WO2020259616A1 - 电池包装置、电子设备及用于抑制电池包凝露的方法 - Google Patents

电池包装置、电子设备及用于抑制电池包凝露的方法 Download PDF

Info

Publication number
WO2020259616A1
WO2020259616A1 PCT/CN2020/098211 CN2020098211W WO2020259616A1 WO 2020259616 A1 WO2020259616 A1 WO 2020259616A1 CN 2020098211 W CN2020098211 W CN 2020098211W WO 2020259616 A1 WO2020259616 A1 WO 2020259616A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
box
sensor
temperature
humidity
Prior art date
Application number
PCT/CN2020/098211
Other languages
English (en)
French (fr)
Inventor
司淑坤
刘伟
秦学
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020259616A1 publication Critical patent/WO2020259616A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the field of energy power technology, and in particular, to a battery pack device, electronic equipment, and a method for suppressing condensation of the battery pack.
  • An embodiment of the present application provides the battery pack device, which can determine whether it is necessary to turn on the battery pack device according to the relationship between the temperature and humidity inside the battery pack device and the target value.
  • the dehumidification device to suppress condensation inside the battery pack device.
  • the application also provides a method and electronic device for suppressing condensation of the battery pack.
  • this application provides the battery pack device.
  • the battery pack device includes a battery pack box, a first sensor, the second sensor, a drying box, a forced ventilation component, and a controller.
  • the first sensor is used to detect the temperature and humidity inside the battery pack box.
  • the second sensor is used to detect the temperature and humidity outside the battery pack box.
  • the controller is coupled to the first sensor, the second sensor, and the forced ventilation component. The data detected by the first sensor and the second sensor can be transmitted to the controller.
  • the controller can control the start and stop of the forced ventilation component.
  • the forced ventilation member is a member that can exchange the gas inside the battery pack case with the gas outside the battery pack case.
  • the controller activates the forced ventilation component according to the measurement value of the first sensor greater than or equal to the second sensor, so that the gas inside the battery pack box is free
  • the forced ventilation component is discharged to the outside of the battery pack box, and the gas introduced from the outside of the battery pack box enters the inside of the battery pack box.
  • the controller stops the forced ventilation component according to the measurement value of the first sensor being smaller than the second sensor, and the gas inside and outside the battery pack box cannot be exchanged from the forced ventilation component .
  • the controller activates the forced ventilation component based on the detection value of the first sensor being greater than or equal to a preset value, so that the gas inside the battery pack box is discharged to the battery From the outside of the package box, the gas introduced from the outside of the battery package box enters the inside of the battery package box.
  • the controller stops the forced ventilation component when the first sensor is less than a preset value, and the gas inside and outside the battery pack box cannot be exchanged from the forced ventilation component.
  • the first sensor can be installed inside the battery pack case, and the second sensor can be installed outside the battery pack case.
  • the first sensor can also be partly located inside the battery pack case and partly located outside the battery pack case.
  • the second sensor can also be partly located outside the battery pack box and partly located inside the battery pack box.
  • the specific positions of the first sensor and the second sensor are not limited.
  • the first sensor or the second sensor is a temperature and humidity sensor that integrates temperature and humidity detection. That is, the temperature and humidity sensor can detect temperature as well as humidity.
  • the first sensor or the second sensor includes a humidity sensor for detecting temperature and a temperature sensor for detecting humidity. That is, in this embodiment, the sensor for detecting temperature and the sensor for detecting humidity are different sensors. In the embodiment of the present application, the types of the first sensor and the second sensor are not limited.
  • the battery pack case is provided with a first channel and a second channel spaced apart from each other.
  • the first channel communicates the inside and outside of the battery pack box.
  • the second channel communicates the inside and outside of the battery pack box.
  • the first channel and the second channel can exchange gas inside the battery pack box.
  • the first channel and the second channel can exchange the gas inside the battery pack box with the gas outside the battery pack box.
  • the gas inside the battery pack box can flow out of the battery pack box through the first channel.
  • the gas outside the battery pack case can also flow into the inside of the battery pack case through the first channel.
  • the drying box is installed in the first channel.
  • the drying box is used for drying gas.
  • the forced ventilation component is installed in the second passage. When the forced ventilation component is turned on, the forced ventilation component can cause the gas inside the battery pack box to be discharged from the second channel or the first channel to the outside of the battery pack box. The forced ventilation component can also cause the gas outside the battery pack box to flow into the battery pack box from the second channel.
  • the forced ventilation component is installed in the second passage.
  • the forced ventilation component is a component capable of exchanging the gas inside the battery pack case with the gas outside the battery pack case, for example, the forced ventilation component is a fan, and the forced ventilation component Also includes pump parts.
  • the forced ventilation component is a fan as an example.
  • the fan can be a unidirectional exhaust forced ventilation component, or a bidirectional exhaust forced ventilation component.
  • the type of fan is not strictly limited.
  • the controller is used for controlling the forced ventilation component according to the detection values of the first sensor and the second sensor.
  • the detection values of the first sensor and the second sensor can be transmitted to the controller.
  • the controller determines that there is a possibility of condensation in the battery pack box according to the detection values of the first sensor and the second sensor
  • the controller controls the forced
  • the opening of the ventilating component reduces the temperature and humidity difference between the inside and outside of the battery pack box, avoiding condensation inside the battery pack box, thereby improving the reliability of the battery pack device.
  • the controller determines that the temperature and humidity values detected by the first sensor are both greater than or equal to the temperature and humidity values detected by the second sensor, the humidity of the gas inside the battery pack box is greater than Or equal to the humidity of the air outside the battery pack box, the controller controls the opening of the forced ventilation component, exhausts the gas inside the battery pack box, and introduces the low humidity outside the battery pack box Gas to the inside of the battery pack box.
  • the humidity of the gas inside the battery pack case is greater than or equal to the humidity of the air outside the battery pack case, when the temperature inside the battery pack case decreases, there is condensation inside the battery pack case The risk of the phenomenon.
  • the forced ventilation component can be turned on to exhaust the humid air in the battery pack case and introduce a relatively dry The air enters the battery pack box to achieve the effect of dehumidification and effectively inhibit condensation.
  • the controller controls the opening of the forced ventilation component, which can not only reduce the temperature inside the battery pack box, but also reduce the temperature inside the battery pack box. Therefore, in the embodiment of the present application, the ventilating component can also function to cool the battery pack inside the battery pack box.
  • the battery pack device further includes a valve.
  • the valve is installed in the second passage.
  • the valve is coupled to the controller.
  • the controller controls the opening and closing of the valve.
  • the forced ventilation component is located on the side of the valve away from the inside of the battery pack box. That is, the valve is close to the inside of the battery pack box relative to the forced ventilation component. When the forced ventilation component is in the closed state, the valve is also in the closed state, so as to prevent the gas inside and outside the battery pack box from being exchanged through the second channel.
  • the valve when the forced ventilation component is in the closed state, if the humidity of the air outside the battery pack box is greater than the humidity of the air inside the battery pack box, the valve can avoid the The humid air outside the battery pack case enters the inside of the battery pack case through the forced ventilation component port, thereby ensuring the dryness of the gas inside the battery pack case.
  • the valve When the valve is in an open state, the gas inside the battery pack box and the gas outside are exchanged through the second channel.
  • valve is detachably installed in the second channel.
  • the forced ventilation component is detachably installed in the second passage.
  • valve and the forced ventilation component are both detachably connected to the second channel, which facilitates the replacement of the valve or the forced ventilation component when the valve or the forced ventilation component fails.
  • the ventilation component avoids the scenario where the entire battery pack device cannot be used due to the failure of the valve or the forced ventilation component. That is, the valve or the forced ventilation component is detachably connected to the second channel, which is beneficial to the subsequent maintenance of the battery pack device.
  • valve, the forced ventilation component, and the second channel can also be integrated.
  • the controller respectively controls the forced ventilation component and the valve. Specifically, in the embodiment of the present application, the controller simultaneously controls the opening of the valve and the forced ventilation component, or the valve is opened before the forced ventilation component is opened, so as to avoid the forced ventilation. The problem of idling of the air component, thereby improving the efficiency of the forced ventilation component.
  • the forced ventilation component includes an axial fan or a centrifugal fan.
  • the airflow direction of the axial flow fan or the centrifugal fan is from the inside of the battery pack box to the outside of the battery pack box.
  • the drying box includes a drying box main body, a protective cover, a breathable membrane, and a desiccant.
  • the main body of the drying box is installed in the first channel.
  • the main body of the drying box is a hollow structure with open ends.
  • the protective cover covers an opening of the main body of the drying box and is located on a side of the main body of the drying box facing the outside of the battery pack box.
  • the protective cover is provided with a plurality of ventilation holes.
  • the breathable film covers the other opening of the main body of the drying box.
  • the desiccant is contained in the main body of the drying box and is located between the breathable membrane and the protective cover.
  • a plurality of ventilation holes can make the gas outside the battery pack case exchange with the gas inside.
  • the gas-permeable membrane is used to isolate the liquid, prevent liquid from flowing into the battery pack box, and play a role of waterproof and breathable.
  • the breathable membrane is located on the side of the desiccant away from the protective cover, which can prevent the moisture in the desiccant from flowing into the battery pack box.
  • the drying box when the forced ventilation component is closed, the drying box can dry the gas inside the battery pack box, and reduce the humidity of the gas inside the battery pack box.
  • the drying box when the forced ventilation component is turned on, the drying box can dry the gas entering the battery pack box, reducing the humidity of the gas entering the battery pack box, and further suppressing the battery pack box Condensation inside the body.
  • the drying box further includes the heater.
  • the heater is coupled to the controller.
  • the heater includes a heating part and a connecting part.
  • the heating part of the heater is contained in the main body of the drying box and is located between the gas-permeable membrane and the desiccant.
  • the connecting part of the heater is located outside the drying box, reducing the volume of the drying box.
  • the connecting part is used to couple the controller.
  • the heating part is used to generate heat under the driving of the controller.
  • the heating part of the heater is located between the gas-permeable membrane and the desiccant, that is, the heating part is located on the side of the gas-permeable membrane close to the battery pack box.
  • the battery pack device further includes a third sensor.
  • the third sensor is used to detect the water content of the desiccant.
  • detecting the water content of the desiccant can be obtained by detecting the quality value or the humidity value of the desiccant. That is, the third sensor can be a gravity sensor or a humidity sensor.
  • the third sensor is coupled to the controller.
  • the controller turns on the heater under certain conditions, so that the heater heats the desiccant.
  • the controller determines whether to turn on the heater according to the detection value of the third sensor.
  • the measured value of the third sensor is greater than or equal to the preset value, it indicates that the moisture content of the desiccant is relatively high, and the drying performance of the desiccant is poor at this time. Therefore, when the measured value of the third sensor is greater than or equal to the preset value, the controller controls the turning on of the heater so that the heat generated by the heater can dry the desiccant, reducing The moisture content of the desiccant, thereby restoring the drying performance of the desiccant.
  • the measured value of the third sensor is less than the preset value, it indicates that the drying performance of the desiccant is good. At this time, the heater is turned off, which not only saves energy consumption, but also prevents the heater from overheating the dryer The drying performance of the desiccant is reduced.
  • the battery pack case includes a first side wall and a second side wall disposed opposite to each other.
  • the first channel penetrates the first side wall.
  • the second channel penetrates the second side wall, and the first channel and the second channel are aligned. That is, the drying box and the forced ventilation component are aligned.
  • the second passage is the exhaust port of the battery pack box
  • the first passage is the air intake port of the battery pack box.
  • the exhaust port of the battery pack box body is aligned with the air inlet of the battery pack box body to prevent the gas discharged from the battery pack box body from interfering with the gas entering the air inlet port, ensuring that it enters the Describes the dryness of the gas inside the battery pack box.
  • the gas inside the battery pack box is discharged from the second channel to the outside of the battery pack, because the battery pack box The pressure difference between the inside and the outside, the gas outside the battery pack box flows into the inside of the battery pack box from the first channel.
  • the first channel and the second channel are aligned to prevent the gas flowing from the first channel into the battery pack box from containing the components of the gas discharged from the forced ventilation component, ensuring The gas flowing into the inside of the battery pack box from the first channel is relatively dry air outside the battery pack box.
  • the battery pack case further includes a third side wall and a fourth side wall that are arranged opposite to each other.
  • the third side wall and the fourth side wall are connected between the first side wall and the second side wall.
  • the second sensor is located on a side of the drying box away from the first channel. Specifically, the second sensor is spaced apart from the drying box, and the second sensor is located on the periphery of the drying box.
  • the second sensor is located on the side of the drying box away from the second side wall, so that the temperature and humidity detected by the second sensor are the temperature and humidity of the air at the air inlet , To ensure the dryness of the gas entering the battery pack box, avoiding the uneven distribution of the air quality outside the battery pack box, which may cause the air entering the battery pack box from the air inlet to have a higher mass Poor air quality detected by the first sensor.
  • the first sensor is away from the first channel and away from the second channel.
  • the first channel is located in the middle area of the first side wall
  • the second channel is located in the middle area of the second side wall.
  • the first sensor is installed on the third side wall such that the first sensor is far away from the first channel and away from the second channel.
  • the first sensor is installed on the fourth side wall such that the first sensor is far away from the first channel and away from the second channel.
  • the first sensor is away from the first channel and the second channel, and when the forced ventilation component is turned on, the first sensor is away from the air inlet and the air outlet. Since the air introduced by the air inlet is relatively dry, if the first sensor is close to the first channel, the temperature and humidity of the air detected by the first sensor are higher than the air inside the battery pack box Average temperature and humidity values. Since the gas exhausted from the exhaust port is relatively humid, if the first sensor is close to the second channel, the temperature and humidity of the air detected by the first sensor are lower than the inside of the battery pack box The average temperature and humidity of the air.
  • the first sensor is kept away from the first channel to avoid the situation that the detection value of the first sensor is higher than the overall gas inside the battery, so that the first sensor can more accurately the battery pack box
  • the air condition inside the body avoids condensation in the part of the battery pack box.
  • the battery pack device further includes a main flow channel, a first side flow channel, and a second side flow channel spaced apart from the first side flow channel.
  • the first side flow passage communicates with the first passage.
  • the second side flow passage communicates with the second passage.
  • the main flow channel communicates with the first side flow channel and the second side flow channel.
  • first channel is located in the middle area of the first side wall
  • second channel is located in the middle area of the second side wall, so that the first side flow channel is opposite to the second side flow.
  • the channel is close to the first side wall
  • the second side flow channel is close to the second side wall relative to the first side flow channel.
  • a flow channel is provided in the battery pack box, and the gas in the battery pack box flows along the set flow channel, which prevents the gas flow in the battery pack box from being disordered and caused by The phenomenon that the local gas in the battery pack box cannot be eliminated to the outside of the battery pack box, so that the humid air in the battery pack box can be discharged to the outside of the battery pack box in an orderly and effective manner, thereby effectively suppressing Condensation phenomenon.
  • the number of the main flow channels is multiple, and a battery pack assembly is arranged between any two adjacent main flow channels.
  • the battery pack assembly is separated by any two adjacent main flow channels, avoiding the situation of gas exchange between any two adjacent main flow channels, so that the humid air in the battery pack box can be Orderly and effectively discharge to the outside of the battery pack box, thereby effectively suppressing condensation.
  • each battery pack assembly includes a plurality of battery packs and baffles.
  • the baffle is arranged between every two adjacent battery packs.
  • the baffle prevents air from flowing from one main flow channel to another adjacent main flow channel, which causes the air circulation in the battery pack box to be disordered, thereby ensuring uniform air flow in the battery pack box. Orderly and effectively exclude to the outside of the battery pack box.
  • the battery pack device further includes a cooling component.
  • the cooling component is installed inside the battery pack box.
  • the cooling component is used to cool the battery pack inside the battery pack box.
  • the controller is used for controlling the cooling component according to the detection value of the first sensor.
  • the first sensor can detect the temperature value inside the battery pack case. Specifically, the controller is used to control the cooling component according to the temperature inside the battery pack case.
  • the controller controls the opening and closing of the cooling component. For example, when the controller determines that the temperature inside the battery pack case is greater than or equal to a preset temperature, the controller turns on the cooling component to cool the battery pack inside the battery pack case, thereby Improve the reliability of the battery pack device. When the controller determines that the temperature inside the battery pack box is less than a preset temperature, the controller turns off the cooling component to save energy consumption of the battery pack device.
  • the present application provides a method for suppressing condensation of a battery pack.
  • the method is applied to a battery pack device.
  • the battery pack device has a battery pack box.
  • a plurality of battery packs are arranged inside the battery pack box.
  • the method can detect the temperature and humidity inside and outside the battery pack box, and determine whether it is necessary to turn on the dehumidification command according to the actual state of the temperature and humidity inside the battery pack box and the potential change trend that may occur. Suppress the condensation phenomenon of the battery pack.
  • potential trends include turning on the cooling device of an electric vehicle during normal driving. At this time, the temperature inside the battery pack box changes suddenly, and condensation may occur. Potential trends also include stopping electric vehicles. At this time, if the battery pack stops working at a high temperature, the temperature inside the battery pack box will also change suddenly, and condensation may occur.
  • the method provided in this application can effectively suppress the condensation phenomenon of the battery pack.
  • the method When the battery pack device supplies power to the electronic device, the method is executed. Wherein, the method may be continuously executed at a certain time interval to suppress the condensation phenomenon of the battery pack in real time, thereby improving the reliability of the battery pack device.
  • the method can also be executed according to a trigger event, for example, this method is executed when the battery pack device stops high-temperature operation, and this method is executed when the battery pack device is ready to turn on the cooling component.
  • the method includes:
  • the battery pack device confirms the temperature value inside the battery pack box
  • the temperature value inside the battery pack box is detected by a first sensor in the battery pack device.
  • the first target value is a temperature value outside the battery pack case, or a preset temperature value.
  • the preset temperature value is less than or equal to the maximum temperature inside the battery pack box allowed by the battery pack device under normal operation. It is understandable that when the temperature inside the battery pack case is greater than or equal to the preset temperature value, the cooling component needs to be turned on to cool the battery pack to ensure the normal operation of the battery pack.
  • the preset temperature value is in the range of 10 degrees to 45 degrees.
  • the preset temperature value can be 10 degrees, 20 degrees, 25 degrees, 30 degrees, 37 degrees, 40 degrees, 45 degrees, and so on.
  • the temperature value outside the battery pack box is detected by a second sensor in the battery pack device.
  • the humidity value inside the battery pack box is detected by the first sensor in the battery pack device.
  • the controller activates dehumidification, that is, the controller activates the dehumidification component in the battery pack device.
  • the dehumidifying component is used to keep the gas inside the battery pack box dry.
  • the second target value is a humidity value outside the battery pack box, or a preset humidity value.
  • the preset humidity value is the relative humidity value corresponding to the preset temperature value.
  • the preset humidity value is in the range of 15% to 80%.
  • the preset humidity value can be 15%, 20%, 30%, 35%, 41%, 60%, 68%, 80%.
  • the controller determines whether the humidity value inside the battery pack case is greater than or equal to the second target value.
  • the controller determines that the humidity value inside the battery pack case is greater than or equal to the second target value, it means that the temperature and humidity inside the battery pack case are both greater than or equal to the target value. Condensation is more likely to occur inside the battery pack box, and dehumidification is started at this time, which can effectively suppress the condensation inside the battery pack box.
  • the humidity value inside the battery pack case when the temperature value inside the battery pack case is greater than or equal to the temperature value outside the battery pack case, it indicates that the humidity value inside the battery pack case may be greater than or equal to the humidity value of the battery pack case. value.
  • the controller determines that the humidity value inside the battery pack case is greater than or equal to the humidity value outside the battery pack case, it means that the humidity inside the battery pack case is greater than or equal to all.
  • the temperature value of the outside of the battery pack box at this time, the dehumidification is started, the wet gas inside the battery pack box can be discharged to the outside of the battery pack box, and the dry gas outside the battery pack box can be introduced, The dryness of the gas inside the battery pack box is improved, thereby effectively suppressing the phenomenon of condensation inside the battery pack box.
  • the controller determines that the humidity value inside the battery pack box is greater than or equal to the preset humidity value, it means that the humidity inside the battery pack box is relatively high.
  • the dryness of the gas inside the battery pack box avoids the phenomenon that the gas with high humidity inside the battery pack box encounters temperature sudden cooling and condensation, thereby effectively suppressing condensation inside the battery pack box. The phenomenon of exposure.
  • the battery pack device starts dehumidification, the gas with a relatively high temperature inside the battery pack box is discharged to the outside of the battery pack box, and the gas with a relatively low temperature is introduced into the battery pack box. Therefore, starting the dehumidification of the battery pack device not only suppresses the condensation phenomenon inside the battery pack case, but also reduces the temperature inside the battery pack case.
  • the dehumidification component includes a first dehumidification component and a drying box.
  • the controller controls the first dehumidification part.
  • the drying box can dry the gas inside the battery pack box body to ensure the drying of the gas inside the battery pack box body.
  • the first dehumidification component is turned on, the first dehumidification component can discharge the relatively humid gas inside the battery pack box to the outside of the battery pack box, due to the pressure inside the battery pack box Poor, the gas outside the battery pack box enters the inside of the battery pack box from the drying box, which reduces the temperature and humidity of the gas inside the battery pack box, thereby effectively suppressing condensation phenomenon.
  • the drying box can also dry the gas entering the battery pack box, further ensuring the drying of the gas entering the battery pack box.
  • the process of starting the dehumidification of the battery pack device includes:
  • the forced ventilation component of the battery pack device is turned on to exhaust the gas inside the battery pack box.
  • the forced ventilation component is a component that can exchange the gas inside the battery pack box with the gas outside the battery pack container.
  • the forced ventilation component is a fan, and the forced ventilation component is also a component including a pump.
  • the first dehumidification component includes the forced ventilation component.
  • dehumidification is started, so that the gas with high temperature and high humidity inside the battery pack box is discharged to the outside of the battery pack box, and the inside of the battery pack box is introduced due to the pressure difference.
  • the relatively dry gas outside the battery pack box reduces the humidity of the gas inside the battery pack box, thereby effectively suppressing the phenomenon of condensation inside the battery pack box.
  • the process of starting the dehumidification of the battery pack device further includes:
  • the valve of the battery pack device is opened, wherein the valve connects the forced ventilation component and the inside of the battery pack box.
  • the first dehumidification component includes the forced ventilation component and the valve.
  • the forced ventilation component and the valve are both in an open state.
  • the forced ventilation component can discharge the gas inside the battery pack box to the battery pack box The outside of the body. Since the condition for opening the dehumidification component is that the temperature and humidity inside the battery pack case are greater than the temperature and humidity outside the battery pack case, when the controller starts dehumidification, it can make the battery pack The gas with higher temperature and higher water content inside the box is discharged, and the gas with lower temperature and lower water content outside the battery pack box is introduced, thereby avoiding condensation inside the battery pack box.
  • the valve when the forced ventilation component is in the closed state, the valve is also in the closed state. Since the humidity of the air outside the battery pack case is greater than the humidity inside the battery pack case when the forced ventilation component is in the closed state, the closed valve at this time avoids air outside the battery pack case The valve enters into the battery pack box body, thereby ensuring the dryness of the gas inside the battery pack box body.
  • the battery pack device first opens the valve and then opens the forced ventilation component.
  • the battery pack device first opens the valve and then opens the forced ventilation component as an example for description.
  • the battery pack device opens the valve first, and then opens the forced ventilation component, which prevents the forced ventilation component from operating in a vacuum environment and damage when the forced ventilation component is opened first but the valve is not opened.
  • the phenomenon of forced ventilation components thereby increasing the service life of forced ventilation components.
  • the battery pack device can also simultaneously open the valve and the forced ventilation component.
  • the battery pack device opens the valve and the forced ventilation component at the same time, which also avoids the phenomenon that the forced ventilation component is operated in a vacuum environment when the forced ventilation component is opened first and the valve is not opened, thereby damaging the forced ventilation component. Improve the service life of forced ventilation components.
  • the method further includes:
  • the battery pack device confirms the temperature value and the humidity value inside the battery pack box.
  • the first sensor can monitor the temperature and humidity inside the battery pack box in real time.
  • the battery pack device can determine the temperature value and humidity value inside the battery pack case.
  • the battery pack device stops dehumidification.
  • the controller determines that the temperature value inside the battery pack case is less than the temperature value outside the battery pack case, if the dehumidification component is in the on state, the battery pack case The external high-temperature gas enters the lower-temperature battery pack case, and the high-temperature gas enters the lower-temperature battery pack case and is easy to condense. Therefore, the battery pack device stops dehumidifying at this time, avoiding the battery pack The high temperature gas outside the box body enters the lower temperature inside the battery pack box body, thereby suppressing the phenomenon of condensation on the battery pack box body. At this time, turning off the battery pack device to stop dehumidification can also save energy. And because the higher the temperature, the higher the saturated water vapor content in the air.
  • the water content of the air inside the battery pack case may be less than the water content of the air outside the case.
  • the pack device stops dehumidification and prevents the battery pack box from introducing gas with a high water content, thereby suppressing the phenomenon of condensation on the battery pack box.
  • the controller determines that the temperature value inside the battery pack case is less than the preset temperature value, it indicates that the temperature inside the battery pack case is low, and at this time, the battery The heat generated by the battery pack inside the box body will cause the temperature inside the battery pack box to continue to rise, and condensation occurs in the battery pack box when the temperature inside the battery pack box rises. The possibility is extremely small and can be ignored, so there is no need to start dehumidification at this time to achieve the purpose of saving energy.
  • the controller determines that the humidity value inside the battery pack case is less than the second target value, the moisture content outside the battery pack case is higher than that of the battery pack case The internal moisture content, at this time, the battery pack device stops dehumidification to avoid introducing gas with a relatively high moisture content outside the battery pack box into the battery pack box, thereby inhibiting the battery pack box The phenomenon of body condensation.
  • the battery pack device continues to obtain the temperature value inside the battery pack box. That is, in the embodiment of the present application, the first sensor monitors the temperature value inside the battery pack box in real time, and the controller determines in real time the difference between the temperature value inside the battery pack box and the first target value. Therefore, the battery pack device can suppress condensation inside the battery pack box in real time.
  • the battery pack device continues to obtain the temperature value inside the battery pack box. That is, in the embodiment of the present application, the first sensor monitors the temperature value inside the battery pack box in real time, and the controller determines in real time the difference between the temperature value inside the battery pack box and the first target value. Therefore, the battery pack device can suppress condensation inside the battery pack box in real time.
  • the method further includes:
  • the battery pack device starts cooling.
  • the cooling is started, which effectively suppresses condensation of the battery pack box due to sudden cooling.
  • the gas humidity is constant, the lower the temperature, the greater the possibility of condensation. Therefore, when the temperature and humidity inside the battery pack box are high, the battery pack device starts cooling, but does not start dehumidification, so that the temperature inside the battery pack box drops sharply. The risk of condensation is greater.
  • the dehumidification is started before the battery pack device starts to cool, which reduces the temperature and humidity inside the battery pack box, avoids condensation of high-humidity air when it is cold, thereby suppressing This reduces the phenomenon of condensation inside the battery pack box.
  • the first target value is a preset temperature value
  • the second target value is a preset humidity value
  • the first target value Use the preset temperature value.
  • the preset humidity value is the relative humidity corresponding to the preset temperature value.
  • the second target value is the preset humidity value, so that the battery pack device can determine whether condensation may occur inside the battery pack box. It is more accurate, so that the battery pack device can more effectively suppress the condensation phenomenon inside the battery pack box.
  • the controller when the battery pack device determines that the temperature value inside the battery pack case is greater than or equal to the preset humidity value, and the humidity value inside the battery pack case is greater than or equal to the preset humidity value At the humidity value, the controller not only needs to turn on the cooling component to cool the inside of the battery pack box, but also needs to turn on the dehumidifying component to prevent condensation on the battery pack box. If the controller directly turns on the cooling component, the high-temperature and high-humidity gas inside the battery pack box is suddenly cooled, and at this time, the possibility of condensation inside the battery pack box is very high. When the battery pack device turns on dehumidification before turning on the cooling component, the humidity inside the battery pack box can be reduced, thereby effectively suppressing the condensation phenomenon inside the battery pack box.
  • the cooling is restarted, and the temperature and humidity values inside the battery pack box are lowered in advance.
  • the cooling component cools the inside of the battery pack box , Because the humidity inside the battery pack box is low, condensation will not occur.
  • the battery pack device may not include the cooling component.
