 25 is a signal waveform diagram for explaining the operation of the pixel circuit 18a according to the first configuration example.
  • FIG. 24 shows the configuration of the pixel circuit Pix (i, j) of the i-th row and the j-th column, which is the pixel circuit 18a according to the present configuration example corresponding to the i-th scanning signal line Gi and the j-th data signal line Dj. (1 ⁇ i ⁇ n, 1 ⁇ j ⁇ m).
  • the pixel circuit 18a includes a liquid crystal capacitance Clc corresponding to a liquid crystal element (pixel liquid crystal) as a display element, a write auxiliary capacitor Cwa, a write control transistor M2, a capacitance selection transistor M3, and an initialization transistor M4. I'm out.
  • the capacitance value of the write auxiliary capacitor Cwa is smaller than the capacitance value of the liquid crystal capacitance Clc.
  • the liquid crystal capacitance Clc is composed of a pixel electrode Ep and a common electrode line COM facing the pixel electrode Ep with the liquid crystal layer interposed therebetween, and corresponds to the holding capacitor Cst of the pixel circuit in the first to third embodiments.
  • the transistors M2 to M4 included in the pixel circuit 18a function as switching elements.
  • the transistors included in the pixel circuit 18a are all N-channel type, but some or all of them may be P-channel type. These points are the same in other configuration examples (FIG. 26).
  • the pixel circuit 18a includes a corresponding scanning signal line (corresponding scanning signal line) Gi, a scanning signal line immediately after the corresponding scanning signal line Gi (subsequent scanning signal line) Gi + 1, and corresponding scanning signal lines Gi + 1.
  • the data signal line (corresponding data signal line) Dj and the common electrode line COM are connected.
  • the pixel electrode Ep constituting the liquid crystal capacitance Clc is connected to the first terminal of the write auxiliary capacitor Cwa via the capacitance selection transistor M3, and the common electrode line COM is connected via the initialization transistor M4. It is connected to the.
  • the first terminal of the write auxiliary capacitor Cwa is connected to the corresponding data signal line Dj via the write control transistor M2, and the second terminal of the write auxiliary capacitor Cwa is connected to the common electrode line COM. There is.
  • the gate terminals of the write control transistor M2 and the capacitance selection transistor M3 are connected to the corresponding scanning signal line Gi, and the gate terminal of the capacitance selection transistor M3 is connected to the subsequent scanning signal line Gi + 1.
  • FIG. 25 shows each signal line (correspondence) in the initialization operation, the data writing operation, and the charge redistribution operation of the pixel circuit Pix (i, j) of the i-th row and the j-th column, which is the pixel circuit 18a shown in FIG. Scanning signal line Gi, subsequent scanning signal line Gi + 1, corresponding data signal line Dj) voltage, voltage of the first terminal of the writing auxiliary capacitor Cwa (hereinafter referred to as "writing auxiliary capacitance voltage”) Vwa, liquid crystal capacitance Clc
  • writing auxiliary capacitance voltage voltage of the first terminal of the writing auxiliary capacitor Cwa
  • t5 corresponds to the data writing period Tw for charging the write auxiliary capacitor Cwa with the voltage of the corresponding data signal line Dj, that is, the data voltage Vw1, and also corresponds to the initialization period Tini for initializing the liquid crystal capacitance Clc.
  • the selection period of the subsequent scan signal line Gi + 1, that is, the i + 1 scan selection period (t7 to t8) corresponds to the charge redistribution period Tcrd that redistributes the charge between the write auxiliary capacitor Cwa and the holding capacitor Cst. ..
  • the write control transistor M2 changes to the ON state at the start time t4 of the selection period of the corresponding scanning signal line Gi, and the capacitance selection transistor M3 Is maintained in the off state, only the write auxiliary capacitor Cwa is charged by applying the voltage (data voltage) Vw1 of the corresponding data signal line Dj to its first terminal, and at the end time t5 of the selection period, The voltage of the first terminal, that is, the write auxiliary capacity voltage Vwa becomes equal to the data voltage Vw1.
  • the initialization transistor M4 changes to the ON state, so that the liquid crystal capacitance Clc is discharged and its holding voltage is initialized to zero, and the pixel electrode Ep
  • the voltage (hereinafter referred to as “pixel voltage”) Vp becomes equal to the common voltage Vcom.
  • the first initialization transistor M4 constitutes an initialization circuit for initializing by discharging the liquid crystal capacitance Clc as a holding capacitor during the initialization period Tini. That is, the first initialization transistor M4 functions as a holding capacitor discharge switching element that discharges the liquid crystal capacitance Clc as the holding capacitor.
  • Vw2 ⁇ Cwa / (Cwa + Clc) ⁇ (Vw1-Vcom) + Vcom... (14)
  • the liquid crystal applied voltage Vclc is held in the liquid crystal capacitance Clc until the data writing operation for the pixel circuit Pix (i, j) is performed in the next frame period.
  • the data voltage is applied to the writing auxiliary capacitor Cwa having a capacity value smaller than the liquid crystal capacity Clc.
  • the voltage at which Vw1 is written and then held in the liquid crystal capacitance Clc for display by charge redistribution between the write auxiliary capacitor Cwa and the liquid crystal capacitance Clc during the subsequent charge redistribution period Tcrd (t7 to t8) ( Liquid crystal applied voltage) Vclc is determined.
  • FIG. 26 is a circuit diagram showing a second configuration example of the pixel circuit according to the present embodiment
  • FIG. 27 is a signal waveform diagram for explaining the operation of the pixel circuit 18b according to the second configuration example.
  • FIG. 26 shows the pixel circuit Pix (i, j) of the i-th row and the j-th column, which is the pixel circuit 18b according to the present configuration example corresponding to the i-th scanning signal line Gi and the j-th data signal line Dj in the present embodiment.
  • the configuration of (1 ⁇ i ⁇ n, 1 ⁇ j ⁇ m) is shown.
  • the pixel circuit 18b includes a liquid crystal capacitance Clc corresponding to a liquid crystal element (pixel liquid crystal) as a display element, a write auxiliary capacitor Cwa, a write control transistor M2, and the like. Although it includes the initialization transistor M4, it does not include the capacitance selection transistor M3 unlike the first configuration example.
  • the corresponding scanning signal line (corresponding scanning signal line) Gi, the corresponding data signal line (corresponding data signal line) Dj, and the common electrode line COM are connected to the pixel circuit 18b.
  • the subsequent scanning signal line Gi + 1 is not connected.
  • the initialization signal for transmitting the initialization signal used in the initialization operation described later will be transmitted.
  • a line CLR is arranged on the display unit 11, and this initialization signal line CLR is also connected to the pixel circuit 18b.
  • the pixel electrode Ep constituting the liquid crystal capacitance Clc is connected to the drain terminal as one conduction terminal of the write control transistor M2 via the write auxiliary capacitor Cwa, and the initialization transistor M4 is connected. It is connected to the common electrode wire COM via.
  • the source terminal as the other conduction terminal of the write control transistor M2 is connected to the corresponding data signal line Dj.
  • the gate terminal of the write control transistor M2 is connected to the corresponding scanning signal line Gi, and the gate terminal of the initialization transistor M4 is connected to the initialization signal line CLR.
  • FIG. 27 shows each signal line (corresponding scanning signal line Gi, corresponding) in the initialization operation and data writing operation of the pixel circuit Pix (i, j) of the i-th row and the j-th column, which is the pixel circuit 18b shown in FIG.
  • the pixel circuit 18b according to this configuration example is used, both single pulse drive and double pulse drive are possible for the scanning signal lines G1 to Gn, but FIG. 27 shows an operation example when single pulse drive is performed. ing.
  • the initialization operation is performed only immediately after the power of the display device is turned on, and then the initialization operation is performed until the power is turned off. Is not done.
  • the voltage of the initialization signal line CLR and all the scanning signal lines G1 to Gn is set to a high level during the period from time t1 to time t2 immediately after the power is turned on (initialization period Tini). All the data signal lines D1 to Dm have a voltage equal to the common voltage Vcom.
  • the write control transistor M2 and the initialization transistor M4 are turned on during the initialization period Tini (t1 to t2), so that the write auxiliary capacitor Cwa and the liquid crystal capacitance Clc are discharged. Then, the holding voltage in the write auxiliary capacitor Cwa and the liquid crystal capacitance Clc is initialized to zero.
  • the first initialization transistor M4 together with the write control transistor M2 constitutes an initialization circuit for initializing by discharging the liquid crystal capacitance Clc or the like as a holding capacitor during the initialization period Tini.
  • the first initialization transistor M4 functions as a holding capacitor discharge switching element that discharges the liquid crystal capacitance Clc as the holding capacitor.
  • the selection period (t4 to T5) of the corresponding scanning signal line Gi corresponds to the data writing period Tw.
  • the write control transistor M2 among the transistors M2 and M4 in the pixel circuit Pix (i, j) is turned on.
  • the combined capacitance (hereinafter, this) is composed of the write auxiliary capacitor Cwa and the liquid crystal capacitance Clc connected in series with each other via the write control transistor M2.
  • Vw2 ⁇ Cwa / (Cwa + Clc) ⁇ (Vw1-Vcom) + Vcom... (16)
  • the liquid crystal applied voltage Vclc is represented by the following equation.
  • the liquid crystal applied voltage Vclc is held in the liquid crystal capacitance Clc until the data writing operation for the pixel circuit Pix (i, j) is performed in the next frame period.
  • the data voltage Vdata Vw1 is written to the series combined capacitor Cser whose capacitance value is smaller than the liquid crystal capacitance Clc.
  • the liquid crystal applied voltage Vclc is determined by the capacitance voltage division by the write auxiliary capacitor Cwa and the holding capacitor Cst with respect to the voltage held in the series combined capacitance Cser.
  • connection configuration the configuration relating to the connection between the write auxiliary capacitor Cwa, the holding capacitor Cst, and the drive transistor M1 (hereinafter, simply referred to as “connection configuration”) has been described above.
  • the voltage is not limited to the configuration, and a capacitor having a capacitance value smaller than that of the holding capacitor Cst is charged by the data voltage Vdata during the data writing period Tw, and the voltage held in the holding capacitor Cst based on the charging of the small capacitor (
  • the connection configuration may be such that the gate-source voltage Vgs) of the drive transistor M1 is determined.
  • the signal line Gi and the subsequent scanning signal line Gi + 1 are connected, instead of this, only the corresponding scanning signal line Gi among these scanning signal lines Gi and Gi + 1 is used in each pixel circuit Pix (i, j).
  • the former is preferable from the viewpoint of stability of the gate voltage Vg after the charge is redistributed between the write auxiliary capacitor Cwa and the holding capacitor Cst after the data writing period Tw, but the gate voltage Vg is unstable due to noise or the like. If the conversion is not a problem, the configuration of the pixel circuit Pix (i, j) can be simplified by adopting the latter.
  • an organic EL display device that is, an organic light emitting diode (Organic Light Emitting Diode (OLED)), an inorganic light emitting diode, a quantum dot light emitting diode (Quantum dot Light Emitting Diode (QLED)), or the like is used for a display device.
  • OLED Organic Light Emitting Diode
  • QLED Quantum dot Light Emitting Diode
  • the present invention can also be applied.

Abstract

本願は、画素回路内でキャパシタの保持電圧により表示輝度が制御される表示装置において容量値の大きなキャパシタを使用しつつデータ書込での充電不足を防止するための構成を開示する。画素回路15aにおいて、駆動トランジスタM1のゲート端子は、互いに直列に接続された容量選択トランジスタM3と保持キャパシタCstを介して駆動トランジスタM1のソース端子に接続され、書込補助キャパシタCwaのみを介しても当該ソース端子に接続されている。データ書込期間Twに、容量選択トランジスタM3がオフ状態とされ、データ信号線Djからデータ電圧が書込制御トランジスタM2を介して書込補助キャパシタCwaに与えられる。その後、書込制御トランジスタM2がオフ状態、容量選択トランジスタM3がオン状態とされ、書込補助キャパシタCwaと保持キャパシタCstの間で電荷が再分配されることで駆動用保持電圧が決定する。

Description

表示装置およびその駆動方法
 本発明は表示装置に関するものであり、より詳しくは、有機EL(Electro Luminescence)表示装置等のように画素回路内の容量に保持される電圧により表示輝度が制御される表示装置およびその駆動方法に関する。
 近年、有機EL素子(有機発光ダイオード(Organic Light Emitting Diode: OLED)とも呼ばれる)を含む画素回路を備えた有機EL表示装置が実用化されている。有機EL表示装置の画素回路は、有機EL素子に加えて、駆動トランジスタや、書込制御トランジスタ、保持キャパシタ等を含んでいる。駆動トランジスタや書込制御トランジスタには、薄膜トランジスタ(Thin Film Transistor)が使用され、駆動トランジスタの制御端子としてのゲート端子に保持キャパシタが接続され、この保持キャパシタには、駆動回路からデータ信号線を介して、表示すべき画像を表す映像信号に応じた電圧(より詳しくは、当該画素回路で形成すべき画素の階調値を示す電圧)がデータ電圧として与えられる。有機EL素子は、それに流れる電流に応じた輝度で発光する自発光型表示素子である。駆動トランジスタは、有機EL素子と直列に設けられ、保持キャパシタに保持される電圧にしたがって、有機EL素子に流れる電流を制御する。
 なお、上記のような有機EL表示装置における画素回路に関する構成例が、例えば特許文献1に記載されている。特許文献1に記載の画素回路40では、駆動トランジスタQ1のゲート端子は、互いに直列に接続された保持コンデンサC1と検出トリガコンデンサC2を介して検出トリガ線54に接続されており、一方の端子が保持コンデンサC1と検出トリガコンデンサC2との接続点に接続され、他方の端子が駆動トランジスタQ1のソース端子に接続されたスイッチング素子としての分離トランジスタQ5が含まれている(段落[0075]~[0083]、図6参照)。この画素回路40では、書き込み期間において、分離トランジスタQ5はオフ状態であり、データ線から信号電圧Vdataが駆動トランジスタQ1のゲート端子に印加される。その後の発光期間では、駆動トランジスタQ1において、ゲート端子がデータ線から切り離され分離トランジスタQ5がオン状態とされることで、保持コンデンサC1の電圧がゲート・ソース間電圧Vgsとされ、この電圧Vgsに応じた電流が駆動トランジスタQ1に流れて有機EL素子D1が発光する(段落[0117]~[0126]、図10,図11参照)。また特許文献2においても、これに類似した画素回路が記載されている(図5参照)。特許文献2に記載の当該画素回路は、互いに直列に接続された容量手段510(C1),509(C2)に映像信号を与え、それにより容量手段501(C1)に保持される電圧をTFT506(駆動トランジスタ)のゲート・ソース間電圧とし、これに応じた電流がTFT50およびEL素子に流れるように構成されている(段落[0022]~[0038]参照)。
国際公開第2011/125113号パンフレット 日本国特開2017-182085号公報
W.C.Elmore, "The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers", J. of AppliedPhysics, vol.19, pp.55-63, Jan. 1948.
