WO2020258063A1 - 光学透镜组、成像系统及穿戴式显示设备 - Google Patents

光学透镜组、成像系统及穿戴式显示设备 Download PDF

Info

Publication number
WO2020258063A1
WO2020258063A1 PCT/CN2019/092890 CN2019092890W WO2020258063A1 WO 2020258063 A1 WO2020258063 A1 WO 2020258063A1 CN 2019092890 W CN2019092890 W CN 2019092890W WO 2020258063 A1 WO2020258063 A1 WO 2020258063A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
lens group
optical lens
image side
Prior art date
Application number
PCT/CN2019/092890
Other languages
English (en)
French (fr)
Inventor
毛庆
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980011863.XA priority Critical patent/CN111699428A/zh
Priority to PCT/CN2019/092890 priority patent/WO2020258063A1/zh
Publication of WO2020258063A1 publication Critical patent/WO2020258063A1/zh
Priority to US17/558,597 priority patent/US20220113500A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • G02B9/10Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only one + and one - component

Definitions

  • the embodiments of the present invention relate to the field of imaging technology, in particular to an optical lens group, an imaging system, and a wearable display device.
  • wearable electronic products such as smart VR wearable devices such as VR glasses and VR helmets.
  • wearable electronic products that are portable and have high-quality imaging quality are more favored by people.
  • the total length of the optical system is limited, thereby increasing the design difficulty of the optical system.
  • the image receiver of the imaging system of the existing product is usually small, or the field of view is small; in addition, the optical system of the existing product has large distortion, resulting in large picture distortion.
  • the current optical system cannot meet the requirements of miniaturization while achieving a large-scale, high-quality imaging effect, which makes the user experience poor immersion and can cause discomfort and dizziness in the human eye.
  • the purpose of the present invention is to provide an optical lens group, imaging system and wearable display device to meet the requirements of miniaturization while achieving large viewing angles and high-quality imaging effects.
  • An embodiment of the present invention provides an optical lens assembly, including: a first lens and a second lens arranged coaxially from the object side to the image side in turn; the object side surface of the first lens is a flat surface and the image side surface is a concave surface; At least one of the object side surface and the image side surface of the second lens is convex; the effective focal length of the optical lens group is f, the distance from the object surface of the optical lens group to the imaging surface of the optical lens group on the optical axis
  • the optical lens group satisfies:
  • An embodiment of the present invention further provides an imaging system, including: a display screen, an optical lens group, the display screen is arranged on the object surface of the optical lens group, wherein the optical lens group includes an object side to an image side
  • the first lens and the second lens are arranged coaxially in sequence; the object side of the first lens is flat and the image side is concave; at least one of the object side and the image side of the second lens is convex; the optical The effective focal length of the lens group is f, the distance from the object surface of the optical lens group to the imaging surface of the optical lens group on the optical axis is TTL, and the optical lens group satisfies:
  • An embodiment of the present invention also provides a wearable display device, including: a device body and the imaging system as described above, and the imaging system is provided in the device body.
  • the first lens and the second lens of the optical lens group, imaging system and wearable display device provided by the embodiments of the present invention are arranged in sequence from the object side to the image side, and the first lens and the second lens are coaxially arranged, and the object of the first lens
  • the side surface is a flat surface, and the image side surface of the first lens is concave; at least one of the object side surface of the second lens and the image side surface of the second lens is convex; compared with both sides of each lens constituting the optical lens group are curved surfaces,
  • the object surface of the first lens is a flat surface, which can reduce the imaging interference at the edge of the display screen, thereby reducing the system distortion of the optical lens group, improving the imaging quality, and reducing the discomfort and dizziness of human eyes.
  • at least one of the object side surface and the image side surface of the second lens is a convex surface, which can converge the light from the first lens to reduce the size of the optical lens group, which is beneficial to miniaturization design.
  • Fig. 2 is a chromatic aberration distribution diagram of the optical lens group shown in Fig. 1;
  • Fig. 3 is a field curvature diagram of the optical lens group shown in Fig. 1;
  • FIG. 4 is a distortion diagram of the optical lens group shown in FIG. 1;
  • Fig. 5 is a relative illuminance distribution diagram of the optical lens group shown in Fig. 1;
  • FIG. 7 is a chromatic aberration distribution diagram of the optical lens group shown in FIG. 6;
  • Fig. 8 is a field curvature diagram of the optical lens group shown in Fig. 6;
  • FIG. 9 is a distortion diagram of the optical lens group shown in FIG. 6;
  • FIG. 10 is a distribution diagram of relative illuminance of the optical lens group shown in FIG. 6.
  • FIGS. 1 and 6 are schematic diagrams of the structure of the optical lens group.
  • the optical lens group includes: a first lens 10 and a second lens 20 arranged coaxially from the object side to the image side.
  • the object side of the first lens 10 is flat and the image side is concave; at least one of the object side and the image side of the second lens 20 is convex; the effective focal length of the optical lens group is f, and the object surface of the optical lens group 30 to
  • the distance between the imaging surface 40 of the optical lens group and the optical axis is TTL, where the optical lens group satisfies: 0.75 ⁇ f/TTL ⁇ 0.95.
  • the first lens 10 and the second lens 20 are arranged coaxially; specifically, the main optical axis of the first lens 10 and the main optical axis of the second lens 20 are arranged collinearly.
  • the image side surface of the first lens 10 is a spherical surface recessed into the first lens 10, that is, the first lens 10 is a concave surface; the main optical axis of the first lens 10 is perpendicular to the object side surface of the first lens 10 and passes through the first lens 10
  • the lens 10 is like a straight line at the center of the side sphere.
  • At least one of the image side surface and the object side surface of the second lens 20 is a convex surface, and at least one surface of the image side surface and the object side surface of the second lens 20 is a spherical surface convex to the outside of the second lens 20.
  • the image side surface of the second lens 20 may be a convex surface
  • the object side surface of the second lens 20 may be a plane.
  • the main optical axis of the second lens 20 is perpendicular to the object side surface of the second lens 20 and passes through the second lens 20.
  • the main optical axis of the second lens 20 is a straight line passing through the image side sphere center of the second lens 20 and the object side sphere center of the second lens 20; preferably, when the image side surface of the second lens 20 is convex, the second lens 20
  • the object side surface of the second lens 20 can also be a convex surface that protrudes outward, and the convex surface is a spherical surface.
  • the main optical axis of the second lens 20 is the image side spherical center of the second lens 20 and the object side of the second lens 20.
  • the straight line of the side sphere is the image side spherical center of the second lens 20 and the object side of
  • the object side surface of the second lens 20 can also be set as a convex surface, and the corresponding image side surface of the second lens 20 is a plane.