  • the battery pack device starts dehumidification, the gas with a relatively high temperature inside the battery pack box is discharged to the outside of the battery pack box, and the gas with a relatively low temperature is introduced into the battery pack box. Therefore, starting the dehumidification of the battery pack device not only suppresses the condensation phenomenon inside the battery pack case, but also reduces the temperature inside the battery pack case.
  • the method further includes:
  • the battery pack device confirms the temperature value and the humidity value inside the battery pack box
  • the battery pack device stops dehumidification.
  • the first target value can be a temperature value outside the battery pack case.
  • the first target value can also be the preset temperature value.
  • the second target value can be a humidity value outside the battery pack case.
  • the second target value can also be the preset humidity value.
  • the controller determines that the temperature value inside the battery pack case is less than the temperature value outside the battery pack case, if the dehumidification component is in the on state, the high-temperature gas outside the battery pack case enters a relatively high temperature.
  • the low temperature inside the battery pack box, and the high temperature gas enters the lower temperature battery pack box, and it is easy to condense. Therefore, the battery pack device stops dehumidifying at this time, avoiding the high temperature gas outside the battery pack box from entering The inside of the battery pack case has a relatively low temperature, thereby suppressing condensation on the battery pack case. At this time, turning off the battery pack device to stop dehumidification can also save energy. And because the higher the temperature, the higher the saturated water vapor content in the air.
  • the water content of the air inside the battery pack case may be less than the water content of the air outside the case.
  • the pack device stops dehumidification and prevents the battery pack box from introducing gas with a high water content, thereby suppressing the phenomenon of condensation on the battery pack box.
  • the controller determines that the temperature value inside the battery pack case is less than the preset temperature value, it indicates that the temperature inside the battery pack case is relatively low. At this time, the battery pack inside the battery pack case generates The heat of the battery pack will cause the temperature inside the battery pack box to continue to rise. When the temperature inside the battery pack box rises, the possibility of condensation inside the battery pack box is extremely small and can be ignored , So there is no need to start dehumidification at this time to achieve the purpose of saving energy.
  • the controller determines that the temperature value inside the battery pack box is less than the preset temperature value, it indicates that the temperature inside the battery pack box is low, and the temperature inside the battery pack box has not reached Cooling is required. At this time, the battery pack inside the battery pack box is working in a suitable environment. At this time, the battery pack device can also stop cooling, which can save energy.
  • the controller determines that the humidity value inside the battery pack box is less than the second target value, the water content outside the battery pack box is higher than the water content inside the battery pack box.
  • the battery pack device stops dehumidification to avoid introducing gas with relatively high water content outside the battery pack box into the inside of the battery pack box, thereby suppressing the phenomenon of condensation on the battery pack box.
  • the method further includes:
  • the battery pack device confirms the temperature value inside the battery pack box
  • the battery pack device stops cooling.
  • the temperature value inside the battery pack case when the temperature value inside the battery pack case is less than the preset temperature, it indicates that the temperature inside the battery pack case is low, and the temperature inside the battery pack case does not meet the cooling requirement At this time, the battery pack inside the battery pack box is working in a suitable environment, and the battery pack device stops cooling at this time, which can save energy.
  • the humidity value inside the battery pack box can be greater than or equal to the first target value, and can also be less than the first target value. That is, in the embodiment of the present application, as long as the temperature value inside the battery pack case is less than the preset temperature, the battery pack device stops cooling, so as to avoid the wasteful work of the battery pack device and cause resource waste.
  • the first target value is a temperature value outside the battery pack case
  • the second target value is a humidity value outside the battery pack case
  • the battery pack device confirms the temperature value inside the battery pack box, and the method further includes:
  • the carrier device of the battery pack device when the carrier device of the battery pack device is an electric vehicle, the battery pack device is in a high-temperature working state during the normal operation of the electric vehicle, and the battery pack inside the battery pack device releases a large amount of heat.
  • the controller When the electric vehicle stops running, the controller will receive a signal that the battery pack box stops high-temperature operation.
  • the battery pack device stops working at a high temperature, so that the temperature inside the battery pack box will decrease, which may cause condensation to occur inside the battery pack box.
  • the battery pack device determines that there is a possibility of condensation inside the battery pack box, turning on dehumidification can effectively eliminate the possibility of condensation inside the battery pack box.
  • the battery pack device since the battery pack device stops high-temperature operation at this time, the battery pack inside the battery pack box does not release a large amount of heat, so the battery pack device does not need to determine whether it needs to be turned on for cooling.
  • the battery pack device does not need to determine the relationship between the preset temperature value and the temperature value inside the battery pack box. And when the battery pack device is turned on for dehumidification, the gas outside the battery pack box will enter the inside of the battery pack box. At this time, the first target value is the temperature value outside the battery pack box.
  • the second target value is the humidity value outside the battery pack box, and it can be determined that the humidity of the gas entering the battery pack box is less than the gas discharged from the battery pack box, thereby ensuring the dehumidification effect. Increase the reliability of the battery pack device.
  • this application also provides an electronic device.
  • the electronic equipment includes a casing and the battery pack device described above.
  • the battery pack device is installed in the housing.
  • the battery pack device can be based on the internal and external temperature and humidity conditions of the battery pack device, combined with the potential of the electronic device.
  • the change trend is used to determine whether it is necessary to turn on the dehumidification device in the battery pack device to suppress condensation inside the battery pack device, thereby improving the quality of electronic equipment.
  • this application also provides a computer-readable storage medium.
  • the computer-readable storage medium includes a computer program. When the computer program runs on the battery pack device, the battery pack device is caused to execute the method described above.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the battery pack device of the electronic equipment shown in FIG. 1 in the first embodiment
  • FIG. 3 is a schematic diagram of the internal structure of the battery pack device shown in FIG. 2 in a use state;
  • FIG. 4 is a schematic diagram of the internal structure of the battery pack device shown in FIG. 2 in another state of use;
  • FIG. 5 is a schematic diagram of the internal structure of the battery pack device shown in FIG. 1 in the second embodiment
  • Fig. 6 is a schematic structural diagram of the drying box shown in Fig. 2 in the first embodiment
  • Fig. 7 is a schematic diagram of the exploded structure of the drying box shown in Fig. 6;
  • Fig. 8 is a schematic structural diagram of the drying box shown in Fig. 2 in a second embodiment
  • Fig. 9 is a schematic structural diagram of the drying box shown in Fig. 2 in a third embodiment
  • Fig. 10 is a schematic diagram of the exploded structure of the drying box shown in Fig. 9;
  • FIG. 11 is a schematic diagram of the structure of the battery pack device shown in FIG. 1 in the third embodiment
  • FIG. 12 is a schematic flowchart of a method for suppressing condensation of a battery pack provided by the present application in the first embodiment
  • FIG. 13 is a schematic flowchart of S130 shown in FIG. 12;
  • FIG. 14 is a schematic flowchart of a method for suppressing condensation of a battery pack provided by the present application in the second embodiment
  • 15 is a schematic flowchart of a method for suppressing condensation of a battery pack provided by the present application in the third embodiment
  • FIG. 16 is a schematic flowchart of a method for suppressing condensation of a battery pack provided by the present application in a fourth embodiment
  • FIG. 17 is a schematic flowchart of a method for suppressing condensation of a battery pack provided by the present application in the fifth embodiment
  • FIG. 18 is a schematic flowchart of a method for suppressing condensation of a battery pack provided by the present application in the sixth embodiment.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a battery pack device of the electronic device shown in FIG. 1.
  • An embodiment of the present application provides an electronic device 100.
  • the electronic device 100 may be an electric vehicle, a power generating device, an unmanned underwater vehicle, a motorhome power source, or a base station backup power source.
  • the electronic device 100 is an electric vehicle as an example for description.
  • the electronic device 100 includes a housing 101 and a battery pack device 102.
  • the battery pack device 102 is installed in the housing 101.
  • the battery pack device 102 includes a battery pack 21.
  • the battery pack 21 can provide a power source for the electric vehicle to drive the electric vehicle.
  • the battery pack device 102 further includes a battery pack box 22, a first sensor 23, a second sensor 24, a drying box 25, a forced ventilation component 26, and a controller 27.
  • the battery pack 21 is located inside the battery pack case 22.
  • the first sensor 23 is used to detect the temperature and humidity inside the battery pack case 22.
  • the second sensor 24 is used to detect the temperature and humidity outside the battery pack case 22.
  • the controller 27 is coupled to the first sensor 23, the second sensor 24 and the forced ventilation component 26. The data detected by the first sensor 23 and the second sensor 24 can be transmitted to the controller 27.
  • the controller 27 can control the start and stop of the forced ventilation part 26.
  • the forced ventilation member 26 is a member capable of exchanging the gas inside the battery pack case 22 and the gas outside the battery pack case 22.
  • the controller 27 activates the forced ventilation component 26 according to the measurement value of the first sensor 23 being greater than or equal to the second sensor 24, so that the gas inside the battery pack case 22 is self-forced ventilation component 26
  • the gas discharged to the outside of the battery pack case 22 and introduced into the outside of the battery pack case 22 enters the inside of the battery pack case 22.
  • the controller 27 stops the forced ventilation part 26 based on the measurement value of the first sensor 23 being smaller than the second sensor 24, and the gas inside and outside the battery pack case 22 cannot be exchanged by the forced ventilation part 26.
  • the controller 27 activates the forced ventilation component 26 when the detection value of the first sensor 23 is greater than or equal to the preset value. When the first sensor 23 is less than the preset value, the controller 27 stops the forced ventilation component 26, and the gas inside and outside the battery pack case 22 cannot be exchanged by the forced ventilation component 26.
  • the first sensor 23 can be installed inside the battery pack case 22.
  • the first sensor 23 can also be partly located inside the battery pack case 22 and partly located outside the battery pack case 22.
  • a probe for detecting the temperature and humidity inside the battery pack 21 by the first sensor 23 is located inside the battery pack 21.
  • the second sensor 24 can be installed on the outside of the battery pack case 22.
  • the second sensor 24 can also be partly located outside the battery pack case 22 and partly located inside the battery pack case 22.
  • the probe for detecting the temperature and humidity outside the battery pack case 22 by the second sensor 24 is located outside the battery pack case 22. That is, in this application, the specific positions of the first sensor 23 and the second sensor 24 are not limited.
  • the types of the first sensor 23 and the second sensor 24 are also not limited.
  • the first sensor 23 or the second sensor 24 is a temperature and humidity sensor that integrates detection of temperature and humidity. That is, the temperature and humidity sensor can detect temperature as well as humidity.
  • the first sensor 23 or the second sensor 24 includes a humidity sensor for detecting temperature, and a temperature sensor for detecting humidity. That is, in this embodiment, the sensor for detecting temperature and the sensor for detecting humidity are different sensors.
  • the first sensor 23 and the second sensor 24 are both temperature and humidity sensors as an example for description.
  • the first sensor 23 and the second sensor 24 adopt a temperature and humidity sensor that integrates detection of temperature and humidity, so that the temperature and humidity values detected by the first sensor 23 belong to the air at the installation location of the temperature and humidity sensor.
  • the temperature and humidity values detected by the sensor 24 belong to the air where the temperature and humidity sensor is installed, ensuring that the temperature and humidity detected by the first sensor 23 are air in the same area, and the temperature and humidity detected by the second sensor 24 are the same
  • the air in the area improves the accuracy of the data detected by the first sensor 23 and the second sensor 24.
  • the first sensor 23 and the second sensor 24 adopt a temperature and humidity sensor that integrates temperature and humidity detection, instead of a traditional discrete temperature and humidity sensor, without adding an additional sensor probe, which realizes the use of one sensor for temperature detection.
  • the function of collecting and monitoring simultaneously with humidity is a temperature and humidity sensor that integrates temperature and humidity detection, instead of a traditional discrete temperature and humidity sensor, without adding an additional sensor probe, which realizes the use of one sensor for temperature detection. The function of collecting and monitoring simultaneously with humidity.
  • the first sensor 23 can include a humidity sensor for detecting temperature and a temperature sensor for detecting humidity
  • the second sensor 24 is a temperature and humidity sensor.
  • FIG. 3 is a schematic diagram of the internal structure of the battery pack device 102 shown in FIG. 2 in one use state
  • FIG. 4 is the battery pack device 102 shown in FIG. 2 in another use state Schematic diagram of the internal structure below.
  • FIG. 3 is a state where the forced ventilation component 26 of the battery pack device 102 is not turned on
  • FIG. 4 is a state where the forced ventilation component 26 of the battery pack housing 22 is turned on.
  • the battery pack case 22 is provided with a first passage 28 and a second passage 29 spaced apart from each other.
  • the first channel 28 communicates the inside and outside of the battery pack case 22.
  • the second channel 29 communicates the inside and outside of the battery pack case 22.
  • the depth of the first channel 28 is the thickness of the battery pack case 22, and the depth of the second channel 29 is greater than the thickness of the battery pack case 22. In other embodiments, the depth of the first channel 28 can also be greater than the thickness of the battery pack case 22.
  • the first passage 28 and the second passage 29 can exchange the gas inside the battery pack case 22 with the gas outside the battery pack case 22.
  • the gas inside the battery pack case 22 can flow out of the battery pack case 22 through the first channel 28.
  • the gas outside the battery pack case 22 can also flow into the battery pack case 22 through the first passage 28.
  • the gas outside the battery pack 21 can flow into the battery pack case 22 through the second passage 29.
  • the gas inside the battery pack case 22 can flow out of the battery pack case 22 through the second passage 29.
  • the drying box 25 is installed in the first channel 28.
  • the drying box 25 is used for drying gas.
  • the drying box 25 can dry the gas inside the battery pack case 22 and improve the dryness of the gas inside the battery pack case 22.
  • the drying box 25 can also dry the gas flowing from the outside of the battery pack case 22 into the battery pack case 22, ensuring the dryness of the gas flowing into the battery pack case 22, thereby improving the inside of the battery pack case 22 The dryness of the gas.
  • the gas inside the battery pack case 22 can also pass through the drying box 25 from the first channel 28 and finally flow to the outside of the battery pack case 22. That is, the gas outside the battery pack 21 and the gas inside can be exchanged through the drying box 25.
  • the forced ventilation component 26 is installed in the second passage 29.
  • the forced ventilation member 26 is a member capable of exchanging the gas inside the battery pack case 22 and the gas outside the battery pack case 22.
  • the forced ventilation component 26 can be a fan, and the forced ventilation component 26 can also be a component including a pump.
  • the forced ventilation component 26 is a fan as an example for description.
  • the fan can be a unidirectional exhaust fan or a bidirectional exhaust fan.
  • the forced ventilation part 26 is a one-way exhaust fan, the forced ventilation part 26 can only rotate in one direction. At this time, the forced ventilation member 26 can only discharge the gas inside the battery pack case 22 from the second passage 29 to the outside of the battery pack case 22.
  • the forced ventilation member 26 When the forced ventilation member 26 is a bidirectional exhaust fan, the forced ventilation member 26 can rotate in two directions. At this time, the forced ventilation member 26 can not only discharge the gas inside the battery pack case 22 from the second passage 29 to the outside of the battery pack case 22, but also can discharge the gas inside the battery pack case 22 from the first passage 28. It is discharged to the outside of the battery pack case 22.
  • the forced ventilating member 26 can drive the gas inside the battery pack case 22 to be discharged from the second passage 29 to the outside of the battery pack case 22 and the outside of the battery pack case 22
  • the gas enters the battery treasure box 22 from the first channel 28; if the forced ventilation member 26 rotates in the second direction, the forced ventilation member 26 can drive the gas inside the battery pack box 22 to be discharged from the first channel 28 to the battery
  • the gas outside the package box 22 and the outside of the battery package box 22 flows into the inside of the battery package box 22 from the second passage 29.
  • the type of fan is not strictly limited.
  • the forced ventilation component 26 is a one-way exhaust forced ventilation component as an example for description.
  • the forced ventilation component 26 allows the gas inside the battery pack case 22 to be discharged from the second passage 29 to the outside of the battery pack case 22. Due to the pressure difference between the inside and outside of the battery pack case 22, the battery pack The air outside the box 22 is dried by the drying box 25 and flows to the first channel 28, and finally flows into the inside of the battery pack box 22.
  • the forced ventilation component 26 can also cause the gas inside the battery pack case 22 to be discharged from the first channel 28 to the outside of the battery pack case 22.
  • the drying box 25 receives the wind from the first channel 28 toward the outside of the battery pack box 22, so that the humid air in the drying box 25 flows to the outside of the battery pack box 22, preventing the humid air in the drying box 25 from flowing into To the inside of the battery pack case 22.
  • the drying box 25 receives wind from the first passage 28 toward the outside of the battery pack case 22, and can also dry the drying box 25.
  • the controller 27 can be located inside the battery pack box 22 or outside the battery pack box 22. In the embodiment of the present application, the controller 27 is located outside the battery pack box 22 as an example for description.
  • the first sensor 23 and the second sensor 24 and the controller 27 can be connected via wired or wireless connection. In the embodiment of the present application, description is made by taking the wireless connection between the first sensor 23 and the second sensor 24 and the controller 27 as an example.
  • the detection values of the first sensor 23 and the second sensor 24 can be transmitted to the controller 27.
  • the controller 27 determines that there is a possibility of condensation in the battery pack case 22 based on the detection values of the first sensor 23 and the second sensor 24, the controller 27 controls the opening of the forced ventilation component 26, which reduces The temperature and humidity difference between the inside and outside of the battery pack case 22 reduces the humidity value inside the battery pack case 22 and blocks the conditions for condensation, thereby avoiding condensation inside the battery pack case 22 and improving The reliability of the battery pack device 102 is improved.
  • the controller 27 determines that the temperature and humidity values detected by the first sensor 23 are greater than or equal to the temperature and humidity values detected by the second sensor 24, the humidity of the gas inside the battery pack case 22 is greater than or equal to the battery pack
  • the controller 27 controls the opening of the forced ventilation component 26, exhausts the gas inside the battery pack box 22, and introduces the low-humidity gas outside the battery pack box 22 into the battery pack box 22, Achieve the effect of dehumidification and effectively suppress condensation.
  • the controller 27 controls the opening of the forced ventilation component 26, which can not only reduce the temperature inside the battery pack case 22, but also reduce the temperature inside the battery pack case 22. Therefore, in the embodiment of the present application, the ventilating member 26 can also play a role of cooling the battery pack 21 inside the battery pack case 22.
  • the battery pack device 102 further includes a valve 210.
  • the valve 210 is installed in the second passage 29.
  • the valve 210 is coupled to the controller 27.
  • the controller 27 controls the opening and closing of the valve 210.
  • the forced ventilation component 26 is located on the side of the valve 210 away from the inside of the battery pack case 22. That is, the valve 210 is closer to the inside of the battery pack case 22 relative to the forced ventilation component 26.
  • the valve 210 is also in the closed state, so as to prevent the air inside and outside the battery pack box 22 from being exchanged through the second channel 29.
  • the valve 210 is in a closed state.
  • the forced ventilation component 26 is closed, if the humidity of the air outside the battery pack case 22 is greater than the humidity of the air inside the battery pack case 22, the valve 210 can prevent the humid air outside the battery pack case 22 from forced ventilation
  • the component 26 enters the inside of the battery pack box 22 to ensure the dryness of the gas inside the battery pack box 22.
  • the valve 210 is in an open state, and the gas inside the battery pack case 22 and the outside gas are exchanged through the second channel 29.
  • the valve 210 is detachably installed in the second passage 29.
  • the forced ventilation component 26 is detachably installed in the second passage 29.
  • Both the valve 210 and the forced ventilation component 26 are detachably connected to the second channel 29, which facilitates the replacement of the valve 210 or the forced ventilation component 26 when the valve 210 or the forced ventilation component 26 fails, avoiding the need for forced ventilation due to the valve 210 or the forced ventilation component 26
  • the failure of the component 26 causes the problem that the entire battery pack device 102 cannot be used. That is, the valve 210 or the forced ventilation component 26 is detachably connected to the second passage 29, which is beneficial to the subsequent maintenance of the battery pack device 102.
  • valve 210, the forced ventilation component 26, and the second passage 29 can also be integrated.
  • the valve 210, the forced ventilation component 26, and the second passage 29 can also be integrated.
  • not only the time for the valve 210 and the forced ventilation component 26 to be installed in the second passage 29 respectively is saved, but also the poor airtightness of the valve 210 and the forced ventilation component 26 when installed in the second passage 29 is avoided. The problem.
  • the controller 27 controls the forced ventilation component 26 and the valve 210 respectively. Specifically, in the embodiment of the present application, the controller 27 controls the opening of the valve 210 and the forced ventilation component 26 at the same time, or the valve 210 is opened before the forced ventilation component 26 is opened to avoid the problem of the forced ventilation component 26 idling. Thus, the efficiency of the forced ventilation component 26 is improved.
  • the forced ventilation component 26 includes an axial fan or a centrifugal fan.
  • the airflow direction of the axial flow fan or centrifugal fan is from the inside of the battery pack case 22 to the outside of the battery pack case 22.
  • the air outlet of the forced ventilation component 26 needs to have enough space for the axial flow fan to exhaust, that is, the forced ventilation component 26 and the electronic Other devices in the device 100 are separated by a certain distance to ensure that the gas inside the battery pack box 22 is effectively discharged to the outside of the battery pack box 22.
  • centrifugal fan sucks the fluid in the axial direction of the fan blades and uses centrifugal force to discharge the fluid from the circumferential direction, when the forced ventilation component 26 is very close to other devices of the electronic device 100, the forced ventilation component 26 does not have sufficient exhaust. Centrifugal fans can be used for air space.
  • the battery pack case 22 includes a first side wall 221 and a second side wall 222 disposed opposite to each other.
  • the first channel 28 penetrates the first side wall 221.
  • the second channel 29 penetrates the second side wall 222, and the first channel 28 and the second channel 29 are aligned. That is, the drying box 25 and the forced ventilation component 26 are aligned and arranged.
  • the controller 27 controls the forced ventilation component 26 to be turned on
  • the second passage 29 is the exhaust port of the battery pack box 22 and the first passage 28 is the air intake port of the battery pack box 22.
  • the exhaust port of the battery pack case 22 is aligned with the air inlet of the battery pack case 22 to prevent the gas discharged from the battery pack case 22 from interfering with the gas entering the air inlet and ensure that it enters the battery pack case 22 Dryness of internal gas.
  • the gas inside the battery pack box 22 is discharged from the second channel 29 to the outside of the battery pack 21. Due to the pressure difference between the inside and outside of the battery pack box 22 , The gas outside the battery pack case 22 flows into the battery pack case 22 from the first channel 28. At this time, the first passage 28 and the second passage 29 are aligned to prevent the gas flowing from the first passage 28 into the battery pack case 22 from containing the gas component of the gas discharged from the forced ventilation component 26, ensuring that the gas from the first passage 28 The gas flowing into the battery pack case 22 is all relatively dry air outside the battery pack case 22.
  • the second sensor 24 is located on the side of the drying box 25 away from the first channel 28. As shown in FIG. 4, the second sensor 24 and the drying box 25 are spaced apart, and the second sensor 24 is located at the periphery of the drying box 25.
  • the second sensor 24 is located on the side of the drying box 25 away from the second side wall 222, so that the temperature and humidity detected by the second sensor 24 are the temperature and humidity of the air at the air inlet to ensure that it enters the battery
  • the dryness of the gas in the box body 22 avoids that when the air quality outside the battery box body 22 is unevenly distributed, the air quality entering the battery box body 22 from the air inlet is worse than the air quality detected by the first sensor 23. situation.
  • the battery pack case 22 further includes a third side wall 223 and a fourth side wall 224 disposed opposite to each other.
  • the third side wall 223 and the fourth side wall 224 are connected between the first side wall 221 and the second side wall 222.
  • the first sensor 23 is away from the first channel 28 and away from the second channel 29.
  • the first sensor 23 is installed on the third side wall 223 such that the first sensor 23 is away from the first channel 28 and away from the second channel 29.
  • the first sensor 23 can be installed on the fourth side wall 224 such that the first sensor 23 is away from the first channel 28 and away from the second channel 29.
  • the controller 27 is arranged close to the first sensor 23. As shown in FIG. 4, the controller 27 is installed on the third side wall 223. At this time, the first sensor 23 is close to the controller 27, which facilitates the data transmission between the first sensor 23 and the controller 27.
  • the first sensor 23 is far away from the first passage 28 and the second passage 29.
  • the forced ventilation component 26 When the forced ventilation component 26 is turned on, the first sensor 23 is far away from the air inlet and the air outlet. Since the air introduced by the air inlet is relatively dry, if the first sensor 23 is close to the first passage 28, the temperature and humidity of the air detected by the first sensor 23 are higher than the average temperature and humidity of the air inside the battery pack box 22 Humidity value. Since the gas discharged from the exhaust port is relatively humid, if the first sensor 23 is close to the second channel 29, the temperature and humidity of the air detected by the first sensor 23 are lower than the average temperature of the air inside the battery pack box 22 And humidity value.
  • the first sensor 23 is kept away from the first channel 28 to avoid the detection value of the first sensor 23 being higher than the overall gas inside the battery, so that the first sensor 23 can more accurately determine the air condition inside the battery pack box 22 , To avoid the partial condensation phenomenon inside the battery pack case 22.
  • the first channel 28 is located in the middle area of the first side wall 221, and the second channel 29 is located in the middle area of the second side wall 222.
  • the first channel 28 can also be close to the third side wall 223 relative to the fourth side wall 224, or the first channel 28 can be close to the fourth side wall 224 relative to the third side wall 223.
  • the second channel 29 is close to the fourth side wall 224 relative to the third side wall 223, or the second channel 29 is close to the third side wall 223 relative to the fourth side wall 224. That is, the first channel 28 can be located in the middle area of the first side wall 221 and can also be located in the end area of the first side wall 221.
  • the second channel 29 can be located in the middle area of the second side wall 222 and can also be located in the end area of the second side wall 222.
  • the first channel 28 is located in the middle area of the first side wall 221 and the second channel 29 is located in the middle area of the second side wall 222 as an example for description.
  • the battery pack device 102 further includes a main flow channel 201, a first side flow channel 202, and a second side flow channel 203 arranged at intervals from the first side flow channel 202.
  • the first side flow passage 202 communicates with the first passage 28.
  • the second side flow passage 203 communicates with the second passage 29.
  • the main flow channel 201 communicates with the first side flow channel 202 and the second side flow channel 203.
  • the first channel 28 is located in the middle area of the first side wall 221
  • the second channel 29 is located in the middle area of the second side wall 222, so that the first side flow channel 202 is opposite to the second side flow channel 203. Close to the first side wall 221, the second side flow channel 203 is close to the second side wall 222 relative to the first side flow channel 202.
  • the flow direction of the main flow channel 201 can be a direction from the first side wall 221 toward the second side wall 222.
  • the direction of the first side flow channel 202 is a direction from the first channel 28 to the third side wall 223 and a direction from the first channel 28 to the fourth side wall 224.
  • the direction of the second side flow passage 203 is a direction from the third side wall 223 toward the second passage 29 and a direction from the fourth side wall 224 toward the second passage 29.
  • the gas close to the drying box 25 flows from the first side flow channel 202 through the main flow channel 201 and then flows through the second side flow channel 203, and finally is discharged from the second channel 29 to the outside of the battery pack case 22.
  • the gas on the side close to the forced ventilation component 26 can flow from the first side flow channel 202 through the main flow channel 201 and then flow through the second side flow channel 203, and can also flow from the second side flow channel 203 flows through the main flow channel 201 and then flows through the first side flow channel 202, and finally flows into the first channel 28 into the drying box 25 for drying. That is, when the forced ventilation member 26 is closed, the flow direction of the main flow channel 201 can be from the first side wall 221 to the second side wall 221, or from the second side wall 222 to the first side wall 221 Direction.
  • a flow channel is provided in the battery pack box 22, and the gas in the battery pack box 22 flows along the set flow channel, which prevents the gas flow in the battery pack box 22 from being chaotic and causing the battery.
  • the first channel 28 can be located at the end of the first side wall 221 and the second channel 29 can be located at the end of the second side wall 222.
  • the main flow channel 201, the first side flow channel 202, and the second side flow channel 203 can have different designs according to the positions of the first channel 28 and the second channel 29.
  • the number of main runners 201 is multiple, and a battery pack assembly 211 is provided between any two adjacent main runners 201.
  • the battery pack assembly 211 is separated from any two adjacent main channels 201, avoiding the exchange of gases between any two adjacent main channels 201, so that the humid air in the battery pack box 22 can be orderly and effectively
  • the ground is discharged to the outside of the battery pack case 22, thereby effectively suppressing condensation.
  • each battery pack assembly 211 includes a plurality of battery packs 21 and baffles 212. As shown in FIG. 4, a baffle 212 is provided between every two adjacent battery packs 21. The baffle 212 avoids the phenomenon of air flowing from one main flow channel 201 to another adjacent main flow channel 201, which causes the air circulation in the battery pack box 22 to be disordered, thereby ensuring that the air in the battery pack box 22 is orderly and effective The ground is excluded to the outside of the battery pack case 22.
  • FIG. 5 is a schematic diagram of the internal structure of the battery pack device 102 shown in FIG. 1 in the second embodiment. Most technical solutions in this embodiment that are the same as those in the first embodiment will not be repeated.
  • the battery pack device 100 further includes a cooling part 213.
  • the cooling member 213 is installed inside the battery pack case 22.
  • the cooling component 213 is used to cool the battery pack inside the battery pack case 22.
  • the cooling component 213 includes a cooling water channel 2131, a water inlet pipe 2132 and a water outlet pipe 2133. After the cooling liquid flows from the water inlet pipe 2132 through the cooling water channel 2131, it is discharged from the water outlet pipe 2133 to the outside of the battery pack case 22. The heat generated by the battery pack 21 is transferred to the cooling water channel 2131, and is taken away by the coolant in the cooling water channel 2131, thereby reducing the temperature of the battery pack 21.
  • the cooling part 213 is located at the bottom of the battery pack 21.
  • the cooling component 213 can reduce the temperature of the battery pack 21 to ensure that the battery pack 21 can work normally.
  • the cooling component 213 can also be arranged around the periphery of the battery pack 21, so that the cooling component 213 can dissipate heat from the battery pack 21 in three dimensions and on multiple sides, and improve the working effect of the cooling component 213.
  • the controller 27 is used to control the cooling component 213 according to the detection value of the first sensor 23.
  • the first sensor 23 can detect the temperature value inside the battery pack case 22.
  • the controller 27 is used to control the cooling component 213 according to the temperature inside the battery pack case 22.
