WO2020259486A1 - 一种具有自愈合功能的丝胶水凝胶及其制备方法和应用 - Google Patents

一种具有自愈合功能的丝胶水凝胶及其制备方法和应用 Download PDF

Info

Publication number
WO2020259486A1
WO2020259486A1 PCT/CN2020/097675 CN2020097675W WO2020259486A1 WO 2020259486 A1 WO2020259486 A1 WO 2020259486A1 CN 2020097675 W CN2020097675 W CN 2020097675W WO 2020259486 A1 WO2020259486 A1 WO 2020259486A1
Authority
WO
WIPO (PCT)
Prior art keywords
sericin
self
sodium alginate
hydrogel
solution
Prior art date
Application number
PCT/CN2020/097675
Other languages
English (en)
French (fr)
Inventor
杨明英
段博
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2020259486A1 publication Critical patent/WO2020259486A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate

Definitions

  • the Chinese patent document with the application publication number CN 105268029 A discloses a method for preparing an injectable and self-healing natural polymer hydrogel for bone repair.
  • sodium alginate and soluble periodate are combined.
  • the aldehyde-based functionalized sodium alginate is generated by oxidation reaction, then calcium hydroxide and phosphoric acid are reacted to form calcium phosphate bone cement, and then the calcium phosphate bone cement is compounded with ethylene glycol chitosan, and then the aldehyde-based functionalized sodium alginate is combined
  • It is prepared by Schiff base reaction in phosphate buffer solution.
  • this technical solution needs to regulate pH when synthesizing calcium phosphate bone cement, and there is a certain gap between the crystallinity and calcium-phosphorus ratio of apatite in the organism, and the effect of bone repair may be poor.
  • the present invention discloses a preparation method of sericin hydrogel with self-healing function.
  • the prepared sericin hydrogel has excellent self-healing function and mechanical properties, and is especially suitable for Used to promote osteogenic function.
  • a preparation method of sericin hydrogel with self-healing function includes the following steps:
  • Sericin is a kind of natural macromolecular protein wrapped on the surface of silk fibroin. It has good biocompatibility and easy processing. It can be easily made into fibers, microspheres, films, hydrogels and other forms. material. In addition, sericin has a large number of polar groups (hydroxyl, carboxyl, and amino). This composition and structure endow sericin with the characteristics of easy cross-linking, controllable structure, and good biocompatibility. The carboxyl group of sericin itself can bind calcium ions well, so as to carry out electrostatic adsorption with nano-hydroxyapatite particles.
  • the sericin is extracted from lower corner cocoons, waste silk or recycled spun silk fabric products; therefore, the production cost of the preparation process can be greatly reduced.
  • the concentration of the sericin/dimethyl sulfoxide solution is 100-300 mg/mL;
  • the concentration of the adipic acid dihydrazide/dimethyl sulfoxide solution is 300-800 mg/mL;
  • the adjustment of the amount of adipic acid dihydrazide will affect the degree of crosslinking of the sericin hydrogel with self-healing function.
  • the amount is lower than the above amount, the ratio of sericin amination is low, resulting in poor crosslinking degree and self-healing efficiency of sericin hydrogel; when the amount is higher than the above amount, the cost will increase, and it will be due to the overproduction of the product. Reaction affects biocompatibility.
  • the concentration of the adipic acid dihydrazide/dimethyl sulfoxide solution is 600 mg/mL.
  • the concentration of the sodium alginate aqueous solution is 5-20 mg/mL;
  • the molar ratio of sodium alginate to sodium periodate is 1:0.5-1;
  • the volume ratio of the ethylene glycol to the sodium alginate aqueous solution is 0.5 to 1.5: 100;
  • the dialysis treatment in step (2) and step (3) uses a dialysis bag with a molecular weight cut-off of 3500D. It is found through experiments that the aminated sericin and oxidized algae after the two-step special specification dialysis bag are used Sodium, the cross-linking of the two is better.
  • step (3)
  • the concentration of aminated sericin is 50-200 mg/mL; as the concentration of the aminated sericin increases, the compactness of the internal microstructure of the hydrogel is enhanced to a certain extent, and the mechanical properties are increased ,
  • the gel time is significantly shortened; below the above concentration range, the morphology formed is mainly loose and uneven; and above the above concentration range, the gel speed is too fast will also lead to incomplete crosslinking, and the morphology is too tight and not It is flat and uniform; further preferably, the concentration of the aminated sericin is 90-150 mg/mL.
  • the concentration of oxidized sodium alginate in the solution is 50-200 mg/mL; through experiments, it is found that as the concentration of the sodium alginate aqueous solution increases, the compactness of the internal microstructure of the hydrogel is increased to a certain extent, and the mechanical properties are increased , The gel time is significantly shortened; below the above concentration range, the morphology formed is mainly loose and uneven; and above the above concentration range, the gel speed is too fast will also lead to incomplete crosslinking, and the morphology is too tight and not It is flat and uniform; further preferably, the concentration of the oxidized sodium alginate is 90-150 mg/mL.
  • the sericin hydrogel prepared by the invention has excellent self-healing function, the healing process does not require external stimuli (pH, light, temperature, chemical reagents, etc.); as well as excellent compression resistance and toughness, and better mechanical properties. Compared with other common natural macromolecular materials (such as gelatin), the hydrogels have better overall performance, and have better binding effects with hydroxyapatite.
  • the preparation process of the invention has the advantages of low energy consumption, high biological safety, low price, simple and convenient operation, short time, mild reaction conditions, and high yield.
  • Figure 1 is a microphotograph of the sericin hydrogel prepared in Example 1;
  • Ultrasound for 30 minutes mix the aminated sericin solution mixed with hydroxyapatite and the oxidized sodium alginate solution at a volume ratio of 1:1 to control the amino groups in the aminated sericin and the aldehydes in the oxidized sodium alginate
  • the molar ratio of the base is 1:1, and a self-healing sericin hydrogel with excellent mechanical properties is obtained.
  • the preparation process is the same as in Example 1, except that 6 g of sericin powder is replaced with 6 g of gelatin powder.
  • the preparation process is the same as in Example 1, except that hydroxyapatite powder is not added.
  • the preparation process is the same as that in Comparative Example 2, except that 6 g of sericin powder is replaced with 6 g of gelatin powder.
  • the maximum stress of the hydrogel prepared in this comparative example is 92 kPa and the maximum strain is 47%.
  • the preparation process is the same as in Example 1, except that the added amount of hydroxyapatite powder is replaced by 20% and 60% of the sericin mass respectively.
  • the sericin hydrogel prepared in this example has excellent self-healing performance, and the healing efficiency reaches 76.5% after 12 hours.
  • the maximum stress of the hydrogel prepared in this example is 173 kPa and the maximum strain is 38%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