 上記のように、有機EL素子に加えて、駆動トランジスタや、書込制御トランジスタ、保持キャパシタ等を含む画素回路を備えた有機EL表示装置では、データ書込期間に各画素回路の保持キャパシタに書き込まれたデータ電圧を発光期間においてそのままの値で維持することが好ましい。このためには、当該保持キャパシタの容量値を大きくすればよい。しかし、保持キャパシタの容量値を大きくすると、その充電に要する時間が長くなり、その結果、データ書込期間において保持容量が充電不足となると、表示品質が低下する。
 そこで、上記有機EL表示装置のように画素回路内のキャパシタ(容量)に書き込まれたデータ電圧により表示輝度が制御される表示装置において、容量値の大きなキャパシタを使用しつつデータ書込における充電不足を防止することが望まれる。
 本発明の幾つかの実施形態に係る表示装置は、複数のデータ信号線と、前記複数のデータ信号線に交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に沿って配置された複数の画素回路とを有する表示装置であって、
 前記複数のデータ信号線を駆動するデータ信号線駆動回路と、
 前記複数の走査信号線を選択的に駆動する走査信号線駆動回路と
を備え、
 各画素回路は、
  前記複数のデータ信号線のいずれか1つに対応するとともに前記複数の走査信号線のいずれか1つに対応し、
  保持キャパシタと、前記保持キャパシタに保持される保持電圧によって輝度が制御される表示素子とを含み、
  対応する走査信号線が選択されているときに前記保持キャパシタよりも容量値が小さい小容量キャパシタに対して対応するデータ信号線の電圧が与えられることで当該小容量キャパシタに書込電圧が保持され、前記保持キャパシタの保持電圧が前記小容量キャパシタの前記書込電圧に基づき決定されるように構成されている。
 本発明の上記幾つかの実施形態のいずれかに係る表示装置は、
 前記複数の走査信号線にそれぞれ対応する容量選択信号線と、
 前記複数の容量選択信号線を駆動する容量選択制御回路と
を更に備え、
 各画素回路は、
  対応する走査信号線に接続された制御端子を有する書込制御スイッチング素子と、
  前記小容量キャパシタとしての書込補助キャパシタと、
  対応する走査信号線に対応する容量選択信号線に接続された制御端子を有し、前記保持キャパシタに直列に接続された容量選択スイッチング素子と、
  前記容量選択スイッチング素子がオン状態となる前に前記保持キャパシタを放電させて初期化するための初期化回路とを更に含み、
 各画素回路において、
  互いに直列に接続された前記保持キャパシタおよび前記容量選択スイッチング素子と前記書込補助キャパシタとが並列に接続されており、
  前記書込補助キャパシタは、第1端子を前記書込制御スイッチング素子を介して対応するデータ信号線に接続され、第2端子を固定電位線に接続されている。
 本発明の上記幾つかの実施形態の他のいずれかに係る表示装置は、
 初期化回路を更に備え、
 各画素回路は、
  対応する走査信号線に接続された制御端子を有する書込制御スイッチング素子と、
  前記保持キャパシタと直列に接続された書込補助キャパシタとを更に含み、
 前記初期化回路は、当該表示装置の電源がオンされたときに所定の初期化期間において前記保持キャパシタおよび前記書込補助キャパシタを放電させて初期化し、
 前記小容量キャパシタは、互いに直列に接続された前記書込補助キャパシタおよび前記保持キャパシタにより構成されており、
 各画素回路において、前記小容量キャパシタは、第1端子を前記書込制御スイッチング素子を介して対応するデータ信号線に接続され、第2端子を固定電位線に接続されている。
 本発明の他の幾つかの実施形態に係る駆動方法は、複数のデータ信号線と、前記複数のデータ信号線に交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に沿って配置された複数の画素回路とを有する表示装置の駆動方法であって、
 各画素回路は、
  前記複数のデータ信号線のいずれか1つに対応するとともに前記複数の走査信号線のいずれか1つに対応し、
  保持キャパシタと、前記保持キャパシタに保持される保持電圧によって輝度が制御される表示素子とを含み、
 前記駆動方法は、
  各画素回路において、対応する走査信号線が選択されているときに前記保持キャパシタよりも容量値が小さい小容量キャパシタに対して対応するデータ信号線の電圧を与えることで当該小容量キャパシタに書込電圧を保持させるデータ書込ステップと、
  前記小容量キャパシタの前記書込電圧に基づき前記保持キャパシタの保持電圧を決定する保持電圧決定ステップとを備える。
 本発明の上記幾つかの実施形態によれば、各画素回路は、保持キャパシタに保持される電圧によって表示素子の輝度が制御されるように構成されており、当該画素回路において、対応する走査信号線が選択されているときに保持キャパシタよりも容量値が小さい小容量キャパシタに対して対応するデータ信号線の電圧が与えられることで当該小容量キャパシタに書込電圧が保持され、保持キャパシタの保持電圧が当該小容量キャパシタの書込電圧に基づき決定される。このように、各画素回路では、対応する走査信号線の選択期間において、対応するデータ信号線の電圧であるデータ電圧は、保持キャパシタに書き込まれるのではなく、小容量キャパシタに書き込まれる。これにより、保持キャパシタの容量値が大きくても従来よりも短い時間でデータ書込を行うことができるので、輝度制御用の保持電圧の安定化のために容量値の大きい保持キャパシタを使用しつつ充電不足による表示品質の低下を防止することができる。
 本発明の上記幾つかの実施形態のいずれかに係る表示装置によれば、各画素回路には上記小容量キャパシタとして書込補助キャパシタが含まれており、各画素回路において、保持キャパシタが初期化され、かつ、対応するデータ信号線の電圧であるデータ電圧で書込補助キャパシタが充電された後に、保持キャパシタと書込補助キャパシタとが並列に接続されて両キャパシタの間で電荷が再配分されることで、保持キャパシタの保持電圧が決定される。これにより、保持キャパシタの容量値が大きくても従来よりも短い時間でデータ書込を行うことができるので、輝度制御用の保持電圧の安定化のために容量値の大きい保持キャパシタを使用しつつ充電不足による表示品質の低下を防止することができる。
 本発明の上記幾つかの実施形態の他のいずれかに係る表示装置によれば、各画素回路には保持キャパシタと直列に接続された書込補助キャパシタが含まれていて、これら保持キャパシタと書込補助キャパシタとにより小容量キャパシタが構成されており、対応する走査信号線が選択されているときに当該小容量キャパシタが対応するデータ信号線の電圧であるデータ電圧で当該小容量キャパシタが充電される。この充電によるデータ電圧の書込で当該小容量キャパシタに保持される電圧が書込補助キャパシタと保持キャパシタとで容量分圧されることにより保持キャパシタにおける保持電圧が決定される。これにより、保持キャパシタの容量値が大きくても従来よりも短い時間でデータ書込を行うことができるので、輝度制御用の保持電圧の安定化のために容量値の大きい保持キャパシタを使用しつつ充電不足による表示品質の低下を防止することができる。
第1の実施形態に係る表示装置の全体構成を示すブロック図である。 上記第1の実施形態における画素回路の第1構成例を示す回路図である。 上記第1実施形態における第1構成例による画素回路の動作を説明するための信号波形図である。 上記第1の実施形態における画素回路の第2構成例を示す回路図である。 上記第1実施形態における第2構成例による画素回路の動作を説明するための信号波形図である。 上記第1の実施形態における画素回路の第3構成例を示す回路図である。 上記第1実施形態における第3構成例による画素回路の動作を説明するための信号波形図である。 上記第1の実施形態における画素回路の第4構成例を示す回路図である。 上記第1実施形態における第4構成例による画素回路の動作を説明するための信号波形図である。 上記第1の実施形態における画素回路の第5構成例を示す回路図である。 上記第1実施形態における第5構成例による画素回路の動作を説明するための信号波形図である。 第2実施形態に係る表示装置の全体構成を示すブロック図である。 上記第2実施形態における画素回路の構成例をデータ信号線駆動回路の要部の構成とともに示す回路図である。 上記第2実施形態における画素回路の第1変形例を示す回路図(A)および第2変形例を示す回路図(B)である 上記第2実施形態における画素回路の第3変形例を示す回路図である。 第3実施形態に係る表示装置における画素回路の構成例を示す回路図である。 上記3実施形態における画素回路の動作を説明するための信号波形図である。 上記第3実施形態における画素回路の第1変形例を示す回路図である。 上記第3実施形態における画素回路の第2変形例を示す回路図である。 上記第3実施形態における画素回路の第3変形例を示す回路図である。 上記3実施形態における第3変形例による画素回路の動作を説明するための信号波形図である。 上記第3実施形態における画素回路の他の構成例を示す回路図である。 上記第3実施形態における他の構成例による画素回路の動作を説明するための信号波形図である。 第4実施形態に係る表示装置における画素回路の第1構成例を示す回路図である。 上記4実施形態における第1構成例による画素回路の動作を説明するための信号波形図である。 上記第4実施形態における画素回路の第2構成例を示す回路図である。 上記4実施形態における第2構成例による画素回路の動作を説明するための信号波形図である。 従来の表示装置における画素回路の構成を示す回路図である。 従来の表示装置における問題を説明するための信号波形図である。 従来の表示装置における問題を解決するための画素回路の基本的な構成および動作を説明するための回路図(A,B)である。 従来の表示装置における問題を解決するための画素回路の基本的な動作を説明するための信号波形図である。
 以下、添付図面を参照しながら実施形態について説明する。なお、以下で言及する各トランジスタにおいて、ゲート端子は制御端子に相当し、ドレイン端子およびソース端子の一方は第1導通端子に相当し、他方は第2導通端子に相当する。また、以下の各実施形態におけるトランジスタは例えば薄膜トランジスタであるが、本発明はこれに限定されない。さらにまた、本明細書における「接続」とは、特に断らない限り「電気的接続」を意味し、本発明の要旨を逸脱しない範囲において、直接的な接続を意味する場合のみならず、他の素子を介した間接的な接続を意味する場合も含むものとする。
<1.第1の実施形態>
<1.1 全体構成>
 図1は、第1の実施形態に係る有機EL表示装置10aの全体構成を示すブロック図である。図1に示すように、この表示装置10aは、表示部11、表示制御回路20、データ側駆動回路30、走査側駆動回路40、および、電源回路50を備えている。データ側駆動回路は、データ信号線駆動回路(「データドライバ」とも呼ばれる)として機能する。走査側駆動回路40は、走査信号線駆動回路(「ゲートドライバ」とも呼ばれる)および発光制御回路(「エミッションドライバ」とも呼ばれる)として機能する。図1に示す構成ではこれら2つの駆動回路が1つの走査側駆動回路40として実現されているが、これら2つの駆動回路が適宜分離された構成であってもよく、また、これら2つの駆動回路が表示部11の一方側と他方側に分離されて配置される構成であってもよい。また、走査側駆動回路およびデータ側駆動回路の少なくとも一部が表示部11と一体的に形成されていてもよい。これらの点は、後述の他の実施形態や変形例においても同様である。電源回路50は、表示部11に供給すべき後述のハイレベル電源電圧ELVDD、ローレベル電源電圧ELVSS、および初期化電圧Viniと、表示制御回路20、データ側駆動回路30、および走査側駆動回路40に供給すべき電源電圧(不図示)とを生成する。
 表示部11には、m本(mは2以上の整数)のデータ信号線D1~Dmと、これらに交差するn+1本(nは2以上の整数)の走査信号線G1~Gn+1とが配設されており、n本の走査信号線G1~Gnにそれぞれ沿ってn本の発光制御線(「エミッションライン」とも呼ばれる)E1~Enが配設されるとともに、n本の走査信号線G1~Gnにそれぞれ沿ってn本の容量選択信号線CSW1~CSWnが配設されている。図1に示すように、表示部11にはm×n個の画素回路15が設けられており、これらm×n個の画素回路15は、m本のデータ信号線D1~Dmおよびn本の走査信号線G1~Gnに沿ってマトリクス状に配置されており、各画素回路15は、m本のデータ信号線D1~Dmのいずれか1つに対応するとともにn本の走査信号線G1~Gnのいずれか1つに対応する(以下、各画素回路15を区別する場合には、i番目の走査信号線Giおよびj番目のデータ信号線Djに対応する画素回路を「第i行第j列の画素回路」ともいい、符号“Pix(i,j)”で示すものとする)。n本の発光制御線E1~Enはn本の走査信号線G1~Gnにそれぞれ対応し、n本の容量選択信号線CSW1~CSWnもn本の走査信号線G1~Gnにそれぞれ対応する。したがって各画素回路15は、n本の発光制御線E1~Enのいずれか1つにも対応し、n本の容量選択信号線CSW1~CSWnのいずれか1つにも対応する。なお、各容量選択信号線CSWiに印加すべき容量選択信号CSW(i)として、当該容量選択信号線CSWiに対応する発光制御線Eiに印加すべき発光制御信号を使用してもよい。この場合、容量選択信号線CSW1~CSWnは不要となる。
 また表示部11には、各画素回路15に共通の図示しない電源線が配設されている。すなわち、後述の有機EL素子を駆動するためのハイレベル電源電圧ELVDDを供給するための第1電源線(以下「ハイレベル電源線」といい、ハイレベル電源電圧と同じく符号“ELVDD”で示す)、および、有機EL素子を駆動するためのローレベル電源電圧ELVSSを供給するための第2電源線(以下「ローレベル電源線」といい、ローレベル電源電圧と同じく符号“ELVSS”で示す)が配設されている。さらに表示部11には、各画素回路15の初期化のための初期化動作に使用する初期化電圧Viniとして固定電圧を供給するための図示しない初期化電圧供給線INIも配設されている。ハイレベル電源電圧ELVDD、ローレベル電源電圧ELVSS、および、初期化電圧Viniは、電源回路50から供給される。なお、ハイレベル電源線ELVDD、ローレベル電源線ELVSS、および、初期化電圧供給線INIは、いずれも固定電位を供給する電圧供給線すなわち固定電位線である。
 表示制御回路20は、表示すべき画像を表す画像データおよび画像表示のためのタイミング制御情報を含む入力信号Sinを表示装置10aの外部から受け取り、この入力信号Sinに基づきデータ側制御信号Scdおよび走査側制御信号Scsを生成し、データ側制御信号Scdをデータ側駆動回路(データ信号線駆動回路)30に、走査側制御信号Scsを走査側駆動回路(走査信号線駆動/発光制御回路)40にそれぞれ出力する。
 データ側駆動回路30は、表示制御回路20からのデータ側制御信号Scdに基づきデータ信号線D1~Dmを駆動する。すなわちデータ側駆動回路30は、データ側制御信号Scdに基づき、表示すべき画像を表すm個のデータ信号D(1)~D(m)を並列に出力してデータ信号線D1~Dmにそれぞれ印加する。
 走査側駆動回路40は、表示制御回路20からの走査側制御信号Scsに基づき、走査信号線G1~Gn+1を駆動する走査信号線駆動回路、発光制御線E1~Enを駆動する発光制御回路、および、容量選択信号線CSW1~CSWnを駆動する容量選択制御回路として機能する。なお、各容量選択信号線CSWiに印加すべき容量選択信号CSW(i)として、当該容量選択信号線CSWiに対応する発光制御線Eiに印加すべき発光制御信号を使用する場合には、容量選択信号線CSW1~CSWnは不要となるので、容量選択制御回路の機能も不要となる。
 より詳細には走査側駆動回路40は、走査信号線駆動回路として、走査側制御信号Scsに基づき、各フレーム期間において走査信号線G1~Gn+1を1水平期間だけ重複させながら2水平期間ずつ順次に選択し、選択した走査信号線Gkに対してアクティブな信号を印加し、かつ、非選択の走査信号線には非アクティブな信号を印加する。すなわち、i番目の走査信号線がi-1番目の水平期間およびi番目の水平期間の間、選択状態であるように、走査信号線G1~Gn+1が駆動される(以下、このような走査信号線の駆動を「ダブルパルス駆動」という)。なお「水平期間」は、一般的には、水平走査および垂直走査に基づく映像信号における表示画像の1ラインに相当する部分の期間であり、ここでは、データ側駆動回路30から表示画像の1ライン分の画像データ(1ラインを構成するm個の画素を表すデータ)がデータ信号D(1)~D(m)として出力される期間に相当する。例えば後述の図3において、期間t4~t5、期間t5~t6、期間t6~t8のそれぞれが1つの水平期間である。i番目の走査信号線Giが選択状態になると、それに対応したm個の画素回路(以下「i行目の画素回路」ともいう)Pix(i,1)~Pix(i,m)が一括して選択される。その結果、当該走査信号線Giの選択期間(以下「第i走査選択期間」という)において、データ側駆動回路30からデータ信号線D1~Dmに印加されたm個のデータ信号D(1)~D(m)の電圧(以下では、これらの電圧を区別せずに単に「データ電圧」と呼ぶことがある)が画素データとして、画素回路Pix(i,1)~Pix(i,m)にそれぞれ書き込まれる。すなわち、i行目の各画素回路Pix(i,j)(j=1~m)内の所定キャパシタがデータ電圧で充電される。この所定キャパシタは、従来の画素回路における保持容量に相当するが、後述のように本実施形態では、例えば図2等に示す構成における小容量キャパシタとしての書込補助キャパシタCwaである。
 なお、上記のように本実施形態ではダブルパルス駆動が行われるので、i番目の水平期間では、i番目およびi+1番目の走査信号線Gi,Gi+1が共に選択状態であり(後述の図3参照)、i行目の画素回路Pix(i,1)~Pix(i,m)の所定キャパシタ(後述の図3に示す例では書込補助キャパシタCwa)がデータ信号D(1)~D(m)の電圧でそれぞれ充電されるとともに、i+1行目の画素回路Pix(i+1,1)~Pix(i+1,m)の所定キャパシタもデータ信号D(1)~D(m)の電圧でそれぞれ充電される。これにより、i行目の画素回路Pix(i,1)~Pix(i,m)のそれぞれの所定キャパシタは、それに書き込むべきデータ電圧で充電されるが、i+1行目の画素回路Pix(i+1,1)~Pix(i+1,m)のそれぞれの所定キャパシタは、直前行の画素回路に書き込むべきデータ電圧で充電されることになる。このi+1行の画素回路における所定キャパシタの充電は“予備的な充電”に相当し、これにより各画素回路15へのデータ電圧の書込における所定キャパシタの充電率が向上する。
 また走査側駆動回路40は、発光制御回路として、走査側制御信号Scsに基づき、i番目の発光制御線Eiに対し、少なくとも第i選択走査期間を含む所定期間では非発光を示す非アクティブな発光制御信号を印加し、それ以外の期間では発光を示すアクティブな発光制御信号を印加する(後述の図3参照)。i行目の画素回路Pix(i,1)~Pix(i,m)内の有機EL素子は、発光制御線Eiの発光制御信号がアクティブである間、i行目の画素回路Pix(i,1)~Pix(i,m)にそれぞれ書き込まれたデータ電圧に基づき決定される電圧Vw2に応じた輝度で発光する(詳細は後述する)。さらに走査側駆動回路40は、走査側制御信号Scsに基づき、i番目の容量選択信号線CSWiに対し、i行目の画素回路Pix(i,1)~Pix(i,m)における容量選択トランジスタのゲート端子に与えるべき後述の容量選択信号を印加する(後述の図3参照)。この容量選択信号として上記発光制御信号を使用してもよいが、本実施形態では、各画素回路15の保持容量(後述の保持キャパシタCst)へのデータ電圧の書込動作の安定化のために、各容量選択信号線CSWiに印加される容量選択信号CSW(i)が非アクティブ状態(ローレベル電圧)からアクティブ状態(ハイレベル電圧)に変化するタイミングが、当該容量選択信号線CSWiに対応する発光制御線Eiに印加される発光制御信号が非アクティブ状態(ローレベル電圧)からアクティブ状態(ハイレベル電圧)に変化するタイミングよりも若干早くなるように、各容量選択信号CSW(i)が生成される(i=1~n)(後述の図3等参照)。
<1.2 従来例における画素回路の構成および動作と問題点>
 以下では、本実施形態における画素回路15の構成および動作を説明する前に、比較のために従来の有機EL表示装置(以下「従来例」という)における画素回路14の構成および動作につき図28および図29を参照して説明する。なおこの従来例は、全体的には図1に示す構成と基本的に同様であるが、下記の点で図1に示す構成と相違する。すなわち、上記第1の実施形態における発光制御回路による各画素回路の発光制御は以下に述べる従来例における問題やその解決のための提案とは直接的に関係しないことから、当該従来例では、画素回路14に発光制御のためのトランジスタが含まれておらず、表示部11には発光制御線E1~Enは配設されていない(図28参照)。また、上記第1の実施形態における容量選択信号線CSW1~CSWnおよび当該容量選択信号線CSW1~CSWnを駆動するための回路や、当該容量選択信号線CSW1~CSWnにより制御される構成要素(後述の容量選択トランジスタ)も当該従来例には含まれていない。