  • the controller 27 controls the opening and closing of the cooling part 213. For example, when the controller 27 determines that the temperature inside the battery pack case 22 is greater than or equal to the preset temperature, the controller 27 turns on the cooling component 213 to cool the battery pack 21 inside the battery pack case 22, thereby improving the battery pack device 100 reliability. When the controller 27 determines that the temperature inside the battery pack case 22 is less than the preset temperature, the controller 27 turns off the cooling component 213 to save the energy consumption of the battery pack device 100.
  • FIG. 6 is a schematic diagram of the structure of the drying box 25 shown in FIG. 2 in the first embodiment
  • FIG. 7 is a schematic diagram of the explosion structure of the drying box 25 shown in FIG. 6
  • It is a schematic diagram of the structure of the drying box 25 shown in FIG. 2 in the second embodiment.
  • the drying box 25 includes a drying box main body 251, a protective cover 252, a breathable film 253 and a desiccant 254.
  • the drying box main body 251 is installed in the first channel 28.
  • the drying box main body 251 is a hollow structure with open ends.
  • the protective cover 252 covers an opening of the drying box main body 251 and is located on the side of the drying box main body 251 facing the outside of the battery pack box 22.
  • the protective cover 252 protects the components in the drying box main body 251.
  • the protective cover 252 is provided with a plurality of ventilation holes 2521.
  • the breathable film 253 covers the other opening of the drying box main body 251.
  • the desiccant 254 is contained in the main body 251 of the drying box and is located between the breathable membrane 253 and the protective cover 252.
  • the protective cover 252 is detachably connected to the drying box main body 251 to facilitate the replacement of the desiccant 254.
  • the multiple vent holes 2521 can exchange the gas outside the battery pack case 22 with the gas inside.
  • the air-permeable membrane 253 is used to isolate the liquid, prevent the liquid from flowing into the battery pack box 22, and play a role of waterproof and breathable.
  • the breathable film 253 is located on the side of the desiccant 254 away from the protective cover 252, and can prevent the moisture in the desiccant 254 from flowing into the battery pack case 22.
  • the drying box 25 when the forced ventilation component 26 is closed, the drying box 25 can dry the gas inside the battery pack box 22 to reduce the humidity of the gas inside the battery pack box 22.
  • the drying box 25 when the forced ventilation component 26 is turned on, the drying box 25 can dry the gas entering the battery pack case 22, reduce the humidity of the gas entering the battery pack case 22, and further suppress condensation inside the battery pack case 22 phenomenon.
  • the shape of the drying box 25 is not limited.
  • the drying box 25 can have different shapes according to the battery pack device 102 in different usage scenarios.
  • the drying box 25 can be rectangular, circular, oval or other special-shaped structures.
  • the drying box 25 can be rectangular.
  • the drying box 25 can be installed on the side of the first side wall 221, and the drying box 25 covers the opening of the first channel 28.
  • the drying box 25 can be circular. At this time, the drying box 25 can be installed inside the first channel 28, so that the space between the drying box 25 and the first channel 28 is reused, and the volume of the battery pack device 100 can be reduced.
  • FIG. 9 is a schematic structural diagram of the drying box 25 shown in FIG. 2 in the third embodiment
  • FIG. 10 is a schematic diagram of an exploded structure of the drying box 25 shown in FIG. 9
  • FIG. 1 is a schematic structural diagram of the battery pack device 102 provided by the present application in the third embodiment. Most of the technical solutions in this embodiment that are the same as those in the foregoing embodiment will not be repeated.
  • the drying box 25 also includes a heater 255.
  • the heater 255 is coupled to the controller 27 (see FIG. 2).
  • the heater 255 includes a heating part 2551 and a connecting part 2552.
  • the heating part 2551 of the heater 255 is contained in the main body 251 of the drying box and is located between the breathable membrane 253 and the desiccant 254.
  • the connecting portion 2551 of the heater 255 is located outside the drying box 25, reducing the volume of the drying box 25.
  • the connection part 2551 is used to couple the controller 27.
  • the heating part 2551 is used to generate heat under the driving of the controller 27.
  • the controller 27 can control the turning on and off of the heater 255. For example, when the moisture content of the desiccant 254 is high, the controller 27 controls the heater 255 to turn on, so that the heater 255 heats the desiccant 254 to reduce the moisture content of the desiccant 254, thereby restoring the drying performance of the desiccant 254 .
  • the heating portion 2551 of the heater 255 is located between the gas permeable membrane 253 and the desiccant 254, that is, the heating portion 2551 is located on the side of the gas permeable membrane 253 close to the battery pack case 22.
  • the heater 255 heats the desiccant 254
  • the moisture in the desiccant 254 flows out of the plurality of vents 2521 in the protective cover 252 to the outside of the drying box 25, preventing the moisture of the desiccant 254 from flowing into the battery pack box.
  • the battery pack device 102 further includes a third sensor 256.
  • the third sensor 256 is used to detect the water content of the desiccant 254. Wherein, detecting the moisture content of the desiccant 254 can be obtained by detecting the quality value or the humidity value of the desiccant 254. That is, the third sensor 256 can be a gravity sensor or a humidity sensor.
  • the third sensor 256 is coupled to the controller 27. The controller 27 turns on the heater 255 under certain conditions, so that the heater 255 heats the desiccant 254.
  • the third sensor 256 can be installed inside the drying box 25.
  • the third sensor 256 can also be partly located inside the drying box 25 and partly located outside the drying box 25. Specifically, the part of the third sensor 256 for detecting the moisture content of the desiccant 254 is located inside the drying box 25. As shown in FIG. 11, the third sensor 256 is partially located outside the drying box 25 to reduce the volume of the drying box 25.
  • the controller 27 determines whether to turn on the heater 255 according to the detection value of the third sensor 256.
  • the measured value of the third sensor 256 is greater than or equal to the preset value, it indicates that the moisture content of the desiccant 254 is high, and the drying performance of the desiccant 254 is poor at this time. Therefore, when the measurement value of the third sensor 256 is greater than or equal to the preset value, the controller 27 controls the heater 255 to turn on, so that the heat generated by the heater 255 can dry the desiccant 254, reducing the content of the desiccant 254. The amount of water to restore the drying performance of the desiccant 254.
  • the measurement value of the third sensor 256 is less than the preset value, it indicates that the drying performance of the desiccant 254 is good. At this time, turning off the heater 255 not only saves energy, but also prevents the heater 255 from overheating the desiccant 254, resulting in drying The phenomenon that the drying performance of the agent 254 decreases.
  • the application also provides a method for suppressing condensation of the battery pack.
  • This method is applied to battery pack devices.
  • the battery pack device has a battery pack box. Multiple battery packs are arranged inside the battery pack box.
  • This method can detect the temperature and humidity inside and outside the battery pack box, and determine whether it is necessary to turn on the dehumidification command according to the actual state of the temperature and humidity inside the battery pack box and the potential change trend that may occur, so as to inhibit the condensation of the battery pack. Exposure phenomenon.
  • potential trends include turning on the cooling device of an electric vehicle during normal driving. At this time, the temperature inside the battery pack box changes suddenly, and condensation may occur. Potential trends also include stopping electric vehicles. At this time, the battery pack stops working at high temperature, and the temperature inside the battery pack box will also change suddenly, which may cause condensation.
  • the method provided in this application can effectively suppress the condensation phenomenon of the battery pack.
  • the following describes in detail a method for suppressing condensation of the battery pack 21 provided in the present application in conjunction with the foregoing battery pack device 102.
  • the method of suppressing condensation of the battery pack can also be used for battery pack devices different from the foregoing embodiments.
  • FIG. 12 is a schematic flowchart of a method for suppressing condensation of the battery pack 21 provided by the present application in the first embodiment.
  • the method is executed.
  • the method can be continuously executed at a certain time interval to suppress condensation of the battery pack 21 in real time, thereby improving the reliability of the battery pack device 102.
  • the method can also be executed according to a trigger event. For example, the method is executed when the battery pack device 102 stops working at a high temperature, and the method is executed when the battery pack device 102 is ready to turn on the cooling component.
  • Methods to suppress condensation of the battery pack 21 include:
  • the battery pack device 102 confirms the temperature value inside the battery pack case 22.
  • the temperature value inside the battery pack case 22 is detected by the first sensor 23 in the battery pack device 102.
  • the first target value is a temperature value outside the battery pack case 22 or a preset temperature value.
  • the preset temperature value is less than or equal to the maximum temperature inside the battery pack case 22 allowed by the battery pack device 102 under normal operation. It is understandable that when the temperature inside the battery pack case 22 is greater than or equal to the preset temperature value, the cooling component needs to be turned on to cool the battery pack 21 to ensure the normal operation of the battery pack 21.
  • the preset temperature value is in the range of 10 degrees to 45 degrees.
  • the preset temperature value can be 10 degrees, 20 degrees, 25 degrees, 30 degrees, 37 degrees, 40 degrees, 45 degrees, and so on.
  • the temperature value outside the battery pack case 22 is detected by the second sensor in the battery pack device 102.
  • the humidity value inside the battery pack case 22 is detected by the first sensor 23 in the battery pack device 102.
  • the humidity value can be a relative humidity value or an absolute humidity value.
  • the absolute humidity value is the mass of water vapor contained in a unit of air at a certain pressure and temperature.
  • Relative humidity is the ratio of absolute humidity to saturated humidity.
  • Saturated humidity is the maximum mass of water vapor contained per unit of air under this condition.
  • the humidity value is taken as an example to describe the relative humidity.
  • the first sensor 23 can simultaneously detect the temperature and humidity inside the battery pack case 22.
  • the first sensor 23 can also detect the temperature and humidity inside the battery pack case 22, respectively.
  • the first sensor 23 simultaneously detects the temperature and humidity inside the battery pack case 22 as an example for description.
  • the controller 27 requires the temperature value inside the battery pack case 22
  • the battery pack device 102 confirms the temperature value inside the battery pack case 22.
  • the battery pack device 102 confirms the humidity value inside the battery pack case 22.
  • the time and sequence of detecting the temperature and humidity of the battery pack case 22 by the first sensor 23 are not limited.
  • the controller 27 can also control the first sensor 23 to detect the temperature inside the battery pack box 22 when it needs to obtain the temperature value inside the battery pack box 22 to confirm the temperature inside the battery pack box 22 value.
  • the controller 27 needs to obtain the humidity value inside the battery pack case 22, it controls the first sensor 23 to detect the humidity inside the battery pack case 22 to confirm the temperature value inside the battery pack case 22.
  • the controller 27 of the battery pack device 102 starts dehumidification, that is, the controller 27 turns on the dehumidification components in the battery pack device 102.
  • the dehumidifying component is used to keep the gas inside the battery pack case 22 dry.
  • the second target value is the humidity value outside the battery pack case 22 or a preset humidity value.
  • the preset humidity value is the relative humidity value corresponding to the preset temperature value.
  • the preset humidity value is in the range of 15% to 80%.
  • the preset humidity value can be 15%, 20%, 30%, 35%, 41%, 60%, 68%, 80%.
  • the controller 27 determines whether the humidity value inside the battery pack case 22 is greater than or equal to the second target value. When the controller 27 determines that the humidity value inside the battery pack case 22 is greater than or equal to the second target value, it means that the temperature and humidity inside the battery pack case 22 are both greater than or equal to the target value. At this time, the battery pack case 22 Condensation is more likely to occur inside the battery pack, and dehumidification is activated at this time, which can effectively suppress condensation inside the battery pack box 22.
  • the controller 27 determines that the humidity value inside the battery pack case 22 is greater than or equal to the humidity value outside the battery pack case 22, it means that the humidity inside the battery pack case 22 is greater than or equal to the battery pack case 22.
  • the external temperature value when dehumidification is started, the wet gas inside the battery pack box 22 can be discharged to the outside of the battery pack box 22, and the dry gas outside the battery pack box 22 can be introduced to improve the inside of the battery pack box 22
  • the dryness of the gas effectively suppresses condensation inside the battery pack case 22.
  • the temperature value inside the battery pack case 22 is greater than or equal to the preset temperature value, it indicates that the temperature inside the battery pack case 22 is high and the battery pack 21 needs to be cooled.
  • a gas with high humidity is suddenly cooled by temperature, condensation is more likely to occur.
  • the controller 27 determines that the humidity value inside the battery pack case 22 is greater than or equal to the preset humidity value, it indicates that the humidity inside the battery pack case 22 is relatively high.
  • dehumidification is started, which improves the battery pack case.
  • the dryness of the gas inside the body 22 avoids the phenomenon that gas with high humidity inside the battery pack box body encounters temperature sudden cooling and condensation, thereby effectively inhibiting the phenomenon of condensation inside the battery pack box body 22.
  • the battery pack device 102 starts to dehumidify, the gas with a relatively high temperature inside the battery pack box 22 is discharged to the outside of the battery pack box 22, and the gas with a relatively low temperature is introduced into the battery pack box 22, so the battery pack Starting dehumidification by the device 102 not only suppresses the condensation phenomenon inside the battery pack case 22, but also reduces the temperature inside the battery pack case 22.
  • the dehumidification component includes a first dehumidification component and a drying box.
  • the controller 27 controls the first dehumidification part.
  • the drying box 25 can dry the gas inside the battery pack box 22 to ensure the drying of the gas inside the battery pack box 22.
  • the first dehumidification component is turned on, the first dehumidification component can discharge the relatively humid gas inside the battery pack case 22 to the outside of the battery pack case 22. Due to the pressure difference inside the battery pack case 22, the battery pack case 22 The external gas enters the inside of the battery pack case 22 from the drying box, which reduces the temperature and humidity of the gas inside the battery pack case 22, thereby effectively suppressing condensation.
  • the drying box can also dry the gas entering the battery pack case 22, which further ensures the drying of the gas entering the battery pack case 22.
  • FIG. 13 is a schematic flowchart of S130 shown in FIG. 12.
  • the process of starting the dehumidification of the battery pack device includes:
  • the controller 27 turns on the forced ventilation component of the battery pack device 102 to exhaust the gas inside the battery pack box 22.
  • the forced ventilation component is a component capable of exchanging the gas inside the battery pack case 22 with the gas outside the battery pack case 22.
  • the forced ventilation component is a fan
  • the forced ventilation component is also a component including a pump.
  • the first dehumidification component includes a forced ventilation component.
  • the forced ventilation component is the fan 26 as an example for description. Turn on the forced ventilation component, that is, turn on the fan 26. When the fan 26 is turned on, the gas inside the battery pack case 22 can be discharged to the outside of the battery pack case 22.
  • dehumidification is started, so that the gas with high temperature and high humidity inside the battery pack box 22 is discharged to the outside of the battery pack box 22, and the inside of the battery pack box 22 is introduced into the battery pack box due to the pressure difference.
  • the relatively dry gas outside the body 22 reduces the humidity of the gas inside the battery pack case 22, thereby effectively suppressing condensation inside the battery pack case 22.
  • the process of starting the dehumidification of the battery pack device also includes:
  • the valve 210 connects the forced ventilation component and the inside of the battery pack box 22.
  • the first dehumidification component includes a forced ventilation component and a valve 210.
  • the valve 210 is a component that blocks contact between the inside of the battery pack case 22 and external air.
  • the controller 27 controls the opening and closing of the forced ventilation component and the valve 210.
  • the forced ventilation component and the valve 210 are both in an open state. At this time, the forced ventilation component can discharge the gas inside the battery pack case 22 to the outside of the battery pack case 22. Since the dehumidification component is turned on under the condition that the temperature and humidity inside the battery pack case 22 are greater than the temperature and humidity outside the battery pack case 22, when the controller 27 starts dehumidification, the temperature and humidity inside the battery pack case 22 can be reduced The higher gas with higher water content is discharged, and the gas with lower temperature and lower water content outside the battery pack box 22 is introduced, thereby avoiding condensation in the battery pack box 22.
  • the valve 210 when the forced ventilation component is in the closed state, the valve 210 is also in the closed state. Since the humidity of the air outside the battery pack case 22 is greater than the humidity inside the battery pack case 22 when the forced ventilation component is closed, the closed valve 210 at this time prevents the air outside the battery pack case 22 from entering through the valve 210 To the inside of the battery pack box 22, thereby ensuring the dryness of the gas inside the battery pack box 22.
  • the battery pack device 102 first opens the valve 210 and then opens the forced ventilation component. As shown in FIG. 13, in the embodiment of the present application, the battery pack device 102 first opens the valve 210 and then opens the forced ventilation component as an example for description.
  • the battery pack device 102 first opens the valve 210 and then opens the forced ventilation component, which prevents the forced ventilation component from opening first and the valve 210 not opening, causing the forced ventilation component to operate in a vacuum environment.
  • the phenomenon of damaging the forced ventilation components thereby increasing the service life of the forced ventilation components.
  • the battery pack device can also simultaneously open the valve and the forced ventilation component.
  • the battery pack device opens the valve and the forced ventilation component at the same time, which also avoids the phenomenon that the forced ventilation component is opened first but the valve 210 is not opened, which causes the forced ventilation component to operate in a vacuum environment and damage the forced ventilation component, thereby improving The service life of forced ventilation components is improved.
  • FIG. 14 is a schematic flowchart of the method for suppressing condensation of the battery pack 21 provided by the present application in the second embodiment.
  • the following mainly describes the differences between this embodiment and the first embodiment, and most of the technical content of this embodiment that is the same as the first embodiment will not be repeated hereafter.
  • Methods to suppress condensation of the battery pack 21 include:
  • the battery pack device 102 confirms the temperature value inside the battery pack case 22.
  • the battery pack device 102 confirms the temperature value and the humidity value inside the battery pack case 22.
  • the first sensor can monitor the temperature and humidity inside the battery pack case 22 in real time.
  • the battery pack device can determine the temperature value and humidity value inside the battery pack case.
  • the controller 27 determines that the temperature value inside the battery pack case 22 is less than the temperature value outside the battery pack case 22, if the dehumidification component is in the on state, the high temperature gas outside the battery pack case 22 It enters into the lower temperature battery pack case 22, and the high temperature gas enters the lower temperature battery pack case and is easy to condense. Therefore, the battery pack device 102 stops dehumidification at this time, avoiding the high temperature gas outside the battery pack case 22 from entering The interior of the battery pack case 22 at a relatively low temperature prevents condensation from occurring in the battery pack case 22. At this time, turning off the battery pack device 102 to stop dehumidification can also save energy.
  • the water content of the air inside the battery pack case 22 may be smaller than the water content of the air outside the case, and the battery pack device 102 stops at this time Dehumidification prevents the battery pack case 22 from introducing gas with a high water content, thereby suppressing condensation on the battery pack case 22.
  • the controller 27 determines that the temperature value inside the battery pack case 22 is less than the preset temperature value, it indicates that the temperature inside the battery pack case 22 is low. At this time, the heat generated by the battery pack inside the battery pack case 22 will cause The temperature inside the battery pack box 22 continues to rise. During the process of increasing the temperature inside the battery pack box 22, the possibility of condensation inside the battery pack box 22 is extremely small and can be ignored, so there is no need to start at this time Dehumidify, achieve the purpose of saving energy.
  • the controller 27 determines that the humidity value inside the battery pack case 22 is less than the second target value, the water content outside the battery pack case 22 is higher than the water content inside the battery pack case 22, and the battery pack device 102 stops at this time Dehumidification prevents the gas with relatively high water content outside the battery pack case 22 from being introduced into the battery pack case 22, thereby suppressing condensation of the battery pack case 22.
  • the battery pack device 102 continues to obtain the temperature value inside the battery pack box 22. That is, in the embodiment of the present application, the first sensor monitors the temperature value inside the battery pack case 22 in real time, and the controller 27 determines the relationship between the temperature value inside the battery pack case 22 and the first target value in real time, so that The battery pack device 102 can suppress condensation inside the battery pack case 22 in real time.
  • FIG. 15 is a schematic flowchart of the method for suppressing condensation of the battery pack 21 provided by the present application in the third embodiment.
  • the following mainly describes the differences between this embodiment and the foregoing embodiment, and most of the technical content of this embodiment that is the same as the foregoing embodiment will not be repeated hereafter.
  • Methods to suppress condensation of the battery pack 21 include:
  • the battery pack device 102 confirms the temperature value inside the battery pack case 22.
  • the specific steps included in S320 refer to the aforementioned S120.
  • the first target value is the preset temperature value.
  • the temperature inside the battery pack case 22 When the temperature inside the battery pack case 22 is greater than or equal to the preset temperature value, it indicates that the temperature inside the battery pack case 22 is high, which is not conducive to the normal operation of the battery pack 21 inside the battery pack case 22. The temperature of the pack 21 is lowered to ensure the normal operation of the battery pack 21, and the reliability of the battery pack device 102 is improved.
  • the first target value adopts the preset temperature value.
  • the second target value is the preset humidity value.
  • the second target value is taken as an example of the preset humidity value for description. Since the preset humidity value is the relative humidity corresponding to the preset temperature value, the second target value at this time is the preset humidity value, so that the battery pack device 102 can more accurately determine whether condensation may occur inside the battery pack box 22 Therefore, the battery pack device 102 can more effectively suppress the condensation phenomenon inside the battery pack case 22.
  • the second target value can also be the humidity value outside the battery pack case 22.
  • the cooling is started, which effectively suppresses condensation of the battery pack case 22 due to sudden cooling.
  • the gas humidity is constant, the lower the temperature, the greater the possibility of condensation. Therefore, when the temperature and humidity inside the battery pack case 22 are high, the battery pack device 102 starts cooling, but does not start dehumidification, causing the temperature inside the battery pack case 22 to drop sharply, and condensation is formed inside the battery pack case 22. The risk is greater.
  • the dehumidification is started before the battery pack device 102 starts to cool down, which reduces the temperature and humidity inside the battery pack box 22, avoids condensation of high-humidity air when it is cold, thereby suppressing This prevents condensation in the battery pack case 22.
  • the battery pack device 102 may not include a cooling component.
  • the battery pack device 102 starts to dehumidify, the gas with a relatively high temperature inside the battery pack box 22 is discharged to the outside of the battery pack box 22, and the gas with a relatively low temperature is introduced into the battery pack box 22, so the battery pack Starting dehumidification by the device 102 not only suppresses the condensation phenomenon inside the battery pack case 22, but also reduces the temperature inside the battery pack case 22.
  • the controller 27 not only needs to turn on the cooling component to cool the inside of the battery pack case 22, but also needs to turn on the dehumidifying component to prevent condensation on the battery pack case 22. If the controller 27 directly turns on the cooling component, the high-temperature and high-humidity gas inside the battery pack case 22 is suddenly cooled, and at this time, the possibility of condensation inside the battery pack case 22 is very high. When the battery pack device 102 turns on the dehumidification before turning on the cooling component, the humidity inside the battery pack case 22 can be reduced, thereby effectively suppressing condensation inside the battery pack case 22.
  • the cooling is restarted, and the temperature and humidity inside the battery pack box 22 are lowered in advance.
  • the cooling component cools the inside of the battery pack box 22, due to the battery
  • the humidity inside the bag body 22 is low, so condensation does not occur.
  • FIG. 16 is a schematic flowchart of the method for suppressing condensation of the battery pack 21 provided by the present application in the fourth embodiment.
  • the following mainly describes the differences between this embodiment and the foregoing embodiment, and most of the technical content of this embodiment that is the same as the foregoing embodiment will not be repeated hereafter.
  • Methods to suppress condensation of the battery pack 21 include:
  • the battery pack device 102 confirms the temperature value inside the battery pack case 22.
  • the battery pack device 102 confirms the temperature value and the humidity value inside the battery pack case 22.
  • the first sensor can monitor the temperature and humidity inside the battery pack case 22 in real time.
  • the battery pack device 102 can determine the temperature value and humidity value inside the battery pack case 22.
  • the temperature value inside the battery pack case 22 when the temperature value inside the battery pack case 22 is less than the preset temperature, it indicates that the temperature inside the battery pack case 22 is low, and the temperature inside the battery pack case 22 has not reached the cooling requirement.
  • the battery pack 21 inside the battery pack case 22 is working in a suitable environment.
  • the battery pack device 102 stops cooling, which can save energy.
  • the humidity value inside the battery pack case 22 can be greater than or equal to the first target value, and can also be less than the first target value. That is, in the embodiment of the present application, as long as the temperature value inside the battery pack case 22 is lower than the preset temperature, the battery pack device 102 stops cooling, so as to prevent the battery pack device 102 from performing useless work and causing resource waste.
  • FIG. 17 is a schematic flowchart of the method for suppressing condensation of the battery pack 21 provided by the present application in the fifth embodiment.
  • the following mainly describes the differences between this embodiment and the foregoing embodiment, and most of the technical content of this embodiment that is the same as the foregoing embodiment will not be repeated hereafter.
  • Methods to suppress condensation of the battery pack 21 include:
  • the battery pack device 102 confirms the temperature value inside the battery pack case 22.
  • the battery pack device 102 confirms the temperature value and the humidity value inside the battery pack case 22.
  • the first sensor can monitor the temperature and humidity inside the battery pack case 22 in real time.
  • the battery pack device 102 can determine the temperature value and humidity value inside the battery pack case 22.
  • the first target value can be a temperature value outside the battery pack case 22.
  • the first target value can also be a preset temperature value.
  • the second target value can be the humidity value outside the battery pack case 22.
  • the second target value can also be a preset humidity value.
  • the controller 27 determines that the temperature value inside the battery pack case 22 is less than the temperature value outside the battery pack case 22, if the dehumidification component is turned on, the high temperature gas outside the battery pack case 22 enters the lower temperature battery pack Inside the box 22, high-temperature gas enters the lower-temperature battery pack box 22 to easily condense. Therefore, the battery pack device 102 stops dehumidification at this time, preventing the high-temperature gas outside the battery pack box 22 from entering the lower-temperature battery pack box Inside the body 22, the phenomenon of condensation on the battery pack case 22 is suppressed. At this time, turning off the battery pack device 102 to stop dehumidification can also save energy. And because the higher the temperature, the higher the saturated water vapor content in the air.
  • the water content of the air inside the battery pack case 22 may be smaller than the water content of the air outside the case, and the battery pack device 102 stops at this time Dehumidification prevents the battery pack case 22 from introducing gas with a high water content, thereby suppressing condensation on the battery pack case 22.
  • the controller 27 determines that the temperature value inside the battery pack case 22 is less than the preset temperature value, it indicates that the temperature inside the battery pack case 22 is low. At this time, the heat generated by the battery pack inside the battery pack case 22 will cause The temperature inside the battery pack box 22 continues to rise. During the process of increasing the temperature inside the battery pack box 22, the possibility of condensation inside the battery pack box 22 is extremely small and can be ignored, so there is no need to start at this time Dehumidify, achieve the purpose of saving energy.
  • the controller 27 determines that the temperature value inside the battery pack case 22 is less than the preset temperature value, it indicates that the temperature inside the battery pack case 22 is relatively low, and the temperature inside the battery pack case 22 has not reached the cooling demand.
  • the battery pack device 102 can also stop cooling at this time, which can save energy.
  • the battery pack device 102 stops dehumidification and stops cooling. In another example, when the controller 27 determines that the temperature value inside the battery pack case 22 is less than the temperature outside the battery pack case 22, the battery pack device 102 only stops dehumidification.
  • the controller 27 determines that the humidity value inside the battery pack case 22 is less than the second target value, the water content outside the battery pack case 22 is higher than the water content inside the battery pack case 22, and the battery pack device 102 stops at this time Dehumidification prevents the gas with relatively high water content outside the battery pack case 22 from being introduced into the battery pack case 22, thereby suppressing condensation of the battery pack case 22.
  • FIG. 18 is a schematic flowchart of the method for suppressing condensation of the battery pack 21 provided by the present application in the sixth embodiment.
  • the following mainly describes the differences between this embodiment and the foregoing embodiment, and most of the technical content of this embodiment that is the same as the foregoing embodiment will not be repeated hereafter.
  • Methods to suppress condensation of the battery pack 21 include:
  • the controller 27 receives a signal that the battery pack case 22 stops high-temperature operation.
  • the carrier device of the battery pack device 102 when the carrier device of the battery pack device 102 is an electric vehicle, the battery pack device 102 is in a high temperature working state during the normal operation of the electric vehicle, and the battery pack 21 inside the battery pack device 102 releases a large amount of heat.
  • the controller 27 When the electric vehicle stops running, the controller 27 will receive a signal that the battery pack box 22 stops high-temperature operation.
  • the battery pack device 102 stops working at a high temperature, so that the temperature inside the battery pack case 22 will decrease, which may cause condensation inside the battery pack case 22.
  • the battery pack device 102 determines that there is a possibility of condensation occurring inside the battery pack case 22, and dehumidification is turned on, the possibility of condensation inside the battery pack case 22 can be effectively eliminated.
  • the battery pack device 102 confirms the temperature value inside the battery pack case 22.
  • the first target value is the temperature value outside the battery pack case 22.
  • the second target value is the humidity value outside the battery pack case 22.
  • the battery pack device 102 since the battery pack device 102 stops high-temperature operation at this time, the battery pack 21 inside the battery pack case 22 does not release a large amount of heat, so the battery pack device 102 does not need to determine whether to turn on cooling. The battery pack device 102 does not need to determine the relationship between the temperature value inside the battery pack case 22 and the preset temperature value. And when the battery pack device 102 is turned on for dehumidification, the gas outside the battery pack box 22 will enter the inside of the battery pack box 22.
  • the first target value is the temperature value outside the battery pack box 22, and the second target The value is the humidity value outside the battery pack case 22, and it can be determined that the humidity of the gas entering the battery pack case 22 is less than the gas discharged from the battery pack case 22, thereby ensuring the dehumidification effect and increasing the reliability of the battery pack device 102 Sex.
  • the battery pack device 102 when the electronic device 100 stops working, since the battery pack device 102 only needs to determine whether to start dehumidification, the battery pack device 102 does not need to provide energy for other components. At this time, the battery pack device 102 is in a low energy consumption state. , The heat released by the battery pack 21 in the battery pack device 102 is also relatively small. When the electronic device 100 stops operating, if the battery pack device 102 immediately stops operating, the temperature inside the battery pack case 22 will drop sharply, making it more likely that condensation will occur inside the battery pack case 22.
  • the controller 27 determines that there is a risk of condensation inside the battery pack box 22, the controller 27 starts dehumidification to remove the battery There is a risk of condensation inside the bag body 22.
  • the application also provides a computer-readable storage medium.
  • the computer-readable storage medium includes a computer program.
  • the computer program runs on the battery pack device 102, the battery pack device 102 is caused to execute the method for suppressing condensation of the battery pack 21 in the first embodiment to the sixth embodiment described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (read-only memory, ROM) or a random access memory (random access memory, RAM), etc.