  • the main optical axis of the second lens 20 is aligned with the second lens 20.
  • the image side surface is vertical and a straight line passing through the spherical center of the object side surface of the second lens 20; or, when the object side surface of the second lens 20 is convex, the image side surface of the second lens 20 may also be a concave surface recessed into the second lens 20,
  • the concave surface is a spherical surface.
  • the main optical axis of the second lens 20 is a straight line passing through the spherical center of the image side surface of the second lens 20 and the spherical center of the object side surface of the second lens 20.
  • the image side surface of the second lens 20 and the object side surface of the second lens 20 are both convex surfaces protruding to the outside of the second lens 20;
  • the size of the optical lens group is conducive to miniaturization design.
  • the shape of the first lens 10 and the second lens 20 is not limited in this embodiment.
  • the first lens 10 may have a regular shape such as a circle or a rectangle, or the first lens 10 may have other irregular shapes.
  • this embodiment does not limit the shape of the second lens 20.
  • the shape of the second lens 20 may be a regular shape such as a circle or a rectangle, or the second lens 20 may be another irregular shape.
  • the object surface 30 of the optical lens group is the position where the light exits.
  • a display screen or other display device can be set at the object surface 30 of the optical lens group; the imaging surface 40 is the optical lens group receiving from The position where the light of the object plane 30 of the optical lens group is imaged.
  • the display screen located on the object plane 30 of the optical lens emits light, passes through the first lens 10 and the second lens 20 in turn, and then converges to the imaging surface 40, where the light from the display screen can be received.
  • the object surface 30 of the optical lens group is arranged perpendicular to the optical axis of the optical lens group, that is, the object surface 30 of the optical lens group is arranged parallel to the object side surface of the first lens 10.
  • the main optical axis of the first lens 10 and the main optical axis of the second lens 20 are collinear, and the optical axis of the optical lens group is collinear with the main optical axis of the first lens 10 and the main optical axis of the second lens 20.
  • the use process of the optical lens group provided in this embodiment is as follows: the light from the object surface 30 of the optical lens group is directed to the object side surface of the first lens 10, and the object side surface of the first lens 10 is a flat surface for receiving light from the object surface 30 Light; after the light enters the object side of the first lens 10, it is emitted from the image side of the first lens 10.
  • the image side of the first lens 10 is concave, so that the light emitted through the image side of the first lens 10 and incident on the first lens 10 Compared with the light on the object side of a lens 10, the included angle with the optical axis is reduced, so that the light received from the object surface 30 is collected.
  • the light is emitted from the image side surface of the first lens 10 in a direction substantially parallel to the optical axis, and is directed toward the second lens 20.
  • the object side surface of the first lens 10 is a flat surface
  • the image side surface is a concave surface.
  • the light on the display screen can be collected in a short stroke, which is conducive to the miniaturization design; on the other hand, the optical lens
  • the display screen can be set to be larger, thereby realizing large-scale imaging, and improving the immersion of the user experience.
  • the light from the first lens 10 enters from the object side of the second lens 20 and exits through the image side of the second lens 20. Because of the difference between the object side of the second lens 20 and the image side of the second lens 20 At least one surface is a convex surface that protrudes outward from the second lens 20, and the convex surface can converge light so that the light emitted by the second lens 20 converges on the imaging surface 40 of the optical lens group to realize imaging of the optical lens group.
  • the light passing through the second lens 20 can be converged twice, thereby improving the light converging ability and reducing optical
  • the distance between the imaging surface 40 of the lens group and the second lens 20, thereby reducing the distance along the optical axis between the imaging surface 40 of the optical lens group and the object surface 30 of the optical lens group, and the distance between the second lens 20 Compared with the convex surface of the image side surface or the object side surface of the second lens 20, the size of the optical lens group can be reduced, which is beneficial to the miniaturization design.
  • the first lens 10 and the second lens 20 are arranged in sequence from the object side to the image side, and the first lens 10 and the second lens 20 are arranged coaxially, and the object side of the first lens 10 is a plane ,
  • the image side surface of the first lens 10 is a concave surface; at least one of the object side surface of the second lens 20 and the image side surface of the second lens 20 is a convex surface; compared with both sides of each lens constituting the optical lens group are curved surfaces,
  • the object surface 30 of the first lens 10 is a flat surface, which can reduce the imaging interference at the edge of the display screen, thereby reducing the system distortion of the optical lens group, improving the imaging quality, and reducing the discomfort and dizziness of human eyes.
  • at least one of the object side surface and the image side surface of the second lens 20 is a convex surface, which can converge the light from the first lens 10 to reduce the size of the optical lens group, which is beneficial to miniaturization design.
  • the first lens 10 may be mainly composed of materials such as glass and resin.
  • the material of the first lens 10 in this embodiment is glass, wherein the refractive index of the glass is higher than the refractive index of the resin; in this way, the first lens 10 with a high refractive index is beneficial to reduce the emergence angle of the object surface. Good light collection, improved corner imaging quality, so as to achieve a miniaturized design.
  • the high processing precision of the glass makes the optical lens group less sensitive to tolerances and more stable.
  • the first lens 10 is a refractive index n 1, a refractive index n 1 of the first lens 10 satisfies: 1.7 ⁇ n 1 ⁇ 1.9. This arrangement ensures that the first lens 10 has a higher refractive index, thereby improving the light divergence ability of the first lens 10, and further reducing the angle between the light emitted by the first lens 10 and the optical axis, so that the The light emitted by the first lens 10 is directed toward the second lens 20 in a direction substantially parallel to the optical axis.
  • the material of the second lens 20 is plastic.
  • the second lens 20 made of plastic is inexpensive to process and simple to manufacture.
  • the half diameter of the second lens 20 is DA
  • the thickness of the second lens 20 on the optical axis is CT
  • the radius of curvature of the object side surface of the second lens 20 is R 1
  • the radius of curvature of the image side surface of the second lens 20 Is R 2.
  • the second lens 20 satisfies: 1.0 ⁇ DA/CT ⁇ 1.5, and 0.5 ⁇
  • the distortion of the image formed by the optical lens can be reduced, and the volume of the second lens 20 can be reduced, thereby reducing the size of the optical lens group.
  • the aperture of the second lens 20 is the diameter of the circular cross section with the largest area in the cross section of the second lens 20 perpendicular to the optical axis direction.
  • the corresponding half-diameter of the second lens 20 is the radius of the circular cross section with the largest area in the cross section of the second lens 20 perpendicular to the optical axis direction.
