WO2020259436A1 - Procédé pour améliorer la stabilité et l'aptitude au traitement d'un matériau d'électrode positive ternaire - Google Patents

Procédé pour améliorer la stabilité et l'aptitude au traitement d'un matériau d'électrode positive ternaire Download PDF

Info

Publication number
WO2020259436A1
WO2020259436A1 PCT/CN2020/097428 CN2020097428W WO2020259436A1 WO 2020259436 A1 WO2020259436 A1 WO 2020259436A1 CN 2020097428 W CN2020097428 W CN 2020097428W WO 2020259436 A1 WO2020259436 A1 WO 2020259436A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
ternary positive
processability
ternary
Prior art date
Application number
PCT/CN2020/097428
Other languages
English (en)
Chinese (zh)
Inventor
夏阳
王坤
陈安琪
张文魁
吴海军
钱志挺
毛秦钟
黄辉
甘永平
张俊
梁初
Original Assignee
浙江工业大学
浙江美都海创锂电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江工业大学, 浙江美都海创锂电科技有限公司 filed Critical 浙江工业大学
Publication of WO2020259436A1 publication Critical patent/WO2020259436A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a modification method for improving the storage stability and processability of a ternary positive electrode material, and belongs to the technical field of lithium ion battery positive electrode materials.
  • ternary cathode materials have higher requirements for storage and processing environments, and ternary cathode materials are prone to a series of side reactions with the electrolyte during charge and discharge, such as electrolysis at high voltage at the end of charging.
  • the decomposition of the liquid, the acidic substance after the decomposition of the electrolyte corrodes the electrode, the dissolution of the electrode active material, etc.
  • researchers usually use surface coating to solve the above problems in order to improve the cycle stability of the material.
  • Stable lithium salt substances such as Li 3 PO 4 , LiFePO 4 , LiAlO 2, etc.
  • Materials that do not contain lithium ions such as SiO 2 , Al 2 O 3 , ZrO 2 etc.
  • solid-phase coating and liquid-phase coating sintering The coating layer obtained by the two coating methods is weakly bonded to the substrate, and the thickness is not uniform.
  • the present invention provides a supercritical carbon dioxide surface modification treatment method.
  • the method Compared with the traditional coating method, the method has the advantages of simple and convenient operation, fast and efficient, low cost, no "three wastes", etc., and has great potential for large-scale production.
  • the present invention provides a fast, high-efficiency, low-cost, no "three wastes" and other advantages to improve the storage stability and processability of lithium ion battery ternary cathode materials.
  • a modification method for improving the storage stability and processability of a ternary cathode material of a lithium ion battery comprising the following steps:
  • the reaction kettle is heated and reacted for a period of time and exhausted to obtain the modified ternary cathode material.
  • the chemical formula of the ternary cathode material is LiNi (1-xy) Co x M y O 2 , x+y ⁇ 0.7, and M is Mn or Al.
  • the chemical formula of the ternary cathode material is LiNi 0.83 Co 0.085 Mn 0.085 O 2 , LiNi 0.80 Co 0.15 Al 0.05 O 2 , LiNi 0.80 Co 0.10 Mn 0.10 O 2 or Li Ni 0.6 Co 0.2 Al 0.2 O 2 .
  • the pressure range of the carbon dioxide gas introduced in step S1 is 7.1 MPa-10 MPa.
  • the temperature of the heat preservation reaction in step S2 is 35-80° C., and the time is 0.1-48 h.
  • the temperature of the heat preservation reaction in step S2 is 35-45° C., and the time is 8-15 h.
  • the invention also discloses a lithium ion battery, which comprises the modified ternary positive electrode material prepared by the method of the invention.
  • the present invention uses supercritical carbon dioxide surface modification treatment to construct a dense metal carbonate coating layer on the surface of the ternary positive electrode material, and the coating layer is tightly combined with the ternary positive electrode material matrix; this surface coating treatment method
  • the ternary cathode material can be isolated from the humid environment to prevent it from reacting with water vapor to generate lithium hydroxide or metal hydroxide, destroying its surface and interface structure, improving its storage performance and subsequent processing performance, thereby greatly improving its cycle performance and increasing use Life:
