WO2020259351A1 - 显示基板及制造方法、显示装置 - Google Patents

显示基板及制造方法、显示装置 Download PDF

Info

Publication number
WO2020259351A1
WO2020259351A1 PCT/CN2020/096314 CN2020096314W WO2020259351A1 WO 2020259351 A1 WO2020259351 A1 WO 2020259351A1 CN 2020096314 W CN2020096314 W CN 2020096314W WO 2020259351 A1 WO2020259351 A1 WO 2020259351A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
substrate
layer
display
Prior art date
Application number
PCT/CN2020/096314
Other languages
English (en)
French (fr)
Inventor
于勇
岳阳
黄海涛
李翔
舒适
徐传祥
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/265,241 priority Critical patent/US11968871B2/en
Publication of WO2020259351A1 publication Critical patent/WO2020259351A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present disclosure belongs to the field of display technology, and specifically relates to a display substrate, a display device, and a manufacturing method of the display substrate.
  • the printing process has been widely used in the manufacturing process of the display substrate.
  • the printing process is used to print the organic functional layer in the sub-pixel groove defined by the pixel defining layer.
  • the pixel defining layer is formed on the formed color filter film, and then the quantum dot material is printed in the sub-pixel groove defined by the pixel defining layer, thereby improving the color area.
  • a display substrate is provided, the display substrate is divided into a plurality of sub-pixel regions, the display substrate includes a base and a pixel defining layer on the base, the pixel defining layer defines a plurality of sub-pixel grooves , A sub-pixel slot occupies a sub-pixel area.
  • the display substrate further includes a functional medium layer, which is located on a side of the pixel defining layer away from the substrate.
  • the functional medium layer includes: a first part covering both sides of the sub-pixel groove and a second part covering the top surface of the pixel defining layer. In the same sub-pixel area, the surface energy of the first part is greater than the surface energy of the second part.
  • the first part and the second part both comprise a lyophobic polymer photo-grafted with a lyophilic monomer material, and the grafting rate of the first part is greater than that of the second part. Grafting rate.
  • the display substrate further includes a body material layer located between the pixel defining layer and the functional medium layer and covering the bottom of the sub-pixel groove and the top surface and two side walls of the pixel defining layer.
  • the part of the body material layer covering the bottom of the sub-pixel groove serves as the third part.
  • the surface of the third part away from the substrate is a rough surface.
  • the rough surface has a roughness of 2 ⁇ m to 10 ⁇ m.
  • the bulk material layer includes a lyophobic polymer.
  • the lyophobic polymer in the body material layer and the lyophobic polymer photo-grafted with a lyophilic monomer material are both polyethylene terephthalate.
  • the lyophilic monomer material is acrylic acid or acrylamide.
  • the display substrate further includes: a red display pattern, a green display pattern and a blue display pattern respectively located in the plurality of sub-pixel grooves, and all the display patterns include ink-type materials.
  • the red display pattern includes a red quantum dot photoluminescence material
  • the green display pattern includes a green quantum dot photoluminescence material
  • the blue display pattern includes a blue filter material.
  • the display substrate further includes a plurality of color filter films between the base and the pixel defining layer.
  • the plurality of color filter films correspond to the plurality of sub-pixel regions one to one.
  • the plurality of color filter films includes a red filter film, a green filter film, and a blue filter film, and the orthographic projection of the red filter film on the substrate overlaps the orthographic projection of the red display pattern on the substrate ,
  • the orthographic projection of the green filter film on the substrate overlaps the orthographic projection of the green display graphic on the substrate, and the orthographic projection of the blue filter film on the substrate and the blue display graphic on the substrate The orthographic projections overlap.
  • the display substrate further includes a planarization layer and a wire grid polarizer.
  • the planarization layer is located on a side of each sub-pixel groove away from the substrate, and covers each sub-pixel groove.
  • the wire grid polarizer is located on the side of the planarization layer away from the substrate.
  • a display device including the above-mentioned display substrate.
  • a method for manufacturing a display substrate including: forming a pixel defining layer on a substrate, wherein the pixel defining layer defines a plurality of sub-pixel grooves, and one sub-pixel groove occupies one sub-pixel area; A functional medium layer is formed on the side of the pixel defining layer away from the substrate in each sub-pixel area.
  • the functional medium layer includes: a first part covering both sides of the sub-pixel groove and a second part covering the top surface of the pixel defining layer. In the same sub-pixel area, the surface energy of the first part is greater than the surface energy of the second part.
  • forming a functional medium layer on the side of the pixel defining layer away from the substrate in each sub-pixel area includes: forming a bottom of the sub-pixel groove and two sides of the sub-pixel groove , A layer of lyophobic polymer on the top surface of the pixel defining layer to obtain a body material layer; forming a lyophilic monomer material layer on the side of the body material layer away from the substrate; The lyophilic monomer material layer is exposed to light so that, in any of the sub-pixel regions, the body material layer and the part of the lyophilic monomer material layer at the bottom of the sub-pixel groove are not exposed, The exposure of the body material layer and the lyophilic monomer material layer on the two sides of the sub-pixel groove is greater than that of the body material layer and the lyophilic monomer material layer on the pixel defining layer The exposure amount of the part of the top surface, the lyophilic monomer material in the lyophilic monomer material layer and the lyophobic polymer
  • the manufacturing method further includes: after removing the lyophilic monomer material layer at the bottom of the sub-pixel groove, dry etching the third part of the body material layer at the bottom of the sub-pixel groove , To form a rough surface.
  • the rough surface has a roughness of 2 ⁇ m to 10 ⁇ m.
  • the lyophobic polymer is polyethylene terephthalate
  • the lyophilic monomer material is acrylic acid or acrylamide
  • the method further includes: separately forming in the plurality of sub-pixel grooves
  • the red display pattern is made of red quantum dot photoluminescence material
  • the green display pattern is made of green quantum dot photoluminescence material
  • the blue display pattern is made of blue filter material.
  • the manufacturing method further includes: forming a red filter film, a green filter film, and a blue filter film arranged in order between the substrate and the pixel defining layer.
  • the red filter film, the green filter film, and the blue filter film have a one-to-one correspondence with the plurality of sub-pixel regions.
  • the orthographic projection of the red filter film on the substrate overlaps the orthographic projection of the red display graphic on the substrate, and the orthographic projection of the green filter film on the substrate and the orthographic projection of the green display graphic on the substrate Overlap, the orthographic projection of the blue filter film on the substrate overlaps the orthographic projection of the blue display graphic on the substrate.
  • the manufacturing method further includes: forming a planarization layer covering each sub-pixel trench on a side of the plurality of sub-pixel trenches away from the substrate; and forming a planarization layer on a side of the planarization layer away from the substrate.
  • a wire grid polarizer is formed on the side.
  • FIG. 1a is a schematic structural diagram of a display substrate according to an embodiment of the disclosure.
  • FIG. 1b is an optical path diagram of a display substrate according to an embodiment of the disclosure.
  • FIG. 2 is a flowchart of a manufacturing method of a display substrate according to an embodiment of the disclosure
  • 3a to 3f are schematic diagrams of steps of manufacturing a display substrate according to an embodiment of the disclosure.
  • the "patterning process” refers to a process of forming a structure with a specific pattern, which can be a photolithography process.
  • the photolithography process includes forming a material layer, coating photoresist, exposing, developing, etching, and photolithography.
  • One or more of the steps such as resist stripping; of course, the “patterning process” can also be other processes such as imprinting process and inkjet printing process.
  • the surface energy of the top of the pixel defining layer is required to be small, and the surface energy of the side of the pixel defining layer is required to be large.
  • the properties of the material of the pixel defining layer are uniform and cannot meet the above requirements.
  • the amount of ink material dropped into the sub-pixel groove can only be appropriately reduced, which in turn will increase the thickness of the ink material after drying. If it is thinner, there will be a larger difference in the ink material after curing.
  • other layers such as a planarization layer, a wire grid polarizer layer
  • the difficulty of the planarization process of these layers will also increase.