 図28は、従来例における画素回路14の構成を示す回路図、より詳しくは、i番目の走査信号線Giおよびj番目のデータ信号線Djに対応する画素回路14すなわち第i行第j列の画素回路Pix(i,j)の構成を示す回路図である(1≦i≦n、1≦j≦m)。図28に示すように画素回路14は、表示素子としての有機EL素子OL、駆動トランジスタM1、書込制御トランジスタM2、および、保持キャパシタCstを含んでいる。また図28では、駆動トランジスタM1のゲート端子に寄生する容量(以下、単に「寄生容量」という)を“Csc”で示されている。この画素回路14において、書込制御トランジスタM2はスイッチング素子として機能する。
 画素回路14には、それに対応する走査信号線(以下、画素回路に注目した説明において「対応走査信号線」ともいう)Gi、それに対応するデータ信号線(以下、画素回路に注目した説明において「対応データ信号線」ともいう)Dj、ハイレベル電源線ELVDD、および、ローレベル電源線ELVSSが接続されている。
 図28に示すように画素回路14では、駆動トランジスタM1は、そのドレイン端子をハイレベル電源線ELVDDに接続され、そのゲート端子を書込制御トランジスタM2を介して対応データ信号線Djに接続されるとともに保持キャパシタCstを介してそのソース端子に接続され、そのソース端を有機EL素子OLのアノード電極に接続されている。有機EL素子OLのカソード電極はローレベル電源線ELVSSに接続されている。書込制御トランジスタM2のゲート端子は対応走査信号線Giに接続されている。
 駆動トランジスタM1は、Nチャネル型のトランジスタであって、発光期間において、飽和領域で動作し、保持キャパシタCstに保持された電圧すなわちゲート・ソース間電圧Vgsに応じた電流がソース・ドレイン間に流れ、この電流が駆動電流Idとして有機EL素子OLにも流れる。これにより有機EL素子OLは、その駆動電流Idに応じた輝度で発光する。
 上記のように発光期間において、有機EL素子OLは、駆動トランジスタM1のゲート・ソース間電圧Vgsに応じた輝度で発光するので、そのゲート・ソース間電圧Vgsは、発光期間の間、その直前のデータ書込期間におけるデータ信号D(j)で決まる所望の電圧に保たれることが好ましい。しかし、駆動トランジスタM1のゲート端子には上記寄生容量Cscが存在するので、駆動トランジスタM1のソース端子の電圧Vsが電源線を流れる電流による電圧降下でΔVsだけ変化すると、当該ゲート端子の電圧(以下、単に「ゲート電圧」という)Vgは、次式で示されるΔVgだけ変化する(以下では、寄生容量Ccsおよび保持キャパシタCstの容量値も符号“Csc”および“Cst”でそれぞれ示すものとする)。
  ΔVg={Cst/(Csc+Cst)}ΔVs …(1)
上記式より、ゲート・ソース間電圧Vgsを一定に保つには、すなわちΔVg=ΔVsとするには、Cst/(Csc+Cst)≒1となるように保持キャパシタCstの容量値をできるだけ大きい値とすることが好ましい。
 ところで、データ信号D(j)により駆動トランジスタM1のゲート端子が充電されるときの時定数τcnvは、エルモア(Elmore)遅延モデル(非特許文献1参照)によれば下記のように近似することができる。
  τcnv≒Cdata・Rdata/2+(Rdata+RTr)Csc+(Rdata+RTr)Cst  …(2)
ここで、データ信号線Djを抵抗と容量の分布定数回路による伝送路として扱うものとし、CdataおよびRdataは、データ信号線Djへのデータ信号D(j)の入力点から書込制御トランジスタM2までの全容量および全抵抗をそれぞれ示し、RTrは、書込制御トランジスタのオン抵抗を示す。
 上記式(1)より、保持キャパシタCstの容量値をできるだけ大きくするのが好ましが、上記式(2)より、保持キャパシタCstの容量値を大きくすると上記時定数τcnvが増加し、画素回路14の高速駆動には不利である。以下、この点について詳しく説明する。
 図29は、従来例に係る表示装置の駆動を説明するための信号波形図であり、図28に示した画素回路14すなわち第i行第j列の画素回路Pix(i,j)のデータ書込動作における対応走査信号線Giの電圧、対応データ信号線Djの電圧(データ信号D(j)の電圧)、および、駆動トランジスタM1のゲート端子の電圧(ゲート電圧)Vgの変化を示している。図29において、対応走査信号線Giの電圧がハイレベルである期間は対応走査信号線Giの選択期間である。データ信号D(j)は、時刻t1で、第i-1行第j列の画素回路Pix(i-1,j)に書き込むべき電圧から第i行第j列の画素回路Pix(i,j)に書き込むべき電圧へと変化する。図29に示す例では、時刻t2において、ゲート電圧Vgが目的の電圧(画素回路Pix(i,j)に書き込むべき電圧)に達する前に走査信号線Giが非選択状態(ローレベル電圧)となる。その結果、時刻t2以降の発光期間において、実際のゲート電圧Vgと目的の電圧(時刻t2におけるデータ信号D(j)の電圧)との間にずれΔVが生じる。すなわち、データ書込において保持キャパシタCstの充電不足が生じる。
<1.3 本願発明における画素回路の基本構成例>
 本願発明者は、従来例における上記問題を解決すべく鋭意検討した結果、画素回路につき図30および図31に示す構成に想到した。図30は、上記問題を解決するための画素回路の基本的な構成および動作を説明するための回路図であり、図31は、上記問題を解決するための画素回路の基本的な動作を説明するための信号波形図である。
 図30(A)および(B)に示す画素回路(以下「基本画素回路」という)15は、図28に示す従来例における画素回路14と同様、表示素子としての有機EL素子OL、駆動トランジスタM1、書込制御トランジスタM2、および、保持キャパシタCstを含んでいるが、これらに加えて、スイッチング素子として機能する容量選択トランジスタM3を更に備える点で従来例と相違する。すなわち、基本画素回路15では、保持キャパシタCstに容量選択トランジスタM3が直列に接続されていて、駆動トランジスタM1のゲート端子は、容量選択トランジスタM3および保持キャパシタCstを介して駆動トランジスタM1のソース端子に接続されている。容量選択トランジスタM3のゲート端子には、容量選択信号線CSWiが接続されていて、それにより容量選択信号CSW(i)として容量信号線CSiの電圧が与えられる。この容量選択信号CSW(i)は、図31に示すように、対応走査信号線Giが非選択状態(ローレベル)に変化する時刻t2の後にアクティブ(ハイレベル)となる信号である。
 この基本画素回路15の駆動においても、データ信号D(j)は、対応走査信号線Giの選択期間内の時刻t1で、図31に示すように、第i-1行第j列の画素回路Pix(i-1,j)に書き込むべき電圧から第i行第j列の画素回路Pix(i,j)に書き込むべき電圧へと変化する。この時刻t1では、容量選択信号CSW(i)はローレベルであるので、容量選択トランジスタM3はオフ状態である。このため、対応データ信号線Djからオン状態の書込制御トランジスタM2を介して駆動トランジスタM1のゲート端子にデータ信号D(j)が与えられると、このデータ信号D(j)の電圧により寄生容量Cscのみが充電され保持キャパシタCstは充電されない(図30(A)参照)。ここで、通常、寄生容量Cscの容量値は、保持キャパシタCstの容量値に比べ十分に小さい。このため、時刻t1以降でのデータ信号D(j)によるデータ書込すなわち寄生容量Cscの充電は、その時定数が小さいので、従来例よりも高速に行われる。その結果、対応走査信号線Giの選択期間の終了時刻t2においてゲート電圧Vgは目的の電位(画素回路14にPix(i,j)に書き込むべき電圧に対応する電圧)Vw1に到達している。
 時刻t2において、図31に示すように、対応走査信号線Giが非選択状態となることで書込制御トランジスタM2がオフ状態となり、その後の時刻t3において、容量選択信号CSW(i)がハイレベルとなることで容量選択トランジスタM3がオン状態となる。このため、時刻t3において、寄生容量とCscと保持キャパシタCstとの間で電荷の再分配が行われる(図30(B)参照)。この電荷再分配により、ゲート電圧Vgは、下記式に示される電圧Vw2となる。ただし、この電荷再分配の直前において、保持キャパシタCstには電荷が蓄積されていないものとする。
  Vw2={Csc/(Csc+Cst)}Vw1  …(3)
 上記のように、図30に示す基本画素回路15によれば、対応走査信号線Giの選択期間すなわちデータ書込期間では、保持キャパシタCstよりも容量値の小さい容量(ここでは「寄生容量」)Ccsに対応データ信号線Djの電圧がデータ電圧Vw1として書き込まれるので、従来よりも短時間でデータ電圧Vw1を書込ことができ、充電不足を回避することができる。ただし、そのデータ電圧Vw1の書込後、容量選択トランジスタM3がオン状態となることで寄生容量Ccsと保持キャパシタCstとの間で電荷の再分配が行われ、これにより保持キャパシタCstに保持される電圧Vw2が決定する。したがって、対応データ信号線Djの電圧は、保持キャパシタCstに保持すべき電圧よりも高くしておく必要がある(式(3)、図31参照)。
<1.4 本実施形態における画素回路の構成および動作>
 次に、図30の上記基本画素回路15に基づく本実施形態における画素回路15aの構成および動作につき図2および図3等を参照して説明する。
 図2は、本実施形態における画素回路の第1構成例を示す回路図であり、図3は、本実施形態における第1構成例による画素回路15aの動作を説明するための信号波形図である。
 図2は、本実施形態におけるi番目の走査信号線Giおよびj番目のデータ信号線Djに対応する画素回路15aすなわち第i行第j列の画素回路Pix(i,j)の構成を示している(1≦i≦n、1≦j≦m)。この画素回路15aは、表示素子としての有機EL素子OLと、書込補助キャパシタCwaおよび保持キャパシタCstと、駆動トランジスタM1と、書込制御トランジスタM2と、容量選択トランジスタM3と、第1初期化トランジスタM4と、発光制御トランジスタM5と含んでいる。この画素回路15aにおいて、駆動トランジスタM1以外のトランジスタM2~M5はスイッチング素子として機能する。この画素回路15aに含まれるトランジスタは全てNチャネル型であるが、それらの一部または全部がPチャネル型であってもよい(後述の図16、図18~図21参照)。また、発光制御トランジスタM5が短絡除去された構成であってもよい。なお、書込補助キャパシタCwaは、その容量値が保持キャパシタCstの容量値よりも小さく、図30に示す基本画素回路15における寄生容量Cscに対応するが、寄生容量Ccsとは別に形成された小容量値のキャパシタであってもよく、また、寄生容量Ccsとは別に形成された容量と寄生容量との合成容量に相当する小容量値のキャパシタであってもよい。
 図2に示すように画素回路15aには、それに対応する走査信号線(対応走査信号線)Gi、対応走査信号線Giの後続の走査信号線(走査信号線G1~Gn+1の走査順における直後の走査信号線であり、以下、画素回路に注目した説明において「後続走査信号線」ともいう)Gi+1、それに対応する発光制御線(対応発光制御線)Ei、それに対応するデータ信号線(対応データ信号線)Dj、それに対応する容量選択信号線(以下、画素回路に注目した説明において「対応容量選択信号線」ともいう)CSWi、初期化電圧供給線INI、ハイレベル電源線ELVDD、および、ローレベル電源線ELVSSが接続されている。なお本実施形態では、各画素回路15aにおける容量選択トランジスタM3のオン/オフを制御するために、n本の走査信号線G1~Gnにそれぞれ対応するn本の容量選択信号線CSW1~CSWnを表示部11が配設されている。しかし、発光制御線E1~Enを容量選択信号線CSW1~CSWnとして使用してもよい。この場合、容量選択信号線CSW1~CSWnを別途、表示部11に設ける必要はない。また、初期化電圧Viniはローレベル電源電圧ELVSSと異なる電圧であってもよいが、初期化電圧Viniとしてローレベル電源電圧ELVSSに等しい電圧を選定することができる。この場合、初期化電圧供給線INIを設けずに、ローレベル電源線ELVSSが初期化電圧供給線INIとしても使用される構成とするのが好ましい。
 図2に示すように画素回路15aでは、駆動トランジスタM1の第1導通端子としてのドレイン端子は、発光制御トランジスタM5を介して第1電源線としてのハイレベル電源線ELVDDに接続されており、駆動トランジスタM1の制御端子としてのゲート端子は、書込制御トランジスタM2を介して対応データ信号線Djに接続されるとともに、互いに直列に接続された容量選択トランジスタM3および保持キャパシタCstを介して駆動トランジスタM1のソース端子に接続されている。また、駆動トランジスタM1の第2導通端子としてのソース端子は、有機EL素子OLのアノード電極に接続されている。有機EL素子OLのカソード電極は第2電源線としてのローレベル電源線ELVSSに接続されている。また、書込補助キャパシタCwaは、第1端子を駆動トランジスタM1のゲート端子に接続され、第2端子を駆動トランジスタM1のソース端子に接続されている。さらに、書込制御トランジスタM2、容量選択トランジスタM3、第1初期化トランジスタM4、および、発光制御トランジスタM5のゲート端子は、対応走査信号線Gi、対応容量選択信号線CSWi、後続走査信号線Gi+1、および、対応発光制御線Eiにそれぞれ接続されている。
 図3は、図2に示した画素回路15aである第i行第j列の画素回路Pix(i,j)の初期化動作、データ書込動作、および発光動作における各信号線(対応発光制御線Ei、対応走査信号線Gi、後続走査信号線Gi+1、対応データ信号線Dj,対応容量選択信号線CSWi)の電圧、駆動トランジスタM1のゲート電圧Vg、保持キャパシタCstと容量選択トランジスタM3との接続点の電圧(以下「保持容量電圧」という)Vstの変化を示している。なお図3において“(k,j)”は、データ信号線Djの電圧が、第k行第j列の画素回路Pix(k,j)に書き込むべきデータ電圧Vdataであることを示している(k=1~n)(後述の図5、図7、図17、図21においても同様)。本実施形態において第1構成例による画素回路15a(図2)が使用される場合には、図3に示すように、1フレーム期間毎にブランキング期間内の時刻t1~t2の期間において全ての画素回路15aが一斉に初期化される。したがって、この時刻t1~t2の期間は、当該構成例における初期化期間Tiniである。また図3において、時刻t4~t6の期間は、i番目の走査信号線Giの選択期間すなわち第i走査選択期間であり、時刻t5~t8の期間は、i+1番目の走査信号線(後続走査信号線)Gi+1の選択期間すなわち第i+1走査選択期間である。後述のように第i走査選択期間(t4~t6)は、i行目の画素回路Pix(i,1)~Pix(i,m)のデータ書込期間Twに相当する。このデータ書込期間Twの直前のブランキング期間内の初期化期間Tiniの開始時刻t1から後続走査信号線Gi+1の終了時刻t8までがi行目の画素回路Pix(i,1)~Pix(i,m)の非発光期間であり、時刻t8から次のブランキング期間内の初期化期間Tiniの開始時刻までがi行目の画素回路Pix(i,1)~Pix(i,m)の発光期間である。なお図3に示す例では、非発光期間の終了時刻(t8)は、後続走査信号線Gi+1の選択期間の終了時刻と一致しているが、後続走査信号線Gi+1の選択期間の終了後に非発光期間が終了するようにしてもよい(後述の図5、図7、図11、図17においても同様)。
 各画素回路Pix(i,j)(i=1~n,j=1~m)では、初期化期間Tiniの開始時刻t1において、図3に示すように、対応走査信号線Giおよび後続走査信号線Gi+1の電圧がローレベルからハイレベルに変化し、対応容量選択信号線CSWiの電圧はハイレベルに維持されている。このため、書込制御トランジスタM2および第1初期化トランジスタM4がオフ状態からオン状態に変化し、容量選択トランジスタM3はオン状態に維持される。また、初期化期間Tiniの間、各データ信号線Dj(j=1~m)にはデータ側駆動回路30から初期化電圧Viniが印加される。このため、書込補助キャパシタCwaおよび保持キャパシタCstの両端に初期化電圧Viniが与えられ、これにより、初期化期間Tini(t1~t2)において、書込補助キャパシタCwaおよび保持キャパシタCstが初期化される。すなわち、書込補助キャパシタCwaおよび保持キャパシタCstは、いずれも放電されて電荷を蓄積しない状態となり、書込補助キャパシタCwaおよび保持キャパシタCstにおける保持電圧はいずれもゼロとなる。なお上記より、本構成例では、第1初期化トランジスタM4は容量選択トランジスタM3および書込制御トランジスタM2とともに、初期化期間Tiniに保持キャパシタCst等を放電させて初期化する初期化回路を構成する。
 初期化期間Tiniの終了時刻t2において、対応走査信号線Gi、後続走査信号線Gi+1、および、対応容量選択信号線CSWiの電圧がローレベルに変化し、その後、走査信号線G1~Gnの順次的な走査が開始される。なお対応発光制御線Eiの電圧は、初期化期間Tiniの開始時刻t1においてローレベルであり、後続走査信号線Gi+1の選択期間(第i+1走査選択期間)の終了時刻t8までローレベルに維持される。このため、時刻t1~時刻t8までは有機EL素子OLは非発光状態である。
 第i行第j列の画素回路Pix(i,j)では、図3に示すように第i走査選択期間の開始時刻t4において、対応走査信号線Giの電圧がハイレベルに変化することで書込制御トランジスタM2がオン状態となる。このため、対応データ信号線Djの電圧すなわち第i-1行第j列の画素回路Pix(i-1,j)に書き込むべきデータ電圧が駆動トランジスタM1のゲート端子(書込補助キャパシタCwaの第1端子)に与えられる。この時刻t4では、容量選択トランジスタM3はオフ状態に維持されていて、保持キャパシタCstは駆動トランジスタM1のゲート端子から電気的に切り離されている。これにより、時刻t4~t5では、第i-1行第j列の画素回路Pix(i-1,j)に書き込むべきデータ電圧により書込補助キャパシタCwaのみが充電され、当該データ電圧に相当する電圧が書込電圧として書込保持キャパシタCwaに保持される。その後、時刻t5において、対応データ信号線Djの電圧が、第i行第j列の画素回路Pix(i,j)に書き込むべきデータ電圧に変化し、当該データ電圧で補助キャパシタCwaのみが充電される。このとき、後続走査信号線Gi+1の電圧がローレベルからハイレベルに変化することで第1初期化トランジスタM4がオン状態に変化するので、書込補助キャパシタCwaおよび保持キャパシタCstの第2端子(駆動トランジスタM1のソース端子に接続される端子)には初期化電圧Viniが与えられる。また、有機EL素子OLのアノード電極にも初期化電圧Viniが与えられ、有機EL素子OLの寄生容量(不図示)が放電される。
 その後、データ書込期間Twとしての第i走査選択期間の終了時刻t6において、対応走査信号線Giの電圧がローレベルに変化することで書込制御トランジスタM2がオフ状態となり、駆動トランジスタM1のゲート端子が対応データ信号線Djから電気的に切り離される。更にその後の時刻t7において、対応容量選択信号線CSWiの電圧がローレベルからハイレベルに変化することで容量選択トランジスタM3がオン状態となる。これにより、保持キャパシタCstは書込補助キャパシタCwaに並列に接続された状態となり、寄生容量とCscと保持キャパシタCstとの間で電荷の再分配が行われる。この電荷再分配により、ゲート電圧Vgは、データ書込期間Tw(t4~t6)において書込補助キャパシタCwaに書き込まれたデータ電圧Vdataよりも低い電圧となる。ここで、データ書込期間Twにおいて書込補助キャパシタCwaに書き込まれるVdataをVw1とおくと、この電荷再分配後における駆動トランジスタM1のゲート電圧Vg(i,j)および保持容量電圧Vst(i,j)は、次式(6)で示される電圧Vw2となる。なお、画素回路Pix(i,j)におけるゲート電圧Vgを他の画素回路におけるゲート電圧Vgと区別する場合に符号“Vg(i,j)”を使用し、画素回路Pix(i,j)における保持容量電圧Vstを他の画素回路における保持容量電圧Vstと区別する場合に符号“Vst(i,j)”を使用するものとする(以下においても同様)。
  Vw2={Cwa/(Cwa+Cst)}(Vw1-Vini)+Vini …(6)
このとき、駆動トランジスタM1におけるゲート・ソース間電圧Vgsは、保持キャパシタCstに保持される電圧に相当し次式で示される。
  Vgs=Vw2-Vini
    ={Cwa/(Cwa+Cst)}(Vw1-Vini)  …(7)
なお、容量選択トランジスタM3がオン状態のとき、保持キャパシタCstと書込補助キャパシタCwaとは並列に接続された状態であり、上記ゲート・ソース間電圧Vgsは、保持キャパシタCstと書込補助キャパシタCwaとで保持されている電圧に相当するとも言える。
 その後、時刻t8において後続走査信号線Gi+1の電圧がローレベルに変化することで第1初期化トランジスタM4がオフ状態となる。また時刻t8において、対応発光制御線Eiの電圧がローレベルからハイレベルに変化することで発光制御トランジスタM5がオン状態に変化する。このため、ハイレベル電源線ELVDDから駆動トランジスタM1および有機EL素子OLを経てローレベル電源線ELVSSに電流が流れて有機EL素子が発光し、時刻t8から次のブランキング期間において初期化動作が開始されるまで発光期間となる。なお、この有機EL素子OLの発光が開始すると、ゲート電圧Vgおよび保持容量電圧Vstは、Vw2からVw2+Vfへと変化するが、駆動トランジスタM1におけるゲート・ソース間電圧Vgsすなわち保持キャパシタCstの保持電圧は変化しない(上記式(7)参照)。ここで、Vfは有機EL素子OLの順方向電圧である。
 駆動トランジスタM1は、Nチャネル型のトランジスタであって、この発光期間において、飽和領域で動作し、保持キャパシタCstに保持された電圧すなわちゲート・ソース間電圧Vgsに応じた電流がソース・ドレイン間に流れ、この電流が駆動電流Idとして有機EL素子OLにも流れる。この駆動電流Idは次式(8)で与えられる。式(8)に含まれる駆動トランジスタM1のゲインβは、次式(9)で与えられる。