  • the method is simple in process, easy to operate, fast and efficient, no "three wastes" are generated, carbon dioxide and recycled use, and economic benefits are significant.
  • Figure 1 is a SEM image of the modified ternary cathode material prepared in Example 1 of the present invention.
  • Example 2 is a graph of the first three charge and discharge curves of the battery prepared in Example 1 of the present invention at a current density of 20 mA g -1 ;
  • Fig. 3 is a charge-discharge cycle curve diagram of the battery prepared in Example 1 of the present invention activated for three cycles at a current density of 20 mA g -1 and then cycled 110 times at a current density of 100 mA g -1 .
  • Step 1 Preparation of surface-modified ternary cathode material
  • the reactor containing the ternary cathode material of the lithium ion battery and carbon dioxide is kept at 35° C. for reaction for 10 hours and exhausted to obtain the modified ternary cathode material.
  • step S3 Weigh the ternary positive electrode material, conductive agent (acetylene black) and binder (polyvinylidene fluoride) obtained in step S2 at a mass ratio of 90:5:5, mix them evenly, and then add an appropriate amount of 1-methyl -2 Pyrrolidone (NMP) is used as a solvent and mechanically stirred for 3 hours to obtain a slurry with a certain viscosity;
  • conductive agent acetylene black
  • binder polyvinylidene fluoride
  • step S4 The slurry obtained in step S3 is evenly coated on clean and flat aluminum foil, dried in an empty oven, washed into pole pieces, and then compacted;
  • the third step battery performance test
  • Figure 1 is an SEM chart of the LiNi 0.83 Co 0.085 Mn 0.085 O 2 ternary cathode material of this embodiment after treatment. The chart shows that the surface of the material is uniform after carbon dioxide supercritical treatment, and the morphology is unchanged;
  • Figure 2 is a graph of the first three charge and discharge curves of the battery prepared in this embodiment at a current density of 20 mA g -1 and a voltage range of 3 to 4.2V, and the first discharge capacity is 190 mA h g -1 ;
  • Figure 3 is a graph showing the cycle performance of the battery prepared in this example at a current density of 20 mA g -1 for 3 times, and then at a current density of 100 mA g -1 . After 110 cycles, the discharge capacity is still 157 mA. hg -1 , the capacity retention rate is 93.2% (relative to the fourth charge and discharge).
  • Step 1 Preparation of surface-modified ternary cathode material
  • the reactor containing the ternary cathode material of the lithium ion battery and carbon dioxide is kept at 38° C. for reaction for 12 hours and then exhausted to obtain the modified ternary cathode material.
  • step S3 Weigh the ternary positive electrode material, conductive agent (acetylene black) and binder (polyvinylidene fluoride) obtained in step S2 at a mass ratio of 90:5:5, mix them evenly, and then add an appropriate amount of 1-methyl -2 Pyrrolidone (NMP) is used as a solvent and mechanically stirred for 3 hours to obtain a slurry with a certain viscosity;
  • conductive agent acetylene black
  • binder polyvinylidene fluoride
  • step S4 The slurry obtained in step S3 is evenly coated on clean and flat aluminum foil, dried in an empty oven, washed into pole pieces, and then compacted;
  • the third step battery performance test
  • the button battery assembled with this material is charged and discharged 3 times at a current density of 20mA g -1 within the voltage range of 3 to 4.2V, and the first discharge capacity is 207mA h g -1 , and then at a current density of 100mA g -1 After 110 cycles, the discharge capacity is still 163 mA hg -1 , and the capacity retention rate is 96% (relative to the fourth charge and discharge).
  • Step 1 Preparation of surface-modified ternary cathode material
  • the ternary positive electrode material containing the lithium ion battery and the carbon dioxide reactor are kept at 43° C. for 6 hours and then exhausted to obtain the modified ternary positive electrode material.
  • step S3 Weigh the ternary positive electrode material, conductive agent (acetylene black) and binder (polyvinylidene fluoride) obtained in step S2 at a mass ratio of 90:5:5, mix them evenly, and then add an appropriate amount of 1-methyl -2 Pyrrolidone (NMP) is used as a solvent and mechanically stirred for 3 hours to obtain a slurry with a certain viscosity;