  • the term "display area" refers to an area on the array substrate where an image is actually displayed.
  • the display area may include a sub-pixel area and an inter-sub-pixel area.
  • the sub-pixel area refers to a light-emitting area of a sub-pixel, for example, an area corresponding to a pixel electrode in a liquid crystal display or an area corresponding to a light-emitting layer in an organic light-emitting display.
  • the inter-sub-pixel area refers to an area between adjacent sub-pixel areas, such as an area corresponding to a black matrix in a liquid crystal display or an area corresponding to a pixel defining layer in an organic light emitting display.
  • the inter-sub-pixel area is an area between adjacent sub-pixel areas in the same pixel.
  • the inter-sub-pixel area is an area between two adjacent sub-pixel areas from two adjacent pixels.
  • the corresponding one of the plurality of sub-pixels includes a sub-pixel area and a part of an inter-sub-pixel area surrounding the sub-pixel area.
  • this embodiment provides a display substrate, the display substrate is divided into a plurality of sub-pixel regions, such as a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region.
  • the display substrate includes a substrate 10 and a pixel defining layer 11 disposed on the substrate 10.
  • the pixel defining layer 11 defines a plurality of sub-pixel grooves.
  • the area where each sub-pixel groove is located is a sub-pixel area, and the sub-pixel groove is located in a corresponding sub-pixel area.
  • the sub-pixel slot occupies a sub-pixel area.
  • the orthographic projection of the sub-pixel groove on the substrate 10 and the orthographic projection of the sub-pixel area on the substrate 10 completely overlap.
  • the display substrate further includes: display graphics located in the sub-pixel grooves, such as red display graphics 14R', green display graphics 14G', and blue display graphics 14B', these display graphics are made of ink-type materials.
  • display graphics located in the sub-pixel grooves, such as red display graphics 14R', green display graphics 14G', and blue display graphics 14B', these display graphics are made of ink-type materials.
  • Each display pattern formed by ink-type materials is thicker than related technologies, thereby reducing the difficulty of subsequent planarization processes.
  • the display substrate further includes a plurality of color filter films, such as a red filter film R, a green filter film G, and a blue filter film B, arranged on the base 10.
  • the plurality of color filter films correspond to the plurality of sub-pixel regions one to one.
  • the pixel defining layer 11 is located on the side of the color filter film away from the substrate 10, and the bottom of each sub-pixel groove faces a color filter film; the orthographic projection of the multiple color filter films on the substrate 10 and the multiple sub-pixels The orthographic projections of the regions on the substrate 10 overlap in a one-to-one correspondence.
  • the plurality of color filter films includes a color filter film of a first color and a color filter film of a second color.
  • the first color is red or green.
  • the orthographic projection of the red filter film R on the substrate 10 overlaps the orthographic projection of the red display pattern 14R' on the substrate 10, and the red display pattern 14R' includes a red quantum dot photoluminescent material.
  • the orthographic projection of the green filter film G on the substrate 10 overlaps the orthographic projection of the green display pattern 14G' on the substrate 10, and the green display pattern 14G' includes a green quantum dot photoluminescent material.
  • the second color is blue.
  • the orthographic projection of the blue display pattern 14B' on the substrate 10 overlaps the orthographic projection of the blue filter film B on the substrate 10, and the blue display pattern 14B' includes a blue filter material.
  • the light used for display passes through the display graphics and the corresponding color filter film in turn.
  • the quantum dot photoluminescent material enhances the brightness and purity of the corresponding color sub-pixels, thereby increasing the color gamut.
  • the red display graphic includes red quantum dot photoluminescent material, which is used to enhance red; the green display graphic includes green quantum dot photoluminescent material, which is used to enhance green .
  • red and green include red quantum dot photoluminescent material, which is used to enhance red
  • green includes green quantum dot photoluminescent material, which is used to enhance green .
  • blue light has the shortest wavelength and the highest energy, and it is not easy to be enhanced compared to red and green. Therefore, the blue display pattern includes a blue filter material that can be formulated into an ink-shaped material.
  • the red display pattern 14R' and the green display pattern 14G' are respectively provided with a red quantum dot photoluminescent material capable of exciting red light and a green quantum dot photoluminescent material capable of exciting green light.
  • a red quantum dot photoluminescent material capable of exciting red light
  • a green quantum dot photoluminescent material capable of exciting green light.
  • light is diffusely reflected on the rough surface of the third part 12c, and the rough surface has a roughness of 2 ⁇ m-10 ⁇ m, which can improve the diffuse reflection of light, increase the light conversion efficiency of quantum dots, and improve the whiteness of the display device. Balance problem.
  • the filter films R, G, and B in the present disclosure are used to enhance the color gamut of the light, but the filter films R, G, and B are not necessary structures in the display substrate.
  • the display substrate includes a body material layer 12 located on the side of the pixel defining layer 11 and the plurality of color filter films R, G, B away from the base 10.
  • the body material layer 12 extends on the top surface and both sides of the pixel defining layer 11, and extends at the bottom of the pixel groove.
  • the body material layer 12 extends on each part of the plurality of color filter films R, G, B that is not covered by the pixel defining layer 11.
  • the body material layer 12 contains a lyophobic polymer, for example, polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the body material layer 12 may also be other transparent polymer material films.
  • the pixel defining layer 11 defines the light-emitting area of each sub-pixel region.
  • the material of the pixel defining layer 11 may be a light-transmitting material or an opaque material; in one embodiment, the material of the pixel defining layer 11 is opaque. Light material.
  • the display substrate further includes a functional medium layer 13 which is located on the side of the body material layer 12 away from the base 10 and covers (for example, only covers) the top surface of the pixel defining layer 11 and the two side surfaces of the sub-pixel groove.
  • the functional medium layer 13 includes: a first portion 13a covering the side surface of the sub-pixel groove and a second portion 13b covering the top surface of the pixel defining layer 11; in the same sub-pixel area, the surface energy of the first portion 13a is greater than that of the second portion 13b Surface energy.
  • the surface energy of the first part 13a is relatively large.
  • the first part 13a is more lyophilic, which is beneficial to the ink material in the bottom area of the sub-pixel groove in the subsequent process. Infiltrate well.
  • the surface energy of the second part 13b is relatively small, so that the lyophilicity of the second part 13b is relatively poor.
  • the ink-type material will not spread out at the top of the layer, that is, there is a relatively large contact angle between the ink-type material and the second portion 13b of the functional medium layer. In this way, more ink-type materials can be injected into the sub-pixel grooves, and the thickness of subsequent ink-type materials after drying will increase accordingly, which is beneficial to the subsequent planarization process.
  • the portion of the body material layer 12 located at the bottom of the sub-pixel groove and not covered by the functional medium layer 13 serves as the third portion 12c, and the surface of the third portion 12c away from the substrate 10 is a rough surface.
  • the roughness of the rough surface is between 2 ⁇ m-10 ⁇ m.
  • the body material layer 12 contains a lyophobic polymer, for example, polyethylene terephthalate (PET), that is, the third portion 12c includes polyethylene terephthalate.
  • PET polyethylene terephthalate
  • the first part 13a is formed by photo-grafting lyophilic monomer on the surface of the lyophobic polymer on the upper part of the body material layer 12, and the second part 13b is formed by the lyophobic monomer of the same material on the upper part of the body material layer 12.
  • the surface of the type polymer is formed by photo-grafting lyophilic monomers of the same material, and the grafting rate of the first part 13a is greater than that of the second part 13b.
  • the lyophilic monomer can be used to photo-graft different regions of the same lyophobic polymer to different degrees, thereby obtaining the first part 13a and the second part 13b with different surface energies.
  • the method of changing the surface energy of the material is not limited to this.
  • the display substrate further includes a planarization layer 15 which covers each sub-pixel groove and is located on a side of each sub-pixel groove away from the base 10.
  • the display substrate further includes a wire grid polarizer 16 which is located on the side of the planarization layer 15 away from the base 10.