Abstract

一种电池包装置(102),包括电池包箱体(22)、第一传感器(23)、第二传感器(24)、干燥盒(25)、强制换气部件(26)以及控制器(27),控制器(27)耦合第一传感器(23)、第二传感器(24)以及强制换气部件(26);第一传感器(23)用于检测电池包箱体(22)内部的温度和湿度;第二传感器(24)用于检测电池包箱体(22)外部的温度和湿度;电池包箱体(22)设有彼此间隔的第一通道(28)和第二通道(29),第一通道(28)连通电池包箱体(22)的内部与外部,第二通道(29)连通电池包箱体(22)的内部与外部;干燥盒(25)安装于第一通道(28),强制换气部件(26)安装于第二通道(29),控制器(27)用于依据第一传感器(23)和第二传感器(24)的检测值控制强制换气部件(26)。电池包装置(102)能够有效地抑制凝露现象,提高了电池包装置(102)的可靠性。

Description

电池包装置、电子设备及用于抑制电池包凝露的方法
本申请要求于2019年6月27日提交中国专利局、申请号为201910566579.0、申请名称为“电池包装置、电子设备及用于抑制电池包凝露的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及能源动力技术领域,尤其涉及一种电池包装置、电子设备及用于抑制电池包凝露的方法。
背景技术
电池包作为电动汽车的核心动力部件,对电动车的操控性能、安全、使用寿命等起着至关重要的作用。为了保证电池包内部气压与外界气体的气压保持平衡,电池包上一般会设置防爆透气阀。防爆透气阀通常只能阻止液体水进入箱体,无法隔离水汽。因此,电池包箱体内湿度处于无法控制状态。
由于电动汽车使用环境的多样性,电池包内水蒸气容易发生凝露现象,而凝露对电池包内部的电气设备危害非常大,例如会造成设备的绝缘击穿、箱体部件锈蚀等现象。
发明内容
本申请实施例提供一种所述电池包装置,所述电池包装置能够依据所述电池包装置内部的温度与湿度情况与目标值之间的关系,来判定是否需要开启所述电池包装置中的除湿装置,以抑制所述电池包装置内部的凝露现象。本申请还提供一种抑制电池包凝露的方法及电子设备。
第一方面,本申请提供一种所述电池包装置。所述电池包装置包括电池包箱体、第一传感器、所述第二传感器、干燥盒、强制换气部件以及控制器。所述第一传感器用于检测所述电池包箱体内部的温度和湿度。所述第二传感器用于检测所述电池包箱体外部的温度和湿度。所述控制器耦合所述第一传感器、所述第二传感器以及所述强制换气部件。所述第一传感器与所述第二传感器检测到的数据能够传递至所述控制器。所述控制器能够控制所述强制换气部件的启动和停止。
其中,所述强制换气部件为能够使所述电池包箱体内部的气体与所述电池包箱体外部的气体进行交换的部件。例如,在一种示例中,所述控制器根据所述第一传感器大于或等于所述第二传感器的测量值时,启动所述强制换气部件,使得所述电池包箱体内部的气体自所述强制换气部件排出至所述电池包箱体的外部,引入所述电池包箱体外部的气体进入所述电池包箱体的内部。所述控制器根据所述第一传感器小于所述第二传感器的测量值时,停止所述强制换气部件,所述电池包箱体内部与外部的气体无法自所述强制换气部件进行交换。另一种示例中,所述控制器根据所述第一传感器的检测值大于或等于预设值时,启动所述强制换气部件,使得所述电池包箱体内部的气体排出至所述电池包箱体的外部,引 入所述电池包箱体外部的气体进入所述电池包箱体的内部。所述控制器根据所述第一传感器小于预设值时,停止所述强制换气部件,所述电池包箱体内部与外部的气体无法自所述强制换气部件进行交换。
在一种实施方式中,所述第一传感器能够安装于所述电池包箱体的内部,所述第二传感器能够安装于所述电池包箱体的外部。在另一种实施方式中,所述第一传感器也能够部分位于所述电池包箱体的内部,部分位于所述电池包箱体的外部。所述第二传感器也能够部分位于所述电池包箱体的外部,部分位于所述电池包箱体的内部。在本申请实施例中,所述第一传感器与所述第二传感器具体位置不做限定。
在一种实施方式中,所述第一传感器或所述第二传感器为集成检测温度与湿度于一体的温湿度传感器。也即,温湿度传感器能够检测温度,也能够检测湿度。在另一种实施方式中,所述第一传感器或所述第二传感器包括用于检测温度的湿度传感器,及用于检测湿度的温度传感器。也即,在此实施方式中,用于检测温度的传感器与用于检测湿度的传感器属于不同的传感器。在本申请实施例中,所述第一传感器与所述第二传感器的种类不做限定。
所述电池包箱体设有彼此间隔的第一通道和第二通道。所述第一通道连通所述电池包箱体的内部与外部。所述第二通道连通所述电池包箱体的内部与外部。所述第一通道与所述第二通道能够使得所述电池包箱体内部的气体交换。所述第一通道与所述第二通道能够使得所述电池包箱体内部的气体与所述电池包箱体外部的气体交换。所述电池包箱体内部的气体能够通过所述第一通道流出至所述电池包箱体外部。所述电池包箱体外部的气体也能够通过所述第一通道流入所述电池包箱体内部。
所述干燥盒安装于所述第一通道。所述干燥盒用于干燥气体。所述强制换气部件安装于所述第二通道。当所述强制换气部件开启时,所述强制换气部件能够使得所述电池包箱体内部的气体自所述第二通道或所述第一通道排出至所述电池包箱体的外部。所述强制换气部件也能够使得所述电池包箱体外部的气体自所述第二通道流入至所述电池包箱体的内部。
所述强制换气部件安装于所述第二通道。所述强制换气部件为能够使所述电池包箱体内部的气体与所述电池包箱体外部的气体进行交换的部件,例如,所述强制换气部件为风扇,所述强制换气部件也为包括泵的部件。在本申请实施例中,以所述强制换气部件为风扇为例来进行描写。其中,风扇能够为单向排气强制换气部件,也能够为双向排气强制换气部件。在本申请中,对风扇的种类不做严格限定。
所述控制器用于依据所述第一传感器和所述第二传感器的检测值控制所述强制换气部件。
在本申请实施例中,所述第一传感器及所述第二传感器的检测值能够传递至所述控制器。具体地,当所述控制器依据所述第一传感器和所述第二传感器的检测值判断出所述电池包箱体内部存在发生凝露现象的可能性时,所述控制器控制所述强制换气部件的开启,降低所述电池包箱体内部与外部的温度及湿度差,避免了所述电池包箱体内部产生凝露现象,从而提高了所述电池包装置的可靠性。
例如,当所述控制器判断出所述第一传感器检测到的温度及湿度值均大于或等于所述 第二传感器检测到的温度及湿度值时,所述电池包箱体内部气体的湿度大于或等于所述电池包箱体外部气体的湿度,所述控制器控制所述强制换气部件的开启,排出所述电池包箱体内部的气体,引入所述电池包箱体外部湿度较低的气体至所述电池包箱体内部。当所述电池包箱体内部气体的湿度大于或等于所述电池包箱体外部气体的湿度时,当电池包箱体内部的温度降低时,此时所述电池包箱体内部存在发生凝露现象的风险。因此,当所述电池包箱体内部气体的湿度大于或等于所述电池包箱体外部气体的湿度时开启所述强制换气部件,能够排出所述电池包箱体内潮湿的空气,引入相对干燥的空气至所述电池包箱体内,达到除湿的效果,有效地抑制凝露的现象。
其中,在本申请实施例中,所述控制器控制所述强制换气部件的开启,不仅能够减小所述电池包箱体内部的温度,也能够减低所述电池包箱体内部的温度。因此,在本申请实施例中,所述换气部件也能够起到冷却所述电池包箱体内部电池包的作用。
在一种实施方式中,所述电池包装置还包括阀门。所述阀门安装于所述第二通道。所述阀门耦合所述控制器。
所述控制器控制所述阀门的开启与关闭。所述强制换气部件位于所述阀门远离所述电池包箱体内部的一侧。也即,所述阀门相对所述强制换气部件靠近所述电池包箱体的内部。当所述强制换气部件处于关闭状态时,所述阀门也处于关闭状态,避免所述电池包箱体内部与外部的气体通过所述第二通道进行交换。
在本申请实施例中,当所述强制换气部件处于关闭状态时,若所述电池包箱体外部气体的湿度大于所述电池包箱体内部气体的湿度,则所述阀门能够避免所述电池包箱体外部的潮湿空气从所述强制换气部件口进入所述电池包箱体内部,从而保证了所述电池包箱体内部的气体的干燥性。所述阀门处于开启状态,所述电池包箱体内部的气体与外部的气体嫩巩固通过所述第二通道进行交换。
在一种实施方式中,所述阀门可拆卸地安装于所述第二通道。所述强制换气部件可拆卸地安装于所述第二通道。
在此实施方式中,所述阀门与所述强制换气部件均与所述第二通道可拆卸连接,方便当所述阀门或所述强制换气部件出现故障时更换所述阀门或所述强制换气部件,避免了因所述阀门或所述强制换气部件的故障而导致整个所述电池包装置不能使用的场景。也即,所述阀门或所述强制换气部件与所述第二通道可拆卸连接,有利于所述电池包装置后续的维修。
在另一种实施方式中,所述阀门、所述强制换气部件、所述第二通道也能够集成于一体。
在此实施方式中,不仅节省了所述阀门与所述强制换气部件分别安装于所述第二通道的时间,而且避免了所述阀门与所述强制换气部件安装于所述第二通道出现气密性不佳的问题。
其中,所述控制器分别控制所述强制换气部件及所述阀门。具体地,在本申请实施例中,所述控制器同时控制所述阀门与所述强制换气部件的开启,或者所述阀门的开启在所述强制换气部件开启之前,避免所述强制换气部件空转的问题,从而提高了所述强制换气部件的效率。
所述强制换气部件包括轴流风机或离心风机。轴流风机或离心风机的气流流向为所述电池包箱体的内部向所述电池包箱体的外部。
在一种实施方式中,所述干燥盒包括干燥盒主体、保护盖、透气膜以及干燥剂。所述干燥盒主体安装于所述第一通道。所述干燥盒主体为两端开口的中空结构。
所述保护盖封盖所述干燥盒主体的一个开口,且位于所述干燥盒主体朝向所述电池包箱体的外部的一侧。所述保护盖上设有多个透气孔。所述透气膜封盖所述干燥盒主体的另一开口。所述干燥剂收容于所述干燥盒主体内,且位于所述透气膜与所述保护盖之间。
其中,多个透气孔能够使得所述电池包箱体外部的气体与内部的气体进行交换。所述透气膜用于隔离液体,避免液体流入所述电池包箱体内,起到防水透气的作用。所述透气膜位于所述干燥剂远离所述保护盖的一侧,能够避免所述干燥剂中的水分流入至所述电池包箱体内部。
在本申请实施例中,当所述强制换气部件关闭时,所述干燥盒能够为所述电池包箱体内部的气体进行干燥,减低所述电池包箱体内部气体的湿度。当所述强制换气部件开启时,所述干燥盒能够对进入所述电池包箱体内部的气体进行干燥,减低进入所述电池包箱体内部气体的湿度,进一步地抑制所述电池包箱体内部的凝露现象。
在一种实施方式中,所述干燥盒还包括所述加热器。所述加热器耦合所述控制器。所述加热器包括加热部分及连接部分。所述加热器的加热部分收容于所述干燥盒主体内,且位于所述透气膜与所述干燥剂之间。所述加热器的连接部分位于所述干燥盒的外部,减小了所述干燥盒的体积。所述连接部分用于耦合控制器。所述加热部分用于在所述控制器的驱动下发热。
在本申请实施例中,所述加热器的加热部分位于所述透气膜与所述干燥剂之间,也即,加热部分位于所述透气膜靠近所述电池包箱体的一侧。当所述加热器对所述干燥剂进行加热时,所述干燥剂中的湿气从所述保护盖中的多个透气孔流出至所述干燥盒的外部,避免了所述干燥剂的湿气流入所述电池包箱体内部。
在一种实施方式中,所述电池包装置还包括第三传感器。所述第三传感器用于检测所述干燥剂的含水量。其中,检测所述干燥剂的含水量可以通过检测所述干燥剂的质量值或湿度值来获取。也即,所述第三传感器能够为重力传感器,也能够为湿度传感器。
所述第三传感器耦合所述控制器。所述控制器在一定的条件下开启所述加热器,使得所述加热器对所述干燥剂进行加热。
在本申请实施例中,所述控制器根据所述第三传感器的检测值判断出是否开启所述加热器。当所述第三传感器的测量值大于或等于预设值时,表明所述干燥剂的含水量较高,此时所述干燥剂的干燥性能较差。因此,当所述第三传感器的测量值大于或等于预设值时,所述控制器控制所述加热器的开启,使得所述加热器产生的热量对所述干燥剂进行干燥,减小了所述干燥剂的含水量,从而恢复所述干燥剂的干燥性能。当所述第三传感器的测量值小于预设值时,表明所述干燥剂的干燥性能较好,此时关闭所述加热器,不仅节约能耗,而且避免所述加热器过渡加热所述干燥剂,而导致所述干燥剂的干燥性能降低的现象。
在一种实施方式中,所述电池包箱体包括相背设置的第一侧壁及第二侧壁。所述第一通道贯穿所述第一侧壁。所述第二通道贯穿所述第二侧壁,且所述第一通道与所述第二通 道对齐设置。也即,所述干燥盒与所述强制换气部件对齐设置。
当所述控制器控制所述强制换气部件开启时,所述第二通道为所述电池包箱体的排气口,所述第一通道为所述电池包箱体的进气口。所述电池包箱体的排气口与所述电池包箱体的进气口对齐设置,避免所述电池包箱体自排气口排出的气体干扰进气口进入的气体,保证了进入所述电池包箱体内部气体的干燥性。
在本申请实施例中,当所述控制器控制所述强制换气部件开启时,所述电池包箱体内部的气体自所述第二通道排出至电池包外部,由于所述电池包箱体内外的压强差,所述电池包箱体外部的气体自所述第一通道流入至所述电池包箱体内部。此时所述第一通道与所述第二通道对齐设置,避免了自所述第一通道流入至所述电池包箱体内部的气体含有自所述强制换气部件排出的气体的成分,保证了自所述第一通道流入至所述电池包箱体内部的气体均为所述电池包箱体外部相对干燥的空气。
在一种实施方式中,所述电池包箱体还包括相背设置的第三侧壁及第四侧壁。所述第三侧壁与所述第四侧壁连接在所述第一侧壁与所述第二侧壁之间。
所述第二传感器位于所述干燥盒远离所述第一通道的一侧。具体地,所述第二传感器与所述干燥盒间隔设置,且所述第二传感器位于所述干燥盒的周边。
在本申请实施例中,所述第二传感器位于所述干燥盒远离所述第二侧壁的一侧,使得所述第二传感器检测到的温度及湿度为进气口处空气的温度和湿度,保证进入所述电池包箱体气体的干燥性,避免了当所述电池包箱体外部空气质量分布不均匀时,而导致自进气口进入所述电池包箱体空气的质量比所述第一传感器检测到的空气质量差的情形。
所述第一传感器远离所述第一通道,且远离所述第二通道。具体地,所述第一通道位于所述第一侧壁的中间区域,且所述第二通道位于所述第二侧壁的中间区域。所述第一传感器安装于所述第三侧壁,使得所述第一传感器远离所述第一通道,且远离所述第二通道。或者,所述第一传感器安装于所述第四侧壁,使得所述第一传感器远离所述第一通道,且远离所述第二通道。
在本申请实施例中,所述第一传感器远离所述第一通道和所述第二通道,所述强制换气部件开启时,所述第一传感器远离进气口和排气口。由于进气口引入的气体相对较干燥,因此若所述第一传感器靠近所述第一通道,则所述第一传感器检测到的空气的温度与湿度值高于所述电池包箱体内部空气平均的温度与湿度值。由于排气口排出的气体相对较潮湿,因此若所述第一传感器靠近所述第二通道时,则所述第一传感器检测到的空气的温度与湿度值低于所述电池包箱体内部空气平均的温度与湿度值。故而,令所述第一传感器远离所述第一通道,以避免所述第一传感器的检测值高于电池内部气体整体气体的情况,使得所述第一传感器能够较为准确地所述电池包箱体内部的空气情况,避免所述电池包箱体内部的局部产生凝露现象。
在一种实施方式中,所述电池包装置还包括主流道、第一侧流道及与所述第一侧流道间隔设置的第二侧流道。所述第一侧流道与所述第一通道连通。所述第二侧流道与所述第二通道连通。所述主流道连通所述第一侧流道与所述第二侧流道。
其中,所述第一通道位于所述第一侧壁的中间区域,且所述第二通道位于所述第二侧壁的中间区域,使得所述第一侧流道相对所述第二侧流道靠近所述第一侧壁,所述第二侧 流道相对所述第一侧流道靠近所述第二侧壁。
在本申请实施例中,在所述电池包箱体内设置流道,所述电池包箱体内的气体沿着设定的流道流动,避免了所述电池包箱体内的气体流动混乱而造成所述电池包箱体内局部气体无法排除至所述电池包箱体外部的现象,使得所述电池包箱体内潮湿的空气均能够有序有效地排出至所述电池包箱体外部,从而有效地抑制凝露现象。
所述主流道的数量为多个,任意相邻的两个所述主流道之间设有电池包组件。所述电池包组件间隔了任意相邻的两个所述主流道,避免了任意相邻的两个所述主流道之间气体相互交换的情形,得所述电池包箱体内潮湿的空气均能够有序有效地排出至所述电池包箱体外部,从而有效地抑制凝露现象。
在一种实施方式中,每个所述电池包组件均包括多个电池包及挡板。每两个相邻电池包之间设有所述挡板。所述挡板避免了空气自一个所述主流道流至另一个相邻的所述主流道而导致所述电池包箱体内空气流通混乱的现象,从而保证了所述电池包箱体内的空气均有序有效地排除至所述电池包箱体外部。
在一种实施方式中,所述电池包装置还包括冷却部件。所述冷却部件安装于所述电池包箱体的内部。所述冷却部件用于冷却所述电池包箱体内部的电池包。所述控制器用于依据所述第一传感器的检测值控制所述冷却部件。所述第一传感器能够检测所述电池包箱体内部的温度值。具体地,所述控制器用于依据所述电池包箱体内部的温度控制所述冷却部件。
所述控制器控制所述冷却部件的开启与关闭。例如,当所述控制器判断出所述电池包箱体内部的温度大于或等于预设温度时,所述控制器开启所述冷却部件,以冷却所述电池包箱体内部的电池包,从而提高所述电池包装置的可靠性。当所述控制器判断出所述电池包箱体内部的温度小于预设温度时,所述控制器关闭所述冷却部件,以节约所述电池包装置的能耗。
第二方面,本申请提供一种用于抑制电池包凝露的方法。所述方法应用于电池包装置。所述电池包装置具有电池包箱体。所述电池包箱体内部设有多个电池包。所述方法能够检测所述电池包箱体内部与外部的温度及湿度,并根据所述电池包箱体内部的温度与湿度的实际状态以及可能发生的潜在变化趋势判定是否需要开启除湿指令,以抑制所述电池包的凝露现象。例如,潜在的变化趋势包括电动汽车在正常行驶过程中,开启冷却装置。此时,所述电池包箱体内部的温度发生骤变,存在发生凝露的可能性。潜在的变化趋势还包括电动汽车停止运动。此时,所述电池包停止高温工作状态,所述电池包箱体内部的温度也会发生骤变,存在发生凝露的可能性。本申请提供的方法能够有效地抑制所述电池包凝露现象。
当所述电池包装置为电子设备供电时,执行所述方法。其中,所述方法可以按照一定的时间间隔持续执行,以实时抑制所述电池包的凝露现象,从而提高所述电池包装置的可靠性。所述方法也可以依据触发事件执行,例如,当所述电池包装置停止高温工作时执行此方法,当所述电池包装置收到准备开启冷却部件时执行此方法。
所述方法包括:
所述电池包装置确认电池包箱体内部的温度值;
其中,所述电池包箱体内部的温度值通过所述电池包装置内的第一传感器检测得到。
当所述电池包箱体内部的温度值大于或等于第一目标值时,获取所述电池包箱体内部的湿度值;
其中,所述第一目标值为所述电池包箱体外部的温度值,或者预设温度值。预设温度值小于或等于所述电池包装置在正常工作下允许的所述电池包箱体内部的最高温度。可以理解的,当所述电池包箱体内部的温度大于或等于预设温度值时,需要开启冷却部件,对所述电池包进行降温,保证所述电池包的正常工作。其中,预设温度值在10度至45度的范围内。预设温度值可以是10度、20度、25度、30度、37度、40度、45度等。
所述电池包箱体外部的温度值通过所述电池包装置内的第二传感器检测得到。所述电池包箱体内部的湿度值通过所述电池包装置内的所述第一传感器检测得到。
当所述电池包箱体内部的湿度值大于或等于第二目标值时,启动除湿;
所述控制器启动除湿,也即,所述控制器开启所述电池包装置内的除湿部件。除湿部件用于保持所述电池包箱体内部气体的干燥。
其中,第二目标值为所述电池包箱体外部的湿度值,或者预设湿度值。预设湿度值为在预设温度值下对应的相对湿度值。预设湿度值在15%至80%的范围内。预设湿度值可以是15%、20%、30%、35%、41%、60%、68%、80%。
在本申请中,当所述电池包箱体内部的温度值大于或等于第一目标值时,表明所述电池包箱体内部的湿度值可能大于或等于第二目标值,所述电池包箱体的内部可能会产生凝露现象。此时,所述控制器再进一步地判断所述电池包箱体内部的湿度值是否大于或等于第二目标值。当所述控制器判断出所述电池包箱体内部的湿度值大于或等于第二目标值时,即表明所述电池包箱体内部的温度及湿度均大于或等于目标值,此时所述电池包箱体的内部发生凝露现象的可能性较大,此时启动除湿,能够有效地抑制所述电池包箱体内部的发生凝露的现象。
例如,当所述电池包箱体内部的温度值大于或等于所述电池包箱体外部的温度值时,表明所述电池包箱体内部的湿度值可能大于或等于所述电池包箱体湿度值。此时,当所述控制器判断出所述电池包箱体内部的湿度值大于或等于所述电池包箱体外部的湿度值时,即表明所述电池包箱体内部的湿度大于或等于所述电池包箱体外部的温度值,此时启动除湿,能够将所述电池包箱体内部的湿气体排出至所述电池包箱体的外部,引入所述电池包箱体外部干燥的气体,提高了所述电池包箱体内部气体的干燥性,从而有效地抑制所述电池包箱体内部的发生凝露的现象。
当所述电池包箱体内部的温度值大于或等于预设温度值时,表明所述电池包箱体内部的温度较高需要对所述电池包进行降温。而湿度较大的气体遇温度骤冷时,出现凝露现象的可能性较大。此时,当所述控制器判断出所述电池包箱体内部的湿度值大于或等于预设湿度值时,即表明所述电池包箱体内部的湿度较大,此时启动除湿,提高了所述电池包箱体内部气体的干燥性,避免了电池包箱体内部湿度较大的气体遇到温度骤冷而出现凝露的现象,从而有效地抑制所述电池包箱体内部的发生凝露的现象。
由于所述电池包装置启动除湿时,使得所述电池包箱体内部温度相对较高的气体排出至所述电池包箱体的外部,引入温度相对较低的气体至所述电池包箱体内部,因此所述电 池包装置启动除湿不仅抑制了所述电池包箱体内部的凝露现象,也降低了所述电池包箱体内部的温度。
其中,除湿部件包括第一除湿部件及干燥盒。所述控制器控制所述第一除湿部件。当所述第一除湿部件关闭时,所述干燥盒能够对所述电池包箱体内部的气体进行干燥,保证所述电池包箱体内部气体的干燥。当所述第一除湿部件开启时,所述第一除湿部件能够将所述电池包箱体内部相对潮湿的气体排出至所述电池包箱体的外部,由于所述电池包箱体内部的压强差,所述电池包箱体外部的气体自所述干燥盒进入所述电池包箱体的内部,降低了所述电池包箱体的内部的气体的温度和湿度,从而有效地抑制了凝露现象。此时,所述干燥盒也能够对进入所述电池包箱体内部的气体进行干燥,进一步地保证了进入所述电池包箱体内部气体的干燥。
在一种实施方式中,所述电池包装置启动除湿的过程包括:
开启所述电池包装置的强制换气部件,以将所述电池包箱体内部的气体排出。
第一除湿部件。强制换气部件为能够使所述电池包箱体内部的气体与所述电池包箱体外部的气体进行交换的部件,例如,强制换气部件为风扇,强制换气部件也为包括泵的部件。其中,所述第一除湿部件包括所述强制换气部件。
在本申请实施例中,启动除湿,使得所述电池包箱体内部温度较高且湿度较高的气体排出至所述电池包箱体的外部,所述电池包箱体内部由于压强差,引入所述电池包箱体外部相对干燥的气体,降低了所述电池包箱体内部气体的湿度,从而有效地抑制了所述电池包箱体内部产生凝露的现象。
在一种实施方式中,所述电池包装置启动除湿的过程还包括:
开启所述电池包装置的阀门,其中,所述阀门连接所述强制换气部件与所述电池包箱体内部。其中,所述第一除湿部件包括所述强制换气部件及所述阀门。