一种具有自愈合功能的丝胶水凝胶的制备方法,包括:(1)以丝胶为原料,制备胺基化丝胶;(2)以海藻酸钠为原料,制备氧化海藻酸钠;(3)将步骤(1)制备的胺基化丝胶、羟基磷灰石与水混合,得到混合溶液;(4)将步骤(2)制备的氧化海藻酸钠与水混合得到溶液,再与步骤(3)的混合溶液混合,经席夫碱反应得到具有自愈合功能的丝胶水凝胶。所述的制备方法制备得到的丝胶水凝胶兼具优异的自愈合功能和力学性能,尤其适合用于促进成骨功能。

Description

一种具有自愈合功能的丝胶水凝胶及其制备方法和应用 技术领域
本发明涉及自愈合水凝胶的制备领域,尤其涉及一种具有自愈合功能的丝胶水凝胶及其制备方法和在促成骨功能中的应用。
背景技术
自愈合水凝胶是模仿生物体损伤后自行愈合的机制,在材料受到破坏后能够自动愈合的一种新兴仿生材料。自愈合水凝胶的愈合机理主要是借助于氢键、静电作用、动态金属配位、疏水作用、超分子主客体作用和亚胺键等动态相互作用,当凝胶内部结构被破坏后,受损部位的动态键重新结合实现凝胶的自愈合。其中,亚胺键(又称席夫碱)是由胺和活性羰基缩合而成的一种动态可逆化学键,因为席夫碱反应之间的动态平衡,近年来常作为动态交联反应用于构建自愈合水凝胶。
羟基磷灰石是人体和动物骨骼中的主要无机成分,具有良好的生物相容性、骨诱导性和骨传导性,在骨组织工程领域具有良好的应用前景。然而羟基磷灰石也存在一些缺点,例如脆性大,抗疲劳性差,很大程度上限制了羟基磷灰石作为单一材料在骨组织修复中的应用。
如果将羟基磷灰石与自愈合水凝胶相结合,有望解决羟基磷灰石作为单一材料在骨组织修复中存在的上述技术问题。
申请公布号为CN 103157129 A的中国专利文献中公开了一种用于骨修复的聚氨基酸/羟基磷灰石复合水凝胶及其制备方法,该制备方法包括:首先将氨基酸溶解于去离子水中,通过碳化二胺活化,加入二元胺作为交联剂,制备聚氨基酸水凝胶,将所得水凝胶在模拟体液中浸泡一定天数,即可得到聚氨基酸/羟基磷灰石复合水凝胶。但该技术方案耗时 较长,且矿化过程需要多个羟基磷灰石成核位点,对水凝胶基体表面要求高。
申请公布号为CN 105268029 A的中国专利文献中公开了一种用于骨修复的可注射并可自愈合的天然高分子水凝胶的制备方法,先将海藻酸钠与可溶性高碘酸盐经氧化反应生成醛基功能化海藻酸钠,然后将氢氧化钙与磷酸反应生成磷酸钙骨水泥,再将磷酸钙骨水泥与乙二醇壳聚糖复合后,与醛基功能化海藻酸钠在磷酸盐缓冲溶液中进行席夫碱反应制备得到。但该技术方案合成磷酸钙骨水泥时需要调控pH,且与生物体内的磷灰石的结晶度和钙磷比存在一定差距,用于骨修复效果可能不佳。
发明内容
针对现有技术存在的上述问题,本发明公开了一种具有自愈合功能的丝胶水凝胶的制备方法,制备得到的丝胶水凝胶兼具优异的自愈合功能和力学性能,尤其适合用于促进成骨功能。
具体技术方案如下:
一种具有自愈合功能的丝胶水凝胶的制备方法,包括如下步骤:
(1)以丝胶为原料,制备胺基化丝胶;
(2)以海藻酸钠为原料,制备氧化海藻酸钠;
(3)将步骤(1)制备的胺基化丝胶、羟基磷灰石与水混合,得到混合溶液;
(4)将步骤(2)制备的氧化海藻酸钠与水混合得到溶液,再将所述溶液与步骤(3)所述混合溶液混合,经席夫碱反应得到所述具有自愈合功能的丝胶水凝胶。