  Id=(β/2)(Vgs-Vth)2
    =(β/2)(Vw2-Vini-Vth)2 …(8)
  β=μ×(W/L)×Cox …(9)
ただし、上記の式(8)および式(9)において、Vth、μ、W、L、Coxは、それぞれ、駆動トランジスタM1の閾値電圧、移動度、ゲート幅、ゲート長、および、単位面積あたりのゲート絶縁膜容量を表す。
 有機EL素子OLは、上記の駆動電流Idに応じて発光し、この発光は次のブランキング期間において初期化動作が開始されるまで継続する。
 他の画素回路においても、各フレーム期間における走査信号線G1~Gn+1の順次的な走査に応じて、同様に、初期化動作、データ書込動作、および発光動作を行う(図3参照)。これにより、外部からの入力信号Sinにおける画像データの表す画像が表示部11に表示される。
<1.5 作用および効果>
 上記のように本実施形態によれば、各画素回路15aにおいて、保持キャパシタCstよりも容量値の小さい書込補助キャパシタCwaにデータ信号D(j)の電圧がデータ電圧Vdataとして書き込まれ、その後に容量選択トランジスタM3がオン状態に変化することで書込補助キャパシタCwaと保持キャパシタCstとの間で電荷が再分配されることにより、有機EL素子OLの駆動のために保持キャパシタCstに保持される電圧(以下「駆動用保持電圧」という)が決定される。このため、各画素回路15aにおいて有機EL素子OLを所望の輝度で発光させるために保持キャパシタCstに書き込むべき電圧をVw2としたとき、対応データ信号線Djから当該画素回路15aの書込補助キャパシタCwaに書き込むべきデータ電圧Vdataは、式(6)より、
  Vdata=Vw1
     ={(Cwa+Cst)/Cwa}(Vw2-Vini)+Vini
     =Vw2+(Cst/Cwa)(Vw2-Vini)       …(10)
となる。ここで、Cst>Cwa、Vw2>Viniであるので、このデータ電圧Vdataは、保持キャパシタCstが保持すべき駆動用保持電圧Vw2よりも大きい。したがって、このデータ電圧Vdata(=Vw1)すなわちデータ側駆動回路30からデータ信号線Djに印加すべき電圧は、従来よりも高くなる。しかし、このデータ電圧Vdataの書込による書込補助キャパシタCwaの充電における時定数は、保持キャパシタCstの容量値とは関係なくデータ書込補助キャパシタCwaの容量値によって決まり、従来よりも小さくなる(既述の式(2)参照)。その結果、データ書込における充電速度が向上する。したがって本実施形態によれば、駆動用保持電圧の安定化のために容量値の大きい保持キャパシタCstを使用しつつ充電不足による表示品質の低下を防止することができる。
 なお本実施形態によれば、各画素回路15aにおいて、第1初期化トランジスタ素子M4は、そのゲート端子を後続走査信号線Gi+1に接続されており、書込制御トランジスタM2がオン状態からオフ状態に変化する時点t6よりも前にオン状態となり、当該時点t6の後にオフ状態となる(図3参照)。これにより書込補助キャパシタCwaには、データ信号線Djの電圧(データ電圧Vdata=Vw1)と初期化電圧Viniの差に相当する電圧Vw1-Viniが確実に保持される。
 もし発光期間において容量選択信号線CSWiの信号がアクティブ状態に変化する場合には、発光期間に書込補助キャパシタCwaと保持キャパシタCstとの間で電荷が再分配され、駆動トランジスタM1のゲート端子の電位(ゲート電圧)Vgが高い状態で有機EL素子OLが発光することがあり、これにより、有機EL素子OLの寿命が短くなったり、その輝度が所望の輝度よりも明るくなったりする可能性がある。しかし本実施形態では、ダブルパルス駆動を行われ、各画素回路15aにおいて、対応走査信号線Giが非選択状態に変化した後であって後続走査信号線Gi+1が非選択状態に変化する前に、対応する容量選択信号線の信号がアクティブ状態に変化する(図3参照)。このため、上記の電荷の再分配は非発光期間で行われ、これにより、このような有機EL素子OLの寿命や輝度に関する不具合を回避することができる。
<1.6 画素回路の他の構成例>
 本実施形態における画素回路として、図2に示した第1構成例以外の構成の画素回路を使用することもできる。例えば、以下に述べる第2構成例から第5構成例による画素回路のいずれかを使用してもよい。
<1.6.1 第2構成例>
 図4は、本実施形態における画素回路の第2構成例を示す回路図であり、図5は、本実施形態における第2構成例による画素回路の動作を説明するための信号波形図である。
 図4に示すように、本構成例による画素回路15bは、対応走査信号線Giに接続されたゲート端子を有する第2初期化トランジスタM6を含む点を除き、本実施形態における上記第1構成例による画素回路15aと同様であり(図2参照)、同一部分には同一の参照符号を付して説明を省略する。本構成例による画素回路15bである第i行第j列の画素回路Pix(i,j)において、第2初期化トランジスタM6はスイッチング素子として機能し、容量選択トランジスタM3と保持キャパシタCstとの接続点(保持キャパシタCstの第1端子)は、当該第2初期化トランジスタM6を介して初期化電圧供給線INIに接続されている。
 本構成例による画素回路15bが使用される場合、データ側駆動回路30および走査側駆動回路40は、データ信号線D1~Dm、走査信号線G1~Gn+1、発光制御線E1~En、および、容量選択信号線CSW1~CSWnを図5に示すように駆動するように構成されている。
 図5は、図4に示した本構成例による画素回路15bである第i行第j列の画素回路Pix(i,j)の初期化動作、データ書込動作、および発光動作における各信号線(対応発光制御線Ei、対応走査信号線Gi、後続走査信号線Gi+1、対応データ信号線Dj,対応容量選択信号線CSWi)の電圧、駆動トランジスタM1のゲート電圧Vg、保持キャパシタCstと容量選択トランジスタM3との接続点の電圧(保持容量電圧)Vstの変化を示している。図5に示すように、本構成例による画素回路15bが使用される場合、表示部11における全ての画素回路15bが一斉に初期化されるのではなく、各画素回路15bは画素回路の行毎に異なるタイミングで初期化される。すなわち、各画素回路15において、そのデータ書込期間Tw(t4~t6)に含まれる期間t5~t6において初期化動作が行われる。以下、図5を参照して、このような本構成例による画素回路15bの動作の詳細を説明する。
 本構成例による画素回路15bが使用される場合、対応発光制御線Eiの電圧は、対応走査信号線Giの選択期間および後続走査信号線Gi+1の選択期間を含む所定期間においてのみローレベル(非アクティブ)となり、それ以外の期間ではハイレベル(アクティブ)となる。すなわち、データ書込期間Twの直前の時刻t3から後続走査信号線Gi+1の終了時刻t8までがi行目の画素回路Pix(i,1)~Pix(i,m)の非発光期間であり、時刻t8から次のフレーム期間におけるデータ書込期間Twの直前までがi行目の画素回路Pix(i,1)~Pix(i,m)の発光期間である。
 図5に示すように時刻t3において、対応発光制御線Eiの電圧がハイレベルからローレベルに変化することで発光制御トランジスタM5がオフ状態に変化するとともに、対応容量選択信号線CSWiの電圧がハイレベルからローレベルに変化することで容量選択トランジスタM3がオフ状態に変化する。
 その後、データ書込期間Twとしての第i走査選択期間t4~t6の開始時刻t4において、対応走査信号線Giの電圧がハイレベルに変化することで書込制御トランジスタM2がオン状態となる。この時刻t4から第i+1走査選択期間t5~t8の終了時刻t8までにおける対応走査信号線Gi、後続走査信号線Gi+1、対応データ信号線Dj、および、対応容量選択信号線CSWiの電圧は、上記第1構成例の場合と同様に変化し、したがって、ゲート電圧Vgの変化も上記第1構成例の場合と同様である(図3、図4参照)。ただし、時刻t4におけるゲート電圧Vgは、上記第1構成例では初期化電圧Viniに等しいが、本構成例では直前のフレーム期間にける駆動用保持電圧に相当するゲート電圧に等しい。
 また時刻t4において、対応走査信号線Giの電圧がハイレベルに変化することで第2初期化トランジスタM6もオン状態となる。このため、保持容量電圧(保持キャパシタCstと容量選択トランジスタM3との接続点の電圧)Vstは、初期化電圧Viniへと変化する。
 その後、第i+1走査選択期間t5~t8の開始時刻t5において、後続走査信号線Gi+1の電圧がハイレベルに変化することで第1初期化トランジスタM4がオン状態となる。このため、保持キャパシタCstが第1初期化トランジスタM4および第2初期化トランジスタM6を介して放電され、初期化期間Tini(t5~t6)において保持キャパシタCstの保持電圧はゼロに初期化される。このように本構成例では、第1初期化トランジスタM4および第2初期化トランジスタM6は、初期化期間Tiniに保持キャパシタCst等を放電させて初期化する初期化回路を構成する。すなわち、初期化期間Tiniにおいて、第1初期化トランジスタM4と第2初期化トランジスタM6は、保持キャパシタCstを放電させて初期化する保持キャパシタ放電スイッチング素子を構成する。
 更にその後の時刻t7において、対応容量選択信号線CSWiの電圧がローレベルからハイレベルに変化することで容量選択トランジスタM3がオン状態となる。この時刻t7から第i+1走査選択期間t5~t8の終了時刻t8までにおける対応走査信号線Gi、後続走査信号線Gi+1、対応データ信号線Dj、および、対応容量選択信号線CSWiの電圧は、上記第1構成例の場合と同様に変化し、したがって、ゲート電圧Vgおよび保持容量電圧Vstの変化も上記第1構成例の場合と同様である(図3、図5参照)。
 その後、時刻t8において、上記第1構成例の場合と同様、後続走査信号線Gi+1の電圧がローレベルに変化することで第1初期化トランジスタM4がオフ状態となるとともに、対応発光制御線Eiの電圧がローレベルからハイレベルに変化することで発光制御トランジスタM5がオン状態に変化する。これにより、本構成例においても、既述の式(8)で与えられる駆動電流Idが駆動トランジスタM1および有機EL素子OLに流れる。有機EL素子OLは、上記の駆動電流Idに応じて発光し、この発光は、次のフレーム期間における対応走査信号線Giの選択期間の直前まで継続する。
 他の画素回路においても、各フレーム期間における走査信号線G1~Gn+1の順次的な走査に応じて、同様に、初期化動作、データ書込動作、および発光動作を行う(図4参照)。これにより、外部からの入力信号Sinにおける画像データの表す画像が表示部11に表示される。
 上記のような本構成例による画素回路15bを使用した表示装置によれば、上記第1構成例による画素回路15aを使用した表示装置と同様の効果が得られる。これに加え、各画素回路15b(における保持キャパシタCst)の初期化は、そのデータ書込期間Tw(t4~t6)に含まれる期間t5~t6において行われるので、上記第1構成例による画素回路15aを使用した表示装置に比べ発光期間が長くなり表示品質が向上する。
<1.6.2 第3構成例>
 図6は、本実施形態における画素回路の第3構成例を示す回路図であり、図7は、本実施形態における第3構成例による画素回路の動作を説明するための信号波形図である。
 図6に示すように、本構成例による画素回路15cは、第2初期化トランジスタM6の導通端子の一方(ドレイン端子)が容量選択トランジスタM3と保持キャパシタCstの接続点に接続され他方(ソース端子)が駆動トランジスタM1のソース端子に接続されており、この点で上記第2構成例の場合と相違する(図4参照)。しかし、本構成例による画素回路15cを使用した表示装置における他の構成は、上記第2構成例による画素回路15bを使用した表示装置と同一であるので、同一部分には同一の参照符号を付して説明を省略する。
 図6に示すように、本構成例による画素回路15cでは、保持キャパシタCstの第1端子と第2端子は、第2初期化トランジスタM6を介して互いに接続されており、第2初期化トランジスタM6のゲート端子は対応走査信号線Giに接続されている。このため図7に示すように、対応走査信号線Giの選択期間(t4~t5)において、保持キャパシタCstが第2初期化トランジスタM6を介して放電され、保持キャパシタCstの保持電圧はゼロに初期化される。すなわち第2初期化トランジスタM6は、保持キャパシタCstを放電させる保持キャパシタ放電スイッチング素子として機能する(このことは、後述の図8に示す第4構成例においても同様である)。したがって、本構成例による画素回路15cでは、データ書込期間Twに相当する時刻t4~t6の期間が初期化期間Tiniにも相当し、この点で、時刻t5~t6の期間が初期化期間Tiniである上記第2構成例による画素回路15bと相違する。しかし図7からわかるように、初期化期間Tiniにおいて保持容量電圧Vstは上記第2構成例の場合と若干相違するが、ゲート電圧Vgは上記第2構成例の場合と同様に変化し、発光期間も上記第2構成例の場合と同様である(図5参照)。したがって、本構成例による画素回路15cを使用した表示装置においても、上記第2構成例による画素回路15bを使用した表示装置と同様の効果が得られる。なお上記より、本構成例では、第1初期化トランジスタM4および第2初期化トランジスタM6は、初期化期間Tiniに保持キャパシタCst等を放電させて初期化する初期化回路を構成する。
<1.6.3 第4構成例>
 図8は、本実施形態における画素回路の第4構成例を示す回路図であり、図9は、本実施形態における第4構成例による画素回路の動作を説明するための信号波形図である。
 図8に示すように、本構成例による画素回路15dは、第1および第2初期化トランジスタM4,M6のゲート端子が共に対応走査信号線Giに接続されており、この点で、上記第3構成例による画素回路15cと相違する(図6参照)。本構成例による画素回路15dにおける他の構成は、上記第3構成例による画素回路15cと同様であるので、同一部分には同一の参照符号を付して説明を省略する。
 図9は、図8に示した本構成例による画素回路15dである第i行第j列の画素回路Pix(i,j)の初期化動作、データ書込動作、および発光動作における各信号線(対応発光制御線Ei、対応走査信号線Gi、対応データ信号線Dj、および、対応容量選択信号線CSWi)の電圧、駆動トランジスタM1のゲート電圧Vg、保持容量電圧Vstの変化を示している。図9に示すように、本構成例による画素回路15dを使用した表示装置の駆動方法は、上記第3構成例による画素回路15cを使用した表示装置とは異なる。すなわち、本構成例による画素回路15dを使用した表示装置では、表示部11に走査信号線G1~Gnが配設されており、走査側駆動回路40は、各フレーム期間において走査信号線G1~Gnを1水平期間ずつ順次にかつ交番的に選択するように構成されている(以下、このような走査信号線の駆動を、上記第1から第3構成例による画素回路を使用した表示装置における走査信号線の駆動と区別するために「シングルパルス駆動」という)。またデータ側駆動回路30は、このような走査信号線G1~Gnの駆動に連動してデータ信号線D1~Dmを駆動するように構成されている。
 図9において、時刻t3~t8の期間は、i行目の画素回路Pix(i,1)~Pix(i,m)の非発光期間である。時刻t4~t6の期間は第i水平期間であり、時刻t5~t6の期間はi番目の走査信号線(対応走査信号線)Giの選択期間すなわち第i走査選択期間である。この第i走査選択期間は、i行目の画素回路Pix(i,1)~Pix(i,m)のデータ書込期間Twに相当し、初期化期間Tiniにも相当する。
 第i行第j列の画素回路Pix(i,j)では、図9に示すように時刻t3において発光制御線Eiの電圧がハイレベルからローレベルに変化すると、発光制御トランジスタM5はオン状態からオフ状態に変化し、有機EL素子OLEDは非発光状態となる。また時刻t3において、対応容量選択信号線CSWiの電圧がハイレベルからローレベルに変化することで容量選択トランジスタM3もオン状態からオフ状態に変化し、保持キャパシタCstは駆動トランジスタM1のゲート端子から電気的に切り離される。
 データ側駆動回路30は、第i行第j列の画素のデータ電圧としてのデータ信号D(j)のデータ信号線Djへの印加を、対応走査信号線Giの直前の走査信号線(先行走査信号線)Gi-1が非選択状態となってから対応走査信号線Giが選択状態となるまでの間に、すなわち第i-1走査選択期間の終了時点から第i走査選択期間の開始時点までの間の時刻t4に開始し、少なくとも第i走査選択期間の終了時点t6まで継続する。
 時刻t5において、対応走査信号線Giの電圧がローレベルからハイレベルに変化して対応走査信号線Giが選択状態となることで、書込制御トランジスタM2および第1初期化トランジスタM4がオン状態に変化する。このとき、容量選択トランジスタM3はオフ状態を維持している。これにより、対応データ信号線Djの電圧すなわちデータ信号D(j)の電圧がデータ電圧Vdataとして、書込制御トランジスタM2を介して書込補助キャパシタCwaに与えられるが、保持キャパシタCstには与えられない。その結果、図9に示すように、書込補助キャパシタCwaのみが充電され、対応走査信号線Giの選択期間の終了時刻t6において、ゲート電圧Vg(i,j)は目的の電位(画素回路Pix(i,j)に書き込むべき電圧)Vdata=Vw1に到達し、書込補助キャパシタCwaには電圧Vw1-Viniが保持されている。また、第1初期化トランジスタM4がオン状態に変化することにより、初期化電圧Viniが有機EL素子OLのアノード電極に与えられる。その結果、有機EL素子OLの寄生容量が放電されて有機EL素子のアノード電極の電圧(アノード電圧)Vaが初期化電圧Viniに初期化される。さらに、時刻t4において対応走査信号線Giが選択状態となることで、第2初期化トランジスタM6もオン状態に変化する。これにより、初期化電圧Viniが第1および第2初期化トランジスタM4,M6を介して保持キャパシタCstの第1端子(保持キャパシタCstと容量選択トランジスタM3との接続点)にも与えられるとともに、保持キャパシタCstの両端間が第2初期化トランジスタM6により短絡される。その結果、保持キャパシタCstが放電されてその保持電圧がゼロに初期化される。なおここでは、初期化電圧Viniはローレベル電源電圧ELVSSに等しいものとする。上記より本構成例では、第1初期化トランジスタM4および第2初期化トランジスタM6は、初期化期間Tiniに保持キャパシタCst等を放電させて初期化する初期化回路を構成する。
 上記のように対応走査信号線Giの選択期間(t5~t6)すなわちデータ書込期間Twにおいて、画素回路Pix(i,j)における書込補助キャパシタCwaにのみ上記データ電圧Vdata=Vw1が書き込まれ、その後、時刻t6において、対応走査信号線Giの電圧がローレベルに変化することで書込制御トランジスタM2がオフ状態となる。また上記のように、対応走査信号線Giの選択期間(t5~t6)において保持キャパシタCstが放電されて初期化されるので、当該期間(t5~t6)は初期化期間Tiniにも相当する。
 対応走査信号線Giの選択期間(t5~t6)後の時刻t7において、対応容量選択信号線CSWiの電圧がローレベルからハイレベルに変化することで容量選択トランジスタM3がオン状態となる。これにより、保持キャパシタCstは書込補助キャパシタCwaに並列に接続された状態となり、寄生容量とCscと保持キャパシタCstとの間で電荷の再分配が行われる。この電荷再分配により、上記第1から第3構成例による画素回路を使用した場合と同様、駆動トランジスタM1におけるゲート端子の電圧Vg(i,j)および保持容量電圧Vst(i,j)は、既述の式(6)で示される電圧Vw2となる。
 その後、時刻t8において、発光制御線Eiの電圧がハイレベルに変化することで発光制御トランジスタM5がオン状態に変化する。このため時刻t8以降、ハイレベル電源線ELVDDから発光制御トランジスタM5、駆動トランジスタM1、および、有機EL素子OLを経由してローレベル電源線ELVSSに駆動電流Idが流れ、この駆動電流Idにより有機EL素子OLが発光する。この駆動電流Idによる有機EL素子OLの発光は、次のフレーム期間におけるデータ書込動作および初期化動作の開始直前まで継続する。
 他の画素回路においても、各フレーム期間における走査信号線G1~Gnの順次的な走査に応じて、同様に、初期化動作、データ書込動作、および発光動作を行う(図9参照)。これにより、外部からの入力信号Sinにおける画像データの表す画像が表示部11に表示される。
 上記のように、シングルパルス駆動を行う本構成例による画素回路を使用した表示装置においても、データ書込期間Twでは容量値の小さい書込補助キャパシタCwaがデータ電圧Vdata=Vw1で充電され、その後に、書込補助キャパシタCwaとそれよりも容量値の大きい保持キャパシタCstとの間で電荷の再分配が行われることで、駆動トランジスタM1のゲート・ソース間電圧Vgsとしての駆動用保持電圧が決定される。これにより、ダブルパルス駆動を行う他の構成例による画素回路を使用した表示装置と同様、容量値の大きい保持キャパシタCstを使用しつつ充電不足による表示品質の低下を防止することができる。
<1.6.4 第5構成例>
 図10は、本実施形態における画素回路の第5構成例を示す回路図であり、図11は、本実施形態における第5構成例による画素回路の動作を説明するための信号波形図である。
