WO2020258032A1 - 时延补偿方法、设备及存储介质 - Google Patents

时延补偿方法、设备及存储介质 Download PDF

Info

Publication number
WO2020258032A1
WO2020258032A1 PCT/CN2019/092801 CN2019092801W WO2020258032A1 WO 2020258032 A1 WO2020258032 A1 WO 2020258032A1 CN 2019092801 W CN2019092801 W CN 2019092801W WO 2020258032 A1 WO2020258032 A1 WO 2020258032A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay compensation
base station
information
reference time
time information
Prior art date
Application number
PCT/CN2019/092801
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980097834.XA priority Critical patent/CN114026926A/zh
Priority to PCT/CN2019/092801 priority patent/WO2020258032A1/zh
Publication of WO2020258032A1 publication Critical patent/WO2020258032A1/zh
Priority to US17/547,489 priority patent/US20220104160A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a delay compensation method, device, and storage medium.
  • 5G networks mainly include the following types of services: Enhanced mobile broadband (eMBB), Massive Machine Type Communications (mMTC), and Ultra-reliable and Low Latency Communications, URLLC) business.
  • eMBB Enhanced mobile broadband
  • mMTC Massive Machine Type Communications
  • URLLC Ultra-reliable and Low Latency Communications
  • the URLLC service requires the 5G network to provide lower delay guarantees and higher time synchronization accuracy.
  • the user equipment determines the transmission advance of the uplink frame according to the timing advance (TA) sent by the base station during the uplink transmission process, and advances the uplink transmission frame according to the transmission advance Sent to the base station so that the uplink frame arrives at the base station at the expected time, thereby compensating for the radio transmission delay caused by the distance.
  • TA timing advance
  • the embodiments of the present application provide a delay compensation method, device, and storage medium, which improve the accuracy of time synchronization between the UE and the network side by compensating the reference time.
  • embodiments of the present application may provide a delay compensation method, the method including:
  • the UE obtains the delay compensation parameters
  • the UE performs delay compensation on the reference time information according to the delay compensation parameter.
  • an embodiment of the present application may provide a delay compensation method, and the method includes:
  • the base station generates first delay compensation information, where the first delay compensation information is used by the user equipment UE to determine whether to perform delay compensation on the reference time information;
  • the base station sends the first delay compensation information to the UE.
  • the embodiments of the present application may provide a delay compensation method, and the method includes:
  • the base station obtains the delay compensation parameters
  • the base station performs time delay compensation on the reference time information according to the time delay compensation parameter
  • the base station sends the time delay compensated reference time information to the user equipment UE.
  • the embodiments of the present application may provide a UE, including:
  • the compensation module is configured to perform delay compensation on the reference time information according to the delay compensation parameter.
  • embodiments of the present application may provide a base station, including:
  • a generating module configured to generate first delay compensation information, where the first delay compensation information is used by the user equipment UE to determine whether to perform delay compensation on the reference time information;
  • the sending module is configured to send the first delay compensation information to the UE.
  • embodiments of the present application may provide a base station, including:
  • a compensation module configured to perform delay compensation on the reference time information according to the delay compensation parameter
  • the sending module is used to send the reference time information after delay compensation to the UE.
  • an embodiment of the present application may provide a UE, including:
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the delay compensation method described in the first aspect.
  • an embodiment of the present application may provide a base station, including:
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the delay compensation method described in the second aspect.
  • an embodiment of the present application may provide a base station, including:
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the delay compensation method according to the third aspect.
  • the embodiments of the present application may provide a computer-readable storage medium, and the computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions are executed by a processor, they are used to implement the The described time delay compensation method.
  • an embodiment of the present application may provide a computer-readable storage medium that stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, it is used to The delay compensation method described in the aspect.
  • the embodiments of the present application may provide a computer-readable storage medium that stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, it is used to The delay compensation method described in the aspect.
  • an embodiment of the present application provides a program, when the program is executed by a processor, it is used to execute the delay compensation method described in the first aspect above.
  • an embodiment of the present application provides a program, when the program is executed by a processor, it is used to execute the delay compensation method described in the second aspect above.
  • an embodiment of the present application provides a program, when the program is executed by a processor, it is used to execute the delay compensation method described in the third aspect.