  • R 1 when the object side surface of the second lens 20 is convex, R 1 is a positive value, when the object side surface of the second lens 20 is a concave surface, R 1 is a negative value, and when the object side surface of the second lens 20 is a flat surface, R 1 is 0;
  • R 2 when the image side surface of the second lens 20 is convex, R 2 is a positive value, when the image side surface of the second lens 20 is a concave surface, R 2 is a negative value, and when the image side surface of the second lens 20 is a flat surface, R 2 is 0.
  • ⁇ 0.8 holds true, the image side surface of the second lens 20 and the object side surface of the second lens 20 are not flat.
  • the refractive index of the second lens 20 is n 2
  • the dispersion value of the second lens 20 is VD
  • the second lens 20 also satisfies: 1.5 ⁇ n 2 ⁇ 1.56, and 54 ⁇ VD ⁇ 57. Since light has a certain degree of dispersion after passing through the first lens 10, the second lens 20 can process the dispersed light from the first lens 10, thereby reducing the degree of dispersion of the light after passing through the optical lens group, and correcting The chromatic aberration of the optical lens group improves the imaging effect of the optical lens group.
  • the first lens 10 is a negative lens
  • the second lens 20 is a positive lens
  • the distance between the center vertex of the image side surface of the first lens 10 and the center vertex of the object side surface of the second lens 20 on the optical axis is SL
  • the object surface 30 of the optical lens group to the imaging surface 40 of the optical lens group is The distance on the optical axis
  • the optical lens group also satisfies: 0.1 ⁇ SL/TTL ⁇ 0.5.
  • the center vertex of the image side of the first lens 10 is the intersection of the optical axis and the image side of the first lens 10
  • the center vertex of the object of the second lens 20 is the intersection of the optical axis and the object of the second lens 20.
  • Fig. 2 is a chromatic aberration distribution diagram of the optical lens group shown in Fig. 1
  • Fig. 3 is the optical lens group shown in Fig. 1
  • Fig. 4 is a distortion diagram of the optical lens group shown in Fig. 1
  • Fig. 5 is a relative illuminance distribution diagram of the optical lens group shown in Fig. 1.
  • Tables 1-3 are the main optical performance parameters of the optical lens group shown in Figure 1, specifically:
  • Table 1 shows the data of each surface of the lens:
  • the first surface is the object side surface of the first lens
  • the second surface is the image side surface of the first lens
  • the third surface is the object side surface of the second lens
  • the fourth surface is the image side surface of the second lens.
  • the aperture stop (STO) is a screen for receiving.
  • the image (IMA) is formed on the aperture stop (STO), that is, the fifth surface and the sixth surface can overlap.
  • the viewing angle of the optical lens group in this embodiment is 54°, and the optical distortion is 3.00%.
  • Table 3 shows the aspheric data
  • A2-A16 represent the second to 16th order aspheric coefficients of the object side and image side of the second lens, and K is the conic coefficient.
  • Fig. 7 is a chromatic aberration distribution diagram of the optical lens group shown in Fig. 6
  • Fig. 8 is a field curvature diagram of the optical lens group shown in Fig. 6
  • Fig. 9 is a distortion diagram of the optical lens group shown in Fig. 6
  • Fig. 10 is Fig. 6 The relative illuminance distribution diagram of the optical lens group shown.
  • Table 4-6 is the main optical performance parameters of the optical lens group shown in Figure 2, specifically:
  • the first surface is the object side surface of the first lens
  • the second surface is the image side surface of the first lens
  • the third surface is the object side surface of the second lens
  • the fourth surface is the image side surface of the second lens.
  • the aperture stop (STO) is a screen for receiving.
  • the image (IMA) is formed on the aperture stop (STO), that is, the fifth surface and the sixth surface can overlap.
  • Table 5 shows the focal length and distribution capacity of each lens:
  • the corresponding viewing angle of the optical lens group in this embodiment is 55°, and the optical distortion is 5.00%.
  • A2-A16 represent the second to 16th order aspheric coefficients of the object side and image side of the second lens, and K is the conic coefficient.
  • this embodiment provides an imaging system, including: a display screen, an optical lens group, the display screen is arranged on the object surface 30 of the optical lens group, wherein the optical lens group includes the same from the object side to the image side.
  • the first lens 10 and the second lens 20 are arranged axially; the object side of the first lens 10 is flat and the image side is concave; at least one of the object side and the image side of the second lens 20 is convex; the effectiveness of the optical lens group
  • the focal length is f
  • the distance from the object plane 30 of the optical lens group to the imaging surface 40 of the optical lens group on the optical axis is TTL, and the optical lens group satisfies: 0.75 ⁇ f/TTL ⁇ 0.95.
  • the display screen arranged on the object plane 30 of the optical lens group is used as the light source of the imaging system.
  • the image displayed on the display screen passes through the first lens 10 and the second lens 20 of the optical lens group, and will be The image is formed at the imaging surface 40, and the user can receive the image at the imaging surface 40.
  • optical lens group in this embodiment is substantially the same as the optical lens group in the first embodiment. With reference to the description of the pair of optical lens groups in the embodiment, the details are not repeated here.
  • the first lens 10 and the second lens 20 are arranged in sequence from the object side to the image side, and the first lens 10 and the second lens 20 are arranged coaxially, and the object side of the first lens 10 is a plane.
  • the image side surface of the first lens 10 is a concave surface; at least one of the object side surface of the second lens 20 and the image side surface of the second lens 20 is a convex surface; compared with both sides of each lens constituting the optical lens group are curved surfaces,
  • the object surface 30 of a lens 10 is flat, which can reduce imaging interference at the edge of the display screen, thereby reducing system distortion of the optical lens group, improving imaging quality, and reducing human eye discomfort and dizziness.
  • at least one of the object side surface and the image side surface of the second lens 20 is a convex surface, which can converge the light from the first lens 10 to reduce the size of the optical lens group, which is beneficial to the miniaturization design.
  • This embodiment provides a wearable display device, including: a device body and the imaging system as described above, which will not be repeated here. Among them, the imaging system is set in the device body.
  • the wearable display device in this embodiment may be a virtual reality head-mounted display device, such as VR glasses, VR helmets, and so on.
  • first and second are only used to facilitate the description of different components, and cannot be understood as indicating or implying the order relationship, relative importance or implicitly indicating that The number of technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense.
  • it may be a fixed connection or a detachable connection.
  • integrally formed which can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components or the interaction between two components, unless There are other clear restrictions.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学透镜组、成像系统及穿戴式显示设备,光学透镜组包括:由物侧至像侧依次同轴设置的第一透镜(10)和第二透镜(20);第一透镜(10)的物侧面为平面且像侧面为凹面;第二透镜(20)的物侧面和像侧面中的至少一个为凸面。与构成光学透镜组的各透镜两个侧面均为曲面相比,第一透镜(10)的物面为平面,可以减小对显示屏边缘处的成像干扰,进而减小光学透镜组的系统畸变,提高成像质量,减小人眼不适感和眩晕感。另外,第二透镜(20)的物侧面和像侧面中的至少一个为凸面,可以对来自第一透镜(10)的光线进行汇聚,以减小光学透镜组的尺寸,有利于小型化设计。