当所述控制器启动除湿时,所述强制换气部件及所述阀门均处于开启状态,此时所述强制换气部件能够将所述电池包箱体内部的气体排出至所述电池包箱体的外部。由于除湿部件开启的条件是所述电池包箱体内部的温度及湿度均大于所述电池包箱体外部的温度及湿度,因此,当所述控制器启动除湿时,能够将使得所述电池包箱体内部温度较高且含水量较高的气体排出,引入所述电池包箱体外部温度较低且含水量较低的气体,从而避免了所述电池包箱体内部产生凝露现象。
在本申请实施例中,强制换气部件处于关闭状态时,所述阀门也处于关闭状态。由于当强制换气部件处于关闭状态时,所述电池包箱体外部气体的湿度大于所述电池包箱体内部的湿度,此时关闭的所述阀门避免了所述电池包箱体外部的空气从所述阀门进入至所述电池包箱体内部,从而保证了所述电池包箱体内部的气体的干燥性。
在一种实现方式中,电池包装置先开启所述阀门,后开启强制换气部件。在本申请实施例中,以电池包装置先开启所述阀门,后开启强制换气部件为例来进行描写。
在本实现中,电池包装置先开启所述阀门,后开启强制换气部件,避免了强制换气部件先开启而所述阀门未开启时,导致强制换气部件出现在真空环境中运行而损坏强制换气部件的现象,从而提高了强制换气部件的使用寿命。
在另一种实现方式中,电池包装置也能够同时开启阀门和强制换气部件。电池包装置 同时开启阀门和强制换气部件,也避免了强制换气部件先开启而所述阀门未开启时,导致强制换气部件出现在真空环境中运行而损坏强制换气部件的现象,从而提高了强制换气部件的使用寿命。
在一种实施方式中,在所述电池包装置启动除湿之后,所述方法还包括:
所述电池包装置确认所述电池包箱体内部的温度值和湿度值。
在本申请实施例中,第一传感器能够实时监测所述电池包箱体内部的温度和湿度。当所述电池包装置需要所述电池包箱体内部的温度值和湿度值时,所述电池包装置能确定所述电池包箱体内部的温度值和湿度值。
当所述电池包箱体内部的温度值小于所述第一目标值,或所述电池包箱体内部的湿度值小于所述第二目标值时,所述电池包装置停止除湿。
在一种实现方式中,当所述控制器判断出所述电池包箱体内部的温度值小于所述电池包箱体外部的温度值时,若除湿部件处于开启状态,所述电池包箱体外部的高温气体进入至较低温的所述电池包箱体内部,而高温气体进入较低温的电池包箱体内部容易凝露,因此此时所述电池包装置停止除湿,避免了所述电池包箱体外部的高温气体进入较低温的所述电池包箱体内部,从而抑制所述电池包箱体产生凝露的现象。此时,关闭所述电池包装置停止除湿也能够起到节约能耗的作用。并且由于温度越高,空气中的饱和水蒸气含量越高。因此,当所述电池包箱体内部的温度值小于箱体外部的温度值时,所述电池包箱体内部空气的含水量可能比箱体外部空气的含水量要小,此时所述电池包装置停止除湿,避免所述电池包箱体引入含水量较高的气体,从而抑制所述电池包箱体产生凝露的现象。
在另一种实现方式中,当所述控制器判断出所述电池包箱体内部的温度值小于预设温度值时,表明所述电池包箱体内部的温度较低,此时所述电池包箱体内部的电池包产生的热量会使所述电池包箱体内部的温度继续升高,所述电池包箱体内部温度升高的过程中,所述电池包箱体内部发生凝露现象的可能性极小,可以忽略,因此此时则无需启动除湿,达到节约能耗的目的。
在再一种实现方式中,当所述控制器判断出所述电池包箱体内部的湿度值小于第二目标值时,所述电池包箱体外部的含水量高于所述电池包箱体内部的含水量,此时所述电池包装置停止除湿,避免将所述电池包箱体外部的含水量相对较高的气体引入至所述电池包箱体的内部,从而抑制所述电池包箱体产生凝露的现象。
其中,当所述电池包装置停止除湿后,所述电池包装置继续获取所述电池包箱体内部的温度值。也即,在本申请实施例中,第一传感器实时监控所述电池包箱体内部的温度值,所述控制器实时判断所述电池包箱体内部的温度值与第一目标值之间的关系,使得所述电池包装置能够实时抑制所述电池包箱体内部的凝露现象。
其中,当所述电池包装置停止除湿后,所述电池包装置继续获取所述电池包箱体内部的温度值。也即,在本申请实施例中,第一传感器实时监控所述电池包箱体内部的温度值,所述控制器实时判断所述电池包箱体内部的温度值与第一目标值之间的关系,使得所述电池包装置能够实时抑制所述电池包箱体内部的凝露现象。
在一种实施方式中,在所述电池包装置启动除湿之后,所述方法还包括:
所述电池包装置启动冷却。
在本申请实施例中,电池包装置启动除湿之后,启动冷却,有效地抑制所述电池包箱体因骤冷而产生凝露的现象。由于在气体湿度不变的情况下,温度越低,形成凝露的可能性越大。因此当所述电池包箱体内部的温度及湿度较高时,所述电池包装置启动冷却,而不启动除湿,使得所述电池包箱体内部的温度骤降,所述电池包箱体内部形成凝露的风险较大。在本申请实施例中,在电池包装置启动冷却之前,先启动除湿,降低了所述电池包箱体内部的温度及湿度,避免了高湿度的空气遇冷而出现凝露的现象,从而抑制了所述电池包箱体内部产生凝露的现象。
在一种实现方式中,第一目标值为预设温度值,且第二目标值为预设湿度值。
当所述电池包箱体内部的温度大于或等于预设温度值时,表明所述电池包箱体内部的温度较高,不利于所述电池包箱体内部的所述电池包正常工作,此时需要对所述电池包进行降温,保证所述电池包的正常工作,提高了所述电池包装置的可靠性。而当所述电池包箱体内部的温度大于所述电池包箱体外部的温度,所述电池包装置不一定需要对所述电池包进行降温,因此,在此实施方式中,第一目标值采用预设温度值。
而预设湿度值为预设温度值对应的相对湿度,此时第二目标值为预设湿度值,使得所述电池包装置对所述电池包箱体内部是否可能会产生凝露现象的判断更加准确,从而使得所述电池包装置更有效地抑制所述电池包箱体内部的凝露现象。
在本申请实施例中,当所述电池包装置判断出所述电池包箱体内部的温度值大于或等于预设湿度值时,且所述电池包箱体内部的湿度值大于或等于预设湿度值时,所述控制器不仅需要开启冷却部件对所述电池包箱体内部进行降温,而且也需要开启除湿部件以抑制所述电池包箱体发生凝露的现象。如果所述控制器直接开启冷却部件,所述电池包箱体内部的高温高湿气体遇骤冷,此时所述电池包箱体内部发生凝露现象的可能性非常大。当所述电池包装置在开启冷却部件之前,开启除湿,则能降低所述电池包箱体内部的湿度,从而有效地抑制所述电池包箱体内部的凝露现象。
在本申请实施例中,所述电池包装置启动除湿之后,再启动冷却,预先降低了所述电池包箱体内部的温度及湿度值,当冷却部件对所述电池包箱体内部进行冷却时,由于所述电池包箱体内部的湿度较低,因此不会发生凝露现象。
在其他示例中,所述电池包装置也能够不包括所述冷却部件。由于所述电池包装置启动除湿时,使得所述电池包箱体内部温度相对较高的气体排出至所述电池包箱体的外部,引入温度相对较低的气体至所述电池包箱体内部,因此所述电池包装置启动除湿不仅抑制了所述电池包箱体内部的凝露现象,也降低了所述电池包箱体内部的温度。
在一种实施方式中,在所述电池包装置启动除湿之后,所述方法还包括:
所述电池包装置确认所述电池包箱体内部的温度值和湿度值;
当所述电池包箱体内部的温度值小于所述第一目标值,或所述电池包箱体内部的湿度值小于所述第二目标值时,所述电池包装置停止除湿。
此时,所述第一目标值能够为所述电池包箱体外部的温度值。所述第一目标值也能够为所述预设温度值。所述第二目标值能够为所述电池包箱体外部的湿度值。所述第二目标值也能够为所述预设湿度值。
当所述控制器判断出所述电池包箱体内部的温度值小于所述电池包箱体外部的温度值 时,若除湿部件处于开启状态,所述电池包箱体外部的高温气体进入至较低温的所述电池包箱体内部,而高温气体进入较低温的电池包箱体内部容易凝露,因此此时所述电池包装置停止除湿,避免了所述电池包箱体外部的高温气体进入较低温的所述电池包箱体内部,从而抑制所述电池包箱体产生凝露的现象。此时,关闭所述电池包装置停止除湿也能够起到节约能耗的作用。并且由于温度越高,空气中的饱和水蒸气含量越高。因此,当所述电池包箱体内部的温度值小于箱体外部的温度值时,所述电池包箱体内部空气的含水量可能比箱体外部空气的含水量要小,此时所述电池包装置停止除湿,避免所述电池包箱体引入含水量较高的气体,从而抑制所述电池包箱体产生凝露的现象。
当所述控制器判断出所述电池包箱体内部的温度值小于预设温度值时,表明所述电池包箱体内部的温度较低,此时所述电池包箱体内部的电池包产生的热量会使所述电池包箱体内部的温度继续升高,所述电池包箱体内部温度升高的过程中,所述电池包箱体内部发生凝露现象的可能性极小,可以忽略,因此此时则无需启动除湿,达到节约能耗的目的。
其中,当所述控制器判断出所述电池包箱体内部的温度值小于预设温度值时,表明所述电池包箱体内部的温度较低,所述电池包箱体内部的温度未达到冷却需求,此时所述电池包箱体内部的所述电池包在适宜环境状态下工作,此时所述电池包装置也能够停止冷却,能够起到节约能耗的作用。
当所述控制器判断出所述电池包箱体内部的湿度值小于第二目标值时,所述电池包箱体外部的含水量高于所述电池包箱体内部的含水量,此时所述电池包装置停止除湿,避免将所述电池包箱体外部的含水量相对较高的气体引入至所述电池包箱体的内部,从而抑制所述电池包箱体产生凝露的现象。
在一种实施方式中,在所述电池包装置启动冷却之后,所述方法还包括:
所述电池包装置确认所述电池包箱体内部的温度值;
当所述电池包箱体内部的温度值小于预设温度值时,所述电池包装置停止冷却。
在本申请实施例中,当所述电池包箱体内部的温度值小于预设温度时,表明所述电池包箱体内部的温度较低,所述电池包箱体内部的温度未达到冷却需求,此时所述电池包箱体内部的所述电池包在适宜环境状态下工作,此时所述电池包装置停止冷却,能够起到节约能耗的作用。此时,所述电池包箱体内部的湿度值能够大于或等于第一目标值,也能够小于第一目标值。也即在本申请实施例中,只要当所述电池包箱体内部的温度值小于预设温度时,所述电池包装置停止冷却,避免所述电池包装置做无用功而造成资源浪费。
在一种实施方式中,所述第一目标值为所述电池包箱体外部的温度值,且所述第二目标值为所述电池包箱体外部的湿度值。
所述电池包装置确认所述电池包箱体内部的温度值,所述方法还包括:
接收所述电池包箱体停止高温工作的信号。
其中,当所述电池包装置的载体设备为电动汽车时,电动汽车在正常运行过程中,所述电池包装置处于高温工作状态,所述电池包装置内部的所述电池包释放大量的热量。当电动汽车停止运行时,所述控制器会接收到所述电池包箱体停止高温工作的信号。所述电池包装置停止高温工作状态,使得所述电池包箱体内部的温度会降低,从而导致所述电池包箱体内部可能产生凝露的现象。此时,如果当所述电池包装置判断出所述电池包箱体内 部存在发生凝露的可能性时,开启除湿,就能够有效地排除所述电池包箱体内部产生凝露的可能性。
在本申请实施方式中,由于此时电池包装置停止高温工作,所述电池包箱体内部的所述电池包不会释放大量的热量,因此所述电池包装置无需判断是否需要开启冷却。所述电池包装置无需依据所述电池包箱体内部的温度值判断与预设温度值之间的关系。并且当所述电池包装置开启除湿时,所述电池包箱体外部的气体会进入至所述电池包箱体的内部,此时第一目标值为所述电池包箱体外部的温度值,且第二目标值为所述电池包箱体外部的湿度值,能够确定进入所述电池包箱体内部的气体的湿度小于自所述电池包箱体内部排出的气体,从而能够保证除湿效果,增加所述电池包装置的可靠性。
第三方面,本申请还提供一种电子设备。所述电子设备包括外壳及如上所述电池包装置。所述电池包装置安装于所述外壳。
在本申请实施例中,由于所述电子设备包括如上所述电池包装置,而所述电池包装置能够依据所述电池包装置内部与外部的温度与湿度情况,并结合电子设备可能发生的潜在变化趋势来判定是否需要开启所述电池包装置中的除湿装置,以抑制所述电池包装置内部的凝露现象,从而提高了电子设备的质量。
第四方面,本申请还提供一种计算机可读存储介质。所述计算机可读存储介质包括计算机程序。当所述计算机程序在所述电池包装置上运行时,使得所述电池包装置执行上述所述的方法。
附图说明
为了说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1所示电子设备的电池包装置在第一实施例中的结构示意图;
图3是图2所示电池包装置在一种使用状态下的内部结构示意图;
图4是图2所示电池包装置在另一种使用状态下的内部结构示意图;
图5是图1所示电池包装置在第二实施例中的内部结构示意图;
图6是图2所示干燥盒在第一实施方式中的结构示意图;
图7是图6所示干燥盒的爆炸结构示意图;
图8是图2所示干燥盒在第二实施方式中的结构示意图;
图9是图2所示干燥盒在第三实施方式中的结构示意图;
图10是图9所示干燥盒的爆炸结构示意图;
图11是图1所示电池包装置在第三实施例中的结构示意图;
图12是本申请提供的一种抑制电池包凝露的方法在第一实施方式中的流程示意图;
图13是图12所示S130的流程示意图;
图14是本申请提供的一种抑制电池包凝露的方法在第二实施方式中的流程示意图;
图15是本申请提供的一种抑制电池包凝露的方法在第三实施方式中的流程示意图;
图16是本申请提供的一种抑制电池包凝露的方法在第四实施方式中的流程示意图;
图17是本申请提供的一种抑制电池包凝露的方法在第五实施方式中的流程示意图;
图18是本申请提供的一种抑制电池包凝露的方法在第六实施方式中的流程示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请一并参阅图1及图2,图1是本申请实施例提供的一种电子设备的结构示意图;图2是图1所示电子设备的电池包装置的结构示意图。本申请实施例提供一种电子设备100。电子设备100可以是电动汽车、发电设备、无人水下航行器、房车电源或基站备用电源等设备。在本申请实施例中,以电子设备100为电动汽车为例来进行描写。
电子设备100包括外壳101及电池包装置102。电池包装置102安装于外壳101。电池包装置102包括电池包21。电池包21能够为电动汽车提供动力源,驱动电动汽车行驶。
电池包装置102还包括电池包箱体22、第一传感器23、第二传感器24、干燥盒25、强制换气部件26以及控制器27。电池包21位于电池包箱体22的内部。第一传感器23用于检测电池包箱体22内部的温度和湿度。第二传感器24用于检测电池包箱体22外部的温度和湿度。控制器27耦合第一传感器23、第二传感器24以及强制换气部件26。第一传感器23与第二传感器24检测到的数据能够传递至控制器27。控制器27能够控制强制换气部件26的启动和停止。
其中,强制换气部件26为能够使电池包箱体22内部的气体与电池包箱体22外部的气体进行交换的部件。例如,在一种示例中,控制器27根据第一传感器23大于或等于第二传感器24的测量值时,启动强制换气部件26,使得电池包箱体22内部的气体自强制换气部件26排出至电池包箱体22的外部,引入电池包箱体22外部的气体进入电池包箱体22的内部。控制器27根据第一传感器23小于第二传感器24的测量值时,停止强制换气部件26,电池包箱体22内部与外部的气体无法自强制换气部件26进行交换。
另一种示例中,控制器27根据第一传感器23的检测值大于或等于预设值时,启动强制换气部件26。控制器27根据第一传感器23小于预设值时,停止强制换气部件26,电池包箱体22内部与外部的气体无法自强制换气部件26进行交换。
第一传感器23能够安装于电池包箱体22的内部。第一传感器23也能够部分位于电池包箱体22的内部,部分位于电池包箱体22的外部。具体地,第一传感器23用于探测电池包21内部的温度和湿度的探头位于电池包21的内部。第二传感器24能够安装于电池包箱体22的外部。第二传感器24也能够部分位于电池包箱体22的外部,部分位于电池包箱体22的内部。具体地,第二传感器24用于探测电池包箱体22外部的温度及湿度的探头位于电池包箱体22的外部。也即,在本申请中,对第一传感器23与第二传感器24具体位置不做限定。
在本申请中,对第一传感器23及第二传感器24的种类也不做限定。在一种实施方式中,第一传感器23或第二传感器24为集成检测温度与湿度于一体的温湿度传感器。也即,温湿度传感器能够检测温度,也能够检测湿度。在另一种实施方式中,第一传感器23或第二传感器24包括用于检测温度的湿度传感器,及用于检测湿度的温度传感器。也即,在此实施方式中,用于检测温度的传感器与用于检测湿度的传感器属于不同的传感器。
在本申请提供的实施例中,以第一传感器23及第二传感器24均为温湿度传感器为例来进行描写。一方面,第一传感器23与第二传感器24采用集成检测温度与湿度于一体的温湿度传感器,使得第一传感器23检测到的温度及湿度数值均属于位于温湿度传感器安装位置的空气,第二传感器24检测到的温度及湿度数值均属于温湿度传感器安装位置的空气,保证了第一传感器23检测到的温度与湿度为同一区域内的空气,第二传感器24检测到的温度与湿度为同一区域内的空气,从而提高了第一传感器23与第二传感器24检测数据的准确性。
另一方面,第一传感器23与第二传感器24采用集成检测温度与湿度于一体的温湿度传感器,取代传统分立的温度和湿度传感器,不用再额外增加一块传感器探头,实现了采用一个传感器对温度和湿度同时采集和监测的功能。
在其他实施例中,第一传感器23能够为包括用于检测温度的湿度传感器,及用于检测湿度的温度传感器,第二传感器24为温湿度传感器。此时,第一传感器23内的温度传感器与湿度传感器的安装位置应该尽量靠近,使得第一传感器23检测到空气的温度值与湿度值尽量来自于相同区域内的空气。
进一步地,请参阅图3及图4,图3是图2所示电池包装置102在一种使用状态下的内部结构示意图;图4是图2所示电池包装置102在另一种使用状态下的内部结构示意图。具体地,图3为电池包装置102的强制换气部件26未开启的状态,图4是电池包箱体22的强制换气部件26开启的状态。
电池包箱体22设有彼此间隔的第一通道28和第二通道29。第一通道28连通电池包箱体22的内部与外部。第二通道29连通电池包箱体22的内部与外部。如图3所示,第一通道28的深度即为电池包箱体22的厚度,第二通道29的深度大于电池包箱体22的厚度。在其他实施例中,第一通道28的深度也能够大于电池包箱体22的厚度。
第一通道28与第二通道29能够使得电池包箱体22内部的气体与电池包箱体22外部的气体交换。电池包箱体22内部的气体能够通过第一通道28流出至电池包箱体22外部。电池包箱体22外部的气体也能够通过第一通道28流入电池包箱体22内部。电池包21体外部的气体能够通过第二通道29流入电池包箱体22的内部。电池包箱体22内部的气体能够通过第二通道29流出至电池包箱体22的外部。
干燥盒25安装于第一通道28。干燥盒25用于干燥气体。具体地,干燥盒25能够对电池包箱体22内部的气体进行干燥,提高了电池包箱体22内部气体的干燥性。干燥盒25也能够对自电池包箱体22外部流入至电池包箱体22内部的气体进行干燥,保证流入至电池包箱体22内部的气体的干燥性,从而提高了电池包箱体22内部气体的干燥性。
其中,电池包箱体22内部的气体也能够自第一通道28穿过干燥盒25,最终流至电池包箱体22的外部。也即,电池包21外部的气体与内部的气体能够通过干燥盒25进行交换。
强制换气部件26安装于第二通道29。强制换气部件26为能够使电池包箱体22内部的气体与电池包箱体22外部的气体进行交换的部件。例如,强制换气部件26能够为风扇,强制换气部件26也能够为包括泵的部件。在本申请实施例中,以强制换气部件26为风扇为例来进行描写。
其中,风扇能够为单向排气风扇,也能够为双向排气风扇。强制换气部件26为单向排 气风扇时,强制换气部件26只能向一个方向转动。此时,强制换气部件26只能将电池包箱体22内部的气体自第二通道29排出至电池包箱体22的外部。
强制换气部件26为双向排气风扇时,强制换气部件26能够向两个方向转动。此时,强制换气部件26不仅能够将电池包箱体22内部的气体自第二通道29排出至电池包箱体22的外部,也能够将电池包箱体22内部的气体自第一通道28排出至电池包箱体22的外部。若强制换气部件26向第一方向转动,则强制换气部件26能够驱动电池包箱体22内部的气体自第二通道29排出至电池包箱体22的外部、电池包箱体22外部的气体自第一通道28进入电池宝箱体22的内部;若强制换气部件26向第二方向转动,则强制换气部件26能够驱动电池包箱体22内部的气体自第一通道28排出至电池包箱体22的外部、电池包箱体22外部的气体自第二通道29流入至电池包箱体22的内部。在本申请中,对风扇的种类不做严格限定。
在本申请的实施例中,以强制换气部件26为单向排气强制换气部件为例来进行描写。当强制换气部件26开启时,强制换气部件26使得电池包箱体22内部的气体自第二通道29排出至电池包箱体22的外部,由于电池包箱体22内外压强差,电池包箱体22外部的气体经过干燥盒25干燥后流至第一通道28,最终流入电池包箱体22的内部。
在其他实施例中,强制换气部件26也能够使得电池包箱体22内部的气体自第一通道28排出至电池包箱体22的外部。此时,干燥盒25受到自第一通道28朝向电池包箱体22外部的风力,使得干燥盒25内潮湿的空气流至电池包箱体22的外部,避免了干燥盒25内潮湿的空气流入至电池包箱体22的内部。干燥盒25受到自第一通道28朝向电池包箱体22外部的风力,也能够对干燥盒25进行干燥。
控制器27能够位于电池包箱体22的内部,也能够位于电池包箱体22的外部。在本申请实施例中,以控制器27位于电池包箱体22的外部为例来进行描写。第一传感器23及第二传感器24与控制器27能够通过有线连接,也能够通过无线连接。在本申请实施例中,以第一传感器23及第二传感器24与控制器27能够通过无线连接为例来进行描写。
在本申请实施例中,第一传感器23及第二传感器24的检测值能够传递至控制器27。当控制器27依据第一传感器23和第二传感器24的检测值判断出电池包箱体22内部存在发生凝露现象的可能性时,控制器27控制强制换气部件26的开启,减小了电池包箱体22内部与外部的温度及湿度差,减低了电池包箱体22内部的湿度值,阻断了产生凝露的条件,从而避免了电池包箱体22内部产生凝露现象,提高了电池包装置102的可靠性。
例如,当控制器27判断出第一传感器23检测到的温度及湿度值均大于或等于第二传感器24检测到的温度及湿度值时,电池包箱体22内部气体的湿度大于或等于电池包箱体22外部气体的湿度,控制器27控制强制换气部件26的开启,排出电池包箱体22内部的气体,引入电池包箱体22外部湿度较低的气体至电池包箱体22内部,达到除湿的效果,有效地抑制凝露的现象。
其中,在本申请实施例中,控制器27控制强制换气部件26的开启,不仅能够减小电池包箱体22内部的温度,也能够减低电池包箱体22内部的温度。因此,在本申请实施例中,换气部件26也能够起到冷却电池包箱体22内部电池包21的作用。
进一步地,电池包装置102还包括阀门210。阀门210安装于第二通道29。阀门210 耦合控制器27。控制器27控制阀门210的开启与关闭。强制换气部件26位于阀门210远离电池包箱体22内部的一侧。也即,阀门210相对强制换气部件26靠近电池包箱体22的内部。当强制换气部件26处于关闭状态时,阀门210也处于关闭状态,避免电池包箱体22内部与外部的气体通过第二通道29进行交换。