  • the display substrate shown in FIG. 1a can be applied to a liquid crystal display panel or a WOLED type OLED display panel.
  • the display substrate in this embodiment may also be an OLED display substrate, that is, an ink-type material may be used in the sub-pixel groove to form an organic functional layer (for example, an electron transport layer, a composite light-emitting layer, a hole transport layer, etc.).
  • This embodiment provides a display device including the above-mentioned display substrate.
  • the display device can be any product or component with a display function, such as a liquid crystal display panel, an organic light emitting diode (OLED) display panel, a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, etc.
  • a display function such as a liquid crystal display panel, an organic light emitting diode (OLED) display panel, a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, etc.
  • the difficulty of planarization of the film layer on the pixel defining layer 11 is reduced, and the optical performance is improved.
  • this embodiment provides a method for manufacturing a display substrate.
  • the manufacturing method includes step S1 and step S2.
  • Step S1 forming a pixel defining layer 11 on the substrate 10.
  • the pixel defining layer 11 defines a plurality of sub-pixel grooves, and the area where each sub-pixel groove is located is a sub-pixel area. Each sub-pixel slot occupies a sub-pixel area.
  • Step S2 forming a functional medium layer on the side of the pixel defining layer away from the substrate in each sub-pixel area.
  • the functional medium layer includes: a first portion 13a covering the side surface of the sub-pixel groove and a second portion 13b covering the top surface of the pixel defining layer 11. In the same sub-pixel area, the surface energy of the first portion 13a is greater than the surface energy of the second portion 13b.
  • forming a functional medium layer in each sub-pixel area includes:
  • Step S21 forming a layer of lyophobic polymer covering the bottom of the sub-pixel groove, the two side surfaces of the sub-pixel groove, and the top surface of the pixel defining layer 11 to obtain the body material layer 12.
  • Step S22 forming a lyophilic monomer material layer 13 covering the body material layer 12.
  • Step S23 using a digital exposure machine to perform regional exposure on both the body material layer 12 and the lyophilic monomer material layer 13.
  • the portions of the body material layer 12 and the lyophilic monomer material layer 13 at the bottom of the sub-pixel groove are not exposed, and the portions of the body material layer 12 and the lyophilic monomer material layer 13 on both sides of the sub-pixel groove
  • the exposure amount of is greater than that of the portion of the body material layer 12 and the lyophilic monomer material layer 13 on the top surface of the pixel defining layer 11.
  • the acrylic acid in the lyophilic monomer material layer 13 and the polyethylene terephthalate film in the upper part of the body material layer 12 are photo-grafted.
  • the polyethylene terephthalate films in the middle and lower portions of the body material layer 12 are not affected by the exposure.
  • multiple masks can also be used to expose different areas with different exposure levels. With a digital exposure machine, the exposure time of different areas can be precisely controlled, so that one exposure process can be used to achieve the purpose of exposing different areas with different exposure levels.
  • Step S24 removing the remaining lyophilic monomer material layer 13 at the bottom of the pixel groove, wherein the portions formed by photo-grafting the lyophilic monomer material with a lyophobic polymer and located on both sides of the sub-pixel groove are the first portions 13a,
  • the part formed by lyophobic polymer photo-grafted lyophilic monomer material and located on the top surface of the pixel defining layer is the second part 13b.
  • the method further includes: dry etching the portion of the body material layer 12 at the bottom of the sub-pixel groove to form a rough surface.
  • the roughness of the rough surface is between 2 ⁇ m-10 ⁇ m.
  • the portion of the body material layer 12 at the bottom of the sub-pixel groove serves as the third portion 12c.
  • the third part 12c is dry-etched to obtain a rough surface, which facilitates diffuse reflection of light.
  • the third portion 12c can also be completely etched away.
  • the method further includes: forming a display pattern in the sub-pixel groove by using an ink-type material .
  • the height or thickness of the obtained display pattern after drying is increased, and it is easier to control the uniformity of the height or thickness.
  • 3a to 3f are schematic diagrams of the steps of manufacturing a display substrate according to an embodiment of the disclosure.
  • a red filter film R a green filter film G, and a blue filter film B are respectively formed on the substrate 10 by a patterning process.
  • a patterning process is used to form a pixel defining layer 11 covering the adjacent filter film at the boundary position of each filter film.
  • the body material layer 12 contains a lyophobic polymer, for example, polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • a lyophilic monomer material layer 13 covering the body material layer 12 is formed.
  • the lyophilic monomer material layer 13 includes, for example, an acrylic film or an acrylamide film, and for another example, it is an unsaturated monomer that is sensitive to light.
  • a digital exposure machine is used to expose the body material layer 12 and the lyophilic monomer material layer 13 for different periods of time, so that the polymers in different regions have different graft rates.
  • the grafting rate refers to the proportion of lyophilic groups in the polymer. The higher the grafting rate, the higher the proportion of lyophilic groups in the resulting polymer.
  • the first part 13a covering the two sides of the sub-pixel groove has the highest graft rate after exposure
  • the second part 13b covering the top surface of the pixel defining layer has a relatively small graft rate after exposure.
  • the third portion 12c in the open area is not exposed.
  • a functional medium layer 13 including a first portion 13a and a second portion 13b is formed on the side of the body material layer 12 away from the substrate 10.
  • the digital exposure machine is used for exposure, no mask is required, only programming is required for control.
  • the portion of the lyophilic monomer material layer 13 (ie, acrylic film) located in the pixel opening area is removed by development After that, only the body material layer 12c (ie, the PET film layer) is left in the pixel opening area, as shown in FIG. 3c.
  • Table 1 shows examples of the exposure time of the top of the pixel defining layer 11 and the exposure time of the side of the pixel defining layer 11 in the sub-pixel regions of different colors.
  • the acrylic acid in the lyophilic monomer material layer 13 is used to photo-graft the polyethylene terephthalate film in the upper part of the body material layer 12.
  • the illuminance of the digital exposure machine is 50cm/cm 2 .
  • dry etching is performed on the polyethylene terephthalate film at the bottom of the sub-pixel groove to rough the surface.
  • the rough surface may have a roughness of 2 ⁇ m-10 ⁇ m, thereby improving the diffuse reflection of light, increasing the quantum efficiency of the quantum dots, and improving the white balance of the display device.
  • an inkjet printing process is used to form a red display pattern 14R' containing a red quantum dot photoluminescent material, a green display pattern 14G' containing a green quantum dot photoluminescent material, and a blue color
  • the blue color of the filter material shows the pattern 14B'. Since the surface energy of the first part 13a and the second part 13b can be accurately controlled, the amount of ink-type material in each sub-pixel groove can also be controlled more accurately, that is, the ink in each sub-pixel groove The type material can slightly exceed the sub-pixel groove without spreading.
  • the above-mentioned ink type material is cured.
  • the curing method may be light curing or heat curing, or may be a combination of light curing and heat curing. Due to the poor thermal stability of quantum dot photoluminescent materials, if thermal curing is selected, the curing temperature should be controlled below 150°C.
  • the cured product morphology is shown in Figure 3f. According to the manufacturing method of this embodiment, the cured red display pattern 14R', green display pattern 14G', and blue display pattern 14B' can have uniform heights, and have a higher height than the related art.
  • planarization layer 15 and the wire grid polarizer 16 are formed. Specifically, a planarization layer 15 is formed first, and then a metal layer, an inorganic protective layer, and an embossing glue are formed in sequence.
  • the embossing glue is embossed, and the part of the embossing glue corresponding to the metal layer to be removed is extruded after embossing.
  • a dry etching process is used to remove the exposed inorganic protective layer and the metal layer under the inorganic protective layer.
  • the inorganic protective layer and metal under the embossing rubber The layer is retained, and finally the residual embossing glue is removed, thereby obtaining the wire grid polarizer 16.
  • the spacing between two adjacent metal lines in the wire grid polarizer 16 is 50 nm.
  • the display substrate shown in FIG. 1a (ie, the color filter substrate) can be prepared.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开提供一种显示基板及制造方法、显示装置。所述显示基板被划分为多个亚像素区域。所述显示基板包括基底以及所述基底上的像素界定层。所述像素界定层限定出多个亚像素槽,所述亚像素槽占用一个亚像素区域。所述显示基板还包括功能介质层,其位于所述像素界定层远离基底的一侧。所述功能介质层包括:覆盖所述亚像素槽的两侧面的第一部分和覆盖所述像素界定层的顶面的第二部分。在同一亚像素区域内,所述第一部分的表面能大于所述第二部分的表面能。