丝胶是包裹在丝素纤维表层的一种天然大分子蛋白,具有良好的生物相容性和易加工性,可以非常方便地制成纤维、微球、薄膜、水凝胶等多种形式的材料。另外,丝胶拥有大量的极性基团(羟基、羧基以及氨基),这种组分和结构赋予了丝胶蛋白易于交联、结构可控以及良好的 生物相容性等特性。丝胶本身所具有的羧基能很好地结合钙离子,从而与纳米羟基磷灰石颗粒进行静电吸附。
本发明利用天然大分子材料丝胶添加羟基磷灰石作为无机成分形成凝胶时,在电镜下表现为多孔的微观结构,表现出对人类间充质干细胞良好促成骨分化作用。此外,不同的浓度配比表现为不同的凝胶结构和性能,生产中可通过浓度配比的调节来控制产品的性状。
步骤(1)中,所述胺基化丝胶的具体制备工艺如下:
向丝胶/二甲基亚砜溶液中,加入羰基二咪唑充分反应,将混合液倒入己二酸二酰肼/二甲基亚砜溶液中,反应12~36h,反应液经透析处理、冷冻干燥后得到胺基化丝胶。
所述丝胶由下角茧、废丝或回收再生的绢丝织物品中提取得到;因此可以大大降低该制备工艺的生产成本。
所述丝胶/二甲基亚砜溶液的浓度为100~300mg/mL;
所述己二酸二酰肼/二甲基亚砜溶液的浓度为300~800mg/mL;
所述羰基二咪唑、丝胶和己二酸二酰肼的质量比为1:1~2:10~20;
经试验发现,所述己二酸二酰肼用量的调整会对制备的具有自愈合功能的丝胶水凝胶的交联程度产生影响。低于上述添加量时,丝胶胺基化比率低,导致丝胶水凝胶的交联程度和自愈合效率较差;而高于上述添加量时,将导致成本增加,更会由于产品过反应而影响生物相容性。进一步优选,所述己二酸二酰肼/二甲基亚砜溶液的浓度为600mg/mL。
步骤(2)中,所述氧化海藻酸钠的具体制备工艺如下:
向海藻酸钠水溶液中,加入高碘酸钠,室温下避光反应2~6h,再加入乙二醇终止反应,反应液经透析、冷冻干燥后得到氧化海藻酸钠。
所述海藻酸钠水溶液的浓度为5~20mg/mL;
所述海藻酸钠与高碘酸钠的摩尔比为1:0.5~1;
所述乙二醇与所述海藻酸钠水溶液的体积比为0.5~1.5:100;
经试验发现,不同高碘酸钠添加量对海藻酸钠的氧化度有影响。低于上述摩尔比,氧化不完全;而高于上述摩尔比,成本增加,并造成多余高碘酸钠残留。
优选地,步骤(2)与步骤(3)中的透析处理均采用截留分子量为3500D的透析袋,经试验发现,采用上述两步特殊规格的透析袋处理后的胺基化丝胶和氧化海藻酸钠,两者的交联更佳充分。
步骤(3)中:
所述胺基化丝胶与羟基磷灰石的质量比为1:0.1~0.6;经试验发现,随羟基磷灰石添加量的增加,其在内部进行二次静电吸附形成双层网络结构,水凝胶交联密度增强,机械性能增加。但高于上述添加量时,过多的羟基磷灰石会妨碍氨基和醛基之间的交联,导致自愈合能力下降。
所述混合溶液中,胺基化丝胶的浓度为50~200mg/mL;随所述胺基化丝胶浓度的增加,水凝胶内部显微结构的紧密程度有一定的增强,机械性能增加,凝胶时间明显缩短;低于上述浓度范围,所形成形貌以松散不均一为主;而高于上述浓度范围,凝胶速度过快也会导致交联不完整,形貌过于紧密且不平整均一;进一步优选,所述胺基化丝胶的浓度为90~150mg/mL。
步骤(4)中:
所述溶液中氧化海藻酸钠的浓度为50~200mg/mL;经试验发现,随所述海藻酸钠水溶液浓度的增加,水凝胶内部显微结构的紧密程度有一定的增强,机械性能增加,凝胶时间明显缩短;低于上述浓度范围,所形成形貌以松散不均一为主;而高于上述浓度范围,凝胶速度过快也会导致交联不完整,形貌过于紧密且不平整均一;进一步优选,所述氧化海藻酸钠的浓度为90~150mg/mL。