  • an embodiment of the present application provides a computer program product, including program instructions, which are used to implement the delay compensation method described in the first aspect.
  • an embodiment of the present application provides a computer program product, including program instructions, which are used to implement the delay compensation method described in the second aspect.
  • an embodiment of the present application provides a computer program product, including program instructions, which are used to implement the delay compensation method described in the third aspect.
  • an embodiment of the present application provides a chip including: a processing module and a communication interface, and the processing module can execute the delay compensation method described in the first aspect.
  • the chip also includes a storage module (eg, memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the first aspect The described time delay compensation method.
  • a storage module eg, memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the first aspect The described time delay compensation method.
  • an embodiment of the present application provides a chip, including a processing module and a communication interface, and the processing module can execute the delay compensation method described in the second aspect.
  • the chip also includes a storage module (eg, memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the second aspect The described time delay compensation method.
  • a storage module eg, memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the second aspect The described time delay compensation method.
  • an embodiment of the present application provides a chip including: a processing module and a communication interface, and the processing module can execute the delay compensation method described in the third aspect.
  • the chip further includes a storage module (eg, memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the third aspect The described time delay compensation method.
  • a storage module eg, memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the third aspect The described time delay compensation method.
  • This application provides a delay compensation method, device, and storage medium, including: a UE or a base station obtains a delay compensation parameter, and performs delay compensation on reference time information according to the delay compensation parameter, and the UE compares the reference time information with the reference time after compensation.
  • the base station performs time synchronization. By compensating the time delay of the reference time information, the error of the reference time information due to the propagation delay between the base station and the UE can be compensated, making the reference time information more accurate, and improving the subsequent UE to use the time-delay-compensated reference time information for time The time synchronization accuracy that can be obtained by synchronization.
  • FIG. 1 is a schematic diagram of the architecture of a communication system to which an embodiment of the present invention is applicable;
  • Figure 2 is a schematic diagram of time synchronization between the UE and the network side device
  • FIG. 3 is a schematic diagram of a TSN network architecture
  • FIG. 5 is a flowchart of a delay compensation method provided by Embodiment 2 of the present invention.
  • FIG. 6 is a flowchart of a delay compensation method provided by Embodiment 3 of the present invention.
  • FIG. 7 is a flowchart of a delay compensation method provided by Embodiment 4 of the present invention.
  • Figure 8 shows the MAC CE format of the existing TA command
  • Figure 9 is a schematic diagram of a format of the MAC CE of the enhanced TA command.
  • FIG. 10 is a schematic diagram of the format of an existing random access response
  • Figure 11 is a schematic diagram of a format of an enhanced random access response
  • FIG. 12 is a schematic structural diagram of a UE provided in Embodiment 7 of this application.
  • FIG. 13 is a schematic structural diagram of a base station provided in Embodiment 8 of this application.
  • FIG. 14 is a schematic structural diagram of a base station according to Embodiment 9 of this application.
  • FIG. 15 is a schematic structural diagram of a UE provided by Embodiment 10 of this application.
  • FIG. 16 is a schematic structural diagram of a base station provided in Embodiment 11 of this application.
  • FIG. 1 is an example of a communication system architecture to which the embodiment of the present invention is applicable.
  • the communication system includes a base station and multiple terminal devices.
  • the communication system can be a Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, and Wideband Code Division Multiple Access (WCDMA) System, Long Term Evolution (LTE for short) system or 5th-Generation (5G for short) system.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • 5G 5th-Generation
  • the base station may be a base station (Base Transceiver Station, referred to as BTS) in a GSM system or a CDMA system, a base station (NodeB, referred to as NB) in a WCDMA system, or an evolved base station ( The evolved NodeB, eNB for short), access point (access point, AP), or relay station may also be a base station in a 5G system, etc., which are not limited here.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • AP access point
  • relay station may also be a base station in a 5G system, etc., which are not limited here.
  • This terminal device is also called User Equipment (UE).
  • the terminal device can be a mobile phone, a computer, a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone, and a wireless local Loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistants, PDAs), computers, laptops, handheld communication devices, handheld computing devices, satellite wireless devices, wireless modem cards, TV set-top boxes ( set top box, STB), in-vehicle equipment, wearable equipment, smart home equipment, industrial equipment, other equipment used for communication on wireless systems, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • computers laptops, handheld communication devices, handheld computing devices, satellite wireless devices, wireless modem cards
  • TV set-top boxes set top box, STB
  • in-vehicle equipment wearable equipment
  • smart home equipment industrial equipment
  • industrial equipment other equipment used for communication on wireless systems, etc.