 図10に示すように、本構成例による画素回路15eは、上記第4構成例と同様、有機EL素子OLの他に、書込補助キャパシタCwa、保持キャパシタCst、駆動トランジスタM1、書込制御トランジスタM2、第1初期化トランジスタM4、発光制御トランジスタM5、および、第2初期化トランジスタM6を含んでいる。しかし本構成例では、書込補助キャパシタCwaと保持キャパシタCstとが互いに直列に接続されており、この点で本構成例は、書込補助キャパシタCwaと保持キャパシタCstとが並列に接続されている上記他の構成例(図2、図4、図6、図8)と相違する。また、本構成例による画素回路15eには、容量選択トランジスタM3は含まれておらず、書込補助キャパシタCwaと保持キャパシタCstとの間での電荷再分配は行われない。また、本構成例による画素回路15eを使用する場合、容量選択信号線CSW1~CSWnは設けられないが、後述の初期化動作で使用される初期化信号を伝達するための初期化信号線CLRが表示部11に配設されている。
 具体的には、本構成例による画素回路15eでは、上記他の構成例と同様、駆動トランジスタM1のドレイン端子が発光制御トランジスタM5を介してハイレベル電源線ELVDDに接続され、駆動トランジスタM1のソース端子が有機EL素子OLを介してローレベル電源線ELVSSに接続されている。駆動トランジスタM1のゲート端子は、上記他の構成例とは異なり、互いに直列に接続された書込補助キャパシタCwaおよび書込制御トランジスタM2を順に介して対応データ信号線Djに接続されるとともに、保持キャパシタCstを介して駆動トランジスタM1のソース端子に接続されている。これにより、書込補助キャパシタCwaと保持キャパシタCstが互いに直列に接続され、駆動トランジスタM1のゲート端子が書込補助キャパシタCwaと保持キャパシタCstとの接続点に接続される形態となっている。また駆動トランジスタM1のゲート端子は、第2初期化トランジスタM6を介してもそのソース端子に接続されていて、第2初期化トランジスタM6と保持キャパシタCsとが互いに並列に接続される形態となっている。書込制御トランジスタM2および第1初期化トランジスタM4のゲート端子は対応走査信号線Giに接続され、発光制御トランジスタM5のゲート端子は対応発光制御線Eiに接続され、第2初期化トランジスタM6のゲート端子は初期化信号線CLRに接続されている。
 本構成例による画素回路15eを使用する表示装置における他の構成は、上記第4構成例による画素回路15d等を使用した表示装置と実質的に同様であるので、同一または対応する部分には同一の参照符号を付して詳しい説明を省略する。なお、本構成例による画素回路15eを使用する表示装置では、走査信号線G1~Gnにつきシングルパルス駆動とダブルパルス駆動のいずれの駆動も可能であるが、以下ではダブルパルス駆動を行うものとして説明する。
 図11は、図10に示した本構成例による画素回路15eである第i行第j列の画素回路Pix(i,j)の初期化動作、データ書込動作、および発光動作における各信号線(対応発光制御線Ei、対応走査信号線Gi、対応データ信号線Dj、および、初期化信号線CLR)の電圧、駆動トランジスタM1のゲート電圧Vgの変化を示している。図11において、時刻t1~t2の期間が初期化期間Tiniであり、時刻t5~t7の期間すなわち対応走査信号線Giの選択期間(第i走査選択期間)がデータ書込期間Twである。また、対応走査信号線Giの選択期間の直前の時刻t4から当該選択期間の終了時刻t7までが非発光期間であり、その期間以外は、電源をオンした直後の(初期化期間Tiniを含む)所定期間を除き、発光期間である。
 図11に示すように、本構成例による画素回路15eを使用した表示装置では、初期化動作は当該表示装置の電源をオンした直後にのみ行われ、その後、電源をオフするまで初期化動作は行われない。当該表示装置における初期化動作では、電源をオンした直後の時刻t1から時刻t2までの間(初期化期間Tini)、初期化信号線CLRがハイレベルとされるとともに、全ての走査信号線G1~Gnの電圧が走査側駆動回路40によりハイレベルとされ、全てのデータ信号線D1~Dmが、データ側駆動回路30により初期化電圧供給線INIの電圧に等しい電圧すなわち初期化電圧Viniとされる。これにより、各画素回路15eにおいて、初期化期間Tini(t1~t2)の間、書込制御トランジスタM2、第1初期化トランジスタM4、および、第2初期化トランジスタM6がオン状態となることで、書込補助キャパシタCwaおよび保持キャパシタCstが放電され、書込補助キャパシタCwaおよび保持キャパシタCstにおける保持電圧がゼロに初期化される。このように本構成例では、第1初期化トランジスタM4および第2初期化トランジスタM6は書込制御トランジスタM2とともに、初期化期間Tiniに保持キャパシタCst等を放電させて初期化する初期化回路を構成する。ここで第2初期化トランジスタM6は、保持キャパシタCstを放電させる保持キャパシタ放電スイッチング素子として機能する。その後、時刻t3において、走査信号線G1~Gnおよびデータ信号線D1の駆動が開始される(表示動作の開始)。なお、発光制御線E1~Enの電圧は電源オン後、時刻t3までローレベルであり、時刻t3以降、発光制御線E1~Enの駆動に応じて各発光制御線Eiの電圧が、各フレーム期間においてデータ書込期間Twに相当する2水平期間に対応する所定期間だけローレベルとなり、他の期間はハイレベルとなる。
 図10に示す本構成例による第i行第j列の画素回路Pix(i,j)では、対応走査信号線Giの選択期間の直前の時刻t4において、対応発光制御線Eiの電圧がハイレベルからローレベルに変化して発光制御トランジスタM5がオフ状態となることで、有機EL素子OLは非発光状態となる。
 その後、時刻t5において、対応走査信号線Giの電圧がローレベルからハイレベルに変化して対応走査信号線Giが選択状態となることで、書込制御トランジスタM2および第1初期化トランジスタM4がオン状態に変化する。既述のように走査信号線G1~Gnにつきダブルパルス駆動が行われるので、対応走査信号線Giの選択期間(t5~t7)の前半すなわち時刻t5~t6の期間は第i-1水平期間に相当し、当該期間において、第i-1行第j列の画素回路Pix(i-1,j)に書き込むべきデータ電圧が、対応データ信号線Djから書込制御トランジスタM2を介して、互いに直列に接続された書込補助キャパシタCwaおよび保持キャパシタCstからなる合成容量(以下「直列合成容量」といい、符号“Cser”で示すものとする)としての小容量キャパシタの一端に印加される。この直列合成容量Cserの容量値は次式で与えられる(以下では、書込補助キャパシタCwa、保持キャパシタCst、および、直列合成容量Cserの容量値をも符号“Cwa”、“Cst”、“Cser”でそれぞれ示すものとする。以下においても同様である)。
  Cser=Cwa・Cst/(Cwa+Cst)=Cst/(1+Cst/Cwa) …(11)
上記式(11)より、Cser<Cstである。
 時刻t5~t6の上記期間では、第1初期化トランジスタM4がオン状態であるので、直列合成容量Cserとしての小容量キャパシタの他端には、初期化電圧供給線INIから初期化電圧Viniが与えられる。また、有機EL素子OLのアノード電極にも初期化電圧Viniが与えられ、有機EL素子OLの寄生容量(不図示)が放電される。
 時刻t5において、対応データ信号線Djの電圧が、第i行第j列の画素回路Pix(i,j)に書き込むべきデータ電圧Vw1に変化し、当該データ電圧Vw1で直列合成容量Cserが充電される。この充電により直列合成容量Cserに保持される電圧に対する書込補助キャパシタCwaと保持キャパシタCstによる容量分圧によりゲート電圧Vgが決定される。すなわち、この充電後において駆動トランジスタM1におけるゲート電圧Vgは、次式で示される電圧Vw2となる。
  Vw2={Cwa/(Cwa+Cst)}(Vw1-Vini)+Vini
    =(Vw1-Vini)/(1+Cst/Cwa)+Vini …(12)
このとき、駆動トランジスタM1におけるゲート・ソース間電圧Vgsは、保持キャパシタCstに保持される電圧に相当し次式で示される。
  Vgs=Vw2-Vini
    =(Vw1-Vini)/(1+Cst/Cwa) …(13)
 その後、時刻t7において、対応走査信号線Giの電圧がローレベルに変化することで書込制御トランジスタM2がオフ状態となり、駆動トランジスタM1のゲート端子が対応データ信号線Djから電気的に切り離される。また当該時刻t7において、第1初期化トランジスタM4もオフ状態となり直列合成容量Cserとしての小容量キャパシタの上記他端への初期化電圧Viniの供給が遮断される。さらに当該時刻t7において、対応発光制御線Eiの電圧がハイレベルに変化して発光制御トランジスタM5がオン状態となる。これにより、ハイレベル電源線ELVDDから発光制御トランジスタM5、駆動トランジスタM1、および、有機EL素子OLを介して、ローレベル電源線ELVSSへと電流が流れる。この電流は既述の式(8)で示される駆動電流Idであり、この駆動電流Idにより有機EL素子OLが発光し、この発光は次のフレーム期間におけるデータ書込期間の直前まで継続する。なお、この発光が開始される当該時刻t7において、直列合成容量Cserとしての小容量キャパシタの上記他端の電圧およびゲート電圧Vgが有機EL素子OLの順方向電圧Vfだけ上昇するが、保持キャパシタCstにおける保持電圧すなわちゲート・ソース間電圧Vgsは変化しない。
 他の画素回路においても、各フレーム期間における走査信号線G1~Gnの順次的な走査に応じて、同様に、初期化動作、データ書込動作、および発光動作を行う(図11参照)。これにより、外部からの入力信号Sinにおける画像データの表す画像が表示部11に表示される。
 上記のような本構成例による画素回路15eを使用した表示装置によれば、データ書込期間Twにおいて保持キャパシタCstよりも容量値が小さい直列合成容量Cser(式(11)参照)がデータ電圧Vdata=Vw1で充電され、これにより、直列合成容量Cserに保持される電圧Vw1-Viniに対する書込補助キャパシタCwaと保持キャパシタCstによる容量分圧により決まる保持キャパシタCstの保持電圧が、駆動トランジスタM1におけるゲート・ソース間に印加される(既述の式(13)参照)。このようにして、上記他の構成例による画素回路を使用した場合と同様、容量値の大きな保持キャパシタCstを使用しつつデータ書込期間での充電不足を防止することができる。また本構成例を使用した画素回路15eでは、上記第1から第4構成例による画素回路15a~15dを使用する場合とは異なり、書込補助キャパシタCwaと保持キャパシタCstの間での電荷の再分配は行われないので、容量選択トランジスタM3およびこれを制御するための信号線や回路は不要となり、構成が簡略化される。また、書込補助キャパシタCwaと保持キャパシタCstの間で電荷の再分配は行われないことから、データ書込動作毎に予め保持キャパシタCstを放電させて初期化する必要もない。ただし、書込補助キャパシタCwaおよび/または保持キャパシタCstに上記データ書込動作以外の原因で電荷が蓄積された場合には直列合成容量Cserへの適切なデータ書込が行えないので、これを回避すべく、本構成例による画素回路15eを使用する場合には、電源がオンされた直後の初期化動作により、書込補助キャパシタCwaおよび保持キャパシタCstは電荷が蓄積されない状態とされる(書込補助キャパシタCwaおよび保持キャパシタCstが初期化される)。
<2.第2の実施形態>
 一般に、有機EL表示装置における画素回路内の駆動トランジスタには薄膜トランジスタ(TFT)が使用される。TFT等のMOS(Metal-Oxide-Semiconductor)トランジスタのゲインは、移動度、チャネル幅、チャネル長、ゲート絶縁膜容量等によって決定され、MOSトランジスタを流れる電流の量は、ゲート-ソース間電圧、ゲイン、閾値電圧等に応じて変化する。駆動トランジスタにTFTを使用した場合、閾値電圧や移動度等にバラツキが生じ、これにより、有機EL素子に流れる駆動電流の量にバラツキが生じる。その結果、表示画像に輝度むらが生じ、表示品位が低下する。これに対し、駆動トランジスタから有機EL素子に供給すべき駆動電流を画素回路の外部に取り出して測定し、その測定結果に基づいて当該特性バラツキを補償すべく、各画素回路に書き込むべきデータ電圧を補正するように構成されたものがある。このような構成による駆動トランジスタの特性のバラツキの補償は「外部補償」と呼ばれる。以下、このような外部補償を行う有機EL表示装置の実施形態を第2の実施形態として説明する。なお、第2の実施形態に係る表示装置は、動作モードとして、外部からの入力信号に基づき画像を表示する通常表示モードと、外部補償を行うために画素回路における駆動トランジスタの特性を検出する特性検出モードと有している。
<2.1 構成および動作>
 図12は、第2の実施形態に係る有機EL表示装置10bの全体構成を示すブロック図である。図12に示すように、この表示装置10bも、上記第1の実施形態と同様、表示部11、表示制御回路20、データ側駆動回路30、走査側駆動回路40、および、電源回路50を備えている。この表示装置10bの構成のうち上記第1の実施形態に係る表示装置10aと同一または対応する部分には同一の参照符号を付して詳しい説明を省略する。
 本実施形態における表示部11には、上記第1の実施形態と同様の形態で、m本(mは2以上の整数)のデータ信号線D1~Dmと、n+1本(nは2以上の整数)の走査信号線G1~Gn+1と、n本の発光制御線E1~Enとが配設されており、m本のデータ信号線D1~Dmおよびn本の走査信号線G1~Gnに沿ってマトリクス状に配置されたm×n個の画素回路16aが設けられている。各画素回路16aは、m本のデータ信号線D1~Dmのいずれか1つに対応し、n本の走査信号線G1~Gnのいずれか1つに対応し、n本の発光制御線E1~Enのいずれか1つに対応する。図12に示すように本実施形態における表示部11には、これらの信号線に加えて、n本の走査信号線G1~Gnにそれぞれ沿ってn本のモニタ制御線MON1~MONnが配設されており、各画素回路16aは、n本のモニタ制御線MON1~MONnのいずれか1つにも対応する。なお、上記第1の実施形態における第1から第4構成例のように容量選択トランジスタM3を用いて電荷再分配を行う画素回路を使用する場合には、容量選択信号線CSW1~CSWnが必要であるが、本実施形態では、発光制御線E1~Enが容量選択信号線CSW1~CSWnとしても使用されるものとする。ただし、発光制御線E1~Enとは別に容量選択信号線CSW1~CSWnを表示部11に形成してもよい(図1参照)。なお、表示部11に配設される電源線ELVDD,ELVSSや初期化電圧供給線INIについては、上記第1の実施形態と同様であるので説明を省略する。
 本実施形態における表示制御回路20は、表示すべき画像を表す画像データおよび画像表示のためのタイミング制御情報を含む入力信号Sinを表示装置の外部から受け取り、この入力信号Sinに基づきデータ側制御信号Scdおよび走査側制御信号Scsを生成し、データ側制御信号Scdをデータ側駆動回路30に、走査側制御信号Scsを走査側駆動回路40にそれぞれ出力する。これに加えて表示制御回路20は、外部補償を行うためにデータ側駆動回路30から測定データMDを受け取り(詳細は後述)、この測定データMDに基づき、各画素回路16aにおける駆動トランジスタの特性のバラツキが補償されるように上記画像データを補正し、この補正後の画像データに基づき上記データ側制御信号Scdを生成する。
 データ側駆動回路30は、通常表示モードでは、データ信号線駆動回路として機能し、表示制御回路20からのデータ側制御信号Scdに基づきデータ信号線D1~Dmを駆動する。一方、特性検出モードでは、データ側駆動回路30は、データ信号線駆動回路として機能するとともに電流測定回路としても機能し、各画素回路16a内の電流をそれに接続されたデータ信号線Djを介して測定する。
 走査側駆動回路40は、表示制御回路20からの走査側制御信号Scsに基づき、走査信号線G1~Gn+1を駆動する走査信号線駆動回路、発光制御線E1~Enを駆動する発光制御回路、および、モニタ制御線MON1~MONnを駆動するモニタ制御線駆動回路として機能する。より詳細には、走査側駆動回路40は、通常表示モードでは、走査信号線駆動回路として、走査側制御信号Scsに基づき、各フレーム期間において走査信号線G1~Gn+1を1水平期間に対応する所定期間ずつ順次に選択し、また、発光制御回路として、i番目の発光制御線Eiに対し、少なくとも第i選択走査期間を含む所定期間では非発光を示す非アクティブ発光制御信号(ローレベル電圧)を印加し(i=1~n)、それ以外の期間では発光を示すアクティブな発光制御信(ハイレベル電圧)を印加する。一方、特性検出モードでは、走査側駆動回路40は、走査信号線駆動回路として走査側制御信号Scsに基づき走査信号線G1~Gn+1を選択的に駆動するとともに、モニタ制御線駆動回路として、走査側制御信号Scsに基づきモニタ制御線MON1~MONnを選択的に駆動する。
 図13は、本実施形態における画素回路16aの構成例をデータ側駆動回路30の要部の構成とともに示す回路図である。すなわち図13は、i番目の走査信号線Giおよびj番目のデータ信号線Djに対応する画素回路16aすなわち第i行第j列の画素回路Pix(i,j)の電気的構成とともに、データ側駆動回路30のうちj番目のデータ信号線に対応する要部の電気的構成を示している。
 図13に示すように、本実施形態における画素回路16aは、それに対応するモニタ制御線MONiに接続されたゲート端子を有するモニタ制御トランジスタM8を含む点を除き、上記第1の実施形態における画素回路15aと同様であり(図2参照)、同一部分には同一の参照符号を付して説明を省略する。本実施形態における画素回路16a(第i行第j列の画素回路Pix(i,j))において、モニタ制御トランジスタM8はスイッチング素子として機能し、駆動トランジスタM1のソース端子(駆動トランジスタM1と有機EL素子OLとの接続点)は、このモニタ制御トランジスタM8を介して対応データ信号線Djに接続されている。
 本実施形態におけるデータ側駆動回路30は、入出力バッファ部、AD変換部、DA変換部、および、直並列変換部を含んでいる。図13には、データ側駆動回路30における入出力バッファ部、AD変換部、およびDA変換部のうち上記第i行第j列の画素回路Pix(i,j)に接続される対応データ信号線Djに対応する部分の詳細構成が示されている。図13に示すようにデータ側駆動回路30は、当該部分として、入出力バッファ28とDA変換器(DAC)25とAD変換器(ADC)26とを含んでいる。DA変換器25には、直並列変換部からの1行分のデジタル画像信号のうちj番目の画素(j=1~m)に対応するデジタル画像信号d(j)が順次入力される。ここで、デジタル画像信号d(j)は、画素回路Pix(i,j)に与えるべきデータ電圧を示すデジタル信号である。既述のデータ側制御信号Scdには、シリアル形式のデジタル画像信号の他に入出力制御信号DWTが含まれており、この入出力制御信号DWTは入出力バッファ28に入力される。
 入出力バッファ28は、オペアンプ21、キャパシタ22、第1スイッチ23a、および第2スイッチ23bを含んでいる。オペアンプ21の反転入力端子はデータ信号線Djに接続され、オペアンプ21の非反転入力端子は選択スイッチとしての第2スイッチ23bに接続されている。この第2スイッチ23bにより、オペアンプ21の非反転入力端子は、入出力制御信号DWTがハイレベル(Hレベル)のときにはDA変換器25の出力端に接続され、入出力制御信号DWTがローレベル(Lレベル)のときにはローレベル電源線ELVSSに接続される。キャパシタ22は、オペアンプ21の反転入力端子と出力端子との間に設けられ、オペアンプ21の出力端子はキャパシタ22を介してオペアンプ21の反転入力端子に接続されている。第1スイッチ23aは、オペアンプ21の反転入力端子と出力端子との間に設けられ、キャパシタ22と並列に接続されている。キャパシタ22は電流電圧変換素子として機能する。第1スイッチ23aは、入出力制御信号DWTがHレベルのときにはオン状態であり、Lレベルのときにはオフ状態である。オペアンプ21の出力端子はAD変換器26の入力端に接続されており、入出力制御信号DWTがLレベルのときに、データ信号線Djに流れる電流を示すデジタル信号(「電流モニタ信号」ともいう)im(j)がAD変換器26から出力される。
 このような構成の入出力バッファ28では、入出力制御信号DWTがHレベルのときには、第1スイッチ23aはオン状態であり、オペアンプ21の出力端子と反転入力端子は直接的に接続される(短絡される)。また、オペアンプ21の非反転入力端子は、第2スイッチ23bによりDA変換器25の出力端に接続される。このとき、入出力バッファ28は電圧ホロワとして機能し、DA変換器25に入力されるデジタル信号d(j)は、アナログ電圧信号に変換され、低出力インピーダンスでデータ信号線Djに与えられる。
 一方、入出力制御信号DWTがLレベルのときには、第1スイッチ23aはオフ状態であり、オペアンプ21の出力端子はキャパシタ22を介して非反転入力端子に接続される。また、オペアンプ21の非反転入力端子は、第2スイッチ23bによりローレベル電源線ELVSSに接続される。このとき、オペアンプ21とキャパシタ22は積分器として機能する。すなわち、オペアンプ21は、その反転入力端子に接続されたデータ信号線Djに流れる電流の積分値に相当する電圧を出力し、この電圧はAD変換器26によりデジタル信号に変換され、電流モニタ信号im(j)として直並列変換部(不図示)を介して表示制御回路20に送られる。なおこのとき、オペアンプ21の非反転入力端子がローレベル電源電圧ELVSSに接続されているので、仮想短絡によってデータ信号線Djの電圧はローレベル電源電圧ELVSSに等しい。
