WO2020258034A1 - 基板及显示面板 - Google Patents
基板及显示面板 Download PDFInfo
- Publication number
- WO2020258034A1 WO2020258034A1 PCT/CN2019/092807 CN2019092807W WO2020258034A1 WO 2020258034 A1 WO2020258034 A1 WO 2020258034A1 CN 2019092807 W CN2019092807 W CN 2019092807W WO 2020258034 A1 WO2020258034 A1 WO 2020258034A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- phase
- display panel
- phase compensation
- light
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 127
- 229920001721 polyimide Polymers 0.000 claims description 21
- 230000003287 optical effect Effects 0.000 claims description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 6
- 230000005284 excitation Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 27
- 238000002310 reflectometry Methods 0.000 abstract description 14
- 239000010410 layer Substances 0.000 description 60
- 230000010287 polarization Effects 0.000 description 57
- 239000010408 film Substances 0.000 description 51
- 230000000052 comparative effect Effects 0.000 description 24
- 238000000034 method Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000002346 layers by function Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000005266 casting Methods 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- -1 polyethylene terephthalate Polymers 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- NVKGJHAQGWCWDI-UHFFFAOYSA-N 4-[4-amino-2-(trifluoromethyl)phenyl]-3-(trifluoromethyl)aniline Chemical group FC(F)(F)C1=CC(N)=CC=C1C1=CC=C(N)C=C1C(F)(F)F NVKGJHAQGWCWDI-UHFFFAOYSA-N 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 238000002365 hybrid physical--chemical vapour deposition Methods 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- YGYCECQIOXZODZ-UHFFFAOYSA-N 4415-87-6 Chemical compound O=C1OC(=O)C2C1C1C(=O)OC(=O)C12 YGYCECQIOXZODZ-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- IWVKTOUOPHGZRX-UHFFFAOYSA-N methyl 2-methylprop-2-enoate;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.COC(=O)C(C)=C IWVKTOUOPHGZRX-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- TYHJXGDMRRJCRY-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) tin(4+) Chemical compound [O-2].[Zn+2].[Sn+4].[In+3] TYHJXGDMRRJCRY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
Definitions
- the embodiments of the present application relate to the field of display technology, and in particular, to a substrate and a display panel.
- OLED Organic Light-Emitting Diode, organic light-emitting diode
- organic electroluminescence display also known as organic electroluminescence display
- OLED Organic Light-Emitting Diode, organic light-emitting diode
- OLED Organic Light-Emitting Diode
- organic electroluminescence display is an emerging flat-panel display device, due to its simple manufacturing process, low cost, low power consumption, high luminous brightness, It has the advantages of wide range of working temperature, light and thin volume, fast response speed, easy to realize color display and large screen display, easy to realize matching with integrated circuit driver, easy to realize flexible display, etc., so it has broad application prospects.
- the display panels in the currently developed OLED displays generally include a substrate.
- the substrate is indispensable in the display panel as the substrate of the OLED and TFT flexible substrate of the display or the touch sensor, but the substrate itself has a phase retardation.
- the amount or phase difference will affect the propagation direction of the external light, thereby causing the reflectivity of the external light to be too high, affecting the contrast of the display panel, resulting in display chromatic aberration, resulting in extremely poor readability.
- the embodiments of the present application aim to provide a substrate and a display panel to solve the technical problem that the substrate affects the propagation direction of the external light in the prior art, resulting in excessively high reflectivity of the external light.
- a substrate including: a substrate;
- phase compensator the phase compensator is used to compensate the phase retardation of the substrate, the phase retardation of the phase compensator and the phase retardation of the substrate have the same value and opposite directions, the phase compensator Set on the substrate.
- the thickness of the phase compensator ranges from 2 ⁇ m to 4 ⁇ m.
- the phase compensator includes a plurality of phase compensation films, and the plurality of phase compensation films may be sequentially formed on one surface or two opposite surfaces of the substrate.
- phase retardation of a plurality of the phase compensation films after the addition is the same as the phase retardation of the substrate and the direction is opposite.
- the phase compensator is a phase compensation film
- the phase retardation value of the phase compensation film is the same as the phase retardation value of the substrate and the direction is opposite.
- the substrate is a transparent polyimide film
- the refractive index in the x-axis direction, the refractive index in the y-axis direction, and the refractive index in the z-axis direction of the phase compensation film satisfy the following formulas:
- n x n y ⁇ n z ;
- n x is the refractive index in the x-axis direction
- n y is the refractive index in the y-axis direction
- n z is the refractive index in the z-axis direction.
- the phase compensation film is a transparent phase compensation film with a single optical axis
- the z-axis is the single optical axis of the phase compensation film
- the single optical axis is perpendicular to the phase compensation film. surface.
- a display panel including: a display module
- a circular polarizer that is close to the incident direction of external light
- the substrate is arranged between the circular polarizer and the display module.
- the circular polarizer includes a linear polarizer and a quarter-wave plate, the quarter-wave plate is disposed between the linear polarizer and the substrate, and the linear polarizer is close to the State the incident direction of external light.
- the display panel further includes a polarizing plate disposed between the display module and the substrate, and the polarizing plate includes a reflective film layer, a waterproof film layer, a polyvinyl alcohol PVA layer, and The compensation layer, wherein the thickness of the reflective film layer or the thickness of the waterproof film layer matches the wavelength of the excitation light transmitted through the polarizing plate.
- the phase compensation component can offset the phase retardation or phase difference of the substrate itself, improve the circular polarization effect of the circular polarizer, and increase the polarization ability of the circular polarizer, so that the substrate does not affect the propagation of external light Direction, reduce the reflectivity of external light, improve the contrast and readability of the display panel.
- FIG. 1 is a schematic structural diagram of a display panel provided by one of the embodiments of the present application.
- FIG. 2 is a schematic structural diagram of a display module of the display panel shown in FIG. 1;
- FIG. 3 is a schematic diagram of the principle of external light passing through the display panel shown in FIG. 1 provided by one embodiment of the present application;
- FIG. 4 is a schematic diagram of the structure of the substrate of the display panel shown in FIG. 1;
- FIG. 5 is a schematic diagram of the principle of external light passing through the display panel shown in FIG. 1 provided by another embodiment of the present application;
- FIG. 6 is a schematic diagram of the external light passing through the display panel shown in FIG. 1 provided by another embodiment of the present application;
- FIG. 7 is a graph of different light wavelengths-circular polarization polarizability curves of external light passing through the display panel shown in FIG. 1 provided by one of the embodiments of the present application;
- FIG. 8 is a 400nm light wavelength-circular polarization polarization curve diagram of external light passing through the display panel shown in FIG. 1 provided by one of the embodiments of the present application;
- FIG. 9 is a 550nm light wavelength-circular polarization polarizability curve diagram of external light passing through the display panel shown in FIG. 1 provided by another embodiment of the present application;
- FIG. 10 is a curve diagram of 700 nm light wavelength-circular polarization polarization rate of external light passing through the display panel shown in FIG. 1 according to another embodiment of the present application.
- sputtering electroplating, molding, chemical vapor deposition (Chemical Vapor Deposition, CVD), physical vapor deposition (Physical Vapor Deposition, PVD), evaporation, hybrid physical-chemical vapor deposition (Hybrid Physical-Chemical Vapor Deposition, HPCVD) , Plasma Enhanced Chemical Vapor Deposition (PECVD), Low Pressure Chemical Vapor Deposition (LPCVD), etc.
- CVD chemical Vapor Deposition
- PVD physical vapor deposition
- evaporation hybrid physical-chemical vapor deposition
- HPCVD Hybrid Physical-Chemical Vapor Deposition
- PECVD Plasma Enhanced Chemical Vapor Deposition
- LPCVD Low Pressure Chemical Vapor Deposition
- the display panel 100 includes a substrate 10, a display module 30, and a circular polarizer 50.
- the circular polarizer 50 is close to the incident direction of external light 61.
- the substrate 10 is disposed between the circular polarizer 50 and the display module 30.
- the display module 30 includes a switch array layer 32 and an organic light emitting display layer 34, the switch array layer is electrically connected to the organic light emitting display layer, and the switch array layer is used to drive the organic light emitting display layer. Display layer.