Description

光学透镜组、成像系统及穿戴式显示设备 技术领域
本发明实施例涉及成像技术领域,尤其涉及一种光学透镜组、成像系统及穿戴式显示设备。
背景技术
近年来,随着科技的发展,穿戴式电子产品逐渐兴起,例如VR眼镜和VR头盔等智能VR穿戴设备。其中,便携且拥有高品质成像质量的穿戴式电子产品得到人们更多的青睐。
然而,由于便携式电子产品趋于小型化设计,限制了光学系统的总长,从而增加了光学系统的设计难度。为了满足小型化的要求,现有产品通常配置的成像系统的图像接收器较小,或者视场角较小;此外,现有产品的光学系统畸变较大,造成画面变形大。目前的光学系统无法在满足小型化的要求的同时,实现大范围、高质量的成像效果,使用户体验时沉浸感不佳,且会造成人眼不适与眩晕感。
发明内容
为了克服现有技术下的上述缺陷,本发明的目的在于提供一种光学透镜组、成像系统及穿戴式显示设备,以在满足小型化的要求的同时,实现大视角、高质量的成像效果。
本发明实施例提供一种光学透镜组,包括:由物侧至像侧依次同轴设置的第一透镜和第二透镜;所述第一透镜的物侧面为平面且像侧面为凹面;所述第二透镜的物侧面和像侧面中的至少一个为凸面;所述光学透镜组的有效焦距为f,所述光学透镜组的物面至所述光学透镜组的成像面于光轴上的距离为TTL,所述光学透镜组满足:
0.75<f/TTL<0.95。
本发明实施例还提供一种成像系统,包括:显示屏、光学透镜组,所 述显示屏设置于所述光学透镜组的物面上,其中,所述光学透镜组包括由物侧至像侧依次同轴设置的第一透镜和第二透镜;所述第一透镜的物侧面为平面且像侧面为凹面;所述第二透镜的物侧面和像侧面中的至少一个为凸面;所述光学透镜组的有效焦距为f,所述光学透镜组的物面至所述光学透镜组的成像面于光轴上的距离为TTL,所述光学透镜组满足:
0.75<f/TTL<0.95。
本发明实施例还提供一种穿戴式显示设备,包括:设备本体和如上所述的成像系统,所述成像系统设于所述设备本体。
本发明实施例提供的光学透镜组、成像系统及穿戴式显示设备第一透镜和第二透镜由物侧至像侧依次设置,并且第一透镜和第二透镜同轴设置,第一透镜的物侧面为平面,第一透镜的像侧面为凹面;第二透镜的物侧面和第二透镜的像侧面中的至少一个为凸面;与构成光学透镜组的各透镜两个侧面均为曲面相比,第一透镜的物面为平面,可以减小对显示屏边缘处的成像干扰,进而减小光学透镜组的系统畸变,提高成像质量,减小人眼不适感和眩晕感。另外,第二透镜的物侧面和像侧面中的至少一个为凸面,可以对来自第一透镜的光线进行汇聚,以减小光学透镜组的尺寸,有利于小型化设计。
附图说明
图1为光学透镜组中f/TTL=0.79时的结构示意图;
图2为图1所示光学透镜组的色差分布图;
图3为图1所示光学透镜组的像面弯曲图;
图4为图1所示光学透镜组的畸变图;
图5为图1所示光学透镜组的相对照度分布图;
图6为光学透镜组中f/TTL=0.945时的结构示意图;
图7为图6所示光学透镜组的色差分布图;
图8为图6所示光学透镜组的像面弯曲图;
图9为图6所示光学透镜组的畸变图;
图10为图6所示光学透镜组的相对照度分布图。
附图标记说明:
10:第一透镜;
20:第二透镜;
30:物面;
40:成像面。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
实施例一
请参照图1和图6。本实施例提供一种光学透镜组,图1和图6为光学透镜组的结构示意图,其中该光学透镜组包括:由物侧至像侧依次同轴设置的第一透镜10和第二透镜20;第一透镜10的物侧面为平面且像侧面为凹面;第二透镜20的物侧面和像侧面中的至少一个为凸面;光学透镜组的有效焦距为f,光学透镜组的物面30至光学透镜组的成像面40于光轴上的距离为TTL,其中,该光学透镜组满足:0.75<f/TTL<0.95。
进一步地,图1为光学透镜组中f/TTL=0.79时的结构示意图;图6为光学透镜组中f/TTL=0.945时的结构示意图。可以理解,该光学透镜组的f/TTL可以在0.75与0.95之间任意取值,本实施例仅为示例性说明,在此不作限定。
本实施例中,第一透镜10和第二透镜20同轴设置;具体地为第一透镜10的主光轴和第二透镜20的主光轴共线设置。
其中,第一透镜10的像侧面为向第一透镜10内部凹陷的球面,即第一透镜10为凹面;第一透镜10的主光轴为与第一透镜10的物侧面垂直并且经过第一透镜10像侧面球心的直线。
第二透镜20的像侧面和物侧面中的至少一面为凸面,第二透镜20的像侧面和物侧面中的至少一个面为向第二透镜20外凸出的球面。示例性的,第二透镜20的像侧面可以为凸面,第二透镜20的物侧面可以为平面,此时第二透镜20的主光轴为与第二透镜20的物侧面垂直并且经过第二透镜20的像侧面球心的直线;或者,第二透镜20的像侧面为凸面时,第二透镜20的物侧面也可以为向第二透镜20内部凹陷的凹面,并且凹面为球面,此时第二透镜20的主光轴为经过第二透镜20的像侧面球心和第二透镜20的物侧面球心的直线;优选地,第二透镜20的像侧面为凸面时,第二透镜20的物侧面还可以为向第二透镜20外凸出的凸面,并且凸面为球面,此时第二透镜20的主光轴为经过第二透镜20的像侧面球心和第二透镜20的物侧面球心的直线。
当然,在其他实施方式中,也可以将第二透镜20的物侧面设置为凸面,相应的第二透镜20的像侧面为平面,此时第二透镜20的主光轴为与第二透镜20像侧面垂直并且经过第二透镜20物侧面球心的直线;或者,当第二透镜20的物侧面为凸面时,第二透镜20的像侧面还可以为向第二透镜20内部凹陷的凹面,并且凹面为球面,此时第二透镜20的主光轴为经过第二透镜20像侧面球心和第二透镜20物侧面球心的直线。