  • the premise for the base station and UE to ensure normal communication is that the UE and the base station maintain time synchronization (or called clock synchronization).
  • the network side device sends time synchronization information and time synchronization accuracy to the UE.
  • the time synchronization information and time synchronization accuracy are time synchronized with the base station to meet the time synchronization and synchronization accuracy of the UE and the reference clock.
  • the network side device may carry the time synchronization information and time synchronization accuracy in an RRC message or a broadcast message and send it to the UE, for example, may be carried in an RRC message or a broadcast message.
  • the carried IE may be a TimeReferenceInfo information element (information element, IE for short).
  • FIG 2 is a schematic diagram of time synchronization between the UE and the network side equipment. As shown in Figure 2, the time synchronization accuracy notified by the network side is related to the time synchronization accuracy error ⁇ 1 on the UE side.
  • the time synchronization accuracy error ⁇ 1 is determined by the physical layer and is related to many factors such as propagation loss and equipment limitations.
  • IIoT Industrial Internet of Things
  • IIoT can connect hundreds of millions of industrial equipment to the Internet, collect data through sensors installed on these industrial equipment and transmit it to the control center, and the control center processes the data to manage and control the equipment.
  • Industrial equipment in IIoT can transmit data through existing communication systems (such as LTE or 5G systems).
  • TSN time sensitive network
  • the 5G network needs to provide lower delay guarantees and higher clock synchronization accuracy, so that when TSN services are transmitted in the 5G network, the operation and connection of each point of the mechanical operation are accurate and meet the time requirements of.
  • FIG 3 is a schematic diagram of the TSN network architecture.
  • the TSN network includes a 5G system, a user-side TSN converter, a network-side TSN converter, and a TSN control center.
  • the user-side TSN converter is connected to the UE through the interface N60, and is used to perform operations such as protocol and format conversion on the data of the UE.
  • the TSN converter on the network side includes a user plane (UP) converter and a control plane (CP) converter.
  • the UP converter is used to perform operations such as protocol and format conversion on UP data
  • the CP converter is used to CP data performs operations such as protocol and format conversion.
  • the TSN control center includes a TSN centralized user configuration (Centralized User Configuration, referred to as CUC) node, a TSN centralized network configuration (Centralized Network Configuration, referred to as CNC) node, and an end node (end station).
  • CUC Centralized User Configuration
  • CNC Centralized Network Configuration
  • end station an end node (end station).
  • TSN CUC is used to adjust the TSC stream requirements of the TSN end station
  • TSN CNC is used to uniformly control the stream transmission of the TSC network.
  • the end station is TSN talker and TSN listener, which represents each network node that sends or receives TSC services.
  • the 5G system is also called New Radio (NR) or next-generation mobile communication system.
  • NR New Radio
  • the 5G system includes: an access network (AN) and a core network.
  • AN access network
  • core network core network
  • the AN in the 5G system can be a radio access network (RAN) or a wired AN, and the AN equipment (RAN equipment or wired AN equipment) in the 5G system can consist of multiple 5G-AN nodes.
  • the 5G-AN The node may include: an access point (access point, AP) of a non-3GPP access network (such as an access point of a WiFi network), and a next-generation base station.
  • the next-generation base stations can be collectively referred to as the next-generation radio access network node (NG-RAN node).
  • the next-generation base station includes the new air interface base station (NR nodeB, gNB), the next-generation evolved base station (NG-eNB), and the central unit ( The central unit (CU) is separated from the distributed unit (DU) (gNB, etc.), the transmission receiving point (TRP), the transmission point (TP) or other nodes.
  • NR nodeB new air interface base station
  • NG-eNB next-generation evolved base station
  • CU central unit
  • the central unit (CU) is separated from the distributed unit (DU) (gNB, etc.), the transmission receiving point (TRP), the transmission point (TP) or other nodes.