进一步优选,所述胺基化丝胶中的氨基与所述氧化海藻酸钠中的醛基的摩尔比为0.5~2:1。经试验发现,随上述摩尔比变化,对水凝胶机 械性能和凝胶时间都有明显影响。低于或高于上述摩尔比,都会导致凝胶时间长,机械性能差。
再优选:
所述胺基化丝胶与所述氧化海藻酸钠的浓度均为150mg/mL,所述胺基化丝胶中的氨基与所述氧化海藻酸钠中的醛基的摩尔比为1:1。经试验发现,采用上述优化参数制备得到的丝胶水凝胶兼具最佳的自愈合性能以及抗压性和韧性。
本发明还公开了根据上述方法制备得到的具有自愈合功能的丝胶水凝胶,该水凝胶还包含天然大分子海藻酸钠和天然骨骼成分羟基磷灰石,构建了均一多孔的微观形貌。
所述丝胶水凝胶兼具优异的自愈合功能和力学性能,以及生物相容性和骨诱导活性,尤其适合用于促进成骨功能,可在促成骨功能中加以应用。
一种上述任一技术方案所述的具有自愈合功能的丝胶水凝胶在制备具有促成骨功能的高分子材料中的应用
与现有技术相比,本发明具有如下优点:
本发明制备的丝胶水凝胶具有优异的自愈合功能,愈合过程不需要外界刺激(pH、光照、温度和化学试剂等);以及优异的抗压性与韧性,机械性能更佳。相对于其它常见的天然大分子材料(如明胶)制备的水凝胶具有更佳的综合性能,与羟基磷灰石也具有更佳的结合效果。
本发明制备的可自愈合的丝胶水凝胶,生物相容性好,利于细胞生长,可应用于组织工程等领域。
本发明的制备工艺具有耗能低,生物安全性高,价格低廉,操作简单方便,时间短,反应条件温和,产量高等优势。
附图说明
图1为实施例1制备的丝胶水凝胶的微观照片;
图2为实施例1制备的丝胶水凝胶的自愈合过程照片;
图3为实施例1制备的丝胶水凝胶经压缩前、后的对比照片。
具体实施方式
下面通过具体实施例对本发明的技术方案作进一步的详细说明,以下实施例是对本发明的解释而本发明并不局限于以下实施例。
实施例1
6g丝胶粉末溶于30mL二甲基亚砜中,加入4g羰基二咪唑充分反应,将混合液倒入100mL、600mg/mL己二酸二酰肼溶液,充分反应24h,将反应液用3500D透析袋透析48h,冻干得到胺基化丝胶。
3g海藻酸钠粉末溶于300mL的去离子水中,加入3.24g高碘酸钠,室温避光反应5h,加入4.5mL乙二醇终止反应1h,将反应液用3500D透析袋透析72h,冻干得到氧化海藻酸钠。
分别将胺基化丝胶和氧化海藻酸钠溶解于去离子水中,制成浓度均为150mg/mL的溶液,在胺基化丝胶溶液中加入丝胶质量40%的羟基磷灰石粉末,超声30min,将混有羟基磷灰石的胺基化丝胶溶液和氧化海藻酸钠溶液按体积比1:1均匀混合,以控制胺基化丝胶中的氨基与氧化海藻酸钠中的醛基的摩尔比为1:1,得到机械性能优异的可自愈合的丝胶水凝胶。
图1为本实施例制备的丝胶水凝胶的微观形貌,为多孔状网络结构,且孔壁上附有羟基磷灰石颗粒,表明其成功复合进水凝胶内部。
将本实施例制备的丝胶水凝胶切开后,重新组合,经过12h后观察凝胶自愈合情况,详见图2。观察发现,本实施例制备的丝胶水凝胶具有优异的自愈合性能,经12h,愈合效率达84.5%。
将水凝胶制成直径为10mm,高为5mm的圆柱状样品,采用拉力试验机在无侧限压缩模式下分析本实施例制备的丝胶水凝胶的压缩抗压 性能,其中力的加载速度为1N/min。测得最大应力为189kPa,最大应变为62%。
图3为压缩前、后的对比照片,对比发现,制备的丝胶水凝胶具有较高的抗压性和韧性。
对比例1
制备工艺与实施例1中相同,区别仅在于将6g丝胶粉末替换为6g明胶粉末。
经测试,经12h,本对比例制备的水凝胶自愈合效率达72%。