如图3所示,阀门210处于关闭状态。当强制换气部件26处于关闭状态时,若电池包箱体22外部气体的湿度大于电池包箱体22内部气体的湿度,则阀门210能够避免电池包箱体22外部的潮湿空气从强制换气部件26口进入电池包箱体22内部,从而保证了电池包箱体22内部的气体的干燥性。如图4所示,阀门210处于开启状态,电池包箱体22内部的气体与外部的气体通过第二通道29进行交换。
在一种实施方式中,阀门210可拆卸地安装于第二通道29。强制换气部件26可拆卸地安装于第二通道29。阀门210与强制换气部件26均与第二通道29可拆卸连接,方便当阀门210或强制换气部件26出现故障时更换阀门210或强制换气部件26,避免了因阀门210或强制换气部件26的故障而导致整个电池包装置102不能使用的问题。也即,阀门210或强制换气部件26与第二通道29可拆卸连接,有利于电池包装置102后续的维修。
在另一种实施方式中,阀门210、强制换气部件26、第二通道29也能够集成于一体。在此实施方式中,不仅节省了阀门210与强制换气部件26分别安装于第二通道29的时间,而且避免了阀门210与强制换气部件26安装于第二通道29出现气密性不佳的问题。
其中,控制器27分别控制强制换气部件26及阀门210。具体地,在本申请实施例中,控制器27同时控制阀门210与强制换气部件26的开启,或者阀门210的开启在强制换气部件26开启之前,避免强制换气部件26空转的问题,从而提高了强制换气部件26的效率。
进一步地,强制换气部件26包括轴流风机或离心风机。轴流风机或离心风机的气流流向为电池包箱体22的内部向电池包箱体22的外部。
由于轴流风机的特点是流体沿着扇叶的轴向流动,此时强制换气部件26的出风口需要有足够的空间供轴流风机排气,也即此时强制换气部件26与电子设备100内部其他装置相隔一定的距离才能保证电池包箱体22内部的气体有效地排出至电池包箱体22的外部。
而由于离心风机是将流体从扇叶的轴向吸入后利用离心力将流体从圆周方向排出,因此当强制换气部件26离电子设备100其他装置很近时,强制换气部件26没有足够的排气空间时可采用离心风机。
进一步地,请参阅图4,电池包箱体22包括相背设置的第一侧壁221及第二侧壁222。第一通道28贯穿第一侧壁221。第二通道29贯穿第二侧壁222,且第一通道28与第二通道29对齐设置。也即,干燥盒25与强制换气部件26对齐设置。当控制器27控制强制换气部件26开启时,第二通道29为电池包箱体22的排气口,第一通道28为电池包箱体22的进气口。电池包箱体22的排气口与电池包箱体22的进气口对齐设置,避免电池包箱体22自排气口排出的气体干扰进气口进入的气体,保证了进入电池包箱体22内部气体的干燥性。
在本申请实施例中,当控制器27控制强制换气部件26开启时,电池包箱体22内部的气体自第二通道29排出至电池包21外部,由于电池包箱体22内外的压强差,电池包箱体22外部的气体自第一通道28流入至电池包箱体22内部。此时第一通道28与第二通道29 对齐设置,避免了自第一通道28流入至电池包箱体22内部的气体含有自强制换气部件26排出的气体的成分,保证了自第一通道28流入至电池包箱体22内部的气体均为电池包箱体22外部相对干燥的空气。
进一步地,第二传感器24位于干燥盒25远离第一通道28的一侧。如图4所示,第二传感器24与干燥盒25间隔设置,且第二传感器24位于干燥盒25的周边。
在本申请实施例中,第二传感器24位于干燥盒25远离第二侧壁222的一侧,使得第二传感器24检测到的温度及湿度为进气口处空气的温度和湿度,保证进入电池包箱体22气体的干燥性,避免了当电池包箱体22外部空气质量分布不均匀时,自进气口进入电池包箱体22空气的质量比第一传感器23检测到的空气质量差的情形。
进一步地,电池包箱体22还包括相背设置的第三侧壁223及第四侧壁224。第三侧壁223与第四侧壁224连接在第一侧壁221与第二侧壁222之间。第一传感器23远离第一通道28,且远离第二通道29。
具体地,如图4所示,第一传感器23安装于第三侧壁223,使得第一传感器23远离第一通道28,且远离第二通道29。在其他实施例中,第一传感器23能够安装于第四侧壁224,使得第一传感器23远离第一通道28,且远离第二通道29。
一种示例中,控制器27靠近第一传感器23设置。如图4所示,控制器27安装于第三侧壁223。此时,第一传感器23靠近控制器27,有利于第一传感器23与控制器27之间的数据传导。
在本申请实施例中,第一传感器23远离第一通道28和第二通道29,强制换气部件26开启时,第一传感器23远离进气口和排气口。由于进气口引入的气体相对较干燥,因此若第一传感器23靠近第一通道28,则第一传感器23检测到的空气的温度与湿度值高于电池包箱体22内部空气平均的温度与湿度值。由于排气口排出的气体相对较潮湿,因此若第一传感器23靠近第二通道29时,则第一传感器23检测到的空气的温度与湿度值低于电池包箱体22内部空气平均的温度与湿度值。故而,令第一传感器23远离第一通道28,以避免第一传感器23的检测值高于电池内部气体整体气体的情况,使得第一传感器23能够较为准确地电池包箱体22内部的空气情况,避免电池包箱体22内部的局部产生凝露现象。
如图4所示,第一通道28位于第一侧壁221的中间区域,且第二通道29位于第二侧壁222的中间区域。在其他实施例中,第一通道28也能够相对第四侧壁224靠近第三侧壁223,或者第一通道28相对第三侧壁223靠近第四侧壁224。第二通道29相对第三侧壁223靠近第四侧壁224,或者第二通道29相对第四侧壁224靠近第三侧壁223。也即,第一通道28能够位于第一侧壁221的中间区域,也能够位于第一侧壁221的端部区域。第二通道29能够位于第二侧壁222的中间区域,也能够第二侧壁222的端部区域。在本申请实施例中,以第一通道28位于第一侧壁221的中间区域,且第二通道29位于第二侧壁222的中间区域为例来进行描写。
进一步地,请参阅图4,电池包装置102还包括主流道201、第一侧流道202及与第一侧流道202间隔设置的第二侧流道203。第一侧流道202与第一通道28连通。第二侧流道203与第二通道29连通。主流道201连通第一侧流道202与第二侧流道203。在本申请实施例中,第一通道28位于第一侧壁221的中间区域,且第二通道29位于第二侧壁222的 中间区域,使得第一侧流道202相对第二侧流道203靠近第一侧壁221,第二侧流道203相对第一侧流道202靠近第二侧壁222。
如图4所示,当强制换气部件26开启时,主流道201的流向能够为自第一侧壁221朝向第二侧壁222的方向。第一侧流道202的方向为自第一通道28朝向第三侧壁223的方向和自第一通道28朝向第四侧壁224的方向。第二侧流道203的方向为自第三侧壁223朝向第二通道29的方向和自第四侧壁224朝向第二通道29的方向。靠近干燥盒25一侧的气体自第一侧流道202流经主流道201后再流经第二侧流道203,最后自第二通道29排出至电池包箱体22的外部。
当强制换气部件26关闭时,靠近强制换气部件26一侧的气体能够自第一侧流道202流经主流道201后流经第二侧流道203,也能够自第二侧流道203流经主流道201后再流经第一侧流道202,最后流入第一通道28进入干燥盒25进行干燥。也即,当强制换气部件26关闭时,主流道201的流向能够为,自第一侧壁221朝向第二侧壁221的方向,也能够为自第二侧壁222朝向第一侧壁221的方向。
在本申请实施例中,在电池包箱体22内设置流道,电池包箱体22内的气体沿着设定的流道流动,避免了电池包箱体22内的气体流动混乱而造成电池包箱体22内局部气体无法排除至电池包箱体22外部的现象,使得电池包箱体22内潮湿的空气均能够有序有效地排出至电池包箱体22外部,从而有效地抑制凝露现象。
在其他实施例中,第一通道28能够位于第一侧壁221的端部,第二通道29能够位于第二侧壁222的端部。例如,第一通道28相对第三侧壁223靠近第四侧壁224,且第二通道29相对第四侧壁224靠近第三侧壁223时。主流道201、第一侧流道202及第二侧流道203能够根据第一通道28与第二通道29的位置不同而有不同的设计。
进一步地,主流道201的数量为多个,任意相邻的两个主流道201之间设有电池包组件211。电池包组件211间隔了任意相邻的两个主流道201,避免了任意相邻的两个主流道201之间气体相互交换的情形,得电池包箱体22内潮湿的空气均能够有序有效地排出至电池包箱体22外部,从而有效地抑制凝露现象。
一种示例中,每个电池包组件211均包括多个电池包21及挡板212。如图4所示,每两个相邻电池包21之间设有挡板212。挡板212避免了空气自一个主流道201流至另一个相邻的主流道201而导致电池包箱体22内空气流通混乱的现象,从而保证了电池包箱体22内的空气均有序有效地排除至电池包箱体22外部。
进一步地,请参阅图5,图5是图1所示电池包装置102在第二实施例中的内部结构示意图。本实施例中与第一实施例相同的大部分技术方案内容不再赘述。
电池包装置100还包括冷却部件213。冷却部件213安装于电池包箱体22的内部。冷却部件213用于冷却电池包箱体22内部的电池包。
冷却部件213包括冷却水道2131、进水管2132及出水管2133。冷却液自进水管2132流经冷却水道2131后,自出水管2133排出至电池包箱体22的外部。电池包21产生的热量传递至冷却水道2131上,被冷却水道2131内的冷却液带走,从而减低了电池包21的温度。
如图5所示,冷却部件213位于电池包21的底部。当冷却部件213开启时,冷却部件 213能够减低电池包21的温度,以保证电池包21能正常工作。在其他实施例中,冷却部件213也能够围设在电池包21的周边,使得冷却部件213能够对电池包21进行立体多面的散热,提高冷却部件213的工作效果。
控制器27用于依据第一传感器23的检测值控制冷却部件213。第一传感器23能够检测电池包箱体22内部的温度值。具体地,控制器27用于依据电池包箱体22内部的温度控制冷却部件213。
控制器27控制冷却部件213的开启与关闭。例如,当控制器27判断出电池包箱体22内部的温度大于或等于预设温度时,控制器27开启冷却部件213,以冷却电池包箱体22内部的电池包21,从而提高电池包装置100的可靠性。当控制器27判断出电池包箱体22内部的温度小于预设温度时,控制器27关闭冷却部件213,以节约电池包装置100的能耗。
进一步地,请一并参阅图6至图8,图6是图2所示干燥盒25在第一实施方式中的结构示意图;图7是图6所示干燥盒25的爆炸结构示意图;图8是图2所示干燥盒25在第二实施方式中的结构示意图。
干燥盒25包括干燥盒主体251、保护盖252、透气膜253以及干燥剂254。干燥盒主体251安装于第一通道28。干燥盒主体251为两端开口的中空结构。保护盖252封盖干燥盒主体251的一个开口,且位于干燥盒主体251朝向电池包箱体22的外部的一侧。保护盖252保护干燥盒主体251内的部件。保护盖252上设有多个透气孔2521。透气膜253封盖干燥盒主体251的另一开口。干燥剂254收容于干燥盒主体251内,且位于透气膜253与保护盖252之间。保护盖252可拆卸连接于干燥盒主体251,方便干燥剂254的更换。
其中,多个透气孔2521能够使得电池包箱体22外部的气体与内部的气体进行交换。透气膜253用于隔离液体,避免液体流入电池包箱体22内,起到防水透气的作用。透气膜253位于干燥剂254远离保护盖252的一侧,能够避免干燥剂254中的水分流入至电池包箱体22内部。
在本申请实施例中,当强制换气部件26关闭时,干燥盒25能够为电池包箱体22内部的气体进行干燥,减低电池包箱体22内部气体的湿度。当强制换气部件26开启时,干燥盒25能够对进入电池包箱体22内部的气体进行干燥,减低进入电池包箱体22内部气体的湿度,进一步地抑制电池包箱体22内部的凝露现象。
在本申请实施例中,对干燥盒25的形状不做限定。干燥盒25能够依据电池包装置102在不同的使用场景下有不同的形状。干燥盒25能够是矩形、圆形、椭圆形或其他异型结构。如图6所示,在干燥盒25提供的第一实施方式中,干燥盒25能够为矩形。此时,干燥盒25能够安装于第一侧壁221的侧边,且干燥盒25封盖第一通道28的开口。
如图8所示,在干燥盒25提供的第一实施方式中,干燥盒25能够为圆形。此时,干燥盒25能够安装于第一通道28的内部,使得干燥盒25与第一通道28的空间复用,能够缩小电池包装置100的体积。
进一步地,请一并参阅图9至图11,图9是图2所示干燥盒25在第三实施方式中的结构示意图;图10是图9所示干燥盒25的爆炸结构示意图;图11是图1所示本申请提供的电池包装置102在第三实施例中的结构示意图。本实施例中与前述实施例相同的大部分技术方案内容不再赘述。
干燥盒25还包括加热器255。加热器255耦合控制器27(参阅图2)。加热器255包括加热部分2551及连接部分2552。加热器255的加热部分2551收容于干燥盒主体251内,且位于透气膜253与干燥剂254之间。
加热器255的连接部分2551位于干燥盒25的外部,减小了干燥盒25的体积。连接部分2551用于耦合控制器27。加热部分2551用于在控制器27的驱动下发热。控制器27能够控制加热器255的开启和关闭。例如,当干燥剂254含水量较高时,控制器27控制加热器255的开启,使得加热器255对干燥剂254进行加热,减小干燥剂254的含水量,从而恢复干燥剂254的干燥性能。
在本申请实施例中,加热器255的加热部分2551位于透气膜253与干燥剂254之间,也即,加热部分2551位于透气膜253靠近电池包箱体22的一侧。当加热器255对干燥剂254进行加热时,干燥剂254中的湿气从保护盖252中的多个透气孔2521流出至干燥盒25的外部,避免了干燥剂254的湿气流入电池包箱体22内部。
进一步地,电池包装置102还包括第三传感器256。第三传感器256用于检测干燥剂254的含水量。其中,检测干燥剂254的含水量可以通过检测干燥剂254的质量值或湿度值来获取。也即,第三传感器256能够为重力传感器,也能够为湿度传感器。第三传感器256耦合控制器27。控制器27在一定的条件下开启加热器255,使得加热器255对干燥剂254进行加热。
第三传感器256能够安装于干燥盒25的内部。第三传感器256也能够部分位于干燥盒25的内部,部分位于干燥盒25的外部。具体地,第三传感器256用于探测干燥剂254含水量的部分位于干燥盒25的内部。如图11所示,第三传感器256部分位于干燥盒25的外部,减小干燥盒25的体积。
在本申请实施例中,控制器27根据第三传感器256的检测值判断出是否开启加热器255。当第三传感器256的测量值大于或等于预设值时,表明干燥剂254的含水量较高,此时干燥剂254的干燥性能较差。因此,当第三传感器256的测量值大于或等于预设值时,控制器27控制加热器255的开启,使得加热器255产生的热量对干燥剂254进行干燥,减小了干燥剂254的含水量,从而恢复干燥剂254的干燥性能。当第三传感器256的测量值小于预设值时,表明干燥剂254的干燥性能较好,此时关闭加热器255,不仅节约能耗,而且避免加热器255过渡加热干燥剂254,而导致干燥剂254的干燥性能降低的现象。
本申请还提供一种抑制电池包凝露的方法。该方法应用于电池包装置。电池包装置具有电池包箱体。电池包箱体内部设有多个电池包。该方法能够检测电池包箱体内部与外部的温度及湿度,并根据电池包箱体内部的温度与湿度的实际状态以及可能发生的潜在变化趋势判定是否需要开启除湿指令,以抑制电池包的凝露现象。
例如,潜在的变化趋势包括电动汽车在正常行驶过程中,开启冷却装置。此时,电池包箱体内部的温度发生骤变,存在发生凝露的可能性。潜在的变化趋势还包括电动汽车停止运动。此时,电池包停止高温工作状态,电池包箱体内部的温度也会发生骤变,存在发生凝露的可能性。本申请提供的方法能够有效地抑制电池包凝露现象。
下面结合前面的电池包装置102对本申请提供的一种用于抑制电池包21凝露的方法进行详细介绍。在其他实施例中,抑制电池包凝露的方法也可以用于不同于前述实施例的电 池包装置。
请参阅图12,图12是本申请提供的一种抑制电池包21凝露的方法在第一实施方式中的流程示意图。当电池包装置102为电子设备供电时,执行该方法。其中,该方法可以按照一定的时间间隔持续执行,以实时抑制电池包21的凝露现象,从而提高电池包装置102的可靠性。该方法也可以依据触发事件执行,例如,当电池包装置102停止高温工作时执行此方法,当电池包装置102收到准备开启冷却部件时执行此方法。
抑制电池包21凝露的方法包括:
S110:电池包装置102确认电池包箱体22内部的温度值。
其中,电池包箱体22内部的温度值通过电池包装置102内的第一传感器23检测得到。
S120:当电池包装置102内部的控制器27判断出电池包箱体22内部的温度值大于或等于第一目标值时,电池包装置102确认电池包箱体22内部的湿度值。
第一目标值为电池包箱体22外部的温度值,或者预设温度值。预设温度值小于或等于电池包装置102在正常工作下允许的电池包箱体22内部的最高温度。可以理解的,当电池包箱体22内部的温度大于或等于预设温度值时,需要开启冷却部件,对电池包21进行降温,保证电池包21的正常工作。其中,预设温度值在10度至45度的范围内。预设温度值可以是10度、20度、25度、30度、37度、40度、45度等。
电池包箱体22外部的温度值通过电池包装置102内的第二传感器检测得到。电池包箱体22内部的湿度值通过电池包装置102内的第一传感器23检测得到。
湿度值能够为相对湿度值,也能够为绝对湿度值。绝对湿度值为单位空气在一定压力及温度下所含的水汽的质量。相对湿度值为绝对湿度值与饱和湿度的比值。饱和湿度为单位空气在该条件下所包含的最大水汽质量。在本申请实施例中,以湿度值为相对湿度为例来进行描写。
其中,第一传感器23能够同时检测电池包箱体22内部的温度与湿度。第一传感器23也能够分别检测电池包箱体22内部的温度与湿度。在本申请实施例中,以第一传感器23同时检测电池包箱体22内部的温度及湿度为例来进行描写。当控制器27需要电池包箱体22内部的温度值时,电池包装置102确认电池包箱体22内部的温度值。当控制器27需要电池包箱体22内部的湿度值时,电池包装置102确认电池包箱体22内部的湿度值。在本申请中,对第一传感器23检测电池包箱体22的温度及湿度的时间及顺序不作限定。
在其他实施例中,控制器27也能够在需要获取电池包箱体22内部的温度值时,控制第一传感器23检测电池包箱体22内部的温度,以确认电池包箱体22内部的温度值。当控制器27需要获取电池包箱体22内部的湿度值时,控制第一传感器23检测电池包箱体22内部的湿度,以确认电池包箱体22内部的温度值。
S130:当电池包装置102内的控制器27判断出电池包箱体22内部的湿度值大于或等于第二目标值时,电池包装置102启动除湿。
电池包装置102的控制器27启动除湿,也即,控制器27开启电池包装置102内的除湿部件。除湿部件用于保持电池包箱体22内部气体的干燥。
其中,第二目标值为电池包箱体22外部的湿度值,或者预设湿度值。预设湿度值为在预设温度值下对应的相对湿度值。预设湿度值在15%至80%的范围内。预设湿度值可以是 15%、20%、30%、35%、41%、60%、68%、80%。
在本申请中,当电池包箱体22内部的温度值大于或等于第一目标值时,表明电池包箱体22内部的湿度值可能大于或等于第二目标值,电池包箱体22的内部可能会产生凝露现象。此时,控制器27再进一步地判断电池包箱体22内部的湿度值是否大于或等于第二目标值。当控制器27判断出电池包箱体22内部的湿度值大于或等于第二目标值时,即表明电池包箱体22内部的温度及湿度均大于或等于目标值,此时电池包箱体22的内部发生凝露现象的可能性较大,此时启动除湿,能够有效地抑制电池包箱体22内部的发生凝露的现象。
例如,当电池包箱体22内部的温度值大于或等于电池包箱体22外部的温度值时,表明电池包箱体22内部的湿度值可能大于或等于电池包箱体22湿度值。此时,当控制器27判断出电池包箱体22内部的湿度值大于或等于电池包箱体22外部的湿度值时,即表明电池包箱体22内部的湿度大于或等于电池包箱体22外部的温度值,此时启动除湿,能够将电池包箱体22内部的湿气体排出至电池包箱体22的外部,引入电池包箱体22外部干燥的气体,提高了电池包箱体22内部气体的干燥性,从而有效地抑制电池包箱体22内部的发生凝露的现象。
当电池包箱体22内部的温度值大于或等于预设温度值时,表明电池包箱体22内部的温度较高需要对电池包21进行降温。而湿度较大的气体遇温度骤冷时,出现凝露现象的可能性较大。此时,当控制器27判断出电池包箱体22内部的湿度值大于或等于预设湿度值时,即表明电池包箱体22内部的湿度较大,此时启动除湿,提高了电池包箱体22内部气体的干燥性,避免了电池包箱体内部湿度较大的气体遇到温度骤冷而出现凝露的现象,从而有效地抑制电池包箱体22内部的发生凝露的现象。
由于电池包装置102启动除湿时,使得电池包箱体22内部温度相对较高的气体排出至电池包箱体22的外部,引入温度相对较低的气体至电池包箱体22内部,因此电池包装置102启动除湿不仅抑制了电池包箱体22内部的凝露现象,也降低了电池包箱体22内部的温度。
其中,除湿部件包括第一除湿部件及干燥盒。控制器27控制第一除湿部件。当第一除湿部件关闭时,干燥盒25能够对电池包箱体22内部的气体进行干燥,保证电池包箱体22内部气体的干燥。当第一除湿部件开启时,第一除湿部件能够将电池包箱体22内部相对潮湿的气体排出至电池包箱体22的外部,由于电池包箱体22内部的压强差,电池包箱体22外部的气体自干燥盒进入电池包箱体22的内部,降低了电池包箱体22的内部的气体的温度和湿度,从而有效地抑制了凝露现象。此时,干燥盒也能够对进入电池包箱体22内部的气体进行干燥,进一步地保证了进入电池包箱体22内部气体的干燥。
进一步地,请参阅图13,图13是图12所示S130的流程示意图。电池包装置启动除湿的过程包括:
S131:控制器27开启电池包装置102的强制换气部件,以将电池包箱体22内部的气体排出。
强制换气部件为能够使电池包箱体22内部的气体与电池包箱体22外部的气体进行交换的部件,例如,强制换气部件为风扇,强制换气部件也为包括泵的部件。其中,第一除 湿部件包括强制换气部件。在本申请实施例中,以强制换气部件为风扇26为例来进行描写。开启强制换气部件,也即开启风扇26。当风扇26开启时,电池包箱体22内部的气体能够排出至电池包箱体22的外部。
在本申请实施例中,启动除湿,使得电池包箱体22内部温度较高且湿度较高的气体排出至电池包箱体22的外部,电池包箱体22内部由于压强差,引入电池包箱体22外部相对干燥的气体,降低了电池包箱体22内部气体的湿度,从而有效地抑制了电池包箱体22内部产生凝露的现象。
进一步地,请参阅图13,电池包装置启动除湿的过程还包括:
S132:开启电池包装置的阀门。
其中,阀门210连接强制换气部件与电池包箱体22内部。其中,第一除湿部件包括强制换气部件及阀门210。阀门210为阻断电池包箱体22内部与外部气体接触的组件。控制器27控制强制换气部件及阀门210的开启与关闭。