继续参照图1和图6,本实施例优选地,第二透镜20的像侧面和第二透镜20的物侧面均为向第二透镜20外部凸出的凸面;如此设置,由第一透镜10射出的光线在经过第二透镜20的物侧面和第二透镜20的像侧面时均向第二透镜20的主光轴汇聚,与仅第二透镜20的像侧面为凸面或仅第二透镜20的物侧面为凸面相比,第二透镜20的像侧面和物侧面均为凸面,可以提高第二透镜20汇聚光线的能力,进而缩短成像面40与第二透 镜20之间的距离,减小光学透镜组的尺寸,从而有利于实现小型化设计。
本实施例对第一透镜10和第二透镜20的形状不做限制,例如:第一透镜10可以呈圆形、矩形等规则形状,或者第一透镜10呈其他的不规则形状。相同的,本实施例对第二透镜20的形状也不做限制,例如:第二透镜20的形状可以呈圆形、矩形等规则形状,或者第二透镜20呈其他的不规则形状。
本实施例中,光学透镜组的物面30为光线出射的位置,使用时,可以将显示屏或者其他的显示装置设置在光学透镜组的物面30处;成像面40为光学透镜组接收来自光学透镜组的物面30的光线后成像的位置。具体地,位于光学透镜的物面30的显示屏发出光线,依次经过第一透镜10和第二透镜20进而汇聚至成像面40,在成像面40可以接收来自显示屏的光线。
优选地,光学透镜组的物面30与光学透镜组的光轴垂直设置,即光学透镜组的物面30与第一透镜10的物侧面平行设置。其中,第一透镜10的主光轴和第二透镜20的主光轴共线,则光学透镜组的光轴与第一透镜10的主光轴和第二透镜20的主光轴均共线。
本实施例提供的光学透镜组的使用过程为:来自光学透镜组物面30的光线射向第一透镜10的物侧面,第一透镜10的物侧面为平面,用于承接来自物面30的光线;光线入射进入第一透镜10的物侧面后,由第一透镜10的像侧面射出,第一透镜10的像侧面为凹面,使得经由第一透镜10的像侧面射出的光线与入射至第一透镜10的物侧面的光线相比,减小了与光轴之间的夹角,从而将从物面30接收到的光线进行收集。优选地,经过第一透镜10的处理,光线以大致平行于光轴的方向从第一透镜10的像侧面出射,并射向第二透镜20。在本实施方式中,第一透镜10的物侧面为平面,像侧面为凹面,可以在较短的行程内将显示屏上的光线进行收集,有利于小型化设计;另一方面,在光学透镜组沿光轴方向距离不变的前提下,本实施方式中,可以将显示屏设置的较大,进而实现大范围成像,提高用户体验时的沉浸感。进一步地,来自第一透镜10的光线自第二透 镜20的物侧面射入,并且经第二透镜20的像侧面射出,由于第二透镜20的物侧面和第二透镜20的像侧面中的至少一个面为向第二透镜20外凸出的凸面,凸面可以对光线进行汇聚,使得由第二透镜20射出的光线汇聚在光学透镜组的成像面40上,以实现光学透镜组的成像。
优选地,当第二透镜20的像侧面和第二透镜20的物侧面均为凸面时,经过第二透镜20的光线可以发生两次汇聚,进而提高了对光线的汇聚能力,可以减小光学透镜组的成像面40与第二透镜20之间的距离,进而减小了光学透镜组的成像面40与光学透镜组的物面30之间沿光轴方向的距离,与第二透镜20的像侧面或第二透镜20的物侧面为凸面相比,可以减小光学透镜组的尺寸,有利于小型化设计。
本实施例提供的光学透镜组,第一透镜10和第二透镜20由物侧至像侧依次设置,并且第一透镜10和第二透镜20同轴设置,第一透镜10的物侧面为平面,第一透镜10的像侧面为凹面;第二透镜20的物侧面和第二透镜20的像侧面中的至少一个为凸面;与构成光学透镜组的各透镜两个侧面均为曲面相比,第一透镜10的物面30为平面,可以减小对显示屏边缘处的成像干扰,进而减小光学透镜组的系统畸变,提高成像质量,减小人眼不适感和眩晕感。另外,第二透镜20的物侧面和像侧面中的至少一个为凸面,可以对来自第一透镜10的光线进行汇聚,以减小光学透镜组的尺寸,有利于小型化设计。
本实施例对构成第一透镜10的材质不做限制,例如:第一透镜10可以主要由玻璃、树脂等材质构成。优选地,本实施例中第一透镜10的材料为玻璃,其中,玻璃的折射率高于树脂的折射率;如此设置,高折射率的第一透镜10有利于减缓物面的出射角度,更好地实现光线收集,改善边角成像品质,从而实现小型化设计,此外,玻璃的加工精度高,使得光学透镜组对公差的敏感度更小,性能更稳定。
本实施例中,第一透镜10的折射率为n 1,第一透镜10的折射率n 1满足:1.7≤n 1≤1.9。如此设置,保证了第一透镜10具有较高的折射率,进而可以提高第一透镜10对光线发散能力,进一步减小由第一透镜 10射出的光线与光轴之间的夹角,使经第一透镜10射出的光线沿大致平行于光轴的方向射向第二透镜20。
本实施例中,第二透镜20的材料为塑料。由塑料构成的第二透镜20,加工价格低廉,并且制作简单。
进一步地,第二透镜20的半口径为DA,第二透镜20在光轴上的厚度为CT,第二透镜20的物侧面的曲率半径为R 1,第二透镜20的像侧面的曲率半径为R 2,在一种实施方式中,第二透镜20满足:1.0≤DA/CT≤1.5,且0.5<|R 1/R 2|<0.8。
如此设置,可以减小光学透镜组成像的畸变,并且可以减小第二透镜20的体积,进而减小光学透镜组的尺寸。
其中,第二透镜20的口径为第二透镜20垂直于光轴方向的截面中,面积最大的圆形截面的直径。相应的第二透镜20的半口径为第二透镜20垂直于光轴方向的截面中,面积最大的圆形截面的半径。
具体地,第二透镜20的物侧面为凸面时R 1为正值,第二透镜20的物侧面为凹面时R 1为负值,第二透镜20的物侧面为平面时R 1为0;相同的,第二透镜20的像侧面为凸面时R 2为正值,第二透镜20的像侧面为凹面时R 2为负值,第二透镜20的像侧面为平面时R 2为0。为了保证0.5<|R 1/R 2|<0.8成立,第二透镜20的像侧面和第二透镜20的物侧面均不为平面。