Description

显示基板及制造方法、显示装置
相关申请的交叉引用
本申请要求2019年6月25日提交给中国专利局的第201910554837.3号专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开属于显示技术领域,具体涉及一种显示基板、一种显示装置、一种显示基板的制造方法。
背景技术
打印工艺已广泛应用于显示基板的制造工艺中。例如在OLED显示基板的制造工艺中采用打印工艺在像素界定层限定的亚像素槽内打印有机功能层。又例如在液晶显示装置中的彩膜基板的制造过程中,在已经形成好的彩色滤光膜上形成像素界定层,随后在像素界定层限定的亚像素槽内打印量子点材料,从而提高色域。
发明内容
一方面,提供一种显示基板,所述显示基板被划分为多个亚像素区域,所述显示基板包括基底以及所述基底上的像素界定层,所述像素界定层限定出多个亚像素槽,一个亚像素槽占用一个亚像素区域。所述显示基板还包括功能介质层,其位于所述像素界定层远离基底的一侧。所述功能介质层包括:覆盖所述亚像素槽的两侧面的第一部分和覆盖所述像素界定层的顶面的第二部分。在同一亚像素区域内,所述第一部分的表面能大于所述第二部分的表面能。
在一个实施例中,所述第一部分和所述第二部分均包括光接枝有亲液单体材料的疏液型聚合物,并且所述第一部分的接枝率 大于所述第二部分的接枝率。
在一个实施例中,所述显示基板还包括本体材料层,其位于像素限定层与功能介质层之间,并且覆盖所述亚像素槽的底部和像素限定层的顶面和两个侧壁。本体材料层的覆盖所述亚像素槽底部的部分用作第三部分。所述第三部分的远离所述基底的表面为粗糙表面。
在一个实施例中,所述粗糙表面具有2μm至10μm的粗糙度。
在一个实施例中,所述本体材料层包括疏液型聚合物。本体材料层中的疏液型聚合物和光接枝有亲液单体材料的疏液型聚合物均是聚对苯二甲酸乙二酯。所述亲液单体材料是丙烯酸或丙烯酰胺。
在一个实施例中,所述显示基板还包括:分别位于所述多个亚像素槽内的红色显示图形、绿色显示图形和蓝色显示图形,全部显示图形包括墨水型材料。所述红色显示图形包括红色量子点光致发光材料,所述绿色显示图形包括绿色量子点光致发光材料,所述蓝色显示图形包括蓝色滤光材料。
在一个实施例中,所述显示基板还包括:在所述基底与所述像素界定层之间的多个彩色滤光膜。所述多个彩色滤光膜与所述多个亚像素区域一一对应。多个所述彩色滤光膜包括红色滤光膜、绿色滤光膜和蓝色滤光膜,所述红色滤光膜在基底上的正投影与所述红色显示图形在基底上的正投影重叠,所述绿色滤光膜在基底上的正投影与所述绿色显示图形在基底上的正投影重叠,所述蓝色滤光膜在基底上的正投影与所述蓝色显示图形在基底上的正投影重叠。
在一个实施例中,所述显示基板还包括平坦化层和线栅型偏光片。所述平坦化层位于各个亚像素槽的远离基底的一侧,并且覆盖各个亚像素槽。线栅型偏光片位于所述平坦化层的远离基底的一侧。
另一方面,提供一种显示装置,包括上述显示基板。
又一方面,提供一种显示基板的制造方法,包括:在基底上形成像素界定层,其中,所述像素界定层限定出多个亚像素槽,一个亚像素槽占用一个亚像素区域;在每个亚像素区域内、在所述像素界定层远离基底的一侧形成功能介质层。所述功能介质层包括:覆盖所述亚像素槽的两侧面的第一部分和覆盖所述像素界定层的顶面的第二部分。在同一所述亚像素区域内,所述第一部分的表面能大于所述第二部分的表面能。
在一个实施例中,在每个亚像素区域内、在所述像素界定层远离基底的一侧形成功能介质层,包括:形成覆盖所述亚像素槽的底部、所述亚像素槽的两侧面、所述像素界定层的顶面的一层疏液型聚合物,以得到本体材料层;在所述本体材料层远离基底的一侧形成亲液单体材料层;对所述本体材料层和所述亲液单体材料层进行曝光,使得:在任一所述亚像素区域内,所述本体材料层和所述亲液单体材料层位于所述亚像素槽的底部的部分未被曝光,所述本体材料层和所述亲液单体材料层位于所述亚像素槽的两侧面的部分的曝光量大于所述本体材料层和所述亲液单体材料层位于所述像素界定层的顶面的部分的曝光量,所述亲液单体材料层中的亲液单体材料与所述本体材料层的上部中的疏液型聚合物光接枝形成所述功能介质层的第一部分和第二部分,并且所述第一部分的接枝率大于所述第二部分的接枝率;去除位于所述亚像素槽底部的亲液单体材料层。
在一个实施例中,所述制造方法还包括:在去除位于所述亚像素槽底部的亲液单体材料层之后,对所述本体材料层位于亚像素槽的底部的第三部分进行干刻,以形成粗糙表面。
在一个实施例中,所述粗糙表面具有2μm至10μm的粗糙度。
在一个实施例中,所述疏液型聚合物是聚对苯二甲酸乙二酯,所述亲液单体材料是丙烯酸或丙烯酰胺。
在一个实施例中,在对所述本体材料层位于亚像素槽的底部的第三部分进行干刻,以形成粗糙表面之后,所述方法还包括: 在所述多个亚像素槽内分别形成红色显示图形、绿色显示图形和蓝色显示图形,全部显示图形由墨水型材料制备;固化所述红色显示图形、所述绿色显示图形和所述蓝色显示图形。所述红色显示图形由红色量子点光致发光材料制成,所述绿色显示图形由绿色量子点光致发光材料制成,所述蓝色显示图形由蓝色滤光材料制成。
在一个实施例中,所述制作方法还包括:在所述基底与所述像素界定层之间形成按顺序排布的红色滤光膜、绿色滤光膜和蓝色滤光膜。所述红色滤光膜、绿色滤光膜和蓝色滤光膜与所述多个亚像素区域一一对应。所述红色滤光膜在基底上的正投影与所述红色显示图形在基底上的正投影重叠,所述绿色滤光膜在基底上的正投影与所述绿色显示图形在基底上的正投影重叠,所述蓝色滤光膜在基底上的正投影与所述蓝色显示图形在基底上的正投影重叠。
在一个实施例中,所述制作方法还包括:在所述多个亚像素槽的远离基底的一侧形成覆盖各个亚像素槽的平坦化层;以及在所述平坦化层的远离基底的一侧形成线栅型偏光片。
附图说明
图1a为本公开的实施例的显示基板的结构示意图;
图1b为本公开的实施例的显示基板的光路图;
图2为本公开的实施例的显示基板的制造方法的流程图;
图3a-图3f为本公开的实施例的制作显示基板的步骤的示意图;
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
在本公开中,“构图工艺”是指形成具有特定的图形的结构的工艺,其可为光刻工艺,光刻工艺包括形成材料层、涂布光刻胶、 曝光、显影、刻蚀、光刻胶剥离等步骤中的一步或多步;当然,“构图工艺”也可为压印工艺、喷墨打印工艺等其它工艺。
在相关技术中,为使墨水材料在干燥之后保持平坦,需要像素界定层的顶部的表面能较小,并且需要像素界定层的侧面的表面能较大。但像素界定层的材料的性质是均匀的,无法满足上述要求。为使墨水材料在干燥后保持平坦,并且不会在像素界定层的顶部散开,只能适当减小向亚像素槽内滴入的墨水材料的量,这又会使墨水材料干燥后的厚度较薄,还会出现墨水材料固化后的段差较大。在随后的工艺中,在墨水材料以及像素界定层之上再制作其他膜层(例如平坦化层、线栅型偏光片层)时,这些膜层的平坦化工艺的难度也会加大。
如本文所用,术语"显示区域"是指阵列基板上实际显示图像的区域。可选地,显示区域可以包括亚像素区域和亚像素间区域。亚像素区域是指亚像素的发光区域,例如,对应于液晶显示器中的像素电极的区域或对应于有机发光显示器中的发光层的区域。亚像素间区域是指相邻亚像素区域之间的区域,例如对应于液晶显示器中黑矩阵的区域或对应于有机发光显示器中像素限定层的区域。可选地,亚像素间区域是同一像素中相邻亚像素区域之间的区域。可选地,亚像素间区域是来自两个相邻像素的两个相邻亚像素区域之间的区域。
多个亚像素中的相应一个包括亚像素区域和围绕该亚像素区域的亚像素间区域的一部分。
结合图1a和图1b,本实施例提供一种显示基板,显示基板划分有多个亚像素区域,例如红色亚像素区域、绿色亚像素区域和蓝色亚像素区域。显示基板包括基底10以及设置在基底10上的像素界定层11,像素界定层11限定出多个亚像素槽,每个亚像素槽所在的区域是一个亚像素区域,亚像素槽位于对应的亚像素区域内。亚像素槽占用一个亚像素区域。亚像素槽在基底10上的正投影与亚像素区域在基底10上的正投影完全重叠。
在一个实施例中,该显示基板还包括:位于亚像素槽内的显示图形,例如红色显示图形14R’、绿色显示图形14G’和蓝色显示图形14B’,这些显示图形由墨水型材料制备。由墨水型材料形成的各个显示图形相对于相关技术更厚,从而降低后续平坦化工艺的难度。
在一个实施例中,该显示基板还包括:设置在基底10上的多个彩色滤光膜,例如,红色滤光膜R、绿色滤光膜G、蓝色滤光膜B。多个彩色滤光膜与多个亚像素区域一一对应。像素界定层11位于彩色滤光膜的远离基底10一侧,且每个亚像素槽的底部正对一个彩色滤光膜;多个彩色滤光膜在基底10上的正投影与多个亚像素区域在基底10上的正投影一一对应重叠。多个彩色滤光膜包括第一颜色的彩色滤光膜和第二颜色的彩色滤光膜。
第一颜色是红色或绿色。红色滤光膜R在基底10上的正投影与红色显示图形14R’在基底10上的正投影重叠,并且红色显示图形14R’包括红色量子点光致发光材料。绿色滤光膜G在基底10上的正投影与绿色显示图形14G’在基底10上的正投影重叠,并且绿色显示图形14G’包括绿色量子点光致发光材料。
第二颜色是蓝色。蓝色显示图形14B’在基底10上的正投影与蓝色滤光膜B在基底10上的正投影重叠,并且蓝色显示图形14B’包括蓝色滤光材料。
即用于显示的光线依次穿过显示图形和对应的彩色滤光膜。其中,量子点光致发光材料使得对应颜色的亚像素的亮度和纯度得到增强,从而提高色域。
在一个实施例中,例如参照图1a,红色显示图形包含红色量子点光致发光材料,其用于对红色进行增强;绿色显示图形包含绿色量子点光致发光材料,其用于对绿色进行增强。在三原色中,蓝色光的波长最短,能量最高,相对于红色和绿色而言不易得到增强,故蓝色显示图形包括能够被配制成墨水形材料的蓝色滤光材料。
以图1a为例,红色显示图形14R’和绿色显示图形14G’内 分别设置有能够激发出红光的红色量子点光致发光材料和能够激发出绿光的绿色量子点光致发光材料。参见图1b,以光线穿过红色亚像素区域为例,在实际应用中,光线射向红色显示图形14R’后,红光的成分得到增强,再经过红色滤光膜R射出用于显示。在一个实施例中,光线在第三部分12c的粗糙表面发生漫反射,粗糙表面具有2μm-10μm的粗糙度,从而能够提高光线的漫反射,提升量子点的光转化效率,改善显示器件的白平衡问题。
需要说明的是,本公开中滤光膜R、G、B用于提升出光的色域,但是滤光膜R、G、B不是显示基板中的必要结构。
在一个实施例中,显示基板包括本体材料层12,其位于像素限定层11和多个彩色滤光膜R、G、B的远离基底10的一侧。本体材料层12在像素限定层11的顶面和两侧上延伸,并且在像素槽底部延伸。本体材料层12在多个彩色滤光膜R、G、B的未被像素限定层11覆盖的各部分上延伸。本体材料层12含有疏液型聚合物,例如,聚对苯二甲酸乙二酯(PET),当然,本体材料层12也可以是其他透明的聚合物材料薄膜。
像素界定层11限定了每个亚像素区域的发光面积,像素界定层11的材料可以为透光材料,也可以为不透光材料;在一个实施例中,像素界定层11的材料为不透光材料。
显示基板还包括功能介质层13,其位于本体材料层12的远离基底10的一侧,并且覆盖(例如,仅覆盖)像素限定层11的顶面和亚像素槽的两个侧面。
功能介质层13包括:覆盖亚像素槽的侧面的第一部分13a和覆盖像素界定层11的顶面的第二部分13b;在同一亚像素区域内,第一部分13a的表面能大于第二部分13b的表面能。
在本公开中,第一部分13a的表面能相对较大,对于绝大多数材料而言,使得第一部分13a的亲液性更好,这有利于后续工艺中墨水材料在亚像素槽的底部区域更好地浸润。第二部分13b的表面能相对较小,使得第二部分13b的亲液性相对较差,即使后续工艺中在亚像素槽内注入墨水型材料之后,该墨水型材料的 顶部即使超出亚像素槽的顶部,墨水型材料也不会散开,即墨水型材料与功能介质层的第二部分13b之间具有相对较大的接触角。如此,墨水型材料可以更多地被注入亚像素槽内,后续墨水型材料在干燥之后的厚度也会相应地增加,有利于随后的平坦化工艺。
在一个实施例中,本体材料层12位于亚像素槽底部且未被功能介质层13覆盖的部分用作第三部分12c,第三部分12c的远离基底10的表面为粗糙表面。粗糙表面的粗糙度在2μm-10μm之间。
在一个实施例中,本体材料层12含有疏液型聚合物,例如,聚对苯二甲酸乙二酯(PET),即,第三部分12c包括聚对苯二甲酸乙二酯。
为实现上述公开构思,仅需要对第一部分13a、第二部分13b的表面能进行控制。以下为能实现表面能控制的一种结构。
在一个实施例中,第一部分13a由在本体材料层12上部的疏液型聚合物的表面光接枝亲液单体而形成,第二部分13b由在本体材料层12上部的相同材料的疏液型聚合物的表面光接枝相同材料的亲液单体而形成,第一部分13a的接枝率大于第二部分13b的接枝率。
可以采用亲液单体对同一疏液型聚合物的不同区域进行不同程度的光接枝,从而得到表面能不同的第一部分13a和第二部分13b。
当然,改变材料的表面能的方法不限于此。
需要说明的是,由于能够采用一定方法对第一部分13a和第二部分13b的表面能进行设计,如此,对不同性质的不同颜色的墨水型材料设计不同的表面能,也能够实现在亚像素孔中形成显示图形时,不同颜色的显示图形的厚度或其他参数的一致性。
所述显示基板还包括平坦化层15,其覆盖各个亚像素槽,并且位于各个亚像素槽的远离基底10的一侧。
所述显示基板还包括线栅型偏光片16,其位于平坦化层15远离基底10的一侧。
图1a所示的显示基板可应用于液晶显示面板或者WOLED型的OLED显示面板中。本实施例中的显示基板也可以是OLED显示基板,即亚像素槽内可以采用墨水型材料形成有机功能层(例如是电子传输层、复合发光层、空穴传输层等)。
本实施例提供一种显示装置,其包括上述显示基板。