当电池包装置102启动除湿时,强制换气部件及阀门210均处于开启状态,此时强制换气部件能够将电池包箱体22内部的气体排出至电池包箱体22的外部。由于除湿部件开启的条件是电池包箱体22内部的温度及湿度均大于电池包箱体22外部的温度及湿度,因此,当控制器27启动除湿时,能够将使得电池包箱体22内部温度较高且含水量较高的气体排出,引入电池包箱体22外部温度较低且含水量较低的气体,从而避免了电池包箱体22内部产生凝露现象。
在本申请实施例中,强制换气部件处于关闭状态时,阀门210也处于关闭状态。由于当强制换气部件处于关闭状态时,电池包箱体22外部气体的湿度大于电池包箱体22内部的湿度,此时关闭的阀门210避免了电池包箱体22外部的空气从阀门210进入至电池包箱体22内部,从而保证了电池包箱体22内部的气体的干燥性。
在一种示例中,电池包装置102先开启阀门210,后开启强制换气部件。如图13所示,在本申请实施例中,以电池包装置102先开启阀门210,后开启强制换气部件为例来进行描写。
在本申请实施例中,电池包装置102先开启阀门210,后开启强制换气部件,避免了强制换气部件先开启而阀门210未开启时,导致强制换气部件出现在真空环境中运行而损坏强制换气部件的现象,从而提高了强制换气部件的使用寿命。
在另一种示例中,电池包装置也能够同时开启阀门和强制换气部件。电池包装置同时开启阀门和强制换气部件,也避免了强制换气部件先开启而阀门210未开启时,导致强制换气部件出现在真空环境中运行而损坏强制换气部件的现象,从而提高了强制换气部件的使用寿命。
进一步地,请参阅图14,图14是本申请提供的抑制电池包21凝露的方法在第二实施方式中的流程示意图。以下主要说明本实施方式与第一实施方式的区别,本实施方式与第一实施方式相同的大部分技术内容后文不再赘述。
抑制电池包21凝露的方法包括:
S210:电池包装置102确认电池包箱体22内部的温度值。
其中,S210所包括的具体步骤参阅前述S110。
S220:当电池包装置102内部的控制器27判断出电池包箱体22内部的温度值大于或等于第一目标值时,电池包装置102确认电池包箱体22内部的湿度值。
其中,S220所包括的具体步骤参阅前述S120。
S230:当控制器27判断出电池包箱体22内部的湿度值大于或等于第二目标值时,电池包装置102启动除湿。
其中,S230所包括的具体步骤参阅前述S130。
S240:电池包装置102确认电池包箱体22内部的温度值和湿度值。
第一传感器能够实时监测电池包箱体22内部的温度和湿度。当电池包装置需要电池包箱体内部的温度值和湿度值时,电池包装置能确定电池包箱体内部的温度值和湿度值。
S250:当电池包箱体22内部的温度值小于所述第一目标值,或电池包箱体22内部的湿度值小于第二目标值时,电池包装置102停止除湿。
在本申请实施例中,当控制器27判断出电池包箱体22内部的温度值小于电池包箱体22外部的温度值时,若除湿部件处于开启状态,电池包箱体22外部的高温气体进入至较低温的电池包箱体22内部,而高温气体进入较低温的电池包箱体内部容易凝露,因此此时电池包装置102停止除湿,避免了电池包箱体22外部的高温气体进入较低温的电池包箱体22内部,从而抑制电池包箱体22产生凝露的现象。此时,关闭电池包装置102停止除湿也能够起到节约能耗的作用。并且由于温度越高,空气中的饱和水蒸气含量越高。因此,当电池包箱体22内部的温度值小于箱体外部的温度值时,电池包箱体22内部空气的含水量可能比箱体外部空气的含水量要小,此时电池包装置102停止除湿,避免电池包箱体22引入含水量较高的气体,从而抑制电池包箱体22产生凝露的现象。
当控制器27判断出电池包箱体22内部的温度值小于预设温度值时,表明电池包箱体22内部的温度较低,此时电池包箱体22内部的电池包产生的热量会使电池包箱体22内部的温度继续升高,电池包箱体22内部温度升高的过程中,电池包箱体22内部发生凝露现象的可能性极小,可以忽略,因此此时则无需启动除湿,达到节约能耗的目的。
当控制器27判断出电池包箱体22内部的湿度值小于第二目标值时,电池包箱体22外部的含水量高于电池包箱体22内部的含水量,此时电池包装置102停止除湿,避免将电池包箱体22外部的含水量相对较高的气体引入至电池包箱体22的内部,从而抑制电池包箱体22产生凝露的现象。
其中,当电池包装置102停止除湿后,电池包装置102继续获取电池包箱体22内部的温度值。也即,在本申请实施例中,第一传感器实时监控电池包箱体22内部的温度值,控制器27实时判断电池包箱体22内部的温度值与第一目标值之间的关系,使得电池包装置102能够实时抑制电池包箱体22内部的凝露现象。
进一步地,请参阅图15,图15是本申请提供的抑制电池包21凝露的方法在第三种实施方式中的流程示意图。以下主要说明本实施方式与前述实施方式的区别,本实施方式与前述实施方式相同的大部分技术内容后文不再赘述。
抑制电池包21凝露的方法包括:
S310:电池包装置102确认电池包箱体22内部的温度值。
其中,S310所包括的具体步骤参阅前述S110。
S320:当电池包装置102内部的控制器27判断出电池包箱体22内部的温度值大于或等于第一目标值时,电池包装置102确认电池包箱体22内部的湿度值。
其中,S320所包括的具体步骤参阅前述S120。此时第一目标值为预设温度值。
当电池包箱体22内部的温度大于或等于预设温度值时,表明电池包箱体22内部的温度较高,不利于电池包箱体22内部的电池包21正常工作,此时需要对电池包21进行降温,保证电池包21的正常工作,提高了电池包装置102的可靠性。而当电池包箱体22内部的温度大于电池包箱体22外部的温度,电池包装置102不一定需要对电池包21进行降温,因此,在此实施方式中,第一目标值采用预设温度值。
S330:控制器27判断出电池包箱体22内部的湿度值大于或等于第二目标值时,电池包装置102启动除湿。
其中,S330所包括的具体步骤参阅前述S130。此时第二目标值为预设湿度值。
如图15所示,在本申请实施方式二中,以第二目标值为预设湿度值为例来进行描写。由于预设湿度值为预设温度值对应的相对湿度,此时第二目标值为预设湿度值,使得电池包装置102对电池包箱体22内部是否可能会产生凝露现象的判断更加准确,从而使得电池包装置102更有效地抑制电池包箱体22内部的凝露现象。
在其他实施例中,第二目标值也能够为电池包箱体22外部的湿度值。
S340:电池包装置102启动冷却。
在本申请实施例中,电池包装置102启动除湿之后,启动冷却,有效地抑制电池包箱体22因骤冷而产生凝露的现象。由于在气体湿度不变的情况下,温度越低,形成凝露的可能性越大。因此当电池包箱体22内部的温度及湿度较高时,电池包装置102启动冷却,而不启动除湿,使得电池包箱体22内部的温度骤降,电池包箱体22内部形成凝露的风险较大。在本申请实施例中,在电池包装置102启动冷却之前,先启动除湿,降低了电池包箱体22内部的温度及湿度,避免了高湿度的空气遇冷而出现凝露的现象,从而抑制了电池包箱体22内部产生凝露的现象。
在其他示例中,电池包装置102也能够不包括冷却部件。由于电池包装置102启动除湿时,使得电池包箱体22内部温度相对较高的气体排出至电池包箱体22的外部,引入温度相对较低的气体至电池包箱体22内部,因此电池包装置102启动除湿不仅抑制了电池包箱体22内部的凝露现象,也降低了电池包箱体22内部的温度。
在一种示例中,当电池包装置102判断出电池包箱体22内部的温度值大于或等于预设湿度值时,且电池包箱体22内部的湿度值大于或等于预设湿度值时,控制器27不仅需要开启冷却部件对电池包箱体22内部进行降温,而且也需要开启除湿部件以抑制电池包箱体22发生凝露的现象。如果控制器27直接开启冷却部件,电池包箱体22内部的高温高湿气体遇骤冷,此时电池包箱体22内部发生凝露现象的可能性非常大。当电池包装置102在开启冷却部件之前,开启除湿,则能降低电池包箱体22内部的湿度,从而有效地抑制电池包箱体22内部的凝露现象。
在本申请实施例中,电池包装置102启动除湿之后,再启动冷却,预先降低了电池包箱体22内部的温度及湿度值,当冷却部件对电池包箱体22内部进行冷却时,由于电池包箱体22内部的湿度较低,因此不会发生凝露现象。
进一步地,请参阅图16,图16是本申请提供的抑制电池包21凝露的方法在第四实施方式中的流程示意图。以下主要说明本实施方式与前述实施方式的区别,本实施方式与前述实施方式相同的大部分技术内容后文不再赘述。
抑制电池包21凝露的方法包括:
S410:电池包装置102确认电池包箱体22内部的温度值。
其中,S410所包括的具体步骤参阅前述S310。
S420:当电池包装置102内部的控制器27判断出电池包箱体22内部的温度值大于或等于第一目标值时,电池包装置102确认电池包箱体22内部的湿度值。
其中,S420所包括的具体步骤参阅前述S320。
S430:控制器27判断出电池包箱体22内部的湿度值大于或等于第二目标值时,电池包装置102启动除湿。
其中,S430所包括的具体步骤参阅前述S330。
S440:电池包装置102启动冷却。
其中,S440所包括的具体步骤参阅前述S340。
S450:电池包装置102确认电池包箱体22内部的温度值和湿度值。
第一传感器能够实时监测电池包箱体22内部的温度和湿度。当电池包装置102需要电池包箱体22内部的温度值和湿度值时,电池包装置102能确定电池包箱体22内部的温度值和湿度值。
S460:当电池包箱体22内部的温度值小于预设温度值时,电池包装置102停止冷却。
在本申请实施例中,当电池包箱体22内部的温度值小于预设温度时,表明电池包箱体22内部的温度较低,电池包箱体22内部的温度未达到冷却需求,此时电池包箱体22内部的电池包21在适宜环境状态下工作,此时电池包装置102停止冷却,能够起到节约能耗的作用。此时,电池包箱体22内部的湿度值能够大于或等于第一目标值,也能够小于第一目标值。也即在本申请实施例中,只要当电池包箱体22内部的温度值小于预设温度时,电池包装置102停止冷却,避免电池包装置102做无用功而造成资源浪费。
进一步地,请参阅图17,图17是本申请提供的抑制电池包21凝露的方法在第五实施方式中的流程示意图。以下主要说明本实施方式与前述实施方式的区别,本实施方式与前述实施方式相同的大部分技术内容后文不再赘述。
抑制电池包21凝露的方法包括:
S510:电池包装置102确认电池包箱体22内部的温度值。
其中,S510所包括的具体步骤参阅前述S310。
S520:当电池包装置102内部的控制器27判断出电池包箱体22内部的温度值大于或等于第一目标值时,电池包装置102确认电池包箱体22内部的湿度值。
其中,S520所包括的具体步骤参阅前述S320。
S530:控制器27判断出电池包箱体22内部的湿度值大于或等于第二目标值时,电池包装置102启动除湿。
其中,S530所包括的具体步骤参阅前述S330。
S540:电池包装置102启动冷却。
其中,S540所包括的具体步骤参阅前述S340。
S550:电池包装置102确认电池包箱体22内部的温度值和湿度值。
第一传感器能够实时监测电池包箱体22内部的温度和湿度。当电池包装置102需要电池包箱体22内部的温度值和湿度值时,电池包装置102能确定电池包箱体22内部的温度值和湿度值。
S560:当电池包箱体22内部的温度值小于第一目标值时,或电池包箱体22内部的湿度值小于第二目标值时,电池包装置102停止除湿。
在此实施例中,第一目标值能够为电池包箱体22外部的温度值。第一目标值也能够为预设温度值。第二目标值能够为电池包箱体22外部的湿度值。第二目标值也能够为预设湿度值。
当控制器27判断出电池包箱体22内部的温度值小于电池包箱体22外部的温度值时,若除湿部件处于开启状态,电池包箱体22外部的高温气体进入至较低温的电池包箱体22内部,而高温气体进入较低温的电池包箱体22内部容易凝露,因此此时电池包装置102停止除湿,避免了电池包箱体22外部的高温气体进入较低温的电池包箱体22内部,从而抑制电池包箱体22产生凝露的现象。此时,关闭电池包装置102停止除湿也能够起到节约能耗的作用。并且由于温度越高,空气中的饱和水蒸气含量越高。因此,当电池包箱体22内部的温度值小于箱体外部的温度值时,电池包箱体22内部空气的含水量可能比箱体外部空气的含水量要小,此时电池包装置102停止除湿,避免电池包箱体22引入含水量较高的气体,从而抑制电池包箱体22产生凝露的现象。
当控制器27判断出电池包箱体22内部的温度值小于预设温度值时,表明电池包箱体22内部的温度较低,此时电池包箱体22内部的电池包产生的热量会使电池包箱体22内部的温度继续升高,电池包箱体22内部温度升高的过程中,电池包箱体22内部发生凝露现象的可能性极小,可以忽略,因此此时则无需启动除湿,达到节约能耗的目的。
其中,当控制器27判断出电池包箱体22内部的温度值小于预设温度值时,表明电池包箱体22内部的温度较低,电池包箱体22内部的温度未达到冷却需求,此时电池包箱体22内部的电池包21在适宜环境状态下工作,此时电池包装置102也能够停止冷却,能够起到节约能耗的作用。
也即,在一种示例中,当控制器27判断出电池包箱体22内部的温度值小于预设温度值时,电池包装置102停止除湿及停止冷却。在另一种示例中,当控制器27判断出电池包箱体22内部的温度值小于电池包箱体22外部的温度时,电池包装置102仅停止除湿。
当控制器27判断出电池包箱体22内部的湿度值小于第二目标值时,电池包箱体22外部的含水量高于电池包箱体22内部的含水量,此时电池包装置102停止除湿,避免将电池包箱体22外部的含水量相对较高的气体引入至电池包箱体22的内部,从而抑制电池包箱体22产生凝露的现象。
进一步地,请参阅图18,图18是本申请提供的抑制电池包21凝露的方法在第六实施方式中的流程示意图。以下主要说明本实施方式与前述实施方式的区别,本实施方式与前述实施方式相同的大部分技术内容后文不再赘述。
抑制电池包21凝露的方法包括:
S600:控制器27接收电池包箱体22停止高温工作的信号。
其中,当电池包装置102的载体设备为电动汽车时,电动汽车在正常运行过程中,电池包装置102处于高温工作状态,电池包装置102内部的电池包21释放大量的热量。当电动汽车停止运行时,控制器27会接收到电池包箱体22停止高温工作的信号。电池包装置102停止高温工作状态,使得电池包箱体22内部的温度会降低,从而导致电池包箱体22内部可能产生凝露的现象。此时,如果当电池包装置102判断出电池包箱体22内部存在发生凝露的可能性时,开启除湿,就能够有效地排除电池包箱体22内部产生凝露的可能性。
S610:电池包装置102确认电池包箱体22内部的温度值。
其中,S610所包括的具体步骤参阅前述S110。此时,第一目标值为电池包箱体22外部的温度值。
S620:当电池包装置102内部的控制器27判断出电池包箱体22内部的温度值大于或等于第一目标值时,电池包装置102确认电池包箱体22内部的湿度值。
其中,S620所包括的具体步骤参阅前述S120。
S630:控制器27判断出电池包箱体22内部的湿度值大于或等于第二目标值时,电池包装置102启动除湿。
其中,S630所包括的具体步骤参阅前述S130。此时,第二目标值为电池包箱体22外部的湿度值。
在本申请实施方式中,由于此时电池包装置102停止高温工作,电池包箱体22内部的电池包21不会释放大量的热量,因此电池包装置102无需判断是否需要开启冷却。电池包装置102无需依据电池包箱体22内部的温度值判断与预设温度值之间的关系。并且当电池包装置102开启除湿时,电池包箱体22外部的气体会进入至电池包箱体22的内部,此时第一目标值为电池包箱体22外部的温度值,且第二目标值为电池包箱体22外部的湿度值,能够确定进入电池包箱体22内部的气体的湿度小于自电池包箱体22内部排出的气体,从而能够保证除湿效果,增加电池包装置102的可靠性。
在本申请实施例中,当电子设备100停止工作时,由于电池包装置102仅需判断是否启动除湿,电池包装置102无需为其他部件提供能量,此时电池包装置102处于较低能耗状态,电池包装置102内的电池包21释放的热量也较小。当电子设备100停止运行时,电池包装置102如果立刻停止运行,则电池包箱体22内部的温度会骤降,使得电池包箱体22内部发生凝露现象的可能性较大。当电子设备100停止运行,电池包装置102处于低能耗工作状态下,此时当控制器27判断出电池包箱体22内部存在产生凝露现象的风险时,控制器27启动除湿,以排除电池包箱体22内部发生凝露的风险。
本申请还提供一种计算机可读存储介质。计算机可读存储介质包括计算机程序。当计算机程序在电池包装置102上运行时,使得电池包装置102执行上述第一种实施方式至第六种实施方式中抑制电池包21凝露的方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,的存储介质可为磁碟、光盘、只读存储记忆体(read-only memory,ROM)或随机存储记忆体(random access memory,RAM) 等。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种电池包装置,其特征在于,包括电池包箱体、第一传感器、第二传感器、干燥盒、强制换气部件以及控制器,所述控制器耦合所述第一传感器、所述第二传感器以及所述强制换气部件;
    所述第一传感器用于检测所述电池包箱体内部的温度和湿度;所述第二传感器用于检测所述电池包箱体外部的温度和湿度;
    所述电池包箱体设有彼此间隔的第一通道和第二通道,所述第一通道连通所述电池包箱体的内部与外部,所述第二通道连通所述电池包箱体的内部与外部;
    所述干燥盒安装于所述第一通道,所述强制换气部件安装于所述第二通道,所述控制器用于依据所述第一传感器和所述第二传感器的检测值控制所述强制换气部件。
  2. 根据权利要求1所述的电池包装置,其特征在于,所述电池包装置还包括阀门,所述阀门安装于所述第二通道,所述阀门耦合所述控制器。
  3. 根据权利要求1所述的电池包装置,其特征在于,所述干燥盒包括干燥盒主体、保护盖、透气膜以及干燥剂;
    所述干燥盒主体安装于所述第一通道,所述干燥盒主体为两端开口的中空结构;
    所述保护盖封盖所述干燥盒主体的一个开口,且位于所述干燥盒主体朝向所述电池包箱体的外部的一侧,所述保护盖上设有多个透气孔;
    所述透气膜封盖所述干燥盒主体的另一开口;所述干燥剂收容于所述干燥盒主体内,且位于所述透气膜与所述保护盖之间。
  4. 根据权利要求3所述的电池包装置,其特征在于,所述干燥盒还包括加热器,所述加热器耦合所述控制器,所述加热器的加热部分收容于所述干燥盒主体内,且位于所述透气膜与所述干燥剂之间,所述加热部分用于在所述控制器的驱动下发热。
  5. 根据权利要求4所述的电池包装置,其特征在于,所述电池包装置还包括第三传感器,所述第三传感器用于检测所述干燥剂的含水量,所述第三传感器耦合所述控制器。
  6. 根据权利要求1-5中任一项所述的电池包装置,其特征在于,所述电池包箱体包括相背设置的第一侧壁及第二侧壁,所述第一通道贯穿所述第一侧壁,所述第二通道贯穿所述第二侧壁,且所述第一通道与所述第二通道对齐设置。
  7. 根据权利要求6所述的电池包装置,其特征在于,所述电池包箱体还包括相背设置的第三侧壁及第四侧壁,所述第三侧壁及所述第四侧壁连接在所述第一侧壁与所述第二侧壁之间;
    所述第二传感器位于所述干燥盒远离所述第一通道的一侧;
    所述第一传感器安装于第三侧壁或第四侧壁。
  8. 根据权利要求1所述的电池包装置,其特征在于,所述电池包装置还包括主流道、第一侧流道及与所述第一侧流道间隔设置的第二侧流道,所述第一侧流道与所述第一通道连通,所述第二侧流道与所述第二通道连通,所述主流道连通所述第一侧流道与所述第二侧流道;所述主流道的数量为多个,任意相邻的两个所述主流道之间设有电池包组件。
  9. 根据权利要求1所述的电池包装置,其特征在于,所述电池包装置还包括冷却部件,所述冷却部件安装于所述电池包箱体的内部,所述控制器用于依据所述第一传感器的检测值控制所述冷却部件。
  10. 一种电子设备,其特征在于,包括外壳及如权利要求1至9任一项所述的电池包装置,所述电池包装置安装于所述外壳。
  11. 一种用于抑制电池包凝露的方法,其特征在于,应用于电池包装置,所述电池包装置具有电池包箱体,包括:
    电池包装置确认所述电池包箱体内部的温度值;
    当所述电池包箱体内部的温度值大于或等于第一目标值时,所述电池包装置确认所述电池包箱体内部的湿度值;其中,所述第一目标值为所述电池包箱体外部的温度值或者预设温度值;以及
    当所述电池包箱体内部的湿度值大于或等于第二目标值时,所述电池包装置启动除湿,其中,所述第二目标值为所述电池包箱体外部的湿度值,或者预设湿度值。
  12. 根据权利要求11所述的方法,其特征在于,所述电池包装置启动除湿的过程包括:
    开启所述电池包装置的强制换气部件,以将所述电池包箱体内部的气体排出。
  13. 根据权利要求12所述的方法,其特征在于,所述电池包装置启动除湿的过程还包括:
    开启所述电池包装置的阀门,其中,所述阀门连接所述强制换气部件与所述电池包箱体内部。
  14. 根据权利要求11至13任一项所述的方法,其特征在于,在所述电池包装置启动除湿之后,所述方法还包括:
    所述电池包装置确认所述电池包箱体内部的温度值和湿度值;
    当所述电池包箱体内部的温度值小于所述第一目标值,或所述电池包箱体内部的湿度值小于所述第二目标值时,所述电池包装置停止除湿。
  15. 根据权利要求11至13任一项所述的方法,其特征在于,在所述电池包装置启动除 湿之后,所述方法还包括:
    所述电池包装置启动冷却。
  16. 根据权利要求15所述的方法,其特征在于,在所述电池包装置启动除湿之后,所述方法还包括:
    所述电池包装置确认所述电池包箱体内部的温度值和湿度值;
    当所述电池包箱体内部的温度值小于所述第一目标值,或所述电池包箱体内部的湿度值小于所述第二目标值时,所述电池包装置停止除湿。
  17. 根据权利要求16所述的方法,其特征在于,在所述电池包装置启动冷却之后,所述方法还包括:
    所述电池包装置确认所述电池包箱体内部的温度值;
    当所述电池包箱体内部的温度值小于预设温度值时,所述电池包装置停止冷却。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序,当计算机程序在电池包装置上运行时,使得所述电池包装置执行如权利要求11至17任一项所述的方法。
PCT/CN2020/098211 2019-06-27 2020-06-24 电池包装置、电子设备及用于抑制电池包凝露的方法 WO2020259616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910566579.0A CN110265600A (zh) 2019-06-27 2019-06-27 电池包装置、电子设备及用于抑制电池包凝露的方法
CN201910566579.0 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020259616A1 true WO2020259616A1 (zh) 2020-12-30