 上記のような本実施形態の表示装置10bでは、通常表示モードにおいて、表示制御回路20からのデータ側制御信号Scdに基づき、各データ信号線Djに対応する入出力バッファ28に、第j列の画素回路Pix(1,j)~Pix(n,j)に書き込むべきデータ電圧Vdataを示す信号d(j)が順次にDA変換器25を介して与えられる。このとき、入出力制御信号DWTはHレベルであり、入出力バッファ28は電圧ホロワとしてデータ電圧Vdataをデータ信号線Djに出力する(j=1~m)。このようなデータ信号線D1~Dmの駆動と連動して、各フレーム期間において走査信号線G1~Gn+1が順次に所定期間ずつ選択されるように当該走査信号線G1~Gn+1が走査側駆動回路40により駆動される。このようにして表示部11におけるデータ信号線D1~Dmおよび走査信号線G1~Gn+1が駆動されることにより各画素回路Pix(i,j)では、それに対応するデータ電圧Vdataが書き込まれた後に発光制御トランジスタM5がオン状態とされ、これにより、外部からの入力信号Sinにおける画像データの表す画像が表示部11に表示される。
 また、本実施形態の表示装置10bにおける各画素回路Pix(i,j)では、特性検出モードにおいて、上記第1の実施形態において第1構成例による画素回路15aを使用した場合と同様(図3参照)、データ電圧Vdataが書き込まれた後に、容量選択トランジスタM3がオン状態とされるとともに、第1初期化トランジスタM4がオフ状態とされ、発光制御トランジスタM5がオン状態とされることで、駆動トランジスタM1に電流が流れる。このとき本実施形態における特性検出モードでは、データ側駆動回路30において入出力制御信号DWTがHレベルからLレベルに変更されることで入出力バッファ38は、対応するデータ信号線Djに接続される第j列の画素回路Pix(1,j)~Pix(n,j)のうちモニタ制御線MONiによりモニタ制御トランジスタM8がオン状態とされた画素回路Pix(i,j)の駆動トランジスタM1に流れる電流を、当該モニタ制御トランジスタM8およびデータ信号線Djを介して測定する。この測定結果を示す信号im(j)は、AD変換器26を介して順次出力され、直並列変換部を介して表示制御回路20に測定データMDとして送られる。表示制御回路20では、その測定データMDを用いて各画素回路Pix(i,j)における駆動トランジスタM1の特性が求められ、当該特性を示すデータが保存・更新される。これらのデータは、既述の通常表示モードにおいて、画素回路Pix(1,1)~Pix(n,m)における駆動トランジスタM1の特性のバラツキや変動が補償されるように、外部からの入力信号Sinに含まれる画像データを補正するために使用される。データ側駆動回路30に与えられるデータ側制御信号Scdは、この補正後の画像データに基づき生成される。
<2.2 効果>
 上記のような外部補償を行う本実施形態においても、上記補正後の画像データに基づくデータ電圧Vdataを各画素回路16aに書き込む際には、上記第1の実施形態と同様、保持キャパシタCstよりも容量値の小さい書込補助キャパシタCwaに当該データ電圧Vdataが書き込まれる。その後、容量選択トランジスタM3がオン状態に変化することで書込補助キャパシタCwaと保持キャパシタCstとの間で電荷が再分配されることにより、保持キャパシタCstに保持される駆動用保持電圧が決定される。したがって、本実施形態によれば、外部補償を行いつつ上記第1の実施形態と同様の効果が得られる。
<2.3 変形例>
 本実施形態における画素回路の構成は、図13に示す構成に限定されず、種々の変形が可能である。
 図14(A)は、本実施形態における画素回路16aの第1変形例を示す回路図である。本実施形態における画素回路16aでは、書込補助キャパシタCwaおよび保持キャパシタCstの低電圧側の端子は、駆動トランジスタM1のソース端子に接続されているが(図13参照)、図14(A)に示すように本変形例による画素回路16bでは、当該低電圧側の端子はいずれもローレベル電源線ELVSSに接続されている。本実施形態において図13の画素回路16aに代えてこのような画素回路16bを用いても、外部補償を行いつつ上記第1の実施形態と同様の効果が得られる。
 図14(B)は、本実施形態における画素回路16aの第2変形例を示す回路図である。本実施形態における画素回路16aでは、既述のように、書込補助キャパシタCwaおよび保持キャパシタCstの低電圧側の端子は駆動トランジスタM1のソース端子に接続されているが(図13参照)、図14(B)に示すように第2変形例による画素回路16cでは、当該低電圧側の端子はいずれも初期化電圧供給線INIに接続されている。上記第2の実施形態において図13の画素回路16aに代えてこのような画素回路16cを用いても、外部補償を行いつつ上記第1の実施形態と同様の効果が得られる。
 図15は、本実施形態における画素回路16aの第3変形例を示す回路図である。本実施形態における画素回路16aでは、駆動トランジスタM1のゲート端子とソース端子との間に書込補助キャパシタCwa、保持キャパシタCst、および、容量選択トランジスタM3が接続されているが(図13参照)、図15に示すように第3変形例による画素回路16dでは、駆動トランジスタM1のゲート端子とハイレベル電源線ELVDDの間に書込補助キャパシタCwa、保持キャパシタCst、および、容量選択トランジスタM3が接続されている。上記第2の実施形態において図2の画素回路16aに代えてこのような画素回路16dを用いても、外部補償を行いつつ上記第1の実施形態と同様の効果が得られる。
 なお、本実施形態における画素回路16aおよび上記第1から第3変形例による画素回路16b~16dでは、上記第1の実施形態における第1構成例による画素回路15a(図2)を基本として、特性検出モードで駆動トランジスタM1に流れる電流を測定するためのモニタ制御トランジスタM8が付加されている。しかし、これに代えて、上記第1の実施形態における第2から第5構成例による画素回路15b~15e(図4、図6、図8、図10)のいずれかを基本として、特性検出モードで駆動トランジスタM1に流れる電流を測定するためのモニタ制御トランジスタM8が付加された構成であってもよい。
<3.第3の実施形態>
 図16は、第3の実施形態に係る有機EL表示装置における画素回路の構成例を示す回路図である。上記第1の実施形態における画素回路15a~15eおよび第2の実施形態における画素回路16aでは、Nチャネル型のトランジスタが使用されているが、本実施形態における画素回路17aではPチャネル型のトランジスタが使用されている。以下では、本実施形態に係る表示装置の構成のうち上記第1の実施形態に係る表示装置10aと同一または対応する部分には同一の参照符号を付して詳しい説明を省略し、画素回路17aの構成を中心に本実施形態につき説明する。
 図16に示すように本実施形態における画素回路17aも、上記第1の実施形態における第3構成例による画素回路15cと同様(図6)、表示素子としての有機EL素子OLと、書込補助キャパシタCwaおよび保持キャパシタCstと、駆動トランジスタM1と、書込制御トランジスタM2と、容量選択トランジスタM3と、第1初期化トランジスタM4と、発光制御トランジスタM5、第2初期化トランジスタM6と含んでいる。しかし本実施形態では、トランジスタM1~M6は全てPチャネル型であり、これらのトランジスタM1~M6は図16に示すように接続されている。なお図16の構成では、初期化電圧Viniはハイレベル電源電圧ELVDDに等しいものとする。
 具体的には、本実施形態におけるi番目の走査信号線Giおよびj番目のデータ信号線Djに対応する画素回路17aである第i行第j列の画素回路Pix(i,j)では、駆動トランジスタM1のソース端子は、発光制御トランジスタM5を介して第1電源線としてのハイレベル電源線ELVDDに接続されており、駆動トランジスタM1のゲート端子は、書込制御トランジスタM2を介して対応データ信号線Djに接続されるとともに、互いに直列に接続された容量選択トランジスタM3および保持キャパシタCstを介して駆動トランジスタM1のソース端子に接続されている。また、当該ソース端子は、第1初期化トランジスタM4を介して初期化電圧供給線INIに接続されるとともに、第2初期化トランジスタM6を介して容量選択トランジスタM3と保持キャパシタCstとの接続点に接続されている。さらに、駆動トランジスタM1のドレイン端子は、有機EL素子OLのアノード電極に接続されている。有機EL素子OLのカソード電極はローレベル電源線ELVSSに接続されている。また、書込補助キャパシタCwaは、第1端子を駆動トランジスタM1のゲート端子に接続され、第2端子を駆動トランジスタM1のソース端子に接続されている。書込制御トランジスタM2および第2初期化トランジスタM6のゲート端子は対応走査信号線Giに接続され、第1初期化トランジスタM4のゲート端子は後続走査信号線Gi+1に接続され、容量選択トランジスタM3のゲート端子は対応容量選択信号線CSWiに接続されている。
 図17は、図16に示した画素回路17aである第i行第j列の画素回路Pix(i,j)の初期化動作、データ書込動作、および発光動作における各信号線(対応発光制御線Ei、対応走査信号線Gi、後続走査信号線Gi+1、対応データ信号線Dj,対応容量選択信号線CSWi)の電圧、駆動トランジスタM1のゲート電圧Vg、保持キャパシタCstと容量選択トランジスタM3との接続点の電圧(保持容量電圧)Vstの変化を示している。図17において、時刻t4~t6の期間は、i番目の走査信号線Giの選択期間すなわち第i走査選択期間であってi行目の画素回路Pix(i,1)~Pix(i,m)の初期化期間Tiniおよびデータ書込期間Twに相当する。時刻t5~t8の期間は、i+1番目の走査信号線(後続走査信号線)Gi+1の選択期間すなわち第i+1走査選択期間である。データ書込期間Tw(t4~t6)の直前の時刻t3から後続走査信号線Gi+1の終了時刻t8までがi行目の画素回路Pix(i,1)~Pix(i,m)の非発光期間であり、時刻t8から次のフレーム期間におけるデータ書込期間の直前までが発光期間である。
 図16に示すように本実施形態では、トランジスタM1~M6がPチャネル型であることから、発光制御線Ei、走査信号線Gi、および、容量選択信号線CSWiの信号は、いずれも負論理であり、駆動トランジスタM1のゲート電圧Vgはデータ書込期間Tw(t4~t6)において低下する。この点を考慮して図17を図7と比較すればわかるように、本実施形態における画素回路17aは、上記第1の実施形態における第3構成例による画素回路15cと実質的に同様に動作する。したがって、本実施形態によれば、上記第1の実施形態において第3構成例による画素回路15cを使用した場合と同様の効果が得られる。なお本構成例では、第1初期化トランジスタM4および第2初期化トランジスタM6は、初期化期間Tiniに保持キャパシタCstを放電させて初期化する初期化回路を構成する。ここで、第2初期化トランジスタM6は、保持キャパシタCstを放電させる保持キャパシタ放電スイッチング素子として機能する(このことは、後述の図18~20に示す変形例においても同様である)
<3.1 第1変形例>
 本実施形態における画素回路の構成は、図16に示す構成に限定されず、種々の変形が可能である。例えば、図16に示す画素回路17aに代えて、図18に示す画素回路(以下「第1変形例による画素回路」という)17bを使用してもよい。図16に示す画素回路17aでは、発光制御トランジスタM5が駆動トランジスタM1とハイレベル電源線ELVDDとの間に接続されていたが、この第1変形例による画素回路17bでは、図18に示すように、発光制御トランジスタM5が駆動トランジスタM1と有機EL素子OLとの間に接続されている。また、この画素回路17bには、第1初期化トランジスタM4が含まれず、初期化電圧供給線INIは不要である。図16の画素回路17aに代えてこのような本変形例による画素回路17bを使用した場合においても、上記第2実施形態と同様の効果が得られる。なお本構成例では、第2初期化トランジスタM6は、初期化期間Tiniに保持キャパシタCstを放電させて初期化する初期化回路を構成する。このことは、後述の図19および図20にそれぞれ示す第2および第3変形例による画素回路17c,17dにおいても同様である。
<3.2 第2変形例>
 図19は、本実施形態における画素回路17aの第2変形例を示す回路図である。本変形例による画素回路17cでは、図16の画素回路17aと同様、発光制御トランジスタM5が駆動トランジスタM1とハイレベル電源線ELVDDとの間に接続されているが、書込補助キャパシタCwaおよび保持キャパシタCstの高電圧側の端子が直接にハイレベル電源線ELVDDに接続されており、この点で図16の画素回路17aと異なる。また、この画素回路17cには、第1初期化トランジスタM4が含まれず、初期化電圧供給線INIは不要である。図16の画素回路17aに代えてこのような本変形例による画素回路17cを使用した場合においても、上記第2実施形態と同様の効果が得られる。
<3.3 第3変形例>
 図20は、本実施形態における画素回路17aの第3変形例を示す回路図であり、図21は、図20に示した本変形例による画素回路17dである第i行第j列の画素回路Pix(i,j)の初期化動作、データ書込動作、および発光動作における各信号線(対応発光制御線Ei、対応走査信号線Gi、対応データ信号線Dj,対応容量選択信号線CSWi)の電圧、駆動トランジスタM1のゲート電圧Vg、保持キャパシタCstと容量選択トランジスタM3との接続点の電圧(保持容量電圧)Vstの変化を示している。
 図20に示すように、本変形例による画素回路17dは、第1初期化トランジスタM4が含まれず、初期化電圧供給線INIが不要である点を除き、本実施形態における図16の画素回路17aと同様の構成を有している。一方、図21に示すように、この画素回路17dを使用する場合には、発光制御トランジスタM5がオフ状態である非発光期間が時刻t3から時刻t5までの期間であって、本変形例による第i行第j列の画素回路Pix(i,j)に書き込むべきデータ電圧Vdataが対応データ信号線Djに出力されるi番目の水平期間(t5~t6)では発光制御トランジスタM5がオン状態である。この点で本変形例による画素回路17dの動作は、本実施形態における画素回路17aの動作(図17)と相違する。しかし図21に示すように、駆動トランジスタM1のゲート電圧Vgは、図16の画素回路17aを使用する場合と実質的に同様に変化する。したがって、図16の画素回路17aに代えてこのような本変形例による画素回路17dを使用した場合においても、上記第2実施形態と同様の効果が得られる。
<3.4 他の構成例>
 図22は、本実施形態における画素回路の他の構成例を示す回路図であり、図23は、本実施形態における当該他の構成例による画素回路17eの動作を説明するための信号波形図である。
 図22に示すように本構成例による画素回路17eは、上記第1変形例(図18)と同様、有機EL素子OLの他に、書込補助キャパシタCwa、保持キャパシタCst、駆動トランジスタM1、書込制御トランジスタM2、発光制御トランジスタM5、および、初期化トランジスタM6を含んでいる。しかし本構成例では、書込補助キャパシタCwaと保持キャパシタCstとが互いに直列に接続されており、この点で本構成例は、書込補助キャパシタCwaと保持キャパシタCstとが並列に接続されている上記第1変形例(図18)と相違する。また、本構成例による画素回路17eには、容量選択トランジスタM3は含まれておらず、書込補助キャパシタCwaと保持キャパシタCstとの間での電荷再分配は行われない。また、本構成例による画素回路17eを使用する場合、容量選択信号線CSW1~CSWnは設けられないが、後述の初期化動作で使用される初期化信号を伝達するための初期化信号線CLRが表示部11に配設されている。
 具体的には、本構成例による画素回路17eでは、上記第1変形例(図18)と同様、駆動トランジスタM1のソース端子が直接にハイレベル電源線ELVDDに接続され、駆動トランジスタM1のドレイン端子が発光制御トランジスタM5を介して有機EL素子OLのアノード電極に接続されている。有機EL素子OLのカソード電極は、ローレベル電源線ELVSSに接続されている。駆動トランジスタM1のゲート端子は、上記第1変形例とは異なり、互いに直列に接続された書込補助キャパシタCwaおよび書込制御トランジスタM2を順に介して対応データ信号線Djに接続されるとともに、保持キャパシタCstを介して駆動トランジスタM1のソース端子に接続されている。これにより、書込補助キャパシタCwaと保持キャパシタCstが互いに直列に接続され、駆動トランジスタM1のゲート端子が書込補助キャパシタCwaと保持キャパシタCstとの接続点に接続される形態となっている。また駆動トランジスタM1のゲート端子は、初期化トランジスタM6を介してもそのソース端子に接続されていて、初期化トランジスタM6と保持キャパシタCsとが互いに並列に接続される形態となっている。書込制御トランジスタM2のゲート端子は対応走査信号線Giに接続され、発光制御トランジスタM5のゲート端子は対応発光制御線Eiに接続され、初期化トランジスタM6のゲート端子は初期化信号線CLRに接続されている。
 本構成例による画素回路17eを使用する表示装置における他の構成は、上記第1変形例17b等を使用した表示装置と実質的に同様であるので、同一または対応する部分には同一の参照符号を付して詳しい説明を省略する。なお、本構成例による画素回路17eを使用する表示装置では、走査信号線G1~Gnにつきシングルパルス駆動とダブルパルス駆動のいずれの駆動も可能であるが、以下ではダブルパルス駆動を行うものとして説明する。
 図23は、図22に示した本構成例による画素回路17eである第i行第j列の画素回路Pix(i,j)の初期化動作、データ書込動作、および発光動作における各信号線(対応発光制御線Ei、対応走査信号線Gi、対応データ信号線Dj、および、初期化信号線CLR)の電圧、駆動トランジスタM1のゲート電圧Vgの変化を示している。図23において、時刻t1~t2の期間が初期化期間Tiniであり、時刻t5~t7の期間すなわち対応走査信号線Giの選択期間(第i走査選択期間)がデータ書込期間Twである。また、対応走査信号線Giの選択期間の直前の時刻t4から当該選択期間の終了時刻t7までが非発光期間であり、その期間以外は、電源をオンした直後の(初期化期間Tiniを含む)所定期間を除き、発光期間である。
 図22に示すように本構成例では、トランジスタM1,M2,M5,M6がPチャネル型であることから、発光制御線Ei、走査信号線Gi、および、初期化信号線CLRの信号は、いずれも負論理であり、駆動トランジスタM1のゲート電圧Vgはデータ書込期間Tw(t5~t7)において低下する。この点を考慮して図23を図11と比較すればわかるように、本構成例による画素回路17eは、上記第1の実施形態における第5構成例による画素回路15e、すなわちNチャネル型トランジスタを用いて図10に示すように構成された画素回路15eと実質的に同様に動作する。したがって、上記第2の実施形態において本構成例による画素回路17eを使用する場合には、上記第1の実施形態において第5構成例による画素回路15eを使用した場合と同様の効果が得られる。なお本構成例では、第2初期化トランジスタM6は、初期化期間Tiniに保持キャパシタCstを放電させて初期化する初期化回路を構成する。ここで第2初期化トランジスタM6は、保持キャパシタCstを放電させる保持キャパシタ放電スイッチング素子として機能する。
<4.第4の実施形態>
 上記第1から第3の実施形態は、有機EL表示装置に関するものであったが、本発明は、これに限定されるものではなく、画素回路に設けられたキャパシタに保持される電圧によって表示輝度が制御される他の表示装置、例えば液晶表示装置にも適用可能である。以下、第4の実施形態としての液晶表示装置について説明する。
<4.1 全体構成>
 本実施形態に係る液晶表示装置も、図1に示した有機EL表示装置と同様、表示部11、表示制御回路20、データ側駆動回路30、走査側駆動回路40、および、電源回路50を備え、さらに、液晶パネルとしての表示部11の背面に光を照射するバックライトを備えている。ただし、データ側駆動回路30は、表示部11を交流駆動するように構成されており、走査側駆動回路40は、走査信号線駆動回路(ゲートドライバ)としてのみ機能し、発光制御回路(エミッションドライバ)としての機能は有していない。電源回路50は、表示部11に供給すべき後述の共通電圧Vcomと、データ側駆動回路30および走査側駆動回路40に供給すべき電源電圧(不図示)とを生成する。
 本実施形態における表示部11には、m本(mは2以上の整数)のデータ信号線D1~Dmと、これらに交差するn+1本(nは2以上の整数)の走査信号線G1~Gn+1とが配設されており、発光制御線や容量選択信号線等は設けられていない。また表示部11には、m本のデータ信号線D1~Dmおよびn本の走査信号線G1~Gnに沿ってマトリクス状に配置されたm×n個の画素回路が設けられており、各画素回路は、m本のデータ信号線D1~Dmのいずれか1つに対応するとともにn本の走査信号線G1~Gnのいずれか1つに対応する(以下、各画素回路を区別する場合には、i番目の走査信号線Giおよびj番目のデータ信号線Djに対応する画素回路を「第i行第j列の画素回路」ともいい、符号“Pix(i,j)”で示すものとする)。また表示部11には、全ての画素回路に共通電圧Vcomを供給するための共通電極線COMが配設されている。
 表示制御回路20は、表示すべき画像を表す画像データおよび画像表示のためのタイミング制御情報を含む入力信号Sinを表示装置の外部から受け取り、この入力信号Sinに基づきデータ側制御信号Scdおよび走査側制御信号Scsを生成し、データ側制御信号Scdをデータ側駆動回路30に、走査側制御信号Scsを走査側駆動回路40にそれぞれ出力する。