  • the core network of the 5G system includes access and mobility management function (AMF) network elements, session management function (Session Management Function, SMF) network elements, and user plane function (User Plane Function, UPF) network elements , Authentication Server Function (AUSF) network element, Policy Control Function (PCF) network element, Application Function (AF) network element, unified data management function (UDM) Network elements, network slice selection function (Network Slice Selection Function, NSSF) network elements and other functional units.
  • AMF access and mobility management function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • AF Application Function
  • UDM unified data management function
  • NSSF Network Slice Selection Function
  • the AMF network element is mainly responsible for services such as mobility management and access management.
  • SMF network elements are mainly responsible for session management, UE address management and allocation, dynamic host configuration protocol functions, selection and control of user plane functions, etc.
  • UPF is mainly responsible for externally connected to the data network (DN) and user plane data packet routing and forwarding, message filtering, and performing quality of service (QoS) control related functions.
  • AUSF is mainly responsible for the authentication function of terminal equipment.
  • PCF network elements are mainly responsible for providing a unified policy framework for network behavior management, providing policy rules for control plane functions, and obtaining registration information related to policy decisions.
  • control and mobility management functions such as terminal device access authentication, security encryption, location registration, and user Session management functions such as establishment, release, and modification of the surface transmission path.
  • the functional units in the 5G core network can communicate through the next generation network (NG) interface.
  • the UE can transmit control plane messages with the AMF network element through the NG interface 1 (abbreviated as N1)
  • the RAN device can Establish a user plane data transmission channel with UPF through NG interface 3 (abbreviated as N3)
  • AN/RAN equipment can establish control plane signaling connection with AMF network elements through NG interface 2 (abbreviated as N2)
  • UPF can use NG interface 4 (abbreviated as N4)
  • Information exchange with SMF network elements UPF can exchange user plane data with data network DN through NG interface 6 (abbreviated as N6)
  • AMF network elements can exchange information with SMF network elements through NG interface 11 (abbreviated as N11)
  • SMF network The element can exchange information with the PCF network element through the NG interface 7 (abbreviated as N7)
  • the AMF network element can exchange information with the AUSF through the NG interface 12 (abbreviated as N12).
  • the UP converter connects and communicates with the UPF network element in the 5G system, and the UP converter can be connected to the UPF network element through the N6 interface.
  • the CP converter connects and communicates with the PCF network element in the 5G system, and the CP converter can be connected to the PCF network element through the N5 interface.
  • the CP converter may be an AP network element.
  • the UE performs time synchronization according to the synchronization time information sent by the base station. Because of the transmission delay between the base station and the UE, the synchronization time information sent by the base station to the UE may be inaccurate due to the transmission delay, which makes the UE and The synchronization accuracy between base stations cannot meet service requirements.
  • the reference time information in the embodiments of the present application is used for time synchronization between the UE and the base station, and the time synchronization between the UE and the base station includes: obtaining time synchronization accuracy, or meeting the time synchronization accuracy of the UE and the reference clock.
  • the time reference information includes reference time (reference time) and/or reference frame (reference SFN).
  • reference time includes at least one of the following time information: days (refDays), seconds (refSeconds), milliseconds (refMilliSeconds), microseconds (refQuarterMicroSeconds), ten nanoseconds (ref10NaroSeconds), and nanoseconds (ref50NaroSeconds) .
  • the reference frame is identified by the system frame number (System Frame Number, SFN for short) of the reference frame.
  • the delay compensation parameter is used to perform delay compensation on the reference time information.
  • the delay compensation parameter may be a delay compensation value or an index value corresponding to the delay compensation value, and the delay compensation value is a specific The time value.
  • the delay compensation parameter may also be a delay compensation coefficient (or referred to as a delay compensation factor), and the value of the delay compensation coefficient is greater than zero.
  • the embodiment of this application does not limit the specific form of the delay compensation parameter. It can be understood that different delay compensation parameters correspond to different compensation algorithms. For example, when the delay compensation parameter is the delay compensation value, the reference time and the delay compensation The value is added or subtracted to get the reference time after compensation. When the delay compensation parameter is the index of the delay compensation value, the corresponding delay compensation value is searched according to the index value, and the reference time is added or subtracted from the delay compensation value to obtain the compensated reference time. When the time delay compensation parameter is the time delay compensation coefficient, multiply the reference time and the time delay compensation coefficient to obtain the compensated reference time. When the time delay compensation parameter is the time delay compensation coefficient, you can also multiply a predefined value with the time delay compensation coefficient to obtain a time delay compensation value, and add or subtract the reference time and the time delay compensation value. Get the reference time after compensation.