本实施例中,第二透镜20的折射率为n 2,第二透镜20的色散值为VD,第二透镜20还满足:1.5≤n 2≤1.56,且54≤VD≤57。由于光线经过第一透镜10后会发生一定的色散,如此设置,第二透镜20可以对来自第一透镜10的发生了色散的光线进行处理,进而减弱光线经过光学透镜组后的色散程度,矫正光学透镜组的色差,提高光学透镜组的成像效果。
进一步地,在本实施例中,第一透镜10为负透镜,第二透镜20为正透镜。
在本实施例中,第一透镜10的像侧面中心顶点与第二透镜20的物侧面中心顶点于光轴上的距离为SL,光学透镜组的物面30至光学透镜组的 成像面40于光轴上的距离为TTL,光学透镜组还满足:0.1<SL/TTL<0.5。如此设置,可以进一步减小光学透镜组的尺寸。
其中,第一透镜10的像侧面中心顶点为光轴与第一透镜10的像侧面的交点,第二透镜20的物侧面中心顶点为光轴与第二透镜20的物侧面的交点。
在一个可实现的方式中,图1为光学透镜组中f/TTL=0.79时的结构示意图,图2为图1所示光学透镜组的色差分布图,图3为图1所示光学透镜组的像面弯曲图,图4为图1所示光学透镜组的畸变图,图5为图1所示光学透镜组的相对照度分布图。
进一步地,表1-3为图1所示光学透镜组的主要光学性能参数,具体地:
表1为透镜各面的数据:
Figure PCTCN2019092890-appb-000001
其中,第1面为第一透镜的物侧面,第2面为第一透镜的像侧面,第3面为第二透镜的物侧面,第4面为第二透镜的像侧面。孔径光阑(STO)为用于接收的屏幕,在本实施例中,像(IMA)成像于孔径光阑(STO)上,也就是说,第5面与第6面可以重合。
表2各透镜焦距及分布能力:
透镜 焦距 能力
第一透镜 -29.81 -0.03354579
第二透镜 34.32 0.029137529
对应的该实施例中的光学透镜组的视角为54°,光学畸变为3.00%。
表3为非球面数据:
Figure PCTCN2019092890-appb-000002
其中,A2-A16表示第二透镜的物侧面和像侧面的第2至16阶非球面系数,K为圆锥系数。
在其他实现方式中,图6为光学透镜组中f/TTL=0.945时的结构示意图。图7为图6所示光学透镜组的色差分布图,图8为图6所示光学透镜组的像面弯曲图,图9为图6所示光学透镜组的畸变图;图10为图6所示光学透镜组的相对照度分布图。
进一步地,表4-6为图2所示光学透镜组的主要光学性能参数,具体地:
表4透镜各面的数据:
Figure PCTCN2019092890-appb-000003
Figure PCTCN2019092890-appb-000004
其中,第1面为第一透镜的物侧面,第2面为第一透镜的像侧面,第3面为第二透镜的物侧面,第4面为第二透镜的像侧面。孔径光阑(STO)为用于接收的屏幕,在本实施例中,像(IMA)成像于孔径光阑(STO)上,也就是说,第5面与第6面可以重合。
表5为各透镜焦距及分布能力:
透镜 焦距 能力
第一透镜 -21.51 -0.04649
第二透镜 26.84 0.0372578
对应的该实施例中的光学透镜组的视角为55°,光学畸变为5.00%。
表6为非球面数据:
Figure PCTCN2019092890-appb-000005
其中,A2-A16表示第二透镜的物侧面和像侧面的第2至16阶非球面系数, K为圆锥系数。
实施例二
继续参照图1,本实施例提供一种成像系统,包括:显示屏、光学透镜组,显示屏设置于光学透镜组的物面30上,其中,光学透镜组包括由物侧至像侧依次同轴设置的第一透镜10和第二透镜20;第一透镜10的物侧面为平面且像侧面为凹面;第二透镜20的物侧面和像侧面中的至少一个为凸面;光学透镜组的有效焦距为f,光学透镜组的物面30至光学透镜组的成像面40于光轴上的距离为TTL,光学透镜组满足:0.75<f/TTL<0.95。
本实施例中,设置在光学透镜组物面30的显示屏作为成像系统的光源,显示屏上显示的图像经过光学透镜组的第一透镜10和第二透镜20后,会在光学透镜组的成像面40处成像,用户可以在成像面40处接收图像。
本实施例中的光学透镜组与实施例一中的光学透镜组大体相同,参照实施例一对光学透镜组描述,在此不再赘述。
本实施例提供的成像系统,第一透镜10和第二透镜20由物侧至像侧依次设置,并且第一透镜10和第二透镜20同轴设置,第一透镜10的物侧面为平面,第一透镜10的像侧面为凹面;第二透镜20的物侧面和第二透镜20的像侧面中的至少一个为凸面;与构成光学透镜组的各透镜两个侧面均为曲面相比,第一透镜10的物面30为平面,可以减小对显示屏边缘处的成像干扰,进而减小光学透镜组的系统畸变,提高成像质量,减小人眼不适感和眩晕感。另外,第二透镜20的物侧面和像侧面中的至少一个为凸面,可以对来自第一透镜10的光线进行汇聚,以减小光学透镜组的尺寸,有利于小型化设计。
实施例三
本实施例提供一种穿戴式显示设备,包括:设备本体和如上所述的成像系统,在此不再赘述。其中,成像系统设于设备本体。
本实施例中的穿戴式显示设备可以为虚拟现实头戴式显示设备,如:VR眼镜、VR头盔等。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
需要说明的是,在本发明的描述中,术语“第一”、“第二”仅用于方便描述不同的部件,而不能理解为指示或暗示顺序关系、相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
在本发明中,除非另有明确的规定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸的连接,或一体成型,可以是机械连接,也可以是电连接或者彼此可通讯;可以是直接相连,也可以通过中间媒体间接连接,可以是两个元件内部的连通或者两个元件的互相作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (23)