 データ側駆動回路30は、表示制御回路20からのデータ側制御信号Scdに基づきデータ信号線D1~Dmを駆動する。すなわちデータ側駆動回路30は、データ側制御信号Scdに基づき、表示すべき画像を表すm個のデータ信号D(1)~D(m)を並列に出力してデータ信号線D1~Dmにそれぞれ印加する。既述のように本実施形態は液晶表示装置に関するものであり交流駆動が行われる。以下では、データ信号D(1)~D(m)の極性がフレーム期間毎に極性が反転するとともに1水平期間毎にも反転する交流駆動方式が採用されるものとするが、他の交流駆動方式を採用してもよい。
 走査側駆動回路40は、表示制御回路20からの走査側制御信号Scsに基づき、走査信号線G1~Gn+1を駆動する。すなわち、走査側駆動回路40は、走査側制御信号Scsに基づき、各フレーム期間において走査信号線G1~Gn+1を順次に選択し、選択した走査信号線Gkに対してアクティブな信号(本実施形態ではハイレベル電圧)を印加し、かつ、非選択の走査信号線には非アクティブな信号(本実施形態ではローレベル電圧)を印加する。なお本実施形態においても、上記第1の実施形態と同様、走査信号線G1~Gn+1につきダブルパルス駆動とシングルパルス駆動のいずれもが可能である。ただし、上記交流駆動のためにデータ信号D(1)~D(m)の極性が所定期間毎に反転するので、ダブルパルス駆動を行う場合には、走査側駆動回路40は、走査信号線G1~Gnに印加すべき走査信号G(1)~G(n)にこの極性反転に適合した駆動パルスが含まれるように当該走査信号G(1)~G(n)を生成する。
 以上のようにして、データ側駆動回路30によりデータ信号線D1~Dmが駆動されるとともに走査側駆動回路40により走査信号線G1~Gn+1が駆動され、表示部11の背面にバックライト(不図示)から光が照射されることにより、外部からの入力信号Sinにおける画像データの表す画像が表示部11に表示される。
<4.2 画素回路の構成例>
 以下、本実施形態における画素回路の構成例につき説明する。
<4.2.1 第1構成例>
 図24は、本実施形態における画素回路の第1構成例を示す回路図であり、図25は、この第1構成例による画素回路18aの動作を説明するための信号波形図である。
 図24は、i番目の走査信号線Giおよびj番目のデータ信号線Djに対応する本構成例による画素回路18aである第i行第j列の画素回路Pix(i,j)の構成を示している(1≦i≦n、1≦j≦m)。この画素回路18aは、表示素子としての液晶素子(画素液晶)に対応する液晶容量Clcと、書込補助キャパシタCwaと、書込制御トランジスタM2と、容量選択トランジスタM3と、初期化トランジスタM4と含んでいる。書込補助キャパシタCwaの容量値は、液晶容量Clcの容量値よりも小さい。
 ここで、液晶容量Clcは、画素電極Epとこれと液晶層を挟んで対向する共通電極線COMとにより構成されており、上記第1から第3の実施形態における画素回路の保持キャパシタCstに相当する。画素回路18aに含まれる上記トランジスタM2~M4はスイッチング素子として機能する。なお、画素回路18aに含まれるトランジスタは全てNチャネル型であるが、それらの一部または全部がPチャネル型であってもよい。これらの点は他の構成例(図26)においても同様である。
 図24に示すように、画素回路18aには、それに対応する走査信号線(対応走査信号線)Gi、対応走査信号線Giの直後の走査信号線(後続走査信号線)Gi+1、それに対応するデータ信号線(対応データ信号線)Dj、および、共通電極線COMが接続されている。この画素回路18aでは、液晶容量Clcを構成する画素電極Epは、容量選択トランジスタM3を介して書込補助キャパシタCwaの第1端子に接続されるとともに、初期化トランジスタM4を介して共通電極線COMに接続されている。書込補助キャパシタCwaの当該第1端子は、書込制御トランジスタM2を介して対応データ信号線Djに接続されており、書込補助キャパシタCwaの第2端子は、共通電極線COMに接続されている。書込制御トランジスタM2および容量選択トランジスタM3のゲート端子は対応走査信号線Giに接続され、容量選択トランジスタM3のゲート端子は後続走査信号線Gi+1に接続されている。
 図25は、図24に示した画素回路18aである第i行第j列の画素回路Pix(i,j)の初期化動作、データ書込動作、および電荷再配分動作における各信号線(対応走査信号線Gi、後続走査信号線Gi+1、対応データ信号線Dj)の電圧、書込補助キャパシタCwaの第1端子の電圧(以下「書込補助容量電圧」という)Vwa、液晶容量Clcの一端としての画素電極Epの電圧Vpの変化を示している。図25に示すように、本構成例による画素回路18aを使用する場合、走査信号線G1~Gnにつきシングルパルス駆動が行われ、対応走査信号線Giの選択期間すなわち第i走査選択期間(t4~t5)は、書込補助キャパシタCwaを対応データ信号線Djの電圧すなわちデータ電圧Vw1で充電するデータ書込期間Twに相当し、液晶容量Clcを初期化する初期化期間Tiniにも相当する。後続走査信号線Gi+1の選択期間すなわち第i+1走査選択期間(t7~t8)は、書込補助キャパシタCwaと保持キャパシタCstとの間で電荷の再分配を行う電荷再分配期間Tcrdに相当する。
 本構成例による第i行第j列の画素回路Pix(i,j)では、対応走査信号線Giの選択期間の開始時刻t4において、書込制御トランジスタM2がオン状態に変化し容量選択トランジスタM3がオフ状態に維持されることで、書込補助キャパシタCwaのみが対応データ信号線Djの電圧(データ電圧)Vw1をその第1端子に与えられて充電され、当該選択期間の終了時刻t5において、当該第1端子の電圧すなわち書込補助容量電圧Vwaが当該データ電圧Vw1に等しくなる。また、対応走査信号線Giの選択期間の開始時刻t4において、初期化トランジスタM4がオン状態に変化することで、液晶容量Clcが放電されてその保持電圧がゼロに初期化され、画素電極Epの電圧(以下「画素電圧」という)Vpが共通電圧Vcomに等しくなる。このように本構成例では、第1初期化トランジスタM4は、初期化期間Tiniに保持キャパシタとしての液晶容量Clcを放電させて初期化する初期化回路を構成する。すなわち第1初期化トランジスタM4は、保持キャパシタとしての液晶容量Clcを放電させる保持キャパシタ放電スイッチング素子として機能する。その後、後続走査信号線Gi+1の選択期間の開始時刻t7において、容量選択トランジスタM3のみがオン状態となることで、書込補助キャパシタCwaと液晶容量Clcとが並列に接続され、これにより書込補助キャパシタCwaと液晶容量Clcとの間で電荷の再分配が行われる。その結果、後続走査信号線Gi+1の選択期間の終了時刻t8において、画素電圧Vpおよび書込補助容量電圧Vwaは、次式で示される電圧Vw2となる。
  Vw2={Cwa/(Cwa+Clc)}(Vw1-Vcom)+Vcom …(14)
このとき、液晶容量Clcの両端間に印加される電圧すなわち液晶印加電圧Vclcは、次式で示される。
  Vclc=Vw2-Vcom
    ={Cwa/(Cwa+Clc)}(Vw1-Vcom)  …(15)
この液晶印加電圧Vclcは、次のフレーム期間において当該画素回路Pix(i,j)に対するデータ書込動作が行われるまで液晶容量Clcに保持される。
 上記のような本構成例による画素回路18aを使用した液晶表示装置によれば、データ書込期間Tw(t4~t5)では、液晶容量Clcよりも容量値の小さい書込補助キャパシタCwaにデータ電圧Vw1が書き込まれ、その後の電荷再分配期間Tcrd(t7~t8)において書込補助キャパシタCwaと液晶容量Clcとの間での電荷再分配により、表示のために液晶容量Clcに保持される電圧(液晶印加電圧)Vclcが決定される。このため、従来に比べ、データ書込のためのデータ信号線Djの電圧すなわちデータ電圧Vdata=Vw1が大きくなるが(上記式(14)参照)、データ書込期間Twにデータ電圧Vdata=Vw1で充電される書込補助キャパシタCwaの容量値は小さいので、充電不足による表示品質の低下を防止することができる。
<4.2.2 第2構成例>
 図26は、本実施形態における画素回路の第2構成例を示す回路図であり、図27は、この第2構成例による画素回路18bの動作を説明するための信号波形図である。
 図26は、本実施形態におけるi番目の走査信号線Giおよびj番目のデータ信号線Djに対応する本構成例による画素回路18bである第i行第j列の画素回路Pix(i,j)の構成を示している(1≦i≦n、1≦j≦m)。この画素回路18bは、上記第1構成例と同様(図24)、表示素子としての液晶素子(画素液晶)に対応する液晶容量Clcと、書込補助キャパシタCwaと、書込制御トランジスタM2と、初期化トランジスタM4と含んでいるが、上記第1構成例と異なり容量選択トランジスタM3を含まない。
 図26に示すように、画素回路18bには、それに対応する走査信号線(対応走査信号線)Gi、それに対応するデータ信号線(対応データ信号線)Dj、および、共通電極線COMが接続されているが、後続走査信号線Gi+1は接続されていない。また、この画素回路18bを使用する液晶表示装置では、上記第1構成例による画素回路18aを使用する場合と異なり、後述の初期化動作で使用される初期化信号を伝達するための初期化信号線CLRが表示部11に配設されており、この初期化信号線CLRも画素回路18bに接続されている。この画素回路18bでは、液晶容量Clcを構成する画素電極Epは、書込補助キャパシタCwaを介して書込制御トランジスタM2の一方の導通端子としてのドレイン端子に接続されるとともに、初期化トランジスタM4を介して共通電極線COMに接続されている。書込制御トランジスタM2の他方の導通端子としてのソース端子は対応データ信号線Djに接続されている。書込制御トランジスタM2のゲート端子は対応走査信号線Giに接続され、初期化トランジスタM4のゲート端子は初期化信号線CLRに接続されている。
 図27は、図26に示した画素回路18bである第i行第j列の画素回路Pix(i,j)の初期化動作およびデータ書込動作における各信号線(対応走査信号線Gi、対応データ信号線Dj)の電圧、書込制御トランジスタと書込補助キャパシタCwaとの接続点の電圧(以下これも「書込補助容量電圧」という)Vwa、液晶容量Clcにおける画素電極Epの電圧Vpの変化を示している。本構成例による画素回路18bを使用する場合、走査信号線G1~Gnにつきシングルパルス駆動とダブルパルス駆動のいずれも可能であるが、図27は、シングルパルス駆動が行われる場合の動作例を示している。
 図27に示すように、本構成例による画素回路18bを使用する液晶表示装置では、初期化動作は当該表示装置の電源をオンした直後にのみ行われ、その後、電源をオフするまで初期化動作は行われない。当該表示装置における初期化動作では、電源をオンした直後の時刻t1から時刻t2までの間(初期化期間Tini)、初期化信号線CLRおよび全ての走査信号線G1~Gnの電圧がハイレベルとされ、全てのデータ信号線D1~Dmは、共通電圧Vcomに等しい電圧とされる。これにより、各画素回路18bにおいて、初期化期間Tini(t1~t2)の間、書込制御トランジスタM2および初期化トランジスタM4がオン状態となることで、書込補助キャパシタCwaおよび液晶容量Clcが放電され、書込補助キャパシタCwaおよび液晶容量Clcにおける保持電圧がゼロに初期化される。このように本構成例では、第1初期化トランジスタM4は書込制御トランジスタM2とともに、初期化期間Tiniに保持キャパシタとしての液晶容量Clc等を放電させて初期化する初期化回路を構成する。ここで第1初期化トランジスタM4は、保持キャパシタとしての液晶容量Clcを放電させる保持キャパシタ放電スイッチング素子として機能する。その後、時刻t3において、走査信号線G1~Gnおよびデータ信号線D1の駆動が開始される(表示動作の開始)。なお、初期化期間Tini(t1~t2)の後、電源がオフされるまで、初期化信号線CLRの電圧がローレベルに維持されることで、初期化トランジスタM4がオフ状態に維持される。
 図26に示す本構成例による第i行第j列の画素回路Pix(i,j)では、対応走査信号線Giの選択期間(t4~T5)がデータ書込期間Twに相当する。対応走査信号線Giの選択期間の開始時刻t4において、当該画素回路Pix(i,j)内のトランジスタM2,M4のうち書込制御トランジスタM2のみがオン状態となる。これにより、対応データ信号線Djの電圧がデータ電圧Vdata=Vw1として、書込制御トランジスタM2を介して、互いに直列に接続された書込補助キャパシタCwaおよび液晶容量Clcからなる合成容量(以下、これも「直列合成容量」といい、符号“Cser”で示すものとする)としての小容量キャパシタの一端に印加される。これにより、対応走査信号線Giの選択期間(t4~T5)の間、直列合成容量Cserが充電され、当該選択期間の終了時刻t5において、書込補助容量電圧Vwaはデータ電圧Vw1に等しくなり、画素電圧Vpは、次式(16)で示される電圧Vw2となる。なお、直列合成容量Cserの容量値は、液晶容量Clcの容量値よりも小さい。
  Vw2={Cwa/(Cwa+Clc)}(Vw1-Vcom)+Vcom …(16)
このとき、液晶容量Clcの両端間に印加される電圧すなわち液晶印加電圧Vclcは、次式で示される。
  Vclc=Vw2-Vcom
    ={Cwa/(Cwa+Clc)}(Vw1-Vcom)  …(17)
この液晶印加電圧Vclcは、次のフレーム期間において当該画素回路Pix(i,j)に対するデータ書込動作が行われるまで液晶容量Clcに保持される。
 上記のような本構成例による画素回路18bを使用した液晶表示装置によれば、データ書込期間Twでは、液晶容量Clcよりも容量値の小さい直列合成容量Cserにデータ電圧Vdata=Vw1が書き込まれ、直列合成容量Cserに保持される電圧に対する書込補助キャパシタCwaと保持キャパシタCstによる容量分圧により、液晶印加電圧Vclcが決定される。したがって、本構成例による画素回路18bを使用する場合においても、従来に比べ、データ書込のためのデータ信号線Djの電圧Vdataが大きくなるが(上記式(16)参照)、データ書込期間Twにデータ電圧Vdata=Vw1で充電される直列合成容量Cserの容量値は小さいので、充電不足による表示品質の低下を防止することができる。
<5.変形例>
 本発明は上記実施形態に限定されるものではなく、本発明の範囲を逸脱しない限りにおいて更に種々の変形を施すことができる。
 例えば、上記第1から第3の実施形態における画素回路において、書込補助キャパシタCwaと保持キャパシタCstと駆動トランジスタM1との接続に関する構成(以下、単に「接続構成」という)は、上記で説明した構成に限定されるものではなく、データ書込期間Twにおいて保持キャパシタCstよりも容量値の小さいキャパシタがデータ電圧Vdataで充電され、当該小さいキャパシタへの充電に基づき保持キャパシタCstに保持される電圧(駆動トランジスタM1におけるゲート・ソース間電圧Vgs)が決定されるような接続構成であればよい。
 また、上記第1の実施形態における第1から第3構成例による画素回路15a~15c等では、各画素回路Pix(i,j)(i=1~n,j=1~m)に対応走査信号線Giと後続走査信号線Gi+1が接続されているが、これに代えて、これらの走査信号線Gi,Gi+1のうち対応走査信号線Giのみを各画素回路Pix(i,j)に接続するようにしてもよい。データ書込期間Tw後に書込補助キャパシタCwaと保持キャパシタCstの間で電荷が再配分された後におけるゲート電圧Vgの安定性の観点からは前者が好ましいが、ノイズ等によるゲート電圧Vgの不安定化が問題にならない場合には後者の採用により画素回路Pix(i,j)の構成を簡略化できる。
 なお上記では、有機EL表示装置および液晶表示装置を例に挙げて実施形態やその変形例を説明したが、本発明は、これらに限定されるものではなく、画素回路内のキャパシタに保持される電圧によって表示輝度が制御される表示装置であれば他の表示装置にも適用可能である。例えば、表示素子として、有機EL素子すなわち有機発光ダイオード(Organic Light Emitting Diode(OLED))の他、無機発光ダイオードや量子ドット発光ダイオード(Quantum dot Light Emitting Diode(QLED))等を使用した表示装置にも本発明を適用することができる。
10a,10b …有機EL表示装置
11      …表示部
15      …基本画素回路
15a~15e …(有機EL表示装置の)画素回路
16a~16d …(有機EL表示装置の)画素回路
17a~17d …(有機EL表示装置の)画素回路
18a,18b …(液晶表示装置の)画素回路
Pix(j,i)…画素回路(i=1~n、j=1~m)
20   …表示制御回路
30   …データ側駆動回路(データ信号線駆動回路)
40   …走査側駆動回路(走査信号線駆動/発光制御回路)
Gi   …走査信号線(i=1~n)
Ei   …発光制御線(i=1~n)
CSWi …容量選択信号線(i=1~n)
Dj   …データ信号線(j=1~m)
ELVDD…ハイレベル電源線(第1電源線)、ハイレベル電源電圧
ELVSS…ローレベル電源線(第2電源線)、ローレベル電源電圧
INI  …初期化電圧供給線
COM  …共通電極線
OL  …有機EL素子(表示素子)
Cst …保持キャパシタ
Cwa …書込補助キャパシタ
M1  …駆動トランジスタ
M2  …書込制御トランジスタ(書込制御スイッチング素子)
M3  …容量選択トランジスタ(容量選択スイッチング素子)
M4  …第1初期化トランジスタ(第1初期化スイッチング素子)
M5  …発光制御トランジスタ(発光制御スイッチング素子)
M6  …第2初期化トランジスタ(第2初期化スイッチング素子)
M8  …モニタ制御トランジスタ(モニタ制御スイッチング素子)
Vini…初期化電圧
Vcom…共通電圧
Va  …アノード電圧
Vg  …ゲート電圧
Vst …保持容量電圧
Vwa …書込補助容量電圧
Tini…初期化期間
Tw  …データ書込期間

Claims (27)

  1.  複数のデータ信号線と、前記複数のデータ信号線に交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に沿って配置された複数の画素回路とを有する表示装置であって、
     前記複数のデータ信号線を駆動するデータ信号線駆動回路と、
     前記複数の走査信号線を選択的に駆動する走査信号線駆動回路と
    を備え、
     各画素回路は、
      前記複数のデータ信号線のいずれか1つに対応するとともに前記複数の走査信号線のいずれか1つに対応し、
      保持キャパシタと、前記保持キャパシタに保持される保持電圧によって輝度が制御される表示素子とを含み、
      対応する走査信号線が選択されているときに前記保持キャパシタよりも容量値が小さい小容量キャパシタに対して対応するデータ信号線の電圧が与えられることで当該小容量キャパシタに書込電圧が保持され、前記保持キャパシタの保持電圧が前記小容量キャパシタの前記書込電圧に基づき決定されるように構成されている、表示装置。
  2.  前記複数の走査信号線にそれぞれ対応する容量選択信号線と、
     前記複数の容量選択信号線を駆動する容量選択制御回路と
    を更に備え、
     各画素回路は、
      対応する走査信号線に接続された制御端子を有する書込制御スイッチング素子と、
      前記小容量キャパシタとしての書込補助キャパシタと、
      対応する走査信号線に対応する容量選択信号線に接続された制御端子を有し、前記保持キャパシタに直列に接続された容量選択スイッチング素子と、
      前記容量選択スイッチング素子がオン状態となる前に前記保持キャパシタを放電させて初期化するための初期化回路とを更に含み、
     各画素回路において、
      互いに直列に接続された前記保持キャパシタおよび前記容量選択スイッチング素子と前記書込補助キャパシタとが並列に接続されており、
      前記書込補助キャパシタは、第1端子を前記書込制御スイッチング素子を介して対応するデータ信号線に接続され、第2端子を固定電位線に接続されている、請求項1に記載の表示装置。
  3.  前記容量選択スイッチング素子は、第1導通端子を前記書込補助キャパシタの前記第1端子に接続され、第2導通端子を前記保持キャパシタを介して前記書込補助キャパシタの前記第2端子に接続されている、請求項2に記載の表示装置。
  4.  前記表示素子は、電流によって駆動されるように構成されており、
     各画素回路は、前記保持キャパシタに保持される電圧に応じて前記表示素子の駆動電流を制御する駆動トランジスタを更に含み、
     前記駆動トランジスタの制御端子は、互いに直列に接続された前記保持キャパシタおよび前記容量選択スイッチング素子を介して固定電位線に接続されるとともに、前記書込補助キャパシタを介して前記固定電位線に接続されている、請求項2に記載の表示装置。
  5.  第1および第2電源線を更に備え、
     前記駆動トランジスタは、第1導通端子を前記第1電源線に接続され、第2導通端子を前記表示素子を介して前記第2電源線に接続され、前記制御端子を、互いに直列に接続された前記保持キャパシタおよび前記容量選択スイッチング素子を介して前記第2導通端子に接続されている、請求項4に記載の表示装置。
  6.  前記容量選択制御回路は、前記書込制御スイッチング素子がオン状態である間は前記容量選択スイッチング素子がオフ状態であるように前記複数の容量選択信号線を駆動する、請求項2から5のいずれか1項に記載の表示装置。