- the switch array layer 32 includes a plurality of switching elements, the switching elements may be thin film transistors, and the thin film transistors include an active layer for forming a channel, a gate insulating layer, a first metal layer, an interlayer insulating layer, and The second metal layer.
- the organic light emitting display layer 34 includes an organic functional layer 340, a cathode layer 342 and an anode layer 344. Wherein, the organic functional layer 340 is stacked between the cathode layer and the anode layer 344 for light emission.
- the organic functional layer 340 is made of a matrix material mixed with a certain proportion of organic light-emitting materials.
- the holes in the anode layer 344 migrate to the organic functional layer 340
- the electrons in the cathode layer 342 migrate to the organic functional layer 340
- the electrons and holes in the organic functional layer 340 The layer 340 meets to form an electron-hole pair, and the electron transitions from an excited state to a ground state, releasing energy in the form of radiated photons, thereby generating electroluminescence.
- organic light-emitting materials can be selected from organic small molecule materials or organic polymer materials to achieve electroluminescence.
- the cathode layer 342 can be made of aluminum, magnesium, silver, molybdenum, titanium or alloys thereof.
- the anode layer 344 may adopt a single-layer structure or a multilayer structure.
- the anode layer 344 of the single-layer structure may include a metal layer having Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr or a mixture thereof.
- the anode layer 344 of the multilayer structure may include a metal layer having Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr or a mixture thereof, and a transparent conductive oxide layer including a transparent conductive oxide material .
- the transparent conductive oxide material may include one or more of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), and indium tin zinc oxide (ITZO).
- ITO indium tin oxide
- IZO indium zinc oxide
- ZnO zinc oxide
- ITZO indium tin zinc oxide
- the anode layer 344 of the multilayer structure may be configured as a three-layer structure including a first transparent conductive oxide layer, a metal layer, and a second transparent conductive oxide layer.
- the red, green and blue photoresist is excited by short-wavelength and high-energy blue light to generate R/G/B three primary colors of light, which is generated in the emitted light.
- the blue spectrum line with a higher peak is achieved.
- the strong short-wave blue light is very harmful to human vision, and long-term viewing will affect the user's vision.
- the display panel 100 further includes a polarizing plate 40 disposed on the display module 30 and the substrate 10.
- the polarizing plate 40 includes a reflective film layer, a waterproof film layer, a polyvinyl alcohol PVA layer, and a compensation layer, wherein the thickness of the reflective film layer or the thickness of the waterproof film layer is related to the thickness of the polarizer. 40 to match the wavelength of the excitation light.
- the cathode layer 342 of the organic light emitting display layer 34 is a metal layer, its reflectivity is extremely high.
- the external light 61 irradiates the display panel 100, so The external light 61 will be reflected by the cathode layer, and the reflected light will affect the contrast of the display panel 100, resulting in extremely poor readability.
- the circular polarizer 50 mainly functions to prevent the reflected light of the external light 61 from passing through.
- the circular polarizer 50 includes a linear polarizer 52 and a quarter wave plate 54.
- the one-wave plate 54 is arranged between the linear polarizer 52 and the substrate 10, wherein the linear polarizer 52 is close to the incident direction of the external light 61, that is, the quarter-wave plate 54 is The light exit side of the circular polarizer 50, and the linear polarizer 52 is the light entrance side of the circular polarizer 50.
- the external light 61 irradiates the display panel 100
- the external light 61 is incident from the linear polarizer 52
- the linear polarizer 52 converts the external light 61 into linearly polarized light 62
- the linearly polarized light 62 passes through four
- the half-wave plate 54 then changes from linearly polarized light 62 to left-handed circularly polarized light 63.
- the quarter-wave plate 54 is preferably a quarter-wave retarder. Since the cathode layer 342 of the organic light-emitting display layer is a metal layer, the left-handed circularly polarized light 63 is reflected by the cathode layer 342.
- the left-handed circularly polarized light 63 is reflected back and then becomes right-handed circularly polarized light 69.
- the right-handed circularly polarized light 69 becomes linearly polarized light 67.
- the linearly polarized light at this time The light 67 is perpendicular to the previous linearly polarized light 62, so the linearly polarized light 67 at this time cannot pass through the linear polarizer 52, thereby reducing the influence of the external light 61 and improving the contrast of the display panel 100 And readability.
- the substrate 10 includes a base material 12 and a phase compensator 14, the phase compensator 14 is used to compensate the phase retardation of the base material 12, the phase retardation of the phase compensator 14 and the The phase retardation value of the base material 12 is the same and the direction is opposite, and the phase compensator 14 is disposed on the base material 12.
- the substrate 12 is a colorless and transparent polyimide film (CPI), which has high visible light transmittance, excellent thermal stability, chemical stability, dielectric properties and mechanical strength And other performance.
- the polyimide film is made of 4,4'-(hexafluoroisopropylene) diphthalic anhydride (6FDA) and 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl (TFDB) Synthesize a fluorine-containing colorless and transparent polyimide film.
- 6FDA 4,4'-(hexafluoroisopropylene) diphthalic anhydride
- TFDB 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl
- the polyimide film uses cyclobutanetetracarboxylic dianhydride and 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl (TFDB) to synthesize colorless and transparent
- TFDB 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl
- the material of the substrate 12 may be PI (polyimide, polyimide), PET (polyethylene terephthalate, polyethylene terephthalate), PMMA (Poly Methyl Methacrylate methacrylic Acid, polymethyl One of organic polymers such as methyl acrylate) and PC (Polycarbonate).
- PI polyimide, polyimide
- PET polyethylene terephthalate, polyethylene terephthalate
- PMMA Poly Methyl Methacrylate methacrylic Acid, polymethyl One of organic polymers such as methyl acrylate
- PC Polycarbonate
- the base material 12 is indispensable in the display panel 100.
- the base material 12 itself has a phase retardation or phase difference, which will affect the propagation direction of the external light 61, thereby causing excessive reflectivity of the external light 61 If it is high, it affects the contrast of the display panel 100, resulting in display chromatic aberration, resulting in extremely poor readability.
- the external light 61 when external light 61 irradiates the display panel 100, the external light 61 enters from the linear polarizer 52, and the linear polarizer 52 converts the external light 61 into linearly polarized light 62.
- the polarized light 62 changes from linearly polarized light 62 to left-handed circularly polarized light 63 after passing through the quarter wave plate 54, and then the left-handed circularly polarized light 63 passes through the substrate 12, because the substrate 12 itself has a phase retardation After passing through the substrate 12, the left-handed circularly polarized light 63 becomes left-handed elliptically polarized light 64.
- the left-handed elliptically polarized light 64 is reflected by the cathode layer 342.
- the left-handed elliptically polarized light 64 After being reflected back, it becomes right-handed elliptically polarized light 65.
- the right-handed elliptically polarized light 65 passes through the substrate 12 again. Since the substrate 12 has a phase retardation or phase difference, the right-handed elliptically polarized light 65 after passing through the substrate 12, the ratio of the long and short axes becomes larger, and then the right-handed elliptically polarized light 65 passes through the quarter wave plate 54 again, changing from the right-handed elliptically polarized light 65 to linearly polarized light 66 However, at this time, the linearly polarized light 66 and the previous linearly polarized light 62 are not perpendicular, so the linearly polarized light 62 at this time can pass through the linear polarizer 52, which causes the reflectivity of the external light 61 to be too high. The contrast of the display panel 100 is affected, thereby causing display chromatic aberration, resulting in extremely poor
- phase compensator 14 can cancel out the phase retardation or phase difference of the substrate 12 itself, It will not affect the propagation direction of the external light 61, thereby reducing the reflectivity of the external light 61, and improving the contrast and readability of the display panel 100.
- the linearly polarized light 62 changes from the linearly polarized light 62 to the left-handed circularly polarized light 63 after passing through the quarter wave plate 54, and then the left-handed circularly polarized light 63 passes through the substrate 12, because the substrate 12 itself Having a phase retardation or a phase difference, the left-handed circularly polarized light 63 passes through the base material 12 and the phase compensator 14 of the substrate 10 respectively, and the polarization direction and type of the left-handed circularly polarized light 63 does not change , Because although the base material 12 itself has a phase retardation amount or a phase difference, the phase retardation amount of the phase compensator 14 is the same as the phase retardation amount of the base material 12 and the direction is opposite, the phase compensator 14 can cancel out the phase retardation or phase difference of the substrate 12 itself.