  1. 一种光学透镜组,其特征在于,包括:由物侧至像侧依次同轴设置的第一透镜和第二透镜;
    所述第一透镜的物侧面为平面且像侧面为凹面;
    所述第二透镜的物侧面和像侧面中的至少一个为凸面;
    所述光学透镜组的有效焦距为f,所述光学透镜组的物面至所述光学透镜组的成像面于光轴上的距离为TTL,所述光学透镜组满足:
    0.75<f/TTL<0.95。
  2. 根据权利要求1所述的光学透镜组,其特征在于,所述第二透镜的像侧面为凸面。
  3. 根据权利要求1所述的光学透镜组,其特征在于,所述第二透镜的物侧面和像侧面均为凸面。
  4. 根据权利要求1所述的光学透镜组,其特征在于,所述第一透镜的材料为玻璃。
  5. 根据权利要求4所述的光学透镜组,其特征在于,所述第一透镜的折射率为n 1,所述第一透镜的折射率n 1满足:1.7≤n 1≤1.9。
  6. 根据权利要求1所述的光学透镜组,其特征在于,所述第二透镜的材料为塑料。
  7. 根据权利要求6所述的光学透镜组,其特征在于,所述第二透镜的半口径为DA,所述第二透镜在光轴上的厚度为CT,所述第二透镜的物侧面的曲率半径为R 1,所述第二透镜的像侧面的曲率半径为R 2,所述第二透镜满足:
    1.0≤DA/CT≤1.5,且0.5<|R 1/R 2|<0.8。
  8. 根据权利要求6所述的光学透镜组,其特征在于,所述第二透镜的折射率为n 2,所述第二透镜的色散值为VD,所述第二透镜还满足:
    1.5≤n 2≤1.56,且54≤VD≤57。
  9. 根据权利要求1所述的光学透镜组,其特征在于,所述第一透镜为负透镜。
  10. 根据权利要求1所述的光学透镜组,其特征在于,所述第二透镜为正透镜。
  11. 根据权利要求1所述的光学透镜组,其特征在于,所述第一透镜的像侧面中心顶点与所述第二透镜的物侧面中心顶点于光轴上的距离为SL,所述光学透镜组的物面至所述光学透镜组的成像面于光轴上的距离为TTL,所述光学透镜组还满足:
    0.1<SL/TTL<0.5。
  12. 一种成像系统,其特征在于,包括:显示屏、光学透镜组,所述显示屏设置于所述光学透镜组的物面上,其中,所述光学透镜组包括由物侧至像侧依次同轴设置的第一透镜和第二透镜;
    所述第一透镜的物侧面为平面且像侧面为凹面;
    所述第二透镜的物侧面和像侧面中的至少一个为凸面;
    所述光学透镜组的有效焦距为f,所述光学透镜组的物面至所述光学透镜组的成像面于光轴上的距离为TTL,所述光学透镜组满足:
    0.75<f/TTL<0.95。
  13. 根据权利要求12所述的成像系统,其特征在于,所述第二透镜的像侧面为凸面。
  14. 根据权利要求12所述的成像系统,其特征在于,所述第二透镜的物侧面和像侧面均为凸面。
  15. 根据权利要求12所述的成像系统,其特征在于,所述第一透镜的材料为玻璃。
  16. 根据权利要求15所述的成像系统,其特征在于,所述第一透镜的折射率为n 1,所述第一透镜的折射率n 1满足:1.7≤n 1≤1.9。
  17. 根据权利要求12所述的成像系统,其特征在于,所述第二透镜的材料为塑料。
  18. 根据权利要求17所述的成像系统,其特征在于,所述第二透镜的半口径为DA,所述第二透镜在光轴上的厚度为CT,所述第二透镜的物侧面的曲率半径为R 1,所述第二透镜的像侧面的曲率半径为R 2,所述 第二透镜满足:
    1.0≤DA/CT≤1.5,且0.5<|R 1/R 2|<0.8。
  19. 根据权利要求17所述的成像系统,其特征在于,所述第二透镜的折射率为n 2,所述第二透镜的色散值为VD,所述第二透镜还满足:
    1.5≤n 2≤1.56,且54≤VD≤57。
  20. 根据权利要求12所述的成像系统,其特征在于,所述第一透镜为负透镜。
  21. 根据权利要求12所述的成像系统,其特征在于,所述第二透镜为正透镜。
  22. 根据权利要求12所述的成像系统,其特征在于,所述第一透镜的像侧面中心顶点与所述第二透镜的物侧面中心顶点于光轴上的距离为SL,所述光学透镜组的物面至所述光学透镜组的成像面于光轴上的距离为TTL,所述光学透镜组还满足:
    0.1<SL/TTL<0.5。
  23. 一种穿戴式显示设备,其特征在于,包括:设备本体和权利要求12-22任一项所述的成像系统,所述成像系统设于所述设备本体。
PCT/CN2019/092890 2019-06-26 2019-06-26 光学透镜组、成像系统及穿戴式显示设备 WO2020258063A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980011863.XA CN111699428A (zh) 2019-06-26 2019-06-26 光学透镜组、成像系统及穿戴式显示设备
PCT/CN2019/092890 WO2020258063A1 (zh) 2019-06-26 2019-06-26 光学透镜组、成像系统及穿戴式显示设备
US17/558,597 US20220113500A1 (en) 2019-06-26 2021-12-22 Optical lens group, imaging system and wearable display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/092890 WO2020258063A1 (zh) 2019-06-26 2019-06-26 光学透镜组、成像系统及穿戴式显示设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/558,597 Continuation US20220113500A1 (en) 2019-06-26 2021-12-22 Optical lens group, imaging system and wearable display device