Family

ID=67922258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098211 WO2020259616A1 (zh) 2019-06-27 2020-06-24 电池包装置、电子设备及用于抑制电池包凝露的方法

Country Status (2)

Country Link
CN (1) CN110265600A (zh)
WO (1) WO2020259616A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265600A (zh) * 2019-06-27 2019-09-20 华为技术有限公司 电池包装置、电子设备及用于抑制电池包凝露的方法
US11239506B2 (en) * 2020-01-10 2022-02-01 Ford Global Technologies, Llc Thermal event detection for battery packs
US11177516B2 (en) * 2020-01-10 2021-11-16 Ford Global Technologies, Llc Thermal event mitigation for battery packs
DE102020120627B3 (de) * 2020-08-05 2021-12-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriegehäuse für eine Kraftfahrzeugbatterie
CN114552149B (zh) * 2020-11-25 2023-08-18 宇通客车股份有限公司 电池箱及电池箱除湿方法
CN115458852A (zh) * 2021-06-09 2022-12-09 宇通客车股份有限公司 一种凝露抑制电池系统及车辆
CN113734061A (zh) * 2021-09-24 2021-12-03 中汽创智科技有限公司 一种采集装置及驾驶设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123203A (ja) * 2002-10-04 2004-04-22 Renesas Technology Corp 梱包方法
CN206471440U (zh) * 2017-01-24 2017-09-05 十堰市沃特玛电池有限公司 一种电池箱冷凝水消除系统
CN107482142A (zh) * 2016-08-29 2017-12-15 宝沃汽车(中国)有限公司 用于车辆的电池包及具有其的车辆
CN207232799U (zh) * 2017-08-11 2018-04-13 深圳市沃特玛电池有限公司 一种电池箱温湿度调节装置
CN109449767A (zh) * 2018-09-18 2019-03-08 国网浙江省电力有限公司紧水滩水力发电厂 一种防冷凝配电箱及其控制方法
CN110265600A (zh) * 2019-06-27 2019-09-20 华为技术有限公司 电池包装置、电子设备及用于抑制电池包凝露的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151802A (ja) * 2013-02-11 2014-08-25 Denso Corp 温調装置
CN207994008U (zh) * 2018-01-30 2018-10-19 中航锂电(洛阳)有限公司 一种电池包液冷装置、电池包及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123203A (ja) * 2002-10-04 2004-04-22 Renesas Technology Corp 梱包方法
CN107482142A (zh) * 2016-08-29 2017-12-15 宝沃汽车(中国)有限公司 用于车辆的电池包及具有其的车辆
CN206471440U (zh) * 2017-01-24 2017-09-05 十堰市沃特玛电池有限公司 一种电池箱冷凝水消除系统
CN207232799U (zh) * 2017-08-11 2018-04-13 深圳市沃特玛电池有限公司 一种电池箱温湿度调节装置
CN109449767A (zh) * 2018-09-18 2019-03-08 国网浙江省电力有限公司紧水滩水力发电厂 一种防冷凝配电箱及其控制方法
CN110265600A (zh) * 2019-06-27 2019-09-20 华为技术有限公司 电池包装置、电子设备及用于抑制电池包凝露的方法

Also Published As

Publication number Publication date
CN110265600A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
WO2020259616A1 (zh) 电池包装置、电子设备及用于抑制电池包凝露的方法
JP6335973B2 (ja) 電池パック
US9015960B2 (en) Drying of water damaged buildings
AU2009245147B2 (en) Engine-containing package
CN108767363B (zh) 一种用于新能源汽车的电池冷却系统
JP2003229148A (ja) 燃料電池装置
CN104916798A (zh) 用于至少一个蓄电池模块或蓄电池系统的壳体、蓄电池组和用于再生干燥剂的方法
CN214313374U (zh) 动力电池箱
JP2002061893A (ja) 発熱機器収納室の換気冷房システム
CN212914328U (zh) 一种具有防潮效果的消火栓箱
JP5229121B2 (ja) 燃料電池装置
KR101483628B1 (ko) 흡착식 제습기 및 이의 제어방법
CN113707918B (zh) 燃料电池模块及其腔室吹扫控制方法
JP4345530B2 (ja) 熱交換型冷却装置
JP2016143624A (ja) 燃料電池発電装置
CN211183709U (zh) 高效散热电机
CN218548624U (zh) 防凝露装置、电池箱、动力电池及车辆
CN219371187U (zh) 动力电池
CN218299891U (zh) 一种储能电池包及储能系统
JP2020135957A (ja) 蓄電システム
CN216498472U (zh) 一种防凝露机构及电池箱
CN216367329U (zh) 一种自动识别船舶进出港的装置
CN215539710U (zh) 除湿器以及除湿系统
CN220236038U (zh) 一种养护储存盒
CN212875140U (zh) 一种新型除湿开关柜

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.06.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20831946

Country of ref document: EP

Kind code of ref document: A1