- the left-handed circularly polarized light 63 is reflected by the cathode layer 342 and then becomes right-handed circularly polarized light 65.
- the right-handed circularly polarized light 65 passes through the phase compensator 14 and the phase compensator 14 of the substrate 10, respectively.
- the polarization direction and type of the right-handed circularly polarized light 65 do not change, and then the right-handed circularly polarized light 65 passes through the quarter wave plate 54 again, from right-handed circularly polarized light 65 becomes linearly polarized light 67.
- the linearly polarized light 67 is perpendicular to the previous linearly polarized light 62.
- the linearly polarized light 67 cannot pass through the linear polarizer 52, thereby reducing the reflection of external light 61 It can improve the contrast and readability of the display panel 100.
- the positions of the substrate 12 and the phase compensator 14 are interchangeable.
- the phase compensator 14 can offset If the substrate 12 itself has a phase retardation or a phase difference, the left-handed circularly polarized light 63 becomes left-handed elliptically polarized light 64 after passing through the substrate 12, and after passing through the phase compensator 14, it becomes The left-handed circularly polarized light 63 prevents the substrate 12 from affecting the propagation direction of the external light 61, thereby reducing the reflectivity of the external light 61 and improving the contrast and readability of the display panel 100.
- phase compensator 14 can cancel out the phase retardation or phase difference of the substrate 12 itself.
- the substrate 12 is a colorless transparent polyimide film (CPI), and the polyimide film is made of 4,4'-(hexafluoroisopropylene) diphthalic anhydride (6FDA) and 2, 2'-bistrifluoromethyl-4,4'-diaminobiphenyl (TFDB), synthetic fluorine-containing colorless and transparent polyimide film, the polyimide film at 450nm (film thickness 20 ⁇ m) The light transmittance is close to 92%, and the thermal expansion coefficient is 50ppm/°C.
- CPI colorless transparent polyimide film
- the phase compensator 14 is a phase compensation film, and the phase retardation of the phase compensation film and the phase retardation of the substrate 12 have the same value and opposite directions.
- the refractive index in the x-axis direction, the refractive index in the y-axis direction, and the refractive index in the z-axis direction of the phase compensation film satisfy the following formulas:
- n x n y ⁇ n z ;
- n x is the refractive index in the x-axis direction
- n y is the refractive index in the y-axis direction
- n z is the refractive index in the z-axis direction.
- the material of the phase compensation film is a fumarate resin
- the phase compensation film can be produced by a method such as a solution casting method and a melt casting method.
- the solution casting method is a method of casting a solution (hereinafter referred to as dope) obtained by dissolving a fumarate resin in a solvent on a support, and then removing the solvent by heating or the like to obtain a film.
- the casting of the glue on the support substrate 10 may be a T-die method, a doctor blade coating method, a bar coating method, a roll coating method, a lip coating method, etc.
- the supporting substrate 10 may be a glass substrate 10, a metal substrate 10 such as stainless steel or iron plate, a plastic substrate 10 such as cellulose resin such as polyethylene terephthalate (PET), cellulose triacetate (TAC), and the like.
- PET polyethylene terephthalate
- TAC cellulose triacetate
- the solution viscosity of the dope is an extremely important factor, and 700 to 30,000 cps is preferable, and 1,000 to 10,000 cps is particularly preferable.
- the film is uniaxially stretched, for example, at a temperature of 150 to 200° C., a stretching speed of 10 to 30 mm/min, and a stretching ratio of 30 to 70%.
- the phase compensation film can be formed.
- the thickness range of the phase compensator 14 is 2 for the phase compensator.
- the phase compensation film material may also be one or more of polycarbonate resin, polyethersulfone resin, cyclic polyolefin resin, N-substituted maleimide resin, and the like.
- a roll-to-roll continuous process can be used for manufacturing, and the phase compensation film can be attached to the substrate 12 using a well-known adhesive bonding method.
- a circular polarizer is attached to the phase compensator.
- the circular polarizer 50 includes a linear polarizer 52 and a quarter-wave plate 54, and the quarter-wave plate 54 is disposed between the linear polarizer 52 and the phase compensator 14.
- the linear polarizer 52 is close to the incident direction of the external light 61, that is, the quarter wave plate 54 is the light exit side of the circular polarizer 50, and the linear polarizer 52 is the entrance of the circular polarizer 50. Light side.
- the circular polarizer in Comparative Example 1 is the same as the circular polarizer 50 in Example 1.
- the circular polarizer includes a linear polarizer 52 and a quarter wave plate 54, wherein the linear polarizer 52 is close to The incident direction of the external light 61, that is, the quarter wave plate 54 is the light output side of the circular polarizer 50, and the linear polarizer 52 is the light input side of the circular polarizer 50.
- the substrate in Comparative Example 2 is the same as the substrate 12 in Example 1.
- the substrate is a colorless transparent polyimide film (CPI), and the polyimide film is made of 4,4' -(Hexafluoroisopropylene) diphthalic anhydride (6FDA) and 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl (TFDB), synthetic fluorine-containing colorless and transparent polyimide film
- the light transmittance of the polyimide film at 450 nm (the film thickness is 20 ⁇ m) is close to 92%, and the thermal expansion coefficient is 50 ppm/°C.
- the circular polarizer in Comparative Example 2 is the same as the circular polarizer 50 in Example 1.
- the circular polarizer includes a linear polarizer 52 and a quarter wave plate 54, and the quarter wave plate 54 Is arranged between the linear polarizer 52 and the substrate 12, wherein the linear polarizer 52 is close to the incident direction of the external light 61, that is, the quarter wave plate 54 is a circular polarizer 50
- the linear polarizer 52 is the light incident side of the circular polarizer 50.
- AXOScan as a measuring instrument to measure the circular polarization susceptibility of Example 1 and Comparative Example 1-2 at a front viewing angle of 0°, that is, to test the relationship between different light wavelengths (400 to 800 nm) and circular polarization susceptibility. The test result is shown in Figure 6.
- the circular polarizability of the circular polarizer 50 in Comparative Example 1 measured at a positive viewing angle of 0° under different light wavelengths (400-800 nm) is comparable to that of the circular polarizer 50 in Comparative Example 2.
- the circular polarization of the circular polarization structure composed of the substrate 12 is slightly different.
- the phase compensator 14 is added to the comparative example 2
- the circular polarizability of the circular polarization structure composed of the base material 12, the phase compensator 14 and the circular polarizer 50 in the example 1 is the same as that of the circular polarizer in the comparative example 1.
- the difference in the circular polarization polarization rate of the polarizer 50 is reduced, that is, when the phase compensator 14 is added to the comparative example 2, the circular polarizer composed of the substrate 12, the phase compensator 14 and the circular polarizer 50 in Example 1
- the circular polarization of the structure is closer to the circular polarization of the circular polarizer 50 in Comparative Example 1.
- phase compensator 14 can offset the phase retardation or phase difference of the substrate 12 itself, and improve the circular polarization effect of the circular polarizer 50, so that the substrate 12 will not affect the external light.
- the propagation direction of 61 further reduces the reflectivity of external light 61 and improves the contrast and readability of the display panel 100.
- the AXOScan was used as a measuring instrument to measure the circular polarization susceptibility of the above example 1 and the comparative example 1-2 at a large viewing angle of 50°, that is, when testing different light wavelengths (400nm, 550nm and 700nm)—
- the relationship of the circular polarization polarization rate, the test results are shown in Figure 7-9.
- the measured circular polarizability of the circular polarizer 50 in Comparative Example 1 is about 0.81; the circular polarizer composed of the circular polarizer 50 and the substrate 12 in Comparative Example 2 The circular polarization of the structure is 0.2.
- the measured circular polarizability of the circular polarizer 50 in Comparative Example 1 is about 0.83; the circular polarizer in Comparative Example 2 is composed of the circular polarizer 50 and the substrate 12 The circular polarization of the structure is 0.22.