经压缩测试(测试条件同实施例1),本对比例制备的水凝胶的最大应力为121kPa,最大应变为38%。
对比例2
制备工艺与实施例1中相同,区别仅在于未加入羟基磷灰石粉末。
经测试,经12h,本对比例制备的水凝胶自愈合效率达87.2%。
经压缩测试(测试条件同实施例1),本对比例制备的水凝胶的最大应力为108kPa,最大应变为52%。
对比例3
制备工艺与对比例2中相同,区别在于将6g丝胶粉末替换为6g明胶粉末。
经测试,经12h,本对比例制备的水凝胶自愈合效率达81%。
经压缩测试(测试条件同实施例1),本对比例制备的水凝胶的最大应力为92kPa,最大应变为47%。
实施例2~3
制备工艺与实施例1中相同,区别仅在于羟基磷灰石粉末的加入量分别替换为丝胶质量的20%和60%。
经测试,实施例2、3分别制备的丝胶水凝胶具有优异的自愈合性能,经12h,愈合效率分别达85.3%、73%。
经压缩测试(测试条件同实施例1),实施例2、3分别制备的水凝胶的最大应力分别为134kPa、84kPa,最大应变分别为52%、59%。
实施例4
6g丝胶粉末溶于30mL二甲基亚砜中,加入4g羰基二咪唑充分反应,将混合液倒入100mL、600mg/mL己二酸二酰肼溶液,充分反应24h,将反应液用3500D透析袋透析48h,冻干得到胺基化丝胶。
3g海藻酸钠粉末溶于300mL的去离子水中,加入3.24g高碘酸钠,室温避光反应5h,加入4.5mL乙二醇终止反应1h,将反应液用3500D透析袋透析72h,冻干得到氧化海藻酸钠。
将胺基化丝胶和氧化海藻酸钠溶解于去离子水中,分别制150mg/mL和90mg/mL的溶液,在胺基化丝胶溶液中加入丝胶质量40%的羟基磷灰石粉末,超声30min,将混有羟基磷灰石的胺基化丝胶溶液和氧化海藻酸钠溶液按体积比2:1均匀混合,以控制胺基化丝胶中的氨基与氧化海藻酸钠中的醛基的摩尔比为2:1,得到机械性能较低的可自愈合的丝胶水凝胶。
经测试,本实施例制备的丝胶水凝胶具有优异的自愈合性能,经12h,愈合效率达52.7%。
经压缩测试(测试条件同实施例1),本实施例制备的水凝胶的最大应力为43kPa,最大应变为68%。
实施例5
6g丝胶溶粉末溶于30mL二甲基亚砜中,加入4g羰基二咪唑充分反应,将混合液倒入100mL、600mg/mL己二酸二酰肼溶液,充分反应24h,将反应液用3500D透析袋透析48h,冻干得到胺基化丝胶。
3g海藻酸钠粉末溶于300mL的去离子水中,加入3.24g高碘酸钠,室温避光反应5h,加入4.5mL乙二醇终止反应1h,将反应液用3500D透析袋透析72h,冻干得到氧化海藻酸钠。
将胺基化丝胶和氧化海藻酸钠溶解于去离子水中,分别制150mg/mL和120mg/mL的溶液,在胺基化丝胶溶液中加入丝胶质量40%的羟基磷灰石粉末,超声30min,将混有羟基磷灰石的胺基化丝胶溶液和氧化海藻酸钠溶液按体积比1:2均匀混合,以控制胺基化丝胶中的氨基与氧化海藻酸钠中的醛基的摩尔比为1:2,得到机械性能优异的可自愈合的丝胶水凝胶。
经测试,本实施例制备的丝胶水凝胶具有优异的自愈合性能,经12h,愈合效率达76.5%。
经压缩测试(测试条件同实施例1),本实施例制备的水凝胶的最大应力为173kPa,最大应变为38%。
最后,还需要注意的是,以上列举的仅是本发明的几个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (11)