  • conductive agent acetylene black
  • binder polyvinylidene fluoride
  • step S4 The slurry obtained in step S3 is evenly coated on clean and flat aluminum foil, dried in an empty oven, washed into pole pieces, and then compacted;
  • the third step battery performance test
  • the button battery assembled with this material is charged and discharged 3 times at a current density of 20mA g -1 within the voltage range of 3 to 4.2V, and the first discharge capacity is 208mA h g -1 , and then at a current density of 100mA g -1 After 110 cycles, the discharge capacity is still 166 mA hg -1 , and the capacity retention rate is 95% (relative to the fourth charge and discharge).
  • Step 1 Preparation of surface-modified ternary cathode material
  • the ternary cathode material containing the lithium ion battery and the carbon dioxide reactor are kept at 40° C. for 8 hours and then exhausted to obtain the modified ternary cathode material.
  • step S3 Weigh the ternary positive electrode material, conductive agent (acetylene black) and binder (polyvinylidene fluoride) obtained in step S2 at a mass ratio of 90:5:5, mix them evenly, and then add an appropriate amount of 1-methyl -2 Pyrrolidone (NMP) is used as a solvent and mechanically stirred for 3 hours to obtain a slurry with a certain viscosity;
  • conductive agent acetylene black
  • binder polyvinylidene fluoride
  • step S4 The slurry obtained in step S3 is evenly coated on clean and flat aluminum foil, dried in an empty oven, washed into pole pieces, and then compacted;
  • the third step battery performance test
  • the button cell assembled with this material is charged and discharged 3 times at a current density of 20mA g -1 within the voltage range of 3 to 4.2V, and the first discharge capacity is 197mA h g -1 , and then at a current density of 100mA g -1 After 110 cycles, the discharge capacity is still 156mA hg -1 , and the capacity retention rate is 93% (relative to the fourth charge and discharge).
  • the modified ternary cathode material obtained by the method of the present application is used in lithium ion batteries, which can significantly improve the cycle stability of lithium ion batteries, and the modification method is simple, easy to operate, fast and efficient, and has no "three wastes". The economic benefits are significant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne un procédé de modification de surface de matériau d'électrode positive ternaire permettant d'améliorer la stabilité au stockage et l'aptitude au traitement d'un matériau d'électrode positive ternaire d'une batterie au lithium-ion en vue de résoudre les problèmes de l'état de la technique selon lesquels les exigences de stockage du matériau d'électrode positive ternaire de la batterie au lithium-ion sont élevées, l'aptitude au traitement et la stabilité de cyclage de la batterie sont médiocres, et analogues. Du dioxyde de carbone supercritique réagit avec de l'hydroxyde métallique sur la surface du matériau d'électrode positive ternaire, et une couche de revêtement de carbonate métallique uniforme et dense est formée sur la surface du matériau d'électrode positive ternaire in situ. La couche de revêtement est étroitement combinée à la matrice de matériau d'électrode positive ternaire, et peut également inhiber efficacement la réaction entre le matériau d'électrode positive ternaire et l'air humide, de telle sorte que les exigences d'environnements de stockage et d'utilisation sont réduites, et les performances de traitement d'électrode subséquentes sont améliorées ; de plus, la couche de revêtement de construction in situ peut isoler le matériau d'électrode positive ternaire d'un électrolyte, de telle sorte que l'apparition de réactions secondaires sur la surface de l'électrode est réduite, la stabilité de structure du matériau d'électrode est améliorée, et la performance de cyclage de la batterie est améliorée. En outre, le procédé de modification de surface est simple à mettre en œuvre et peu coûteux.
PCT/CN2020/097428 2019-06-25 2020-06-22 Procédé pour améliorer la stabilité et l'aptitude au traitement d'un matériau d'électrode positive ternaire WO2020259436A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910552195.3A CN110350166A (zh) 2019-06-25 2019-06-25 一种提高三元正极材料稳定性和加工性的方法
CN201910552195.3 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020259436A1 true WO2020259436A1 (fr) 2020-12-30