- the measured circular polarization of the circular polarizer 50 in Comparative Example 1 is about 0.85; the circular polarizer composed of the circular polarizer 50 and the substrate 12 in Comparative Example 2
- the circular polarization of the structure is 0.25.
- the measured circular polarizability of the circular polarizer 50 in Comparative Example 1 is comparable to that of the circular polarizer 50 and substrate in Comparative Example 2.
- the circular polarization structure composed of 12 has a large difference in circular polarization. It can be seen that, at a large viewing angle of 50°, the phase retardation or phase difference of the substrate 12 itself has an impact on the circular polarization of the circular polarizer 50.
- the effect has a greater impact, so that the polarization ability of the circular polarizer 50 is low, which will affect the propagation direction of the external light 61, which in turn causes the reflectivity of the external light 61 to be too high, and affects the contrast of the display panel 100. Produce display color difference, resulting in extremely poor readability.
- the phase compensator 14 when the phase compensator 14 is added to the comparative example 2, that is, the circular polarization structure composed of the substrate 12, the phase compensator 14 and the circular polarizer 50 in Example 1, at a light wavelength of 400 nm, the example The circular polarization structure of the circular polarization structure composed of the substrate 12, the phase compensator 14 and the circular polarizer 50 in 1 has a circular polarization polarization rate of 0.82.
- the circular polarization structure of the circular polarization structure composed of the substrate 12, the phase compensator 14 and the circular polarizer 50 in Example 1 has a circular polarization polarization of 0.84.
- the circular polarization structure of the circular polarization structure composed of the substrate 12, the phase compensator 14 and the circular polarization film 50 in Example 1 has a circular polarization polarization of 0.86.
- the phase compensator 14 when the phase compensator 14 is added to the comparative example 2, that is, the circular polarization structure composed of the base material 12, the phase compensator 14 and the circular polarizer 50 in Example 1, works at different light wavelengths (400nm , 550nm and 700nm), the measured circular polarization of the circular polarizer 50 in Comparative Example 1 is the same as the circular polarization structure of the circular polarizer 50 in Example 1 composed of the substrate 12, the phase compensator 14 and the circular polarizer 50.
- the circular polarization susceptibility is similar.
- the phase compensator 14 can offset the phase retardation or phase difference of the substrate 12 itself, improve the circular polarization effect of the circular polarizer 50, and make the circular polarizer 50 more effective.
- the polarization ability is improved, so that the substrate 12 will not affect the propagation direction of the external light 61, thereby reducing the reflectivity of the external light 61, and improving the contrast and readability of the display panel 100.
- the thickness range of the phase compensator 14 is set to be 2um-4um.
- the phase compensator 14 when the phase compensator 14 is a phase compensation film, and the phase retardation of the phase compensation film is the same as the phase retardation of the substrate 12 and the direction is opposite, the phase compensation The member 14 can offset the phase retardation or phase difference of the substrate 12 itself, improve the circular polarization effect of the circular polarizer 50, and increase the polarization ability of the circular polarizer 50, thereby preventing the substrate 12 from It affects the propagation direction of the external light 61, thereby reducing the reflectivity of the external light 61, and improving the contrast and readability of the display panel 100.
- the phase compensator 14 may include a plurality of phase compensation films, and the plurality of phase compensation films may be respectively formed on one surface or two opposite surfaces of the substrate 12 in sequence.
- the phase retardation of the plurality of phase compensation films after the addition is the same as the phase retardation of the base material 12 and the direction is opposite.
- the substrate 12 is a transparent polyimide film.