  7.  前記初期化回路は、前記対応する走査信号線に接続された制御端子を有し前記保持キャパシタに並列に接続された保持キャパシタ放電スイッチング素子を含む、請求項2から6のいずれか1項に記載の表示装置。
  8.  初期化電圧供給線を更に備え、
     前記初期化回路は、前記書込制御スイッチング素子がオン状態からオフ状態に変化するときにオン状態である第1初期化スイッチング素子を含み、
     前記駆動トランジスタの前記第2導通端子は、前記第1初期化スイッチング素子を介して前記初期化電圧供給線に接続されている、請求項5に記載の表示装置。
  9.  前記初期化回路は、前記対応する走査信号線に接続された制御端子を有する第2初期化スイッチング素子を更に含み、
     前記保持キャパシタの第1端子は、前記容量選択スイッチング素子を介して前記駆動トランジスタの制御端子に接続されるとともに、前記第2初期化スイッチング素子を介して前記初期化電圧供給線に接続されており、
     前記保持キャパシタの第2端子は、前記駆動トランジスタの前記第2導通端子に接続されている、請求項8に記載の表示装置。
  10.  前記初期化回路は、前記対応する走査信号線に接続された制御端子を有し前記保持キャパシタに並列に接続された第2初期化スイッチング素子を更に含む、請求項8に記載の表示装置。
  11.  前記走査信号線駆動回路は、前記複数の走査信号線の走査順において互いに隣接する2つの走査信号線のうち一方の走査信号線の選択期間と他方の走査信号線の選択期間とが部分的に重複するように前記複数の走査信号線を駆動し、
     前記第1初期化スイッチング素子の制御端子は、前記対応する走査信号線が選択される直後に選択される走査信号線である後続走査信号線に接続されており、
     前記容量選択制御回路は、前記対応する走査信号線が非選択状態に変化した後であって前記後続走査信号線が非選択状態に変化する前に前記対応する容量選択信号線の信号がアクティブ状態に変化するように前記複数の容量選択信号線を駆動する、請求項8から10のいずれか1項に記載の表示装置。
  12.  第1および第2電源線を更に備え、
     前記駆動トランジスタは、第1導通端子を前記第1電源線に接続され、第2導通端子を前記表示素子を介して前記第2電源線に接続され、前記制御端子を、互いに直列に接続された前記保持キャパシタおよび前記容量選択スイッチング素子を介して前記第1導通端子に接続されている、請求項4に記載の表示装置。
  13.  第1および第2電源線を更に備え、
     前記駆動トランジスタは、第1導通端子を前記第1電源線に接続され、第2導通端子を前記表示素子を介して前記第2電源線に接続されており、
     前記固定電位線は前記第1電源線である、請求項4に記載の表示装置。
  14.  前記容量選択制御回路は、前記書込制御スイッチング素子がオン状態である間は前記容量選択スイッチング素子がオフ状態であるように前記複数の容量選択信号線を駆動する、請求項13に記載の表示装置。
  15.  前記初期化回路は、前記対応する走査信号線に接続された制御端子を有し前記保持キャパシタに並列に接続された保持キャパシタ放電スイッチング素子を含む、請求項13に記載の表示装置。
  16.  前記走査信号線駆動回路は、前記複数の走査信号線の走査順において互いに隣接する2つの走査信号線のうち一方の走査信号線の選択期間と他方の走査信号線の選択期間とが部分的に重複するように前記複数の走査信号線を駆動し、
     前記容量選択制御回路は、前記対応する走査信号線が非選択状態に変化した後であって、前記対応する走査信号線が選択される直後に選択される走査信号線である後続走査信号線が非選択状態に変化する前に、前記対応する容量選択信号線の信号がアクティブ状態に変化するように、前記複数の容量選択信号線を駆動する、請求項4から10および請求項12~15のいずれか1項に記載の表示装置。
  17.  前記複数の走査信号線にそれぞれ対応する複数の発光制御線と、
     前記複数の発光制御線を駆動する発光制御回路と
    を更に備え、
     各画素回路は、前記表示素子と直列に接続された発光制御スイッチング素子を更に含み、
     各発光制御線は、対応する走査信号線に対応する画素回路における前記発光制御スイッチング素子の制御端子に接続されており、
     前記発光制御回路は、各発光制御線につき前記後続走査信号線が非選択状に変化する時点以降に当該発光制御線の信号がアクティブ状態となるように前記複数の発光制御線を駆動する、請求項11または16に記載の表示装置。
  18.  前記複数の走査信号線にそれぞれ対応する複数の発光制御線と、
     前記複数の発光制御線を駆動する発光制御回路と
    を更に備え、
     各画素回路は、前記表示素子と直列に接続された発光制御スイッチング素子を更に含み、
     各発光制御線は、対応する走査信号線に対応する画素回路における前記発光制御スイッチング素子の制御端子に接続されており、
     前記発光制御回路は、各発光制御線につき前記対応する走査信号線が非選択状に変化する時点以降に当該発光制御線の信号がアクティブ状態となるように前記複数の発光制御線を駆動する、請求項4から10および請求項12から15のいずれか1項に記載の表示装置。
  19.  前記複数の発光制御線は、前記複数の容量選択信号線として兼用されており、
     各発光制御線は、前記対応する走査信号線に対応する画素回路における前記容量選択スイッチング素子の前記制御端子にも接続されており、
     前記発光制御回路は、前記容量選択制御回路として兼用されている、請求項17または18に記載の表示装置。
  20.  初期化回路を更に備え、
     各画素回路は、
      対応する走査信号線に接続された制御端子を有する書込制御スイッチング素子と、
      前記保持キャパシタと直列に接続された書込補助キャパシタとを更に含み、
     前記初期化回路は、当該表示装置の電源がオンされたときに所定の初期化期間において前記保持キャパシタおよび前記書込補助キャパシタを放電させて初期化し、
     前記小容量キャパシタは、互いに直列に接続された前記書込補助キャパシタおよび前記保持キャパシタにより構成されており、
     各画素回路において、前記小容量キャパシタは、第1端子を前記書込制御スイッチング素子を介して対応するデータ信号線に接続され、第2端子を固定電位線に接続されている、請求項1に記載の表示装置。
  21.  前記初期化回路は、前記保持キャパシタに並列に接続されていて前記初期化期間においてオン状態となる保持キャパシタ放電スイッチング素子を含み、
     前記データ信号線駆動回路は、前記初期化期間において前記複数のデータ信号線に所定の初期化電圧を印加し、
     前記走査信号線駆動回路は、前記初期化期間において前記複数の走査信号線を選択状態とする、請求項20に記載の表示装置。
  22.  第1および第2電源線を更に備え、
     前記表示素子は、電流によって駆動されるように構成されており、
     各画素回路は、前記保持キャパシタに保持される電圧に応じて前記表示素子の駆動電流を制御する駆動トランジスタを更に含み、
     前記駆動トランジスタは、第1導通端子を前記第1電源線に接続され、第2導通端子を前記表示素子を介して前記第2電源線に接続され、制御端子を、前記書込補助キャパシタと前記保持キャパシタとの接続点に接続され、かつ、前記保持キャパシタを介して前記駆動トランジスタの前記第1導通端子または前記第2導通端子に接続されている、請求項20に記載の表示装置。
  23.  所定の初期化電圧を供給するための初期化電圧供給線を更に備え、
     前記駆動トランジスタは、前記制御端子を前記保持キャパシタを介して前記駆動トランジスタの前記第2導通端子に接続され、
     前記初期化回路は、各画素回路において、
      対応する走査信号線に接続された制御端子を有する第1初期化スイッチング素子と、
      前記保持キャパシタに並列に接続されていて前記初期化期間においてオン状態となることで前記保持キャパシタを放電させる第2初期化スイッチング素子とを含み、
     前記駆動トランジスタの前記第2導通端子は、前記第1初期化スイッチング素子を介して前記初期化電圧供給線に接続されており、
     前記データ信号線駆動回路は、前記初期化期間において前記複数のデータ信号線に前記初期化電圧を印加し、
     前記走査信号線駆動回路は、前記初期化期間において前記複数の走査信号線を選択状態とする、請求項22に記載の表示装置。
  24.  前記駆動トランジスタは、前記制御端子を前記保持キャパシタを介して前記駆動トランジスタの前記第1導通端子に接続され、
     前記初期化回路は、前記保持キャパシタに並列に接続されていて前記初期化期間においてオン状態となることで前記保持キャパシタを放電させる保持キャパシタ放電スイッチング素子を含み、
     前記データ信号線駆動回路は、前記初期化期間において前記複数のデータ信号線に前記第1電源線の電圧を印加し、
     前記走査信号線駆動回路は、前記初期化期間において前記複数の走査信号線を選択状態とする、請求項22に記載の表示装置。
  25.  複数のデータ信号線と、前記複数のデータ信号線に交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に沿って配置された複数の画素回路とを有する表示装置の駆動方法であって、
     各画素回路は、
      前記複数のデータ信号線のいずれか1つに対応するとともに前記複数の走査信号線のいずれか1つに対応し、
      保持キャパシタと、前記保持キャパシタに保持される保持電圧によって輝度が制御される表示素子とを含み、
     前記駆動方法は、
      各画素回路において、対応する走査信号線が選択されているときに前記保持キャパシタよりも容量値が小さい小容量キャパシタに対して対応するデータ信号線の電圧を与えることで当該小容量キャパシタに書込電圧を保持させるデータ書込ステップと、
      前記小容量キャパシタの前記書込電圧に基づき前記保持キャパシタの保持電圧を決定する保持電圧決定ステップと
    を備える、駆動方法。
  26.  各画素回路は、前記小容量キャパシタとして書込補助キャパシタを更に含み、
     前記駆動方法は、各画素回路における前記保持キャパシタを放電させて初期化する初期化ステップを更に含み、
     前記データ書込ステップでは、各画素回路において、前記対応する走査信号線が選択されているときに前記書込補助キャパシタに前記対応するデータ信号線の電圧を与えることにより前記書込補助キャパシタが充電され、
     前記保持電圧決定ステップでは、前記初期化ステップにより前記保持キャパシタが初期化され、かつ、前記データ書込ステップにより前記書込補助キャパシタが充電された後に、前記保持キャパシタと前記書込補助キャパシタとが並列に接続されて前記保持キャパシタと前記書込補助キャパシタの間で電荷が再配分されることにより前記保持キャパシタの前記保持電圧が決定される、請求項25に記載の駆動方法。
  27.  各画素回路は、前記保持キャパシタと直列に接続された書込補助キャパシタを更に含み、
     前記小容量キャパシタは、互いに直列に接続された前記書込補助キャパシタおよび前記保持キャパシタにより構成されており、
     前記駆動方法は、前記表示装置の電源がオンされたときに所定の初期化期間において各画素回路における前記保持キャパシタおよび前記書込補助キャパシタを放電させて初期化する初期化ステップを更に備え、
     前記データ書込ステップでは、前記初期化期間後に各画素回路において、前記対応する走査信号線が選択されているときに前記小容量キャパシタに前記対応するデータ信号線の電圧を与えることにより前記小容量キャパシタが充電され、
     前記保持電圧決定ステップでは、前記データ書込ステップにより当該小容量キャパシタに保持される前記書込電圧が前記書込補助キャパシタと前記保持キャパシタとで容量分圧されることにより前記保持キャパシタにおける前記保持電圧が決定される、請求項25に記載の駆動方法。
PCT/JP2019/025105 2019-06-25 2019-06-25 表示装置およびその駆動方法 WO2020261367A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/025105 WO2020261367A1 (ja) 2019-06-25 2019-06-25 表示装置およびその駆動方法
US17/619,888 US20220358880A1 (en) 2019-06-25 2019-06-25 Display device and method for driving same
CN201980097894.1A CN114097022B (zh) 2019-06-25 2019-06-25 显示装置及其驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025105 WO2020261367A1 (ja) 2019-06-25 2019-06-25 表示装置およびその駆動方法

Publications (1)

Publication Number Publication Date
WO2020261367A1 true WO2020261367A1 (ja) 2020-12-30

Family

ID=74060823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025105 WO2020261367A1 (ja) 2019-06-25 2019-06-25 表示装置およびその駆動方法

Country Status (3)

Country Link
US (1) US20220358880A1 (ja)
CN (1) CN114097022B (ja)
WO (1) WO2020261367A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114399974A (zh) * 2021-09-28 2022-04-26 友达光电股份有限公司 显示面板及其操作方法
WO2022190716A1 (ja) * 2021-03-11 2022-09-15 ソニーセミコンダクタソリューションズ株式会社 表示装置及び制御方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240021341A (ko) * 2022-08-09 2024-02-19 삼성디스플레이 주식회사 표시 패널, 이를 포함하는 표시 장치 및 이를 포함하는 전자 장치
CN115602108B (zh) * 2022-11-28 2023-03-24 惠科股份有限公司 像素驱动电路和显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200063A (ja) * 1998-11-06 2000-07-18 Canon Inc 表示装置
JP2005309151A (ja) * 2004-04-22 2005-11-04 Seiko Epson Corp 電子回路、その駆動方法、電気光学装置および電子機器
JP2007148216A (ja) * 2005-11-30 2007-06-14 Seiko Epson Corp 発光装置および電子機器
JP2012078816A (ja) * 2010-09-10 2012-04-19 Semiconductor Energy Lab Co Ltd El表示装置、el表示装置の駆動方法及び電子機器
JP2014219440A (ja) * 2013-05-01 2014-11-20 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 映像表示装置及び画素回路の制御方法
JP2018105917A (ja) * 2016-12-22 2018-07-05 株式会社Joled 表示パネルおよび表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286897A (ja) * 2007-05-16 2008-11-27 Sony Corp 表示装置、表示装置の駆動方法および電子機器
JP5797134B2 (ja) * 2012-03-13 2015-10-21 シャープ株式会社 表示装置およびその駆動方法
KR101528961B1 (ko) * 2012-08-30 2015-06-16 엘지디스플레이 주식회사 유기발광 표시장치 및 그 구동방법
CN112785982A (zh) * 2014-11-04 2021-05-11 索尼公司 显示装置
JP6052365B2 (ja) * 2015-10-02 2016-12-27 セイコーエプソン株式会社 電気光学装置および電子機器
KR20180004370A (ko) * 2016-07-01 2018-01-11 삼성디스플레이 주식회사 화소 및 스테이지 회로와 이를 가지는 유기전계발광 표시장치
WO2019016940A1 (ja) * 2017-07-21 2019-01-24 シャープ株式会社 表示装置およびその駆動方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200063A (ja) * 1998-11-06 2000-07-18 Canon Inc 表示装置
JP2005309151A (ja) * 2004-04-22 2005-11-04 Seiko Epson Corp 電子回路、その駆動方法、電気光学装置および電子機器
JP2007148216A (ja) * 2005-11-30 2007-06-14 Seiko Epson Corp 発光装置および電子機器
JP2012078816A (ja) * 2010-09-10 2012-04-19 Semiconductor Energy Lab Co Ltd El表示装置、el表示装置の駆動方法及び電子機器
JP2014219440A (ja) * 2013-05-01 2014-11-20 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 映像表示装置及び画素回路の制御方法
JP2018105917A (ja) * 2016-12-22 2018-07-05 株式会社Joled 表示パネルおよび表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190716A1 (ja) * 2021-03-11 2022-09-15 ソニーセミコンダクタソリューションズ株式会社 表示装置及び制御方法
CN114399974A (zh) * 2021-09-28 2022-04-26 友达光电股份有限公司 显示面板及其操作方法
CN114399974B (zh) * 2021-09-28 2023-12-12 友达光电股份有限公司 显示面板及其操作方法

Also Published As

Publication number Publication date
CN114097022B (zh) 2024-03-26
US20220358880A1 (en) 2022-11-10
CN114097022A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
US11398187B2 (en) Display device and method for driving same
WO2020261367A1 (ja) 表示装置およびその駆動方法
JP5172963B2 (ja) 表示装置およびその駆動方法
JP4657580B2 (ja) 表示装置及びその駆動方法
US8054298B2 (en) Image displaying apparatus and image displaying method
EP1591993A1 (en) Light-emitting display device
JP4786437B2 (ja) 画像表示装置の駆動方法
JP5023906B2 (ja) 表示装置及び表示装置の駆動方法
TWI537922B (zh) Display device
US11120741B2 (en) Display device and method for driving same
US11094254B2 (en) Display device and method for driving same
US11386840B2 (en) Display device and method for driving same
WO2014021159A1 (ja) 画素回路、それを備える表示装置、およびその表示装置の駆動方法
JP4400438B2 (ja) 発光駆動回路及びその駆動制御方法、並びに、表示装置及びその表示駆動方法
JP4400443B2 (ja) 発光駆動回路及びその駆動制御方法、並びに、表示装置及びその表示駆動方法
WO2019186763A1 (ja) 表示装置およびその駆動方法
JP3915907B2 (ja) 発光駆動回路及び表示装置並びにその駆動制御方法
US11308881B2 (en) Display device and method for driving same
JP2006138953A (ja) 表示装置およびその駆動方法
JP3988793B2 (ja) アクティブマトリクス型表示装置の駆動方法およびアクティブマトリクス型表示装置
JP2006177988A (ja) 発光駆動回路及びその駆動制御方法、並びに、表示装置及びその表示駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP