WO2020258930A1 - 含改性石墨烯的复合海绵及其制备方法和用途 - Google Patents

含改性石墨烯的复合海绵及其制备方法和用途 Download PDF

Info

Publication number
WO2020258930A1
WO2020258930A1 PCT/CN2020/080332 CN2020080332W WO2020258930A1 WO 2020258930 A1 WO2020258930 A1 WO 2020258930A1 CN 2020080332 W CN2020080332 W CN 2020080332W WO 2020258930 A1 WO2020258930 A1 WO 2020258930A1
Authority
WO
WIPO (PCT)
Prior art keywords
sponge
modified graphene
preparation
graphene
graphene oxide
Prior art date
Application number
PCT/CN2020/080332
Other languages
English (en)
French (fr)
Inventor
童裳慧
Original Assignee
童裳慧
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 童裳慧 filed Critical 童裳慧
Publication of WO2020258930A1 publication Critical patent/WO2020258930A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Definitions

  • the invention relates to a graphene sponge composite and a preparation method and application thereof, in particular to a composite sponge containing modified graphene and a preparation method and application thereof.
  • Dyes are one of the important pollution sources of water pollution, mainly from printing, papermaking, textile and other industries.
  • the dye has a complex aromatic ring structure, has physiological toxicity and carcinogenic effects, and is difficult to biodegrade.
  • Traditional water pollution treatment methods have poor effect on wastewater containing dye impurities.
  • the adsorption method In the application of sewage treatment, the adsorption method not only has a higher removal rate, a faster reaction rate, but also is economical and easy to operate, so it is widely used.
  • Graphene aerogel is a high-strength oxidized aerogel with high elasticity and strong adsorption characteristics. It is currently a research hotspot of adsorption materials. However, graphene aerogel is hydrophobic, which limits its contact with organic pollutants in sewage, thereby reducing its application in the field of water pollution treatment.
  • CN108722347A discloses the preparation of a graphene oil-absorbing sponge: (1) adding graphene oxide to water and ultrasonically dispersing to obtain a graphene oxide aqueous solution; (2) grafting and modifying graphene oxide with a modifier to modify The agent is boron nitride, tetrabutyl titanate oleylamine or silane modifier; (3) the sponge is soaked in the modified graphene oxide solution and dried to obtain a graphene oil-absorbing sponge.
  • the graphene oil-absorbing sponge prepared by this method has a poor adsorption effect on organic dye pollutants in sewage.
  • CN105754144A discloses a preparation method of superhydrophobic reduced graphene oxide/sponge composite material: (1) Soak the sponge in absolute ethanol, ultrasonically clean it, take it out, and rinse it with water, dry it, and set it aside. (2) Dissolve graphene oxide in water, sonicate and disperse uniformly to obtain a graphene oxide solution, add ethylene diamine, transfer the resulting mixture to a microwave-ultrasonic reactor, and make the solution boil and reflux; the treated sponge Put it into the mixed solution of the reactor to continue the reaction; after the reaction, the sponge is taken out, rinsed with water, and dried to obtain a superhydrophobic reduced graphene oxide/sponge composite material.
  • the reduced graphene oxide/sponge composite material prepared by this method has a poor adsorption effect on organic dye pollutants in sewage.
  • the first objective of the present invention is to provide a method for preparing a composite sponge containing modified graphene, so that the prepared composite sponge containing modified graphene has a good effect on organic dye pollutants in sewage. Adsorption effect.
  • the second object of the present invention is to provide a modified graphene-containing composite sponge prepared by the above method.
  • the third object of the present invention is to provide the application of the modified graphene-containing composite sponge prepared by the above method in the treatment of organic dye pollutants in sewage.
  • the present invention provides a method for preparing a composite sponge containing modified graphene, including the following steps:
  • the mass ratio of graphene oxide to crosslinking agent is 1:15-60.
  • the crosslinking agent is a combination of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide.
  • the mass ratio of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide is 1:0.5-2 .
  • the mass ratio of graphene oxide to polyamine water-soluble polymer is 1:1.5-8.
  • the polyamine water-soluble polymer is polyethyleneimine or polypropyleneimine.
  • the modified graphene concentration of the modified graphene dispersion in step (1) is 2-10 mg/ml.
  • the sponge is one of polyurethane sponge, melamine sponge, polyester sponge, polyether sponge or polyvinyl alcohol sponge.
  • the present invention provides a composite sponge containing modified graphene, which is prepared by the aforementioned preparation method.
  • the present invention provides an application of the above-mentioned composite sponge containing modified graphene in the treatment of organic pollutants in sewage.
  • the present invention reacts graphene oxide with a crosslinking agent and a polyamine water-soluble polymer to obtain modified graphene, which has a higher specific surface area and porosity, and increases the hydrophilicity and adsorption sites of graphene oxide. Has stronger adsorption capacity.
  • the modified graphene is coated on the sponge to prepare a composite sponge with good adsorption capacity for organic dye pollutants in sewage.
  • the removal rate of methylene blue by the composite sponge can reach more than 94%.
  • the preparation method of the composite sponge containing amino-modified graphene of the present invention includes the following steps: (1) graphene oxide modification step; (2) sponge pretreatment step; (3) composite sponge preparation step.
  • the graphene oxide is mixed with water to obtain a graphene oxide dispersion; the crosslinking agent, the graphene oxide dispersion and the polyamine water-soluble polymer are mixed to obtain a modified graphene dispersion.
  • the graphene oxide is dispersed in water, and the graphene oxide dispersion is obtained by ultrasonic treatment.
  • the crosslinking agent, the graphene oxide dispersion liquid and the polyamine water-soluble polymer are mixed, and then ultrasonically processed to obtain the modified graphene dispersion liquid.
  • the sheet diameter of graphene oxide may be 1-50 ⁇ m; preferably 5-35 ⁇ m; more preferably 20-25 ⁇ m.
  • the oxygen to carbon molar ratio of graphene oxide may be 0.3 to 0.8, preferably 0.5 to 0.7, and more preferably 0.6 to 0.7.
  • Examples of graphene oxide include, but are not limited to, graphene oxide of Changzhou Sixth Element Material Technology Co., Ltd.
  • the graphene oxide sheet diameter is 20-25 ⁇ m, and the oxygen-carbon molar ratio is 0.6.
  • the concentration of the graphene oxide dispersion is 2-15 mg/ml.
  • the concentration of the graphene oxide dispersion is 2-10 mg/ml. More preferably, the concentration of the graphene oxide dispersion is 3 to 5 mg/ml.
  • the mass ratio of graphene oxide to crosslinking agent is 1:15-60.
  • the mass ratio of graphene oxide to crosslinking agent is 1:15-40. More preferably, the mass ratio of graphene oxide to crosslinking agent is 1:20-30.
  • the crosslinking agent may be a combination of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide.
  • the mass ratio of the composition of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide is 1:0.5-2.
  • the mass ratio of the composition of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide is 1:0.8 to 1.5. More preferably, the mass ratio of the composition of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide is 1:0.9 to 1.3. In this way, the prepared modified graphene has a higher specific surface area and a stronger adsorption capacity.
  • the mass ratio of graphene oxide to polyamine water-soluble polymer is 1:1.5-8.
  • the mass ratio of graphene oxide to polyamine water-soluble polymer is 1:1.5-4. More preferably, the mass ratio of graphene oxide to the polyamine water-soluble polymer is 1:1.5-2.
  • the polyamine water-soluble polymer is polyethylene imine or polypropylene imine. According to a specific embodiment of the present invention, the polyamine water-soluble polymer is polyethyleneimine. In this way, the graphene oxide can achieve better modification effects, and the prepared modified graphene has stronger adsorption capacity.
  • the crosslinking agent can be mixed with the graphene oxide dispersion first, and then mixed with the polyamine water-soluble polymer.
  • the polyamine water-soluble polymer is mixed with the dispersion liquid containing the crosslinking agent and graphene oxide under stirring. This can enhance the adsorption capacity of modified graphene.
  • the crosslinking agent, the graphene oxide dispersion liquid and the polyamine water-soluble polymer are mixed, and then ultrasonically processed.
  • the ultrasound time is 3-20min.
  • the ultrasound time is 5 to 15 minutes. More preferably, the time for ultrasonic dispersion is 5-10 min. In this way, the uniformity of the dispersion liquid after ultrasound can be ensured, and the prepared composite sponge containing modified graphene has stronger adsorption capacity.
  • the sonicated solution can be reacted under stirring conditions.
  • the stirring time is more than 12h.
  • the stirring time is 24 hours, for example, 24 to 60 hours.
  • the reaction temperature is 15 to 35°C.
  • the reaction temperature is 20-30°C. This can speed up the reaction and make the reaction more complete, and the prepared composite sponge containing modified graphene has stronger adsorption capacity.
  • the concentration of the dispersion of modified graphene is 2-10 mg/ml.
  • the concentration of the modified graphene dispersion is 2-8 mg/ml. More preferably, the concentration of the modified graphene dispersion is 2-5 mg/ml. In this way, the modified graphene can be better coated on the sponge, and the prepared composite sponge containing the modified graphene has stronger adsorption capacity.
  • the sponge is ultrasonically cleaned, washed and dried to prepare a clean sponge.
  • the sponge may be one of polyurethane sponge, melamine sponge, polyester sponge, polyether sponge or polyvinyl alcohol sponge.
  • the sponge is a polyurethane sponge or a melamine sponge.
  • the sponge is a polyurethane sponge.
  • the lotion for ultrasonic cleaning can be water or alcohol solution.
  • the alcohol solution is ethanol.
  • the sponge is ultrasonically cleaned twice, the first washing liquid is absolute ethanol, and the second washing liquid is deionized water.
  • the washing liquid used in the washing process can be water or alcohol solution.
  • the lotion is water or ethanol. More preferably, the lotion is water.
  • the washing process is to soak the washing sponge with distilled water.
  • the drying temperature is 50-100°C.
  • the drying temperature is 60 to 80°C. More preferably, the drying temperature is 60 to 70°C. In this way, the prepared sponge can achieve better coating effects, and the prepared composite sponge containing modified graphene has stronger adsorption capacity.
  • the cleaning sponge is immersed in the modified graphene dispersion liquid, squeezed and soaked, so that the modified graphene is fully adsorbed on the sponge to obtain a composite sponge containing the modified graphene.
  • it may further include the steps of primary drying, washing and secondary drying of the sponge adsorbing the modified graphene-containing dispersion liquid.
  • the primary drying step is performed under normal pressure.
  • the primary drying temperature is 60 ⁇ 120°C.
  • the primary drying temperature is 70-100°C. More preferably, the primary drying temperature is 75 to 90°C.
  • the first drying time is 2-6 hours. Preferably, the primary drying time is 3 to 5 hours. In this way, the prepared composite sponge has stronger adsorption capacity.
  • the washing liquid used in the washing step is an aqueous ethanol solution.
  • the ethanol concentration of the ethanol aqueous solution is 1-20 vol%. More preferably, the ethanol concentration of the ethanol aqueous solution is 1-10 vol%.
  • the washing time is more than 15h. Preferably, the washing time is more than 20h. More preferably, the washing time is 24 hours or more, for example, 24 to 60 hours.
  • the secondary drying process is performed under normal pressure.
  • the secondary drying temperature is 40-100°C.
  • the secondary drying temperature is 50-90°C. More preferably, the secondary drying temperature is 60 to 80°C.
  • the secondary drying time is 20 ⁇ 48h.
  • the secondary drying time is 24 to 40 hours. More preferably, the secondary drying time is 24 to 35 hours. In this way, the prepared composite sponge has stronger adsorption capacity.
  • the invention also provides a composite sponge containing modified graphene prepared by the above method.
  • the present invention also provides the application of the modified graphene-containing composite sponge obtained by the above preparation method in the treatment of organic dye pollutants in sewage.
  • the organic dye contaminants are selected from one or more of methyl orange, methylene blue, rhodamine B, methyl violet, and neutral red.
  • the organic dye is methylene blue.
  • the graphene oxide of the following examples and comparative examples was purchased from Changzhou Sixth Element Material Technology Co., Ltd., with a sheet diameter of 20-25 ⁇ m, and an oxygen-carbon molar ratio of 0.6.
  • the polyurethane sponge is first placed in absolute ethanol for ultrasonic cleaning, and then placed in deionized water for ultrasonic cleaning.
  • the polyurethane sponge after ultrasonic cleaning was soaked and washed in distilled water and dried at 65°C to prepare a clean sponge.
  • the clean sponge was immersed in the modified graphene dispersion, squeezed and soaked 3 times to make the modified graphene fully adsorbed on the sponge, removed the sponge, drained the water, and dried at 80°C for 2h.
  • the dried composite sponge was soaked and washed with a 1 vol% ethanol solution for 24 hours, and then dried at 65° C. for 24 hours to obtain a composite sponge containing modified graphene.
  • the polyurethane sponge is first placed in absolute ethanol for ultrasonic cleaning, and then placed in deionized water for ultrasonic cleaning.
  • the polyurethane sponge after ultrasonic cleaning is soaked and washed in distilled water, and dried at 65°C to prepare a cleaning sponge.
  • the clean sponge was immersed in the modified graphene dispersion, squeezed and soaked 3 times to make the modified graphene fully adsorbed on the sponge, removed the sponge, drained the water, and dried at 80°C for 2h.
  • the dried composite sponge was soaked and washed with a 1 vol% ethanol solution for 24 hours, and then dried at 65° C. for 24 hours to obtain a composite sponge containing modified graphene.
  • the polyurethane sponge is first placed in absolute ethanol for ultrasonic cleaning, and then placed in deionized water for ultrasonic cleaning.
  • the polyurethane sponge after ultrasonic cleaning is soaked and washed in distilled water, and dried at 65°C to prepare a cleaning sponge.
  • the clean sponge was immersed in the modified graphene dispersion, squeezed and soaked 3 times to make the modified graphene fully adsorbed on the sponge, removed the sponge, drained the water, and dried at 80°C for 2h.
  • the dried composite sponge was soaked and washed with a 1 vol% ethanol solution for 24 hours, and then dried at 65° C. for 24 hours to obtain a composite sponge containing modified graphene.
  • the polyurethane sponge is first placed in absolute ethanol for ultrasonic cleaning, and then placed in deionized water for ultrasonic cleaning.
  • the polyurethane sponge after ultrasonic cleaning is soaked and washed in distilled water, and dried at 65°C to prepare a cleaning sponge.
  • the clean sponge was immersed in the modified graphene dispersion, squeezed and soaked 3 times to make the modified graphene fully adsorbed on the sponge, removed the sponge, drained the water, and dried at 80°C for 2h.
  • the dried composite sponge was soaked and washed with a 1 vol% ethanol solution for 24 hours, and then dried at 65° C. for 24 hours to obtain a composite sponge containing modified graphene.
  • the polyurethane sponge in absolute ethanol for ultrasonic cleaning, and then in deionized water for ultrasonic cleaning.
  • the polyurethane sponge after ultrasonic cleaning is soaked and washed in distilled water, and dried at 65°C to prepare a cleaning sponge.
  • the adsorption capacity of the composite sponges prepared in Examples 1-4 and Comparative Example 1 to methylene blue was tested.
  • the test method is as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种含改性石墨烯的复合海绵及其制备方法和用途。该制备方法,包括如下步骤:(1)将氧化石墨烯与水混合得到氧化石墨烯分散液;将交联剂、氧化石墨烯分散液与多胺类水溶性聚合物混合得到改性石墨烯分散液;(2)将海绵进行超声清洗,洗涤和干燥,制备得到清洁海绵;(3)将清洁海绵浸入改性石墨烯分散液,挤压浸泡,使改性石墨烯充分吸附在海绵上,得到含改性石墨烯的复合海绵。该方法制备得到的含改性石墨烯的复合海绵具有较高的吸附能力。

Description

含改性石墨烯的复合海绵及其制备方法和用途 技术领域
本发明涉及一种石墨烯海绵复合物及其制备方法和用途,特别是含改性石墨烯的复合海绵及其制备方法和用途。
背景技术
染料是水污染的重要污染源之一,主要来自于印刷、造纸、纺织等行业。染料具有复杂的芳环结构,具有生理毒性以及致癌作用,且难以生物降解。传统的水污染处理方法,对含有染料杂质的污水处理效果较差。吸附法在污水处理应用中,不仅具有较高的去除率、较快的反应速率,而且经济节约、易于操作,因而被广泛应用。
石墨烯气凝胶是一种高强度氧化气凝胶,具有高弹性、强吸附的特点,是目前吸附材料的研究热点。但是石墨烯气凝胶具有疏水性,限制了其与污水中有机污染物的接触,从而降低了其在水污染处理领域的应用。
CN108722347A公开了一种石墨烯吸油海绵的制备:(1)将氧化石墨烯加入水中,超声分散,得到氧化石墨烯水溶液;(2)将氧化石墨烯与改性剂进行接枝改性,改性剂为氮化硼、钛酸四丁酯油胺或硅烷改性剂;(3)将海绵浸泡在改性后的氧化石墨烯溶液中,干燥得到石墨烯吸油海绵。由该方法制备得到的石墨烯吸油海绵,对于污水中的有机染料污染物的吸附效果不好。
CN105754144A公开了一种超疏水还原氧化石墨烯/海绵复合材料的制备方法:(1)将海绵浸泡在无水乙醇中,超声清洗,取出后用水冲洗干净、烘干、备用。(2)将氧化石墨烯溶于水中,超声,均匀分散,得到氧化石墨烯溶液,加入乙二胺,将所得混合液转移至微波 -超声波反应器中,使溶液沸腾回流;将处理后的海绵放入反应器的混合液中继续反应;反应结束后,取出海绵,用水冲洗、烘干,得到超疏水还原氧化石墨烯/海绵复合材料。由该方法制备得到的还原氧化石墨烯/海绵复合材料在污水中对有机染料污染物的吸附效果不好。
发明内容
有鉴于此,本发明的第一个目的在于提供一种含改性石墨烯的复合海绵的制备方法,使制备得到的含改性石墨烯的复合海绵对污水中有机染料污染物具有很好的吸附效果。
本发明的第二个目的在于提供由上述方法制备得到的含改性石墨烯的复合海绵。
本发明的第三个目的在于提供上述方法制备得到的含改性石墨烯的复合海绵在污水中有机染料污染物处理中的应用。
第一方面,本发明提供一种含改性石墨烯的复合海绵的制备方法,包括如下步骤:
(1)将氧化石墨烯与水混合得到氧化石墨烯分散液;将交联剂、氧化石墨烯分散液与多胺类水溶性聚合物混合得到改性石墨烯分散液;
(2)将海绵进行超声清洗、洗涤和干燥,制备得到清洁海绵;
(3)将清洁海绵浸入改性石墨烯分散液,挤压浸泡,使改性石墨烯充分吸附在海绵上,得到含改性石墨烯的复合海绵。
根据本发明的制备方法,优选地,氧化石墨烯与交联剂的质量比为1:15~60。
根据本发明的制备方法,优选地,交联剂为1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基琥珀酰亚胺的组合物。
根据本发明的制备方法,优选地,1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基琥珀酰亚胺的质量比为1:0.5~2。
根据本发明的制备方法,优选地,氧化石墨烯与多胺类水溶性聚合物的质量比为1:1.5~8。
根据本发明的制备方法,优选地,多胺类水溶性聚合物为聚乙烯亚胺或聚丙烯亚胺。
根据本发明的制备方法,优选地,步骤(1)中改性石墨烯分散液的改性石墨烯浓度为2~10mg/ml。
根据本发明的制备方法,优选地,海绵为聚氨酯海绵、三聚氰胺海绵、聚酯海绵、聚醚海绵或聚乙烯醇海绵中的一种。
第二方面,本发明提供一种含改性石墨烯的复合海绵,其由前述制备方法制备得到。
第三方面,本发明提供一种上述含改性石墨烯的复合海绵在污水中有机污染物处理中的应用。
本发明将氧化石墨烯与交联剂、多胺类水溶性聚合物反应,得到改性石墨烯,具有更高的比表面积以及孔隙率,增加了氧化石墨烯的亲水性以及吸附位点,具有更强的吸附能力。通过一步制备法,将改性石墨烯涂覆在海绵上,制备出对污水中有机染料污染物具有很好吸附能力的复合海绵,该复合海绵对亚甲基蓝的去除率可达到94%以上。
具体实施方式
下面结合具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
本发明的含氨基改性石墨烯的复合海绵的制备方法,包括如下步骤:(1)氧化石墨烯改性步骤;(2)海绵预处理步骤;(3)复合海绵的制备步骤。
<氧化石墨烯改性步骤>
将氧化石墨烯与水混合得到氧化石墨烯分散液;将交联剂、氧化石墨烯分散液与多胺类水溶性聚合物混合得到改性石墨烯分散液。例如,将氧化石墨烯分散在水中,超声处理得到氧化石墨烯分散液。将交联剂、氧化石墨烯分散液与多胺类水溶性聚合物混合,然后超声处理,得到改性石墨烯分散液。
在本发明中,氧化石墨烯的片径可以为1~50μm;优选为5~35μm;更优选为20~25μm。氧化石墨烯的氧碳摩尔比可以为0.3~0.8,优选为0.5~0.7,更优选为0.6~0.7。氧化石墨烯的实例包括但不限于常州第六元素材料科技股份有限公司的氧化石墨烯。氧化石墨烯片径为20~25μm,氧碳摩尔比为0.6。
在本发明中,氧化石墨烯分散液的浓度为2~15mg/ml。优选地,氧化石墨烯分散液的浓度为2~10mg/ml。更优选地,氧化石墨烯分散液的浓度为3~5mg/ml。
在本发明中,氧化石墨烯与交联剂的质量比为1:15~60。优选地,氧化石墨烯与交联剂的质量比为1:15~40。更优选地,氧化石墨烯与交联剂的质量比为1:20~30。交联剂可以为1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基琥珀酰亚胺的组合物。1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐与N-羟基琥珀酰亚胺的组合物的质量比为1:0.5~2。优选地,1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐与N-羟基琥珀酰亚胺的组合物的质量比为1:0.8~1.5。更优选地,1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐与N-羟基琥珀酰亚胺的组合物的质量比为1:0.9~1.3。这样可以使制得的改性石墨烯具有更高的比表面积,更强的吸附能力。
在本发明中,氧化石墨烯与多胺类水溶性聚合物的质量比为 1:1.5~8。优选地,氧化石墨烯与多胺类水溶性聚合物的质量比为1:1.5~4。更优选地,氧化石墨烯与多胺类水溶性聚合物的质量比为1:1.5~2。多胺类水溶性聚合物为聚乙烯亚胺或聚丙烯亚胺。根据本发明的一个具体的实施方式,多胺类水溶性聚合物为聚乙烯亚胺。这样可以使得氧化石墨烯取得更好的改性效果,制备得到的改性石墨烯具有更强的吸附能力。
在本发明中,可以先将交联剂与氧化石墨烯分散液混合,再与多胺类水溶性聚合物混合。优选地,多胺类水溶性聚合物在搅拌的条件下与含有交联剂和氧化石墨烯的分散液混合。这样可以增强改性石墨烯的吸附能力。
将交联剂、氧化石墨烯分散液与多胺类水溶性聚合物混合,然后超声处理。超声时间为3~20min。优选地,超声时间为5~15min。更优选地,超声分散的时间为5~10min。这样可以保证超声后的分散液的均匀度,使制备得到的含改性石墨烯的复合海绵具有更强的吸附能力。超声后的溶液可以在搅拌的条件下进行反应。搅拌的时间为12h以上。优选地,搅拌的时间为24h,例如24~60h。反应温度为15~35℃。优选地,反应温度为20~30℃。这样可以加速反应的进行,使反应更完全,制备得到的含改性石墨烯的复合海绵具有更强的吸附能力。
在本发明中,改性石墨烯的分散液的浓度为2~10mg/ml。优选地,改性石墨烯分散液的浓度为2~8mg/ml。更优选地,改性石墨烯分散液的浓度为2~5mg/ml。这样可以将改性石墨烯更好地涂覆在海绵上,制备得到的含改性石墨烯的复合海绵具有更强的吸附能力。
<海绵预处理步骤>
将海绵进行超声清洗,洗涤和干燥,制备得到清洁海绵。
本发明中,海绵可以为聚氨酯海绵、三聚氰胺海绵、聚酯海绵、聚醚海绵或聚乙烯醇海绵中的一种。根据本发明的某些实施方式,海绵为聚氨酯海绵或三聚氰胺海绵。根据本发明的一个具体的实施方式,海绵为聚氨酯海绵。这样可以使改性的氧化石墨烯更好地涂覆在海绵上,达到更好的复合效果,使制备得到含改性石墨烯的复合海绵具有更强的吸附能力。
在本发明中,超声清洗的洗液可以为水或醇溶液。优选地,醇溶液为乙醇。根据本发明的一个具体的实施方式,海绵经过两次超声清洗,第一次的洗液为无水乙醇,第二次的洗液为去离子水。洗涤过程中所使用的洗液可以为水或醇溶液。优选地,洗液为水或乙醇。更优选地,洗液为水。根据本发明的一个具体实施方式,洗涤过程为用蒸馏水浸泡洗涤海绵。干燥温度为50~100℃。优选地,干燥温度为60~80℃。更优选地,干燥温度为60~70℃。这样可以使制备得到的海绵达到更好的涂覆效果,使制备得到的含改性石墨烯的复合海绵具有更强的吸附能力。
<复合海绵制备步骤>
将清洁海绵浸入改性石墨烯分散液,挤压浸泡,使改性石墨烯充分吸附在海绵上,得到含改性石墨烯的复合海绵。
在本发明中,还可以包含将吸附含改性石墨烯分散液的海绵进行一次干燥、洗涤和二次干燥的步骤。
在本发明中,一次干燥步骤在常压下进行。一次干燥温度为60~120℃。优选地,一次干燥温度为70~100℃。更优选地,一次干燥温度为75~90℃。一次干燥时间为2~6小时。优选地,一次干燥时间为3~5小时。这样可以使制备得到的复合海绵具有更强的吸附能力。
在本发明中,用于洗涤步骤的洗液为乙醇水溶液。优选地,乙醇 水溶液的乙醇浓度为1~20vol%。更优选地,乙醇水溶液的乙醇浓度为1~10vol%。洗涤时间为15h以上。优选地,洗涤时间为20h以上。更优选地,洗涤时间为24h以上,例如24~60h。
在本发明中,二次干燥过程在常压下进行。二次干燥温度为40~100℃。优选地,二次干燥温度为50~90℃。更优选地,二次干燥温度为60~80℃。二次干燥时间为20~48h。优选地,二次干燥时间为24~40h。更优选地,二次干燥时间为24~35h。这样可以使制备得到的复合海绵具有更强的吸附能力。
本发明还提供一种由上述方法制备得到的含改性石墨烯的复合海绵。
本发明还提供上述制备方法得到的含改性石墨烯的复合海绵在污水中有机染料污染物处理中的应用。优选地,所述的有机染料污染物选自甲基橙、亚甲基蓝、罗丹明B、甲基紫、中性红中的一种或多种。根据本发明的一个具体的实施方式,所述的有机染料为亚甲基蓝。
以下实施例和比较例的氧化石墨烯购自常州第六元素材料科技股份有限公司,片径为20~25μm,氧碳摩尔比为0.6。
实施例1
将40mg氧化石墨烯分散于20ml去离子水中,配置成氧化石墨烯分散液。将1.086g的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和1.012g的N-羟基琥珀酰亚胺与氧化石墨烯分散液混合,制备得到混合液。在搅拌条件下,将80mg聚乙烯亚胺与混合液混合,超声5min,在常温下搅拌反应24h,得到改性石墨烯分散液。
将聚氨酯海绵先置于无水乙醇中超声清洗,再置于去离子水中超声清洗。将超声清洗后的聚氨酯海绵用蒸馏水浸泡洗涤,在65℃下干 燥,制备得到清洁海绵。
将清洁海绵浸入改性石墨烯分散液中,挤压浸泡3次,使改性石墨烯充分吸附在海绵上,取出海绵,沥干水分,在80℃下干燥2h。将干燥后的复合海绵用1vol%的乙醇溶液浸泡洗涤24h,然后在65℃下干燥24h,得到含改性石墨烯的复合海绵。
实施例2
将40mg氧化石墨烯分散于20ml去离子水中,配置成氧化石墨烯分散液。将1.086g的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和1.012g的N-羟基琥珀酰亚胺与氧化石墨烯分散液混合,制备得到混合液。在搅拌条件下,将200mg聚乙烯亚胺与混合液混合,超声5min,在常温下搅拌反应24h,得到改性石墨烯分散液。
将聚氨酯海绵先置于无水乙醇中超声清洗,再置于去离子水中超声清洗。将超声清洗后的聚氨酯海绵用蒸馏水浸泡洗涤,在65℃下干燥,制备得到清洁海绵。
将清洁海绵浸入改性石墨烯分散液中,挤压浸泡3次,使改性石墨烯充分吸附在海绵上,取出海绵,沥干水分,在80℃下干燥2h。将干燥后的复合海绵用1vol%的乙醇溶液浸泡洗涤24h,然后在65℃下干燥24h,得到含改性石墨烯的复合海绵。
实施例3
将100mg氧化石墨烯分散于20ml去离子水中,配置成氧化石墨烯分散液。将1.086g的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和1.012g的N-羟基琥珀酰亚胺与氧化石墨烯分散液混合,制备得到混合液。在搅拌条件下,将200mg聚乙烯亚胺与混合液混合,超声5min,在常温下搅拌反应24h,得到改性石墨烯分散液。
将聚氨酯海绵先置于无水乙醇中超声清洗,再置于去离子水中超声清洗。将超声清洗后的聚氨酯海绵用蒸馏水浸泡洗涤,在65℃下干燥,制备得到清洁海绵。
将清洁海绵浸入改性石墨烯分散液中,挤压浸泡3次,使改性石墨烯充分吸附在海绵上,取出海绵,沥干水分,在80℃下干燥2h。将干燥后的复合海绵用1vol%的乙醇溶液浸泡洗涤24h,然后在65℃下干燥24h,得到含改性石墨烯的复合海绵。
实施例4
将100mg氧化石墨烯分散于20ml去离子水中,配置成氧化石墨烯分散液。将1.086g的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和1.012g的N-羟基琥珀酰亚胺与氧化石墨烯分散液混合,制备得到混合液。在搅拌条件下,将500mg聚乙烯亚胺与混合液混合,超声5min,在常温下搅拌反应24h,得到改性石墨烯分散液。
将聚氨酯海绵先置于无水乙醇中超声清洗,再置于去离子水中超声清洗。将超声清洗后的聚氨酯海绵用蒸馏水浸泡洗涤,在65℃下干燥,制备得到清洁海绵。
将清洁海绵浸入改性石墨烯分散液中,挤压浸泡3次,使改性石墨烯充分吸附在海绵上,取出海绵,沥干水分,在80℃下干燥2h。将干燥后的复合海绵用1vol%的乙醇溶液浸泡洗涤24h,然后在65℃下干燥24h,得到含改性石墨烯的复合海绵。
比较例1
将40mg氧化石墨烯分散于20ml去离子水中,超声10min,得到氧化石墨烯溶液。
将聚氨酯海绵先置于无水乙醇中超声清洗,再置于去离子水中超 声清洗。将超声清洗后的聚氨酯海绵用蒸馏水浸泡洗涤,在65℃下干燥,制备得到清洁海绵。
将清洁海绵浸入氧化石墨烯溶液中,挤压浸泡3次,使氧化石墨烯充分吸附在海绵上,取出海绵,沥干水分,在80℃下干燥5h。将干燥后的复合海绵用1vol%的乙醇溶液浸泡洗涤24h,然后在65℃下干燥24h,得到氧化石墨烯复合海绵。
实验例
对实施例1-4和比较例1制备得到的复合海绵对亚甲基蓝的吸附能力进行测试,测试方法如下:
称取2.5g的复合海绵样品,加入到亚甲基蓝溶液(溶液体积为300ml,亚甲基蓝的浓度为250mg/ml)中,在恒温水浴震荡床中(35℃、100r/min)震荡,达到吸附平衡后,用紫外分光光度计测量亚甲基蓝溶液在660nm波长的吸光度,计算染料的浓度从而求出亚甲基蓝的去除率。结果如下表所示:
表1
检测样品 亚甲基蓝的去除率(%)
实施例1 94
实施例2 95
实施例3 96
实施例4 95
比较例1 80
聚氨酯海绵 20
本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员可以想到的任何变形、改进、替换均落入本发明的范围。

Claims (10)

  1. 一种含改性石墨烯的复合海绵的制备方法,其特征在于,包括如下步骤:
    (1)将氧化石墨烯与水混合得到氧化石墨烯分散液;将交联剂、氧化石墨烯分散液与多胺类水溶性聚合物混合得到改性石墨烯分散液;
    (2)将海绵进行超声清洗、洗涤和干燥,制备得到清洁海绵;
    (3)将清洁海绵浸入改性石墨烯分散液,挤压浸泡,使改性石墨烯充分吸附在海绵上,得到含改性石墨烯的复合海绵。
  2. 根据权利要求1所述的制备方法,其特征在于,氧化石墨烯与交联剂的质量比为1:15~60。
  3. 根据权利要求1所述的制备方法,其特征在于,所述的交联剂为1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基琥珀酰亚胺的组合物。
  4. 根据权利要求3所述的制备方法,其特征在于,1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基琥珀酰亚胺的质量比为1:0.5~2。
  5. 根据权利要求1所述的制备方法,其特征在于,氧化石墨烯与多胺类水溶性聚合物的质量比为1:1.5~8。
  6. 根据权利要求1所述的制备方法,其特征在于,所述的多胺类水溶性聚合物为聚乙烯亚胺或聚丙烯亚胺。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,改性石墨烯分散液的改性石墨烯浓度为2~10mg/ml。
  8. 根据权利要求1所述的制备方法,其特征在于,所述的海绵为聚氨酯海绵、三聚氰胺海绵、聚酯海绵、聚醚海绵或聚乙烯醇海绵中的一种。
  9. 一种含改性石墨烯的复合海绵,其特征在于,由权利要求1~8任一项所述的制备方法制备得到。
  10. 根据权利要求9所述的含改性石墨烯的复合海绵在污水中有机染料污染物处理中的应用。
PCT/CN2020/080332 2019-06-27 2020-03-20 含改性石墨烯的复合海绵及其制备方法和用途 WO2020258930A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910567181.9 2019-06-27
CN201910567181.9A CN110193357A (zh) 2019-06-27 2019-06-27 含改性石墨烯的复合海绵及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2020258930A1 true WO2020258930A1 (zh) 2020-12-30

Family

ID=67755317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080332 WO2020258930A1 (zh) 2019-06-27 2020-03-20 含改性石墨烯的复合海绵及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN110193357A (zh)
WO (1) WO2020258930A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11304304B2 (en) * 2019-11-11 2022-04-12 International Business Machines Corporation Ionic contaminant cleaning

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193357A (zh) * 2019-06-27 2019-09-03 中素新科技有限公司 含改性石墨烯的复合海绵及其制备方法和用途
CN111019189A (zh) * 2019-12-26 2020-04-17 常州市顺祥新材料科技股份有限公司 一种基于石墨烯水性聚氨酯的海绵改性方法
CN111450576B (zh) * 2020-04-15 2022-02-01 中国石油化工股份有限公司 一种油水分离装置及油水分离方法
CN112897618B (zh) * 2021-01-25 2022-04-12 浙江大学 能高效处理盐水和废水的三维光热转换材料及装置和方法
CN113856756B (zh) * 2021-10-15 2023-11-24 暨南大学 一种Ag/TiO2复合改性海绵的制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103525113A (zh) * 2013-09-23 2014-01-22 同济大学 一种氨基化海绵/石墨烯三维复合结构材料的制备方法
WO2014186802A1 (en) * 2013-05-17 2014-11-20 Biotectix, LLC Impregnation of a non-conductive material with an intrinsically conductive polymer
CN109718743A (zh) * 2019-01-11 2019-05-07 吉林大学 一种聚丙烯腈/聚乙烯亚胺/氧化石墨烯纳米多孔海绵及其制备方法
CN110193357A (zh) * 2019-06-27 2019-09-03 中素新科技有限公司 含改性石墨烯的复合海绵及其制备方法和用途
CN110193358A (zh) * 2019-06-27 2019-09-03 中素新科技有限公司 含氨基改性石墨烯的复合海绵及其制备方法和用途
CN110713181A (zh) * 2019-09-30 2020-01-21 北京石墨烯技术研究院有限公司 用于去除水中金属离子的改性石墨烯及其制备方法、包含其的产品与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732458A (zh) * 2016-12-23 2017-05-31 天津理工大学 一种氧化石墨烯/聚乙烯亚胺/纤维素复合水凝胶及其制备方法
CN107057351B (zh) * 2016-12-23 2019-07-02 湖南大学 复合聚乙烯亚胺修饰氧化石墨烯复合材料及其制备方法和应用
CN108722347A (zh) * 2017-04-21 2018-11-02 无锡市惠诚石墨烯技术应用有限公司 一种石墨烯吸油海绵的制备
WO2019026091A1 (en) * 2017-08-04 2019-02-07 Saint-Gobain Glass France GLASS BENDING MOLD

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014186802A1 (en) * 2013-05-17 2014-11-20 Biotectix, LLC Impregnation of a non-conductive material with an intrinsically conductive polymer
CN103525113A (zh) * 2013-09-23 2014-01-22 同济大学 一种氨基化海绵/石墨烯三维复合结构材料的制备方法
CN109718743A (zh) * 2019-01-11 2019-05-07 吉林大学 一种聚丙烯腈/聚乙烯亚胺/氧化石墨烯纳米多孔海绵及其制备方法
CN110193357A (zh) * 2019-06-27 2019-09-03 中素新科技有限公司 含改性石墨烯的复合海绵及其制备方法和用途
CN110193358A (zh) * 2019-06-27 2019-09-03 中素新科技有限公司 含氨基改性石墨烯的复合海绵及其制备方法和用途
CN110713181A (zh) * 2019-09-30 2020-01-21 北京石墨烯技术研究院有限公司 用于去除水中金属离子的改性石墨烯及其制备方法、包含其的产品与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, HONGYU: "Preparation and Adsorption Properties of Polyethyleneimine Cross-Linked 3D Graphene", JOURNAL OF HENAN UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE), vol. 5, no. 38,, 31 October 2017 (2017-10-31), ISSN: 1672-6871, DOI: 20200526143100Y *
ZHANG, QIUPING ET AL.: "Research on the adsorption capability of polyethyleneiminemodified graphene oxide for Cr(Ⅵ)", INDUSTRIAL WATER TREATMENT, vol. 4, no. 39, 30 April 2019 (2019-04-30), ISSN: 1005-829x, DOI: 20200526111711Y *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11304304B2 (en) * 2019-11-11 2022-04-12 International Business Machines Corporation Ionic contaminant cleaning

Also Published As

Publication number Publication date
CN110193357A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
WO2020258930A1 (zh) 含改性石墨烯的复合海绵及其制备方法和用途
CN110193358B (zh) 含氨基改性石墨烯的复合海绵及其制备方法和用途
Tang et al. Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal
Chang et al. Construction of chitosan/polyacrylate/graphene oxide composite physical hydrogel by semi-dissolution/acidification/sol-gel transition method and its simultaneous cationic and anionic dye adsorption properties
Zhu et al. Removal of anionic and cationic dyes using porous chitosan/carboxymethyl cellulose-PEG hydrogels: Optimization, adsorption kinetics, isotherm and thermodynamics studies
Geng A facile approach to light weight, high porosity cellulose aerogels
CN109433013B (zh) 一种氧化石墨烯与石墨相氮化碳复合改性的膜材料及其制备方法
CN107686107A (zh) 弹性疏水碳纳米管‑石墨烯复合气凝胶的制备方法
CN106422423B (zh) 一种超疏水金属丝网及其制备方法
WO2020258931A1 (zh) 废水中有机染料的处理方法
CN104300164B (zh) 一种复合质子交换膜的制备方法
CN107262061A (zh) 一种基于石墨烯的重金属离子吸附材料及其制备方法
CN107126845A (zh) 一种改性碳纳米管和复合纳滤膜及其制备方法
Han et al. Preparation of a hydroxyethyl–titanium dioxide–carboxymethyl cellulose hydrogel cage and its effect on the removal of methylene blue
CN109096534B (zh) 石墨烯/氯化聚丙烯改性的三聚氰胺泡沫吸油材料及其制备方法
Lin et al. Highly effective adsorption performance of carboxymethyl cellulose microspheres crosslinked with epichlorohydrin
CN110459790A (zh) 一种改善ptfe微孔膜基体纤维特性的方法
CN115608172B (zh) 一种海水脱硼反渗透膜及其制备方法和应用
Srivastava et al. Green synthesis of PH-responsive, self-assembled, novel polysaccharide composite hydrogel and its application in selective capture of cationic/anionic dyes
Wang et al. Egg yolk/ZIF-8/CLPAA composite aerogel: Preparation, characterization and adsorption properties for organic dyes
Zhang et al. Efficient removal and detoxification of Cr (VI) by PEI-modified Juncus effuses with a natural 3D network structure
CN109224888A (zh) 一种氧化石墨烯框架改性聚酰胺反渗透膜及其应用
Ma et al. Melamine foam with pH‐responsive wettability for fast oil absorption and desorption
CN111517325A (zh) 一种聚多巴胺修饰生物质碳材料的制备方法及其应用
Samuel et al. Recent progress on the remediation of dyes in wastewater using cellulose-based adsorbents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831580

Country of ref document: EP

Kind code of ref document: A1