  1. 一种具有自愈合功能的丝胶水凝胶的制备方法,其特征在于,包括如下步骤:
    (1)以丝胶为原料,制备胺基化丝胶;
    (2)以海藻酸钠为原料,制备氧化海藻酸钠;
    (3)将步骤(1)制备的胺基化丝胶、羟基磷灰石与水混合,得到混合溶液;
    (4)将步骤(2)制备的氧化海藻酸钠与水混合得到溶液,再将所述溶液与步骤(3)所述混合溶液混合,经席夫碱反应得到所述具有自愈合功能的丝胶水凝胶。
  2. 根据权利要求1所述的具有自愈合功能的丝胶水凝胶的制备方法,其特征在于,步骤(1)中,所述胺基化丝胶的具体制备工艺如下:
    向丝胶/二甲基亚砜溶液中,加入羰基二咪唑充分反应,将混合液倒入己二酸二酰肼/二甲基亚砜溶液中,反应12~36h,反应液经透析处理、冷冻干燥后得到胺基化丝胶。
  3. 根据权利要求2所述的具有自愈合功能的丝胶水凝胶的制备方法,其特征在于:
    所述丝胶由下角茧、废丝或回收再生的绢丝织物品中提取得到。
  4. 根据权利要求2所述的具有自愈合功能的丝胶水凝胶的制备方法,其特征在于:
    所述丝胶/二甲基亚砜溶液的浓度为100~300mg/mL;
    所述己二酸二酰肼/二甲基亚砜溶液的浓度为300~800mg/mL;
    所述羰基二咪唑、丝胶和己二酸二酰肼的质量比为1:1~2:10~20。
  5. 根据权利要求1所述的具有自愈合功能的丝胶水凝胶的制备方法,其特征在于,步骤(2)中,所述氧化海藻酸钠的具体制备工艺如下:
    向海藻酸钠水溶液中,加入高碘酸钠,室温下避光反应2~6h,再加入乙二醇终止反应,反应液经透析、冷冻干燥后得到氧化海藻酸钠。
  6. 根据权利要求5所述的具有自愈合功能的丝胶水凝胶的制备方法,其特征在于:
    所述海藻酸钠水溶液的浓度为5~20mg/mL;
    所述海藻酸钠与高碘酸钠的摩尔比为1:0.5~1;
    所述乙二醇与所述海藻酸钠水溶液的体积比为0.5~1.5:100。
  7. 根据权利要求1所述的具有自愈合功能的丝胶水凝胶的制备方法,其特征在于,步骤(3)中:
    所述胺基化丝胶与羟基磷灰石的质量比为1:0.1~0.6;
    所述混合溶液中,胺基化丝胶的浓度为50~200mg/mL。
  8. 根据权利要求1所述的具有自愈合功能的丝胶水凝胶的制备方法,其特征在于,步骤(4)中:
    所述溶液中氧化海藻酸钠的浓度为50~200mg/mL;
    所述胺基化丝胶中的氨基与所述氧化海藻酸钠中的醛基的摩尔比为0.5~2:1。
  9. 一种根据权利要求1~8任一权利要求所述的方法制备的具有自愈合功能的丝胶水凝胶。
  10. 一种根据权利要求9所述的具有自愈合功能的丝胶水凝胶在促成骨功能中的应用。
  11. 一种根据权利要求9所述的具有自愈合功能的丝胶水凝胶在制备具有促成骨功能的高分子材料中的应用
PCT/CN2020/097675 2019-06-27 2020-06-23 一种具有自愈合功能的丝胶水凝胶及其制备方法和应用 WO2020259486A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910566405.4 2019-06-27
CN201910566405.4A CN110283337B (zh) 2019-06-27 2019-06-27 一种具有自愈合功能的丝胶水凝胶及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020259486A1 true WO2020259486A1 (zh) 2020-12-30