- the substrate 12 may also be a polyethylene terephthalate film, a polymethyl methacrylate film, a polycarbonate film, and the like.
- the refractive index in the x-axis direction, the refractive index in the y-axis direction, and the refractive index in the z-axis direction of the phase compensation film must satisfy the following formulas:
- n x n y ⁇ n z ;
- n x is the refractive index in the x-axis direction
- n y is the refractive index in the y-axis direction
- n z is the refractive index in the z-axis direction.
- the selection of the type of the phase compensation film needs to be determined according to the positive or negative phase retardation of the substrate 12 itself.
- the refractive index in the x-axis direction, the refractive index in the y-axis direction, and the refractive index in the z-axis direction of the phase compensation film need to satisfy the following formulas:
- n x n y ⁇ n z ;
- the refractive index in the x-axis direction, the refractive index in the y-axis direction, and the refractive index in the z-axis direction of the phase compensation film need to satisfy the following formulas:
- n x n>n z ;
- the phase compensation film is a transparent film with a single optical axis.
- the z-axis is the single optical axis of the phase compensation film, and the single optical axis is perpendicular to the surface of the phase compensation film.
- the test results show that the substrate in the display panel of the present application, because the phase retardation of the phase compensator provided in the substrate has the same value and the opposite direction as the phase retardation of the substrate,
- the phase compensator can offset the phase retardation or phase difference of the substrate itself, improve the circular polarization effect of the circular polarizer, and improve the polarization ability of the circular polarizer, so that the substrate will not affect
- the propagation direction of the external light reduces the reflectivity of the external light and improves the contrast and readability of the display panel.
Landscapes
- Electroluminescent Light Sources (AREA)
- Liquid Crystal (AREA)
Abstract
一种基板(10)及显示面板(100),其中,基板(10)包括基材(12)和相位补偿件(14),相位补偿件(14)用于补偿基材(12)的相位延迟量,相位补偿件(14)的相位延迟量与基材(12)的相位延迟量数值相同且方向相反,相位补偿件(14)设置于基材(12)上。由于基板(10)内设置的相位补偿件(14)的相位延迟量与基材(12)的相位延迟量数值相同且方向相反,相位补偿件(14)可抵消掉基材(12)本身具有的相位延迟量或相位差,使基材(12)不会影响外界光线的传播方向,降低外界光线的反射率,提高显示面板(100)的对比度和可读性。
Description
本申请实施例涉及显示技术领域,特别是涉及一种基板及显示面板。
OLED(Organic Light-Emitting Diode,有机发光二极管)显示器,也称为有机电致发光显示器,是一种新兴的平板显示装置,由于其具有制备工艺简单、成本低、功耗低、发光亮度高、工作温度适应范围广、体积轻薄、响应速度快,而且易于实现彩色显示和大屏幕显示、易于实现和集成电路驱动器相匹配、易于实现柔性显示等优点,因而具有广阔的应用前景。
然而,目前已开发的OLED显示器中的显示面板中一般包括基材,上述基材作为显示器OLED及TFT柔性基板或者触摸传感器的基底是显示面板中不可或缺的,但是上述基材本身具有相位延迟量或相位差,其会影响外界光线的传播方向,进而导致外界光线的反射率过高,影响显示面板的对比度,从而产生显示器色差,导致可读性极差。
发明内容
本申请实施例旨在提供一种基板及显示面板,以解决现有技术中基材会影响外界光线的传播方向,导致外界光线的反射率过高的技术问题。
本申请实施例解决其技术问题提供以下技术方案:
一种基板,包括:基材;
相位补偿件,所述相位补偿组件用于补偿所述基材的相位延迟量,所述相位补偿件的相位延迟量与所述基材的相位延迟量数值相同且方向相反,所述相位补偿件设置于所述基材上。
可选地,所述相位补偿件的厚度范围为2μm~4μm。
可选地,所述相位补偿件包括多个相位补偿膜,多个所述相位补偿膜可分别依次形成于所述基材一表面或两相对表面上。
可选地,相加后的多个所述相位补偿膜的相位延迟量与所述基材的相位延迟量数值相同且方向相反。
可选地,所述相位补偿件为一个相位补偿膜,所述相位补偿膜的相位延迟量与所述基材的相位延迟量数值相同且方向相反。
可选地,所述基材为透明聚亚酰胺薄膜;
所述相位补偿膜的x轴方向的折射率、y轴方向的折射率及z轴方向的折射率满足以下算式:
n
x=n
y≠n
z;
其中,n
x为x轴方向的折射率,n
y为y轴方向的折射率,n
z为z轴方向的折射率。
可选地,所述相位补偿膜为具有单一光轴的透明相位补偿膜,所述z轴为所述相位补偿膜的所述单一光轴,所述单一光轴垂直于所述相位补偿膜的表面。
本申请实施例解决其技术问题还提供以下技术方案:
一种显示面板,包括:显示模组;
圆偏光片,所述圆偏光片靠近外界光线的入射方向;以及,
上述的基板,所述基板设置于所述圆偏光片和所述显示模组之间。
可选地,所述圆偏光片包括线偏光片和四分之一波片,所述四分之一波片设置于所述线偏光片和所述基板之间,所述线偏光片靠近所述外界光线的入射方向。
可选地,所述显示面板还包括偏光板,所述偏光板设置于所述显示模组和所述基板之间,所述偏光板包括反射膜层、防水膜层、聚乙烯醇PVA层及补偿层,其中,所述反射膜层的厚度或所述防水膜层的厚度与透过所述偏光板的激发光的波长相匹配。
与现有技术相比较,本申请所述显示面板中的基板,由于基板内设置的所述相位补偿件的相位延迟量与所述基材的相位延迟量数值相同且方向相反,所述相位补偿件可抵消掉所述基材本身具有相位延迟量或相位差,提高圆偏光片的圆偏效果,使圆偏光片的偏振极化能力提高,进而使所述基材不会影响外界光线的传播方向,降低外界光线的反射率,提高显示面板的对比度和可读性。
图1是本申请其中一个实施例提供的一种显示面板的结构示意图;
图2是图1所示的显示面板的显示模组的结构示意图;
图3是本申请其中一个实施例提供的外界光线穿过图1所示的显示面板的原理示意图;
图4是图1所示的显示面板的基板的结构示意图;
图5是本申请另一实施例提供的外界光线穿过图1所示的显示面板的原理示意图;
图6是本申请再一实施例提供的外界光线穿过图1所示的显示面板的原理示意图;
图7是本申请其中一个实施例提供的外界光线穿过图1所示的显示面板的不同光线波长—圆偏振极化率曲线图;
图8是本申请其中一个实施例提供的外界光线穿过图1所示的显示面板的400nm光线波长—圆偏振极化率曲线图;
图9是本申请另一实施例提供的外界光线穿过图1所示的显示面板的550nm光线波长—圆偏振极化率曲线图;
图10是本申请再一实施例提供的外界光线穿过图1所示的显示面板的700nm光线波长—圆偏振极化率曲线图。
附图说明
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的,并且仅表达实质上的位置关系,例如对于“垂直的”,如果某位置关系因为了实现某目的的缘故并非严格垂直,但实质上是垂直的,或者利用了垂直的特性,则属于本说明书所述“垂直的”范畴。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
可以理解地是,如本文所示的本申请实施例涉及的一个或多个层间物质,层与层之间的位置关系使用了诸如术语“层叠”或“形成”或“施加”或“设置”进行表达,本领域技术人员可以理解的是:任何术语诸如“层叠”或“形成”或“施加”,其可覆盖“层叠”的全部方式、种类及技术。例如,溅射、电镀、模塑、化学气相沉积(Chemical Vapor Deposition,CVD)、物理气相沉积(Physical Vapor Deposition,PVD)、蒸发、混合物理-化学气相沉积(Hybrid Physical-Chemical Vapor Deposition,HPCVD)、等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)、低压化学气相沉积(Low Pressure Chemical Vapor Deposition,LPCVD)等。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参阅图1,本申请一实施例提供的一显示面板100,所述显示面板100 包括基板10、显示模组30及圆偏光片50,所述圆偏光片50靠近外界光线61的入射方向,所述基板10设置于所述圆偏光片50和所述显示模组30之间。
请参阅图2,所述显示模组30包括开关阵列层32和有机发光显示层34,所述开关阵列层与所述有机发光显示层电连接,所述开关阵列层用于驱动所述有机发光显示层。
所述开关阵列层32包括多个开关元件,所述开关元件可为薄膜晶体管,所述薄膜晶体管包括用于形成沟道的有源层、栅绝缘层、第一金属层、层间绝缘层以及第二金属层。
所述有机发光显示层34包括有机功能层340、阴极层342及阳极层344。其中,所述有机功能层340层叠设置于所述阴极层与所述阳极层344之间,以进行出光发射。
所述有机功能层340由基质材料参杂一定比例的有机发光材料制备而成。在施加外部电压的情况下,所述阳极层344的空穴向所述有机功能层340迁移,所述阴极层342的电子向所述有机功能层340迁移,电子与空穴在所述有机功能层340中相遇形成电子-空穴对,电子从激发态跃迁为基态,以辐射光子的形式释放能量,从而产生电致发光。其中有机发光材料可以选择有机小分子材料或有机高分子材料,以实现电致发光。
所述阴极层342在施加外部电压的情况下,所述阴极层342的电子向所述有机功能层340迁移。所述阴极层342可采用铝、镁、银、钼、钛或其合金等材质。
所述阳极层344在施加外部电压的情况下,所述阳极层344的空穴向所述有机功能层340迁移。所述阳极层344可采用单层结构或多层结构。单层结构的所述阳极层344可以包括具有Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr或其混合物的金属层。多层结构的所述阳极层344可以包括具有Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr或其混合物的金属层和包括透明导电氧化物材料的透明导电氧化物层。透明导电氧化物材料可以包括氧化铟锡(ITO)、 氧化铟锌(IZO)、氧化锌(ZnO)、氧化铟锡锌(ITZO)中的一种或多种。例如,多层结构的所述阳极层344可以被配置为包括第一透明导电氧化物层、金属层和第二透明导电氧化物层的三层结构。
为了避免有机功能层340的蓝光部分太弱而导致蓝光发生偏移,一般情况下,通过短波长高能量的蓝光激发红绿蓝色光阻以产生R/G/B三原色光,在出射光中产生峰值较高的蓝光谱线来实现。然而,较强短波蓝光对人眼的视觉有很大伤害,长期观看会影响用户的视力。
为了避免较强短波蓝光对人眼的视觉造成的伤害,在一些实施例中,所述显示面板100还包括偏光板40,所述偏光板40设置于所述显示模组30和所述基板10之间,所述偏光板40包括反射膜层、防水膜层、聚乙烯醇PVA层及补偿层,其中,所述反射膜层的厚度或所述防水膜层的厚度与透过所述偏光板40的激发光的波长相匹配。
由于所述有机发光显示层34的阴极层342为金属层,其反射率极高,当在外界光线61较强的户外使用所述显示面板100时,外界光线61照射到显示面板100上,所述外界光线61会被所述阴极层反射回来,所述反射回来的反射光影响显示面板100的对比度,导致可读性极差。
请参阅图3,所述圆偏光片50主要起防止所述外界光线61的反射光通过的作用,所述圆偏光片50包括线偏光片52和四分之一波片54,所述四分之一波片54设置于所述线偏光片52和所述基板10之间,其中,所述线偏光片52靠近所述外界光线61的入射方向,即所述四分之一波片54为圆偏光片50的出光侧,所述线偏光片52为圆偏光片50的入光侧。
具体地,当外界光线61照射所述显示面板100时,外界光线61从线偏光片52入射,所述线偏光片52将外界光线61转变为线偏振光62,所述线偏振光62经过四分之一波片54之后从线偏振光62变为左旋圆偏振光63。所述四分之一波片54优选为四分之一波长延迟片,由于所述有机发光显示层的阴极层342为金属层,所述左旋圆偏振光63被所述阴极层342反射,当该左旋 圆偏振光63被反射回来后变为右旋圆偏振光69,再次经过所述四分之一波片54,从右旋圆偏振光69变为线偏振光67,此时的线偏振光67与之前的线偏振光62呈垂直状态,这样此时的线偏振光67就不能够从所述线偏光片52透过,从而减小外界光线61的影响,提高了显示面板100的对比度和可读性。
请参阅图4,所述基板10包括基材12和相位补偿件14,所述相位补偿件14用于补偿所述基材12的相位延迟量,所述相位补偿件14的相位延迟量与所述基材12的相位延迟量数值相同且方向相反,所述相位补偿件14设置于所述基材12上。
所述基材12为无色透明聚酰亚胺薄膜(CPI),所述聚酰亚胺薄膜具备较高的可见光透过率、优异的热稳定性、化学稳定性、介电性能以及机械强度等性能。所述聚酰亚胺薄膜是由4,4'-(六氟异丙烯)二酞酸酐(6FDA)与2,2'-双三氟甲基-4,4'-二氨基联苯(TFDB),合成含氟的无色透明聚酰亚胺薄膜,所述聚酰亚胺薄膜在450nm(膜厚20μm)处的光透过率接近92%,热膨胀系数为50ppm/℃。
在一些实施例中,所述聚酰亚胺薄膜使用环丁烷四甲酸二酐与2,2'-双三氟甲基-4,4'-二氨基联苯(TFDB),合成无色透明聚酰亚胺薄膜,所述聚酰亚胺薄膜在450nm(膜厚20μm)处的光透过率接近92%。
在一些实施例中,所述基材12的材质可为PI(polyimide,聚酰亚胺)、PET(polyethylene terephthalate,聚对苯二甲酸乙二酯)、PMMA(Poly Methyl Methacrylatemethacrylic Acid,聚甲基丙烯酸甲酯)、PC(Polycarbonate,聚碳酸酯)等有机聚合物中的一种。
所述基材12在显示面板100中是不可或缺的,然而所述基材12本身具有相位延迟量或相位差,其会影响外界光线61的传播方向,进而导致外界光线61的反射率过高,影响显示面板100的对比度,从而产生显示器色差,导致可读性极差。
具体地,请参阅图5,当外界光线61照射所述显示面板100时,外界光 线61从线偏光片52入射,所述线偏光片52将外界光线61转变为线偏振光62,所述线偏振光62经过四分之一波片54之后从线偏振光62变为左旋圆偏振光63,然后所述左旋圆偏振光63经过所述基材12,由于所述基材12本身具有相位延迟量或相位差,所述左旋圆偏振光63经过所述基材12后变为左旋椭圆偏振光64,所述左旋椭圆偏振光64被所述阴极层342层反射,当该左旋椭圆偏振光64被反射回来后变为右旋椭圆偏振光65,所述右旋椭圆偏振光65再次经过所述基材12,由于所述基材12具有相位延迟量或相位差,所述右旋椭圆偏振光65经过所述基材12后的长短轴之比变大,然后所述右旋椭圆偏振光65再次经过所述四分之一波片54,从右旋椭圆偏振光65变为线偏振光66,但是此时线偏振光66与之前的线偏振光62不呈垂直状态,这样此时的线偏振光62可以从所述线偏光片52透过,进而导致外界光线61的反射率过高,影响显示面板100的对比度,从而产生显示器色差,导致可读性极差。
由于所述相位补偿件14的相位延迟量与所述基材12的相位延迟量数值相同且方向相反,所述相位补偿件14可抵消掉所述基材12本身具有相位延迟量或相位差,使其不会影响外界光线61的传播方向,进而降低外界光线61的反射率,提高显示面板100的对比度和可读性。
具体地,请参阅图6,具体地,当外界光线61照射所述显示面板100时,外界光线61从线偏光片52入射,所述线偏光片52将外界光线61转变为线偏振光62,所述线偏振光62经过四分之一波片54之后从线偏振光62变为左旋圆偏振光63,然后所述左旋圆偏振光63经过所述基材12,由于所述基材12本身具有相位延迟量或相位差,所述左旋圆偏振光63分别经过所述基板10的所述基材12和所述相位补偿件14,所述左旋圆偏振光63的偏振方向和类型不发生变化,因为虽然所述基材12本身具有相位延迟量或相位差,但是由于所述相位补偿件14的相位延迟量与所述基材12的相位延迟量数值相同且方向相反,所述相位补偿件14可抵消掉所述基材12本身具有相位延迟量或相位差。然后进而使左旋圆偏振光63被阴极层342反射回来后变为右旋圆 偏振光65,同理,所述右旋圆偏振光65再次分别经过所述基板10的所述相位补偿件14和所述基材12,所述右旋圆偏振光65的偏振方向和类型不发生变化,然后所述右旋圆偏振光65再次经过所述四分之一波片54,从右旋圆偏振光65变为线偏振光67,此时线偏振光67与之前的线偏振光62呈垂直状态,此时的线偏振光67不能从所述线偏光片52透过,进而降低外界光线61的反射率,提高显示面板100的对比度和可读性。
可以理解的是,在一些其它实施例中,所述基材12和所述相位补偿件14的位置是可以互换的。
在本实施例中,本申请提供的一种基板10,由于所述相位补偿件14的相位延迟量与所述基材12的相位延迟量数值相同且方向相反,所述相位补偿件14可抵消掉所述基材12本身具有相位延迟量或相位差,使所述左旋圆偏振光63经过所述基材12后变为左旋椭圆偏振光64,经过所述相位补偿件14后,重新变为左旋圆偏振光63,使所述基材12不会影响外界光线61的传播方向,进而降低外界光线61的反射率,提高显示面板100的对比度和可读性。
以下结合具体的示例,详细证明所述相位补偿件14可抵消掉所述基材12本身具有相位延迟量或相位差。
示例1
1、提供一基材。
具体地,所述基材12为无色透明聚酰亚胺薄膜(CPI),所述聚酰亚胺薄膜是由4,4'-(六氟异丙烯)二酞酸酐(6FDA)与2,2'-双三氟甲基-4,4'-二氨基联苯(TFDB),合成含氟的无色透明聚酰亚胺薄膜,所述聚酰亚胺薄膜在450nm(膜厚20μm)处的光透过率接近92%,热膨胀系数为50ppm/℃。
2、在所述基材上贴附相位补偿件。
具体地,所述相位补偿件14为一个相位补偿膜,所述相位补偿膜的相位延迟量与所述基材12的相位延迟量数值相同且方向相反。所述相位补偿膜的x轴方向的折射率、y轴方向的折射率及z轴方向的折射率满足以下算式:
n
x=n
y≠n
z;
其中,n
x为x轴方向的折射率,n
y为y轴方向的折射率,n
z为z轴方向的折射率。
具体地,所述相位补偿膜材质为富马酸酯类树脂,可以采用溶液流延法、熔融流延法等方法进行制作相位补偿膜。
举例说明,溶液流延法是把富马酸酯类树脂溶解于溶剂中得到的溶液(以下,称胶浆)流延在支撑体上后,通过加热等除去溶剂得到膜的方法。所述将胶浆流延在支持基板10上,可以采用T型模法、刮刀涂布法、棒涂法、辊涂法、唇涂法等。所述支持基板10可为玻璃基板10、不锈钢或铁板等金属基板10、聚对苯二甲酸乙二醇酯(PET)、三乙酸纤维素(TAC)等纤维素树脂等塑料基板10等。这样制得的膜,可以从支撑体上剥离后使用。溶液流延法制造有高透明性,且厚度精确度、表面平滑性优异的膜时,胶浆的溶液粘度为极重要的因素,优选700~30000cps、特别优选1000~10000cps。最后通过对膜进行单向拉伸,例如采用温度150~200℃,拉伸速度10~30mm/分,拉伸倍率30~70%的条件进行拉伸,可以制成所述相位补偿膜。所述相位补偿件14的厚度范围为2为相位补偿件。
所述相位补偿膜材质也可为聚碳酸酯树脂、聚醚砜树脂、环状聚烯烃树脂、N-取代马来酰亚胺类树脂等中的一种或多种。
具体地,可采用卷轴(roll to roll)的连续工艺制造,使用公知的粘接剂进行贴合的方法将所述相位补偿膜贴合在所述基材12上。
3、在所述相位补偿件上贴附圆偏光片。
具体地,所述圆偏光片50包括线偏光片52和四分之一波片54,所述四分之一波片54设置于所述线偏光片52和所述相位补偿件14之间,其中,所述线偏光片52靠近所述外界光线61的入射方向,即所述四分之一波片54为圆偏光片50的出光侧,所述线偏光片52为圆偏光片50的入光侧。
对比例1
1、提供一圆偏光片。
具体地,对比例1中的圆偏光片与示例1中的圆偏光片50相同,所述圆偏光片包括线偏光片52和四分之一波片54,其中,所述线偏光片52靠近所述外界光线61的入射方向,即所述四分之一波片54为圆偏光片50的出光侧,所述线偏光片52为圆偏光片50的入光侧。
对比例2
1、提供一基材。
具体地,对比例2中的基材与示例1中的基材12相同,所述基材为无色透明聚酰亚胺薄膜(CPI),所述聚酰亚胺薄膜是由4,4'-(六氟异丙烯)二酞酸酐(6FDA)与2,2'-双三氟甲基-4,4'-二氨基联苯(TFDB),合成含氟的无色透明聚酰亚胺薄膜,所述聚酰亚胺薄膜在450nm(膜厚20μm)处的光透过率接近92%,热膨胀系数为50ppm/℃。
2、在所述基材上贴附圆偏光片。
具体地,对比例2中的圆偏光片与示例1中的圆偏光片50相同,所述圆偏光片包括线偏光片52和四分之一波片54,所述四分之一波片54设置于所述线偏光片52和所述基材12之间,其中,所述线偏光片52靠近所述外界光线61的入射方向,即所述四分之一波片54为圆偏光片50的出光侧,所述线偏光片52为圆偏光片50的入光侧。
利用AXOScan作为测量仪器分别在正视角0°下测量上述示例1和对比例1-2的圆偏振极化率,即在测试不同光线波长(400~800nm)—圆偏振极化率的关系,其测试结果如图6所示。
由图7可知,在不同光线波长(400~800nm)下,在正视角0°下测量的对比例1中的圆偏光片50的圆偏振极化率与对比例2中的由圆偏光片50和基材12组成的圆偏结构的圆偏振极化率稍有差异。当在对比例2中加入相位补偿件14后,即示例1中由基材12、相位补偿件14和圆偏光片50共同组成的圆偏结构的圆偏振极化率与对比例1中的圆偏光片50的圆偏振极化率的差 异减小,即当在对比例2中加入相位补偿件14后,示例1中由基材12、相位补偿件14和圆偏光片50共同组成的圆偏结构的圆偏振极化率与对比例1中的圆偏光片50的圆偏振极化率更加相近。
由上述测试结果可知,所述相位补偿件14可抵消掉所述基材12本身具有相位延迟量或相位差,提高圆偏光片50的圆偏效果,使所述基材12不会影响外界光线61的传播方向,进而降低外界光线61的反射率,提高显示面板100的对比度和可读性。
为了进一步验证上述测试结果,利用AXOScan作为测量仪器在大视角50°下分别测量上述示例1和对比例1-2的圆偏振极化率,即在测试不同光线波长(400nm、550nm及700nm)—圆偏振极化率的关系,其测试结果如图7-9所示。
由图8可知,在400nm光线波长下,测量的对比例1中的圆偏光片50的圆偏振极化率约为0.81;对比例2中的由圆偏光片50和基材12组成的圆偏结构的圆偏振极化率0.2。
由图9可知,在550nm光线波长下,测量的对比例1中的圆偏光片50的圆偏振极化率约为0.83;对比例2中的由圆偏光片50和基材12组成的圆偏结构的圆偏振极化率0.22。
由图10可知,在700nm光线波长下,测量的对比例1中的圆偏光片50的圆偏振极化率约为0.85;对比例2中的由圆偏光片50和基材12组成的圆偏结构的圆偏振极化率0.25。
由上述测试结果可知,在不同光线波长(400nm、550nm及700nm)下,测量的对比例1中的圆偏光片50的圆偏振极化率与对比例2中的由圆偏光片50和基材12组成的圆偏结构的圆偏振极化率差异较大,由此可知,在大视角50°下,所述基材12本身具有的相位延迟量或相位差,对圆偏光片50的圆偏效果产生较大的影响,使圆偏光片50的偏振极化能力较低,进而其会影响外界光线61的传播方向,进而导致外界光线61的反射率过高,影响显示面 板100的对比度,从而产生显示器色差,导致可读性极差。
由图8可知,当在对比例2中加入相位补偿件14后,即示例1中由基材12、相位补偿件14和圆偏光片50共同组成的圆偏结构,在400nm光线波长下,示例1中的由基材12、相位补偿件14和圆偏光片50共同组成的圆偏结构的圆偏振极化率为0.82。
由图9可知,在550nm光线波长下,示例1中的由基材12、相位补偿件14和圆偏光片50共同组成的圆偏结构的圆偏振极化率为0.84。
由图10可知,在700nm光线波长下,示例1中的由基材12、相位补偿件14和圆偏光片50共同组成的圆偏结构的圆偏振极化率为0.86。
由上述测试结果可知,当在对比例2中加入相位补偿件14后,即示例1中由基材12、相位补偿件14和圆偏光片50共同组成的圆偏结构,在不同光线波长(400nm、550nm及700nm)下,测量的对比例1中的圆偏光片50的圆偏振极化率与示例1中的由基材12、相位补偿件14和圆偏光片50共同组成的圆偏结构的圆偏振极化率相近,由此可知,所述相位补偿件14可抵消掉所述基材12本身具有相位延迟量或相位差,提高圆偏光片50的圆偏效果,使圆偏光片50的偏振极化能力提高,进而使所述基材12不会影响外界光线61的传播方向,进而降低外界光线61的反射率,提高显示面板100的对比度和可读性。
进一步地,为了使相位补偿件14的厚度不影响显示面板100性能特性,例如,当所述显示面板100是可弯折的,所述相位补偿件14厚度过大,会影响显示面板100的弯折性能,因此将所述相位补偿件14的厚度范围设为2um~4um。
由上述测试结果可知,当所述相位补偿件14为一个相位补偿膜,且所述相位补偿膜的相位延迟量与所述基材12的相位延迟量数值相同且方向相反时,所述相位补偿件14可抵消掉所述基材12本身具有相位延迟量或相位差,提高圆偏光片50的圆偏效果,使圆偏光片50的偏振极化能力提高,进而使 所述基材12不会影响外界光线61的传播方向,进而降低外界光线61的反射率,提高显示面板100的对比度和可读性。
可以理解的是,在一些实施例中,为了使所述相位补偿件14能够更好的抵消掉所述基材12本身具有相位延迟量或相位差,提高圆偏光片50的圆偏效果,所述相位补偿件14可包括多个相位补偿膜,多个所述相位补偿膜可分别依次形成于所述基材12一表面或两相对表面上。但是,需要满足的是,相加后的多个所述相位补偿膜的相位延迟量与所述基材12的相位延迟量数值相同且方向相反。
所述基材12为透明聚亚酰胺薄膜,在一些实施例中,所述基材12也可为聚对苯二甲酸乙二酯薄膜、聚甲基丙烯酸甲酯薄膜及聚碳酸酯薄膜等。
当所述基材12为透明聚亚酰胺薄膜时,所述相位补偿膜的x轴方向的折射率、y轴方向的折射率及z轴方向的折射率需满足以下算式:
n
x=n
y≠n
z;
其中,n
x为x轴方向的折射率,n
y为y轴方向的折射率,n
z为z轴方向的折射率。
进一步地,所述相位补偿膜的类型选择需根据基材12本身相位延迟量的正负来决定的。
具体地,当所述基材12本身的相位延迟量为正时,所述相位补偿膜的x轴方向的折射率、y轴方向的折射率及z轴方向的折射率需满足以下算式:
n
x=n
y<n
z;
具体地,当所述基材12本身的相位延迟量为负时,所述相位补偿膜的x轴方向的折射率、y轴方向的折射率及z轴方向的折射率需满足以下算式:
n
x=n>n
z;
为了使所述相位补偿件14能够更好地抵消掉所述基材12本身具有相位延迟量或相位差,提高圆偏光片50的圆偏效果,所述相位补偿膜为具有单一光轴的透明相位补偿膜,所述z轴为所述相位补偿膜的所述单一光轴,所述 单一光轴垂直于所述相位补偿膜的表面。
与现有技术相比较,测试结果表明,本申请所述显示面板中的基板,由于基板内设置的所述相位补偿件的相位延迟量与所述基材的相位延迟量数值相同且方向相反,所述相位补偿件可抵消掉所述基材本身具有相位延迟量或相位差,提高圆偏光片的圆偏效果,使圆偏光片的偏振极化能力提高,进而使所述基材不会影响外界光线的传播方向,降低外界光线的反射率,提高显示面板的对比度和可读性。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
Claims (10)
- 一种基板,特征在于,包括:基材;相位补偿件,所述相位补偿组件用于补偿所述基材的相位延迟量,所述相位补偿件的相位延迟量与所述基材的相位延迟量数值相同且方向相反,所述相位补偿件设置于所述基材上。