Family

ID=68182906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097428 WO2020259436A1 (fr) 2019-06-25 2020-06-22 Procédé pour améliorer la stabilité et l'aptitude au traitement d'un matériau d'électrode positive ternaire

Country Status (2)

Country Link
CN (1) CN110350166A (fr)
WO (1) WO2020259436A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914123A (zh) * 2023-09-11 2023-10-20 浙江华宇钠电新能源科技有限公司 车辆用电池的高稳定层状正极材料及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742377B (zh) * 2019-01-17 2021-01-05 浙江工业大学 一种高镍三元正极材料表面改性的方法
CN110350166A (zh) * 2019-06-25 2019-10-18 浙江工业大学 一种提高三元正极材料稳定性和加工性的方法
CN111900364B (zh) * 2020-08-28 2022-08-30 蜂巢能源科技有限公司 一种包覆型三元正极材料及其制备方法和用途
CN115275208B (zh) * 2022-09-27 2023-02-07 宇恒电池股份有限公司 一种高比能水系锂离子电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009583A (ja) * 2014-06-24 2016-01-18 三洋化成工業株式会社 正極活物質の製造方法
CN107331857A (zh) * 2017-07-03 2017-11-07 宁波富理电池材料科技有限公司 一种表面处理的正极材料、表面处理方法及锂离子电池
CN108604671A (zh) * 2016-02-08 2018-09-28 国立研究开发法人产业技术综合研究所 非水电解质二次电池的正极用浆料的制造方法及非水电解质二次电池的正极用浆料
CN109742377A (zh) * 2019-01-17 2019-05-10 浙江工业大学 一种高镍三元正极材料表面改性的方法
CN110233252A (zh) * 2019-06-25 2019-09-13 浙江工业大学 一种钠离子电池正极材料表面改性方法
CN110350166A (zh) * 2019-06-25 2019-10-18 浙江工业大学 一种提高三元正极材料稳定性和加工性的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009583A (ja) * 2014-06-24 2016-01-18 三洋化成工業株式会社 正極活物質の製造方法
CN108604671A (zh) * 2016-02-08 2018-09-28 国立研究开发法人产业技术综合研究所 非水电解质二次电池的正极用浆料的制造方法及非水电解质二次电池的正极用浆料
CN107331857A (zh) * 2017-07-03 2017-11-07 宁波富理电池材料科技有限公司 一种表面处理的正极材料、表面处理方法及锂离子电池
CN109742377A (zh) * 2019-01-17 2019-05-10 浙江工业大学 一种高镍三元正极材料表面改性的方法
CN110233252A (zh) * 2019-06-25 2019-09-13 浙江工业大学 一种钠离子电池正极材料表面改性方法
CN110350166A (zh) * 2019-06-25 2019-10-18 浙江工业大学 一种提高三元正极材料稳定性和加工性的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUANPENG JI ET AL.: "Surface Modification of Li1.2Mn0.56Ni0.16Co0.08O2 Cathode Material by Supercritical CO2 for Lithium-Ion Batteries", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 165, no. 11,, 7 September 2018 (2018-09-07), XP055770657, ISSN: 0013-4651, DOI: 20200824163424A *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914123A (zh) * 2023-09-11 2023-10-20 浙江华宇钠电新能源科技有限公司 车辆用电池的高稳定层状正极材料及其制备方法
CN116914123B (zh) * 2023-09-11 2023-12-15 浙江华宇钠电新能源科技有限公司 车辆用电池的高稳定层状正极材料及其制备方法

Also Published As

Publication number Publication date
CN110350166A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2020259436A1 (fr) Procédé pour améliorer la stabilité et l'aptitude au traitement d'un matériau d'électrode positive ternaire
CN109742377B (zh) 一种高镍三元正极材料表面改性的方法
US9440861B2 (en) Method for modification of lithium ion battery positive electrode material
EP3588630A1 (fr) Plaque d'électrode positive et batterie lithium-ion
CN110112388B (zh) 多孔三氧化钨包覆改性的正极材料及其制备方法
CN105161693B (zh) 一种高循环锂电多元正极材料ncm及其制备方法
CN110931797A (zh) 一种具有复合包覆层的高镍正极材料及其制备方法
JP4185191B2 (ja) スピネル型マンガン酸リチウムの製造方法
CN106410170B (zh) 复合锂离子电池正极材料及其制备方法与锂离子电池
WO2014040410A1 (fr) Matériau composite d'électrode positive en solution solide riche en lithium et son procédé de préparation, plaque d'électrode positive de batterie au lithium-ion et batterie au lithium-ion
CN108039472A (zh) 一种碳包覆偏锡酸锌中空微米立方体复合材料的制备方法和应用
CN110233252A (zh) 一种钠离子电池正极材料表面改性方法
CN112490433A (zh) 一种固态电池及提升固态电池倍率性能和安全性的方法
CN115312770A (zh) 补锂添加剂及其制备方法和应用
CN115566170A (zh) 一种高能量密度快充锂离子电池负极材料的制备方法
JP6232931B2 (ja) 非水電解液二次電池用正極活物質の製造方法。
CN106532031B (zh) 一种Li4Ti5O12负极材料及其制成的钛酸锂电池
CN116454283A (zh) 一种钾离子电池正极添加剂及其制备方法与应用
CN114864894B (zh) 一种耐高压包覆层修饰的富锂锰基正极材料及其制备方法和应用
CN103117388A (zh) 碳包覆四氧化三铁及其制备方法和在锂离子电池中的应用
CN109309228B (zh) 正极活性材料、制备方法、正极和高比能量动力电池
CN106532004B (zh) 用于锂离子电池负极的碳包覆纳米硼复合材料的制备方法
CN115347153A (zh) 富锂复合材料及其制备方法、二次电池
CN114678494A (zh) 一种负极预锂化及同时得到sei膜的方法、负极和锂离子电池
CN115148987A (zh) 一种超高镍三元正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831143

Country of ref document: EP

Kind code of ref document: A1