Family

ID=68007720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097675 WO2020259486A1 (zh) 2019-06-27 2020-06-23 一种具有自愈合功能的丝胶水凝胶及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN110283337B (zh)
WO (1) WO2020259486A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110283337B (zh) * 2019-06-27 2020-07-24 浙江大学 一种具有自愈合功能的丝胶水凝胶及其制备方法和应用
CN113336974B (zh) * 2021-07-21 2022-06-10 浙江大学 一种具有流动性、易降解的组氨酸基配位水凝胶及其制备方法和应用
CN114984326B (zh) * 2022-06-02 2023-12-05 中国科学院大学宁波华美医院 一种多重交联的可注射骨修复水凝胶制备材料及其制备方法
CN116999617A (zh) * 2023-06-25 2023-11-07 西南医科大学附属口腔医院 一种丝胶蛋白-羟基磷灰石/海藻酸钠载药微球的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103956A1 (en) * 2012-01-05 2013-07-11 President And Fellows Of Harvard College Interpenetrating networks with covalent and ionic crosslinks
CN106334192A (zh) * 2015-07-10 2017-01-18 华中科技大学同济医学院附属协和医院 一种丝胶蛋白水凝胶及其制备方法和应用
CN106620825A (zh) * 2016-12-26 2017-05-10 浙江大学 一种双组分快速止血凝胶及其应用
WO2018100340A1 (en) * 2016-11-29 2018-06-07 Fujifilm Manufacturing Europe Bv Hydrogels
CN109806443A (zh) * 2017-11-21 2019-05-28 中国科学院化学研究所 骨支架材料及其制备方法和应用
CN110283337A (zh) * 2019-06-27 2019-09-27 浙江大学 一种具有自愈合功能的丝胶水凝胶及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180133368A1 (en) * 2016-11-15 2018-05-17 The Board Of Regents Of The University Of Texas System 3D Printed Ti-6Al-4V Scaffolds with Hydrogel Matrix