- 根据权利要求1所述的基板,其特征在于,所述相位补偿件的厚度范围为2μm~4μm。
- 根据权利要求1所述的基板,其特征在于,所述相位补偿件包括多个相位补偿膜,多个所述相位补偿膜可分别依次形成于所述基材一表面或两相对表面上。
- 根据权利要求3所述的基板,其特征在于,相加后的多个所述相位补偿膜的相位延迟量与所述基材的相位延迟量数值相同且方向相反。
- 根据权利要求1所述的基板,其特征在于,所述相位补偿件为一个相位补偿膜,所述相位补偿膜的相位延迟量与所述基材的相位延迟量数值相同且方向相反。
- 根据权利要求1-5任一项所述的基板,其特征在于,所述基材为透明聚亚酰胺薄膜;所述相位补偿膜的x轴方向的折射率、y轴方向的折射率及z轴方向的折射率满足以下算式:n x=n y≠n z;其中,n x为x轴方向的折射率,n y为y轴方向的折射率,n z为z轴方向的折射率。
- 根据权利要求6所述的基板,其特征在于,所述相位补偿膜为具有单一光轴的透明相位补偿膜,所述z轴为所述相位补偿膜的所述单一光轴,所述单一光轴垂直于所述相位补偿膜的表面。
- 一种显示面板,其特征在于,包括:显示模组;圆偏光片,所述圆偏光片靠近外界光线的入射方向;以及,如权利要求1-7任一项所述的基板,所述基板设置于所述圆偏光片和所述显示模组之间。
- 根据权利要求8所述的显示面板,其特征在于,所述圆偏光片包括线偏光片和四分之一波片,所述四分之一波片设置于所述线偏光片和所述基板之间,所述线偏光片靠近所述外界光线的入射方向。
- 根据权利要求9所述的显示面板,其特征在于,所述显示面板还包括偏光板,所述偏光板设置于所述显示模组和所述基板之间,所述偏光板包括反射膜层、防水膜层、聚乙烯醇PVA层及补偿层,其中,所述反射膜层的厚度或所述防水膜层的厚度与透过所述偏光板的激发光的波长相匹配。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/092807 WO2020258034A1 (zh) | 2019-06-25 | 2019-06-25 | 基板及显示面板 |
CN201980079848.9A CN113330598A (zh) | 2019-06-25 | 2019-06-25 | 基板及显示面板 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/092807 WO2020258034A1 (zh) | 2019-06-25 | 2019-06-25 | 基板及显示面板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020258034A1 true WO2020258034A1 (zh) | 2020-12-30 |
Family
ID=74061165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/092807 WO2020258034A1 (zh) | 2019-06-25 | 2019-06-25 | 基板及显示面板 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113330598A (zh) |
WO (1) | WO2020258034A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113488603A (zh) * | 2021-07-07 | 2021-10-08 | 业成科技(成都)有限公司 | 光学显示装置的制作方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114089552A (zh) * | 2021-11-18 | 2022-02-25 | 武汉华星光电技术有限公司 | 显示面板及显示装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101846829A (zh) * | 2008-12-03 | 2010-09-29 | 海帝士科技公司 | 具有触摸屏功能的液晶显示装置 |
CN102714281A (zh) * | 2009-11-05 | 2012-10-03 | 韩国科学技术院 | 黑色有机发光二极管器件 |
CN106374053A (zh) * | 2016-11-22 | 2017-02-01 | 上海天马微电子有限公司 | 一种oled显示面板和显示装置 |
CN108027530A (zh) * | 2015-07-29 | 2018-05-11 | 夏普株式会社 | 具有均匀的内嵌式延迟器的阳光下可读的lcd |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105278024B (zh) * | 2015-11-10 | 2019-01-04 | 深圳市华星光电技术有限公司 | 偏光板、液晶显示面板以及液晶显示装置 |
JP6868380B2 (ja) * | 2016-12-09 | 2021-05-12 | デクセリアルズ株式会社 | 位相差補償素子、液晶表示装置及び投射型画像表示装置 |
CN108922903B (zh) * | 2018-07-13 | 2020-08-18 | 京东方科技集团股份有限公司 | 一种有机发光显示面板及显示装置 |
-
2019
- 2019-06-25 WO PCT/CN2019/092807 patent/WO2020258034A1/zh active Application Filing
- 2019-06-25 CN CN201980079848.9A patent/CN113330598A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101846829A (zh) * | 2008-12-03 | 2010-09-29 | 海帝士科技公司 | 具有触摸屏功能的液晶显示装置 |
CN102714281A (zh) * | 2009-11-05 | 2012-10-03 | 韩国科学技术院 | 黑色有机发光二极管器件 |
CN108027530A (zh) * | 2015-07-29 | 2018-05-11 | 夏普株式会社 | 具有均匀的内嵌式延迟器的阳光下可读的lcd |
CN106374053A (zh) * | 2016-11-22 | 2017-02-01 | 上海天马微电子有限公司 | 一种oled显示面板和显示装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113488603A (zh) * | 2021-07-07 | 2021-10-08 | 业成科技(成都)有限公司 | 光学显示装置的制作方法 |
CN113488603B (zh) * | 2021-07-07 | 2023-08-25 | 业成科技(成都)有限公司 | 光学显示装置的制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113330598A (zh) | 2021-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102643461B1 (ko) | 광학 필름, 그 제조 방법 및 표시 장치 | |
JP7452436B2 (ja) | 光学異方性積層体及びその製造方法、円偏光板、並びに画像表示装置 | |
JP6712157B2 (ja) | 光学補償層付偏光板およびそれを用いた有機elパネル | |
CN104995553A (zh) | 图像显示装置 | |
TWI770332B (zh) | 相位差板、附光學補償層之偏光板、圖像顯示裝置、及附觸控面板之圖像顯示裝置 | |
JP2002156920A (ja) | タッチパネル付el表示装置 | |
WO2019188205A1 (ja) | 光学異方性積層体、偏光板、及び画像表示装置 | |
JP2001249222A (ja) | 反射防止フィルム及びそれを用いてなる発光表示素子 | |
WO2020258034A1 (zh) | 基板及显示面板 | |
JP2004325971A (ja) | 積層位相差板及びその製造方法 | |
JP7377303B2 (ja) | 反射防止用偏光板、光学積層体及び光学積層体の製造方法 | |
CN104981731A (zh) | 图像显示装置 | |
CN110554452B (zh) | 防反射用偏光板、光学层叠体及光学层叠体的制造方法 | |
KR102627997B1 (ko) | 광학 적층체 및 화상 표시 장치 | |
JP6712161B2 (ja) | 光学補償層付偏光板およびそれを用いた有機elパネル | |
JP2002162519A (ja) | 円偏光フィルム及びそれを用いてなる表示素子 | |
TWI770333B (zh) | 相位差膜、附光學補償層之偏光板、圖像顯示裝置、及附觸控面板之圖像顯示裝置 | |
KR102665341B1 (ko) | 광학 필름 및 그 제조 방법과 표시 장치 | |
JP6303423B2 (ja) | 透明導電性積層体及び画像表示装置 | |
JP2004020830A (ja) | 偏光子、偏光板及び画像表示装置 | |
KR101521226B1 (ko) | 광학 보상 필름 | |
KR20170089669A (ko) | 보상 필름 및 이를 포함하는 표시 장치 | |
JP2011138144A (ja) | タッチパネル付el表示装置 | |
JP2002031721A (ja) | 複合偏光板 | |
JP7500531B2 (ja) | 位相差フィルム、光学補償層付偏光板、画像表示装置、およびタッチパネル付き画像表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19935438 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19935438 Country of ref document: EP Kind code of ref document: A1 |