该显示装置可为液晶显示面板、有机发光二极管(OLED)显示面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
该显示装置中像素界定层11之上的膜层的平坦化难度降低,且光学性能得到提升。
参见图2并结合图3a-图3f以及图1a,本实施例提供一种显示基板的制造方法。该制造方法包括步骤S1和步骤S2。
步骤S1、在基底10上形成像素界定层11。像素界定层11限定出多个亚像素槽,每个亚像素槽所在的区域是一个亚像素区域。每个亚像素槽占用一个亚像素区域。
步骤S2、在每个亚像素区域内、在所述像素界定层远离基底的一侧形成功能介质层。功能介质层包括:覆盖亚像素槽的侧面的第一部分13a和覆盖像素界定层11的顶面的第二部分13b。在同一亚像素区域内,第一部分13a的表面能大于第二部分13b的表面能。
在一个实施例中,在每个亚像素区域内形成功能介质层包括:
步骤S21、形成覆盖亚像素槽的底部、亚像素槽的两侧面、像素界定层11的顶面的一层疏液型聚合物,以得到本体材料层12。
步骤S22、形成覆盖本体材料层12的亲液单体材料层13。
步骤S23、采用数字曝光机对本体材料层12和亲液单体材料层13二者进行分区域曝光。在任一亚像素区域内,本体材料层12和亲液单体材料层13位于亚像素槽的底部的部分未被曝光,本体材料层12和亲液单体材料层13位于亚像素槽的两侧面的部分的曝光量大于本体材料层12和亲液单体材料层13位于像素界定层 11的顶面的部分的曝光量。
不仅亲液单体材料层13被曝光,而且本体材料层12的上表面也会被光照,即被曝光。在曝光的作用下,亲液单体材料层13中的丙烯酸与本体材料层12的上部中的聚对苯二甲酸乙二酯薄膜进行光接枝。然而,本体材料层12中部和下部中的聚对苯二甲酸乙二酯薄膜未受到曝光的影响。
曝光量越大,则亲液单体材料层13中的亲液单体与本体材料层12中疏液型聚合物的结合越多,最终得到的材料的表面能越大。为了实现不同区域的曝光量不一样,也可采用多个掩模板对不同区域进行不同曝光量的曝光。而采用数字曝光机,可以对不同区域的曝光时间进行精确的控制,从而能够采用一次曝光工艺实现对不同区域不同曝光量的曝光的目的。
步骤S24、去除像素槽底部的残余的亲液单体材料层13,其中,由疏液型聚合物光接枝亲液单体材料形成且位于亚像素槽的两侧面的部分为第一部分13a,由疏液型聚合物光接枝亲液单体材料形成且位于像素界定层的顶面的部分为第二部分13b。从而在同一层材料的不同区域实现不同大小的表面能。
在一个实施例中,去除像素槽底部的残余的亲液单体材料层13之后,所述方法还包括:对本体材料层12位于亚像素槽的底部的部分进行干刻,以形成粗糙表面。粗糙表面的粗糙度在2μm-10μm之间。本体材料层12位于亚像素槽的底部的部分用作第三部分12c。第三部分12c干刻后得到粗糙表面,从而易于光线的漫反射。在另一个实施例中,该第三部分12c也可以被完全刻蚀掉。
在一个实施例中,在对本体材料层12位于亚像素槽的底部的部分进行干刻,以形成粗糙表面之后,所述方法还包括:采用墨水型材料在所述亚像素槽内形成显示图形。
因此,得到的显示图形在干燥之后的高度或厚度增大,且更容易控制高度或厚度的均匀性。
图3a-图3f为本公开的实施例的制作显示基板的步骤的示意 图。
参照图3a,利用构图工艺在基底10上分别形成红色滤光膜R、绿色滤光膜G、蓝色滤光膜B。
然后,利用构图工艺在各滤光膜的交界位置处形成覆盖相邻滤光膜的像素界定层11。
参照图3b,形成覆盖像素界定层11和暴露出来的滤光膜的本体材料层12。本体材料层12含有疏液型聚合物,例如,聚对苯二甲酸乙二酯(PET)。
参照图3b,然后,形成覆盖本体材料层12的亲液单体材料层13。亲液单体材料层13包括例如丙烯酸膜或者丙烯酰胺膜等,再例如,是对光照敏感的不饱和单体。
参照图3c,采用数字曝光机对本体材料层12和亲液单体材料层13分区域进行不同时间的曝光,以使得不同区域内的聚合物具有不同大小的接枝率。接枝率是指聚合物中亲液基团的比例。接枝率越高,则得到的聚合物中亲液基团的比例越高。例如在图3c中,覆盖亚像素槽的两侧面的第一部分13a在曝光后的接枝率最高,覆盖像素界定层的顶面的第二部分13b在曝光后的接枝率相对较小,像素开口区中的第三部分12c未被曝光。最终,在本体材料层12的远离基底10的一侧形成包括第一部分13a和第二部分13b的功能介质层13。
采用数字曝光机进行曝光,无需掩模板,只需要编程进行控制即可。
由于本体材料层12的位于像素开口区中的第三部分12c未被曝光,因此经过显影后,亲液单体材料层13(即,丙烯酸膜)的位于像素开口区中的部分通过显影被去除之后,仅在像素开口区中留下本体材料层12c(即,PET膜层),如图3c所示。
表1示出了不同颜色的亚像素区域中的像素界定层11的顶部的曝光时间以及所述像素界定层11的侧面的曝光时间的示例。利用亲液单体材料层13中的丙烯酸来光接枝本体材料层12上部中的聚对苯二甲酸乙二酯薄膜。数字曝光机的照度为50cm/cm 2
表1
Figure PCTCN2020096314-appb-000001
参照图3d,对位于亚像素槽的底部的聚对苯二甲酸乙二酯薄膜进行干刻,以粗糙表面。粗糙表面可以具有2μm-10μm的粗糙度,从而能够提高光线的漫反射,增加量子点的量子效率,改善显示器件的白平衡。
参照图3e,采用喷墨打印工艺在红色亚像素槽内形成包含红色量子点光致发光材料的红色显示图形14R’、包含绿色量子点光致发光材料的绿色显示图形14G’、和包含蓝色滤光材料的蓝色显示图形14B’。由于第一部分13a和第二部分13b的表面能能够得到精确的控制,在各亚像素槽内的墨水型材料的量也是能够得到较为精确的控制,也就是说,在各亚像素槽内的墨水型材料能够略微超出亚像素槽而不会散开。
参照图3f,对上述的墨水型材料进行固化。固化方式可以是光固化或热固化,或者可以是光固化与热固化的结合。由于量子点光致发光材料的热稳定性较差,如选择热固化,固化温度应控制在150℃以下。固化后的产品形态参见图3f。根据本实施例的制造方法,固化后的红色显示图形14R’,绿色显示图形14G’和蓝色显示图形14B’可以具有均匀的高度,且相对相关技术更高的高度。
最后,形成平坦化层15以及线栅型偏光片16。具体地,首先形成一层平坦化层15,随后依次形成金属层、无机保护层、压印胶。对压印胶进行压印,压印胶的与待去除的金属层相对应的部分经压印后被挤出。在压印胶被压印和固化后,采用干刻工艺 去除暴露的无机保护层和无机保护层下面的金属层,在保留有压印胶的区域中,压印胶下的无机保护层和金属层得到保留,最后去除残余的压印胶,从而得到线栅型偏光片16。在一个实施例中,线栅型偏光片16中的两个相邻金属线之间的间距为50nm。
利用上述步骤,可制备得到图1a所示的显示基板(即,彩膜基板)。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (17)

  1. 一种显示基板,所述显示基板被划分为多个亚像素区域,所述显示基板包括基底以及所述基底上的像素界定层,所述像素界定层限定出多个亚像素槽,所述多个亚像素槽与所述多个亚像素区域一一对应,所述亚像素槽位于对应的亚像素区域内,其中,
    所述显示基板还包括功能介质层,其位于所述亚像素区域内并且位于所述像素界定层远离基底的一侧,
    所述功能介质层包括:覆盖所述亚像素槽的两侧面的第一部分和覆盖所述像素界定层的顶面的第二部分;
    在同一亚像素区域内,所述第一部分的表面能大于所述第二部分的表面能。
  2. 根据权利要求1所述的显示基板,其中,
    所述第一部分和所述第二部分均包括光接枝有亲液单体材料的疏液型聚合物,并且
    所述第一部分的接枝率大于所述第二部分的接枝率。
  3. 根据权利要求2所述的显示基板,还包括本体材料层,其位于像素限定层与功能介质层之间,并且覆盖所述亚像素槽的底部和像素限定层的顶面和两个侧壁,
    本体材料层的覆盖所述亚像素槽底部的部分用作第三部分,
    所述第三部分的远离所述基底的表面为粗糙表面。
  4. 根据权利要求3所述的显示基板,其中
    所述粗糙表面具有2μm至10μm的粗糙度。
  5. 根据权利要求2至4中任一项所述的显示基板,其中,
    所述本体材料层包括疏液型聚合物,
    本体材料层中的疏液型聚合物和光接枝有亲液单体材料的疏 液型聚合物均是聚对苯二甲酸乙二酯,
    所述亲液单体材料是丙烯酸或丙烯酰胺。
  6. 根据权利要求1至5中任一项所述的显示基板,还包括:分别位于所述多个亚像素槽内的红色显示图形、绿色显示图形和蓝色显示图形,全部显示图形包括墨水型材料,其中
    所述红色显示图形包括红色量子点光致发光材料,
    所述绿色显示图形包括绿色量子点光致发光材料,
    所述蓝色显示图形包括蓝色滤光材料。
  7. 根据权利要求6所述的显示基板,还包括:在所述基底与所述像素界定层之间的多个彩色滤光膜,其中
    所述多个彩色滤光膜与所述多个亚像素区域一一对应,
    多个所述彩色滤光膜包括红色滤光膜、绿色滤光膜和蓝色滤光膜,
    所述红色滤光膜在基底上的正投影与所述红色显示图形在基底上的正投影重叠,
    所述绿色滤光膜在基底上的正投影与所述绿色显示图形在基底上的正投影重叠,
    所述蓝色滤光膜在基底上的正投影与所述蓝色显示图形在基底上的正投影重叠。
  8. 根据权利要求7所述的显示基板,还包括平坦化层和线栅型偏光片,
    所述平坦化层位于各个亚像素槽的远离基底的一侧,并且覆盖各个亚像素槽,
    所述线栅型偏光片位于所述平坦化层的远离基底的一侧。
  9. 一种显示装置,包括根据权利要求1-8任意一项所述的显示基板。
  10. 一种显示基板的制造方法,包括:
    在基底上形成像素界定层,其中,所述像素界定层限定出多个亚像素槽,一个亚像素槽占用一个亚像素区域;
    在所述亚像素区域内、在所述像素界定层远离基底的一侧形成功能介质层,其中,
    所述功能介质层包括:覆盖所述亚像素槽的两侧面的第一部分和覆盖所述像素界定层的顶面的第二部分,
    在同一所述亚像素区域内,所述第一部分的表面能大于所述第二部分的表面能。
  11. 根据权利要求10所述的制造方法,其中,在每个亚像素区域内、在所述像素界定层远离基底的一侧形成功能介质层,包括:
    形成覆盖所述亚像素槽的底部、所述亚像素槽的两侧面、所述像素界定层的顶面的一层疏液型聚合物,以得到本体材料层;
    在所述本体材料层远离基底的一侧形成亲液单体材料层;
    对所述本体材料层和所述亲液单体材料层进行曝光,使得:在任一所述亚像素区域内,所述本体材料层和所述亲液单体材料层位于所述亚像素槽的底部的部分未被曝光,所述本体材料层和所述亲液单体材料层位于所述亚像素槽的两侧面的部分的曝光量大于所述本体材料层和所述亲液单体材料层位于所述像素界定层的顶面的部分的曝光量,所述亲液单体材料层中的亲液单体材料与所述本体材料层的上部中的疏液型聚合物光接枝形成所述功能介质层的第一部分和第二部分,并且所述第一部分的接枝率大于所述第二部分的接枝率;
    去除位于所述亚像素槽底部的亲液单体材料层。
  12. 根据权利要求11所述的制造方法,还包括:在去除位于所述亚像素槽底部的亲液单体材料层之后,对所述本体材料层位 于亚像素槽的底部的第三部分进行干刻,以形成粗糙表面。
  13. 根据权利要求12所述的制造方法,其中
    所述粗糙表面具有2μm至10μm的粗糙度。
  14. 根据权利要求11至13中任一项所述的制作方法,其中
    所述疏液型聚合物是聚对苯二甲酸乙二酯,
    所述亲液单体材料是丙烯酸或丙烯酰胺。
  15. 根据权利要求11至14中任一项所述的制造方法,在对所述本体材料层位于亚像素槽的底部的第三部分进行干刻,以形成粗糙表面之后,所述方法还包括:
    在所述多个亚像素槽内分别形成红色显示图形、绿色显示图形和蓝色显示图形,全部显示图形由墨水型材料制备;
    固化所述红色显示图形、所述绿色显示图形和所述蓝色显示图形,其中
    所述红色显示图形由红色量子点光致发光材料制成,
    所述绿色显示图形由绿色量子点光致发光材料制成,
    所述蓝色显示图形由蓝色滤光材料制成。
  16. 根据权利要求15所述的制作方法,还包括:在所述基底与所述像素界定层之间形成按顺序排布的红色滤光膜、绿色滤光膜和蓝色滤光膜,其中
    所述红色滤光膜、绿色滤光膜和蓝色滤光膜与所述多个亚像素区域一一对应,
    所述红色滤光膜在基底上的正投影与所述红色显示图形在基底上的正投影重叠,
    所述绿色滤光膜在基底上的正投影与所述绿色显示图形在基底上的正投影重叠,
    所述蓝色滤光膜在基底上的正投影与所述蓝色显示图形在基 底上的正投影重叠。
  17. 根据权利要求16所述的制作方法,还包括:
    在所述多个亚像素槽的远离基底的一侧形成覆盖各个亚像素槽的平坦化层;以及
    在所述平坦化层的远离基底的一侧形成线栅型偏光片。
PCT/CN2020/096314 2019-06-25 2020-06-16 显示基板及制造方法、显示装置 WO2020259351A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/265,241 US11968871B2 (en) 2019-06-25 2020-06-16 Display substrate facilitating ink injection, method for manufacturing the display substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910554837.3 2019-06-25
CN201910554837.3A CN110265451B (zh) 2019-06-25 2019-06-25 显示基板及制造方法、显示装置

Publications (1)

Publication Number Publication Date
WO2020259351A1 true WO2020259351A1 (zh) 2020-12-30

Family

ID=67921334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096314 WO2020259351A1 (zh) 2019-06-25 2020-06-16 显示基板及制造方法、显示装置

Country Status (3)

Country Link
US (1) US11968871B2 (zh)
CN (1) CN110265451B (zh)
WO (1) WO2020259351A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11302755B2 (en) * 2017-10-23 2022-04-12 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Array substrate, manufacturing method thereof, and display apparatus
CN110265451B (zh) 2019-06-25 2021-11-02 京东方科技集团股份有限公司 显示基板及制造方法、显示装置
CN111769141A (zh) * 2020-06-23 2020-10-13 武汉华星光电半导体显示技术有限公司 彩色滤光片、彩色滤光片的制备方法及显示面板
CN112885247B (zh) * 2021-01-20 2022-07-12 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法、显示模组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110156079A1 (en) * 2008-09-30 2011-06-30 Panasonic Corporation Organic el device and method for manufacturing same
CN103681743A (zh) * 2012-09-10 2014-03-26 三星显示有限公司 有机发光显示装置及其制造方法
CN104253244A (zh) * 2013-06-26 2014-12-31 三星显示有限公司 有机发光显示装置及其制造方法
CN104733505A (zh) * 2015-03-19 2015-06-24 京东方科技集团股份有限公司 发光显示器的像素界定层及其制作方法
CN107248523A (zh) * 2017-07-31 2017-10-13 深圳市华星光电技术有限公司 像素界定层及其制造方法
CN109307950A (zh) * 2017-07-27 2019-02-05 三星显示有限公司 显示设备和制造该显示设备的方法
CN110265451A (zh) * 2019-06-25 2019-09-20 京东方科技集团股份有限公司 显示基板及制造方法、显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294189C (zh) * 2005-03-03 2007-01-10 北京化工大学 一种用于聚合物薄膜改性的反应液及改性方法
KR101097319B1 (ko) * 2009-11-30 2011-12-23 삼성모바일디스플레이주식회사 유기 발광 표시 장치 제조 방법 및 유기 발광 표시 장치
KR102156764B1 (ko) * 2013-11-13 2020-09-16 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치 및 이의 제조 방법
CN108695437B (zh) * 2017-04-06 2020-05-19 中国科学院苏州纳米技术与纳米仿生研究所 发光二极管及其制作方法、像素结构及其制作方法
CN109037490A (zh) * 2018-07-11 2018-12-18 深圳市华星光电技术有限公司 一种像素限定层结构及其制备方法
US11309355B2 (en) * 2019-04-26 2022-04-19 Innolux Corporation Display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110156079A1 (en) * 2008-09-30 2011-06-30 Panasonic Corporation Organic el device and method for manufacturing same
CN103681743A (zh) * 2012-09-10 2014-03-26 三星显示有限公司 有机发光显示装置及其制造方法
CN104253244A (zh) * 2013-06-26 2014-12-31 三星显示有限公司 有机发光显示装置及其制造方法
CN104733505A (zh) * 2015-03-19 2015-06-24 京东方科技集团股份有限公司 发光显示器的像素界定层及其制作方法
CN109307950A (zh) * 2017-07-27 2019-02-05 三星显示有限公司 显示设备和制造该显示设备的方法
CN107248523A (zh) * 2017-07-31 2017-10-13 深圳市华星光电技术有限公司 像素界定层及其制造方法
CN110265451A (zh) * 2019-06-25 2019-09-20 京东方科技集团股份有限公司 显示基板及制造方法、显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HE CHANG-CHENG: "Review on Grafting of PET Materials", SYNTHETIC FIBER IN CHINA, 25 September 2013 (2013-09-25), pages 15 - 17+1, XP055773950, ISSN: 1001-7054, DOI: 10.16090/j.cnki.hcxw.2003.05.005 *

Also Published As

Publication number Publication date
CN110265451A (zh) 2019-09-20
US20210305331A1 (en) 2021-09-30
US11968871B2 (en) 2024-04-23
CN110265451B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2020259351A1 (zh) 显示基板及制造方法、显示装置
US11004917B2 (en) Pixel defining layer, display substrate and manufacturing method thereof, and display apparatus
US10115775B2 (en) OLED display device and manufacturing method thereof, and display apparatus
US10784322B2 (en) Array substrate, manufacturing method, and display device
WO2016019643A1 (zh) 有机电致发光显示面板、其制作方法及显示装置
JP6910958B2 (ja) 表示基板および表示基板の製造方法
WO2017092090A1 (zh) 量子点彩膜基板的制作方法
US10928565B2 (en) Color film substrate, fabricating method therefor, display panel and display device
WO2016145965A1 (zh) 像素界定层及其制作方法以及相应的发光显示器
WO2019041836A1 (zh) 像素界定层及制造方法、显示面板及制造方法、显示装置
US20210336100A1 (en) Display device and manufacturing method of display device
US20210336096A1 (en) Display panel and manufacturing method thereof
CN109920825B (zh) 像素界定结构及其制作方法、显示面板及显示装置
KR20070074051A (ko) 컬러 필터용 블랙 매트릭스 및 그 제조방법
US20190333974A1 (en) Array substrate and method of manufacturing the same, display panel, and display device
JP2020529029A (ja) 表示基板、表示装置及び表示基板の製造方法
JP7107837B2 (ja) 表示基板及びその製造方法、表示装置
WO2018032729A1 (zh) 一种有机发光二极管结构
JP2016018734A (ja) 表示装置及びその製造方法
CN103219336A (zh) 一种阵列基板、显示装置以及阵列基板的制备方法
WO2015043281A1 (zh) Coa基板、显示装置及该coa基板的制造方法
US20210359276A1 (en) Method for producing partition wall, image display device and method for producing same
CN107785401B (zh) 彩膜基板的制作方法、彩膜基板及显示面板
CN110993646B (zh) Oled背板的制备方法及oled背板
CN203179884U (zh) 一种阵列基板、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20833425

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20833425

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/08/2022)