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103956A1 (en) * 2012-01-05 2013-07-11 President And Fellows Of Harvard College Interpenetrating networks with covalent and ionic crosslinks
CN106334192A (zh) * 2015-07-10 2017-01-18 华中科技大学同济医学院附属协和医院 一种丝胶蛋白水凝胶及其制备方法和应用
WO2018100340A1 (en) * 2016-11-29 2018-06-07 Fujifilm Manufacturing Europe Bv Hydrogels
CN106620825A (zh) * 2016-12-26 2017-05-10 浙江大学 一种双组分快速止血凝胶及其应用
CN109806443A (zh) * 2017-11-21 2019-05-28 中国科学院化学研究所 骨支架材料及其制备方法和应用
CN110283337A (zh) * 2019-06-27 2019-09-27 浙江大学 一种具有自愈合功能的丝胶水凝胶及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DING FUYUAN, WU SHUPING, WANG SHISHUAI, XIONG YUAN, LI YAN, LI BIN, DENG HONGBING, DU YUMIN, XIAO LING, SHI XIAOWEN: "A Dynamic and Self-Crosslinked Polysaccharide Hydrogel with Autonomous Self-Healing Ability", SOFT MATTER, vol. 11, no. 20, 28 May 2015 (2015-05-28), pages 3971 - 3976, XP055773965, ISSN: 1744-683X, DOI: 10.1039/c5sm00587f *
WANG LIN-TING, YANG MING-YING, ZHU LIANG-JUN, ZHANG HAI-PING, MIN SI-JIA, DENG LIAN, -XIA: "Preparation and Performance of Silk Sericin/Hydroxyapatite Composite Bone Scaffold", SCIENCE OF SERICULTURE, vol. 36, no. 4, 15 August 2010 (2010-08-15), pages 639 - 644, XP055773970, ISSN: 0257-4799, DOI: 10.13441/j.cnki.cykx.2010.04.025 *

Also Published As

Publication number Publication date
CN110283337A (zh) 2019-09-27
CN110283337B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2020259486A1 (zh) 一种具有自愈合功能的丝胶水凝胶及其制备方法和应用
Li et al. Controlling molecular conformation of regenerated wild silk fibroin by aqueous ethanol treatment
Bundela et al. Designing of hydroxyapatite-gelatin based porous matrix as bone substitute: Correlation with biocompatibility aspects
US20210038760A1 (en) Biomimetic bone composite material, a preparation method and uses thereof
CN110548171B (zh) 一种明胶基骨组织粘合剂、其制备方法和应用
CN101401965A (zh) 一种复合骨修复生物活性材料的合成方法
CN110585485A (zh) 一种竹纤维/羟基磷灰石/壳聚糖新型复合膜及制备方法
CN110152055A (zh) 海藻酸胺化衍生物/细菌纤维素纳米晶复合凝胶构筑的功能性药物缓释医用敷料
CN112957525A (zh) 一种纳米羟基磷灰石/丝素蛋白/纤维素复合气凝胶及其制备方法
CN110078943B (zh) 层状矿化的纳米几丁质复合水凝胶、制备方法及复合材料
CN101401966A (zh) 一种复合骨修复生物活性材料的制备方法
CN112957515B (zh) 一种生物活性玻璃/凝血酶复合止血粉末及其制备方法及应用
CN114848906B (zh) 一种SF/SiO2复合材料
CN116396499A (zh) 一种多巴胺改性纳米复合水凝胶及其制备方法
CN115887742B (zh) 抗菌功能性胶原基可注射自修复水凝胶的制备方法
CN113174091B (zh) 一种茶叶纤维素纳米晶/非水溶性蛋白复合膜及其制备方法和应用
CN111793225B (zh) 一种明胶/结冷胶/羟基磷灰石复合水凝胶及其制备方法
CN110801529B (zh) 一种改性细菌纤维素/肝素/明胶医用敷料及其制备方法
CN114984326B (zh) 一种多重交联的可注射骨修复水凝胶制备材料及其制备方法
CN113975450B (zh) 一种丝素蛋白复合材料倒刺缝合线及其制备方法
CN113638221B (zh) 一种具有生物活性的聚丙烯腈纤维及其制备方法
Bajpai et al. Development of poly (acrylamide)‐hydroxyapatite composites as bone substitutes: Study of mechanical and blood compatible behavior
CN115634314B (zh) 一种非支撑骨修复凝胶微球及其制备方法
CN115109321B (zh) 一种腐植酸基纳米超多孔气凝胶及其制备方法
JP3379088B2 (ja) 生体材料用複合体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832932

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20832932

Country of ref document: EP

Kind code of ref document: A1