Publications (1)

Publication Number Publication Date
WO2020258063A1 true WO2020258063A1 (zh) 2020-12-30

Family

ID=72476450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092890 WO2020258063A1 (zh) 2019-06-26 2019-06-26 光学透镜组、成像系统及穿戴式显示设备

Country Status (3)

Country Link
US (1) US20220113500A1 (zh)
CN (1) CN111699428A (zh)
WO (1) WO2020258063A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904582A (zh) * 2021-02-19 2021-06-04 南昌欧菲光电技术有限公司 光学镜组、光学模组及设备
CN113970836B (zh) * 2021-10-29 2023-03-28 歌尔光学科技有限公司 光学成像模组和ar设备
CN115097614B (zh) * 2022-08-24 2022-12-09 江西联昊光电有限公司 光学系统及vr设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455487A (zh) * 2010-10-27 2012-05-16 鸿富锦精密工业(深圳)有限公司 广角转接镜头及具有该广角转接镜头的光学系统
CN104090354A (zh) * 2014-06-28 2014-10-08 青岛歌尔声学科技有限公司 一种无色差的头戴设备用广角内调焦镜头及头戴设备
CN106501943A (zh) * 2017-01-05 2017-03-15 北京海鲸科技有限公司 一种头戴显示设备的目镜光学系统
CN106970464A (zh) * 2017-01-11 2017-07-21 玉晶光电(厦门)有限公司 目镜光学系统
CN107037587A (zh) * 2016-02-02 2017-08-11 迪士尼企业公司 紧凑型增强现实/虚拟现实显示器
CN107632388A (zh) * 2017-10-24 2018-01-26 歌尔科技有限公司 目镜及头戴显示设备
WO2018221867A1 (ko) * 2017-05-27 2018-12-06 이문기 거울을 이용한 투명한 안경형 디스플레이
CN109791290A (zh) * 2016-09-16 2019-05-21 威尔乌集团 用于头戴式显示系统的光学系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282408A (ja) * 1997-04-04 1998-10-23 Fuji Photo Film Co Ltd 逆ガリレオ式ファインダー
CN104656245B (zh) * 2015-02-11 2017-06-27 青岛歌尔声学科技有限公司 一种头戴目镜系统和头戴显示设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455487A (zh) * 2010-10-27 2012-05-16 鸿富锦精密工业(深圳)有限公司 广角转接镜头及具有该广角转接镜头的光学系统
CN104090354A (zh) * 2014-06-28 2014-10-08 青岛歌尔声学科技有限公司 一种无色差的头戴设备用广角内调焦镜头及头戴设备
CN107037587A (zh) * 2016-02-02 2017-08-11 迪士尼企业公司 紧凑型增强现实/虚拟现实显示器
CN109791290A (zh) * 2016-09-16 2019-05-21 威尔乌集团 用于头戴式显示系统的光学系统
CN106501943A (zh) * 2017-01-05 2017-03-15 北京海鲸科技有限公司 一种头戴显示设备的目镜光学系统
CN106970464A (zh) * 2017-01-11 2017-07-21 玉晶光电(厦门)有限公司 目镜光学系统
WO2018221867A1 (ko) * 2017-05-27 2018-12-06 이문기 거울을 이용한 투명한 안경형 디스플레이
CN107632388A (zh) * 2017-10-24 2018-01-26 歌尔科技有限公司 目镜及头戴显示设备

Also Published As

Publication number Publication date
US20220113500A1 (en) 2022-04-14
CN111699428A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
CN105759406B (zh) 摄像镜头
US20220113500A1 (en) Optical lens group, imaging system and wearable display device
WO2016008299A1 (zh) 摄像镜头
CN104142565B (zh) 近红外交互式投影镜头
WO2019028970A1 (zh) 光学系统、放大影像装置、虚拟现实眼镜及增强现实眼镜
CN107632388B (zh) 目镜及头戴显示设备
WO2018113623A1 (zh) 一种镜头模组
WO2021027642A1 (zh) 摄像头模组及终端设备
WO2017161486A1 (zh) 短距离光学放大模组、眼镜、头盔及vr系统
CN110879471B (zh) 光学系统、投影设备以及头戴设备
TWI694276B (zh) 光學鏡頭
CN204009209U (zh) 近红外交互式投影镜头
CN206387955U (zh) 一种紧凑型高像素手机镜头
CN104142566B (zh) 近红外交互式投影镜头
CN105589208A (zh) 一种内对焦虚拟现实光学系统
CN203376515U (zh) 一种微型红外广角光学镜头
CN209946509U (zh) 光学透镜组、成像系统及穿戴式显示设备
CN107065144B (zh) 广角镜头
CN204009210U (zh) 近红外交互式投影镜头
CN207611189U (zh) 光学成像镜头
CN209388012U (zh) 摄像镜头
TWI617832B (zh) 影像擷取透鏡系統、取像裝置及電子裝置
CN206892435U (zh) 广角镜头
CN220855322U (zh) 一种投影物镜及近眼显示装置
CN112946861B (zh) 一种红外镜头以及红外成像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935131

Country of ref document: EP

Kind code of ref document: A1