  • the first embodiment of the present invention provides a delay compensation method.
  • the UE performs delay compensation on the reference time information, and the compensated reference time information is more accurate, thereby improving the relationship between the UE and the base station. Synchronization accuracy between.
  • the time delay compensation method provided by the embodiment of the present invention can be applied to any scene that requires time synchronization, and is not limited to services that require high time synchronization accuracy, such as URLLC services or IIoT services.
  • FIG. 4 is a flowchart of a delay compensation method provided in Embodiment 1 of the present invention. As shown in FIG. 4, the method provided in this embodiment includes the following steps:
  • the UE obtains a delay compensation parameter.
  • the delay compensation parameter is used to perform delay compensation on the reference time information.
  • the delay compensation parameter may be a delay compensation value or an index value corresponding to the delay compensation value, and the delay compensation value is a specific time value.
  • the delay compensation parameter may also be a delay compensation coefficient (or referred to as a delay compensation factor), and the value of the delay compensation coefficient is greater than zero.
  • the UE performs delay compensation on the reference time information according to the delay compensation parameter.
  • the reference time information includes reference time (reference time) and/or reference frame (reference SFN).
  • reference time includes at least one of the following time information: days (refDays), seconds (refSeconds), milliseconds (refMilliSeconds), microseconds (refQuarterMicroSeconds), ten nanoseconds (ref10NaroSeconds), and nanoseconds (ref50NaroSeconds).
  • the reference frame is identified by the SFN of the reference frame.
  • time delay compensation parameters correspond to different compensation algorithms.
  • the time delay compensation parameter is a time delay compensation value
  • the reference time and the time delay compensation value are added or subtracted to obtain the compensated reference time.
  • the delay compensation parameter is the index of the delay compensation value
  • the corresponding delay compensation value is searched according to the index value, and the reference time is added or subtracted from the delay compensation value to obtain the compensated reference time.
  • the time delay compensation parameter is the time delay compensation coefficient
  • the reference time is multiplied by the time delay compensation coefficient to obtain the compensated reference time.
  • the compensated reference time is increased or decreased relative to the original reference time.
  • the UE After the UE performs time delay compensation on the reference time information, it can perform time synchronization with the base station according to the reference time information after the time delay compensation.
  • the specific synchronization method refers to an existing solution, which is not described in this embodiment.
  • the UE can obtain the delay compensation parameter in the following two ways: Method 1, the UE receives the delay compensation parameter sent by the base station. Manner 2: The UE obtains the delay compensation parameters according to the delay compensation mode.
  • the delay compensation method includes at least one of the following: using a fixed delay compensation value, calculating the delay compensation value based on timing advanced (TA), and calculating the delay compensation value based on the implementation of the UE.
  • the delay compensation method may be pre-configured on the UE, or may be indicated to the UE by the base station.
  • the UE obtains the delay compensation parameters according to the delay compensation method as follows:
  • the UE determines the fixed delay compensation value as the delay compensation value.
  • the fixed delay compensation value is pre-configured on the UE or sent to the UE when the base station indicates the delay compensation mode to the UE.
  • the UE obtains the effective TA, and calculates the delay compensation value according to the effective TA and a preset algorithm.
  • the delay compensation value is, for example, N TA /2, or N TA /2+ ⁇ , where N TA is the effective TA, and ⁇ can be a fixed value or ⁇ is the product of a fixed value and a coefficient, which is related to the magnitude of the road loss Related.
  • the UE calculates the delay compensation value according to the effective TA and the preset algorithm, which may be: the UE determines whether the current TA is effective according to the first information. If the current TA is valid, the UE determines that the current TA is the valid TA. If the current TA is invalid, the UE obtains the valid TA through the base station.
  • the preset algorithm which may be: the UE determines whether the current TA is effective according to the first information. If the current TA is valid, the UE determines that the current TA is the valid TA. If the current TA is invalid, the UE obtains the valid TA through the base station.
  • the UE may obtain a valid TA from the base station in the following ways:
  • the UE sends a random access preamble to the base station, and the UE receives a random access response (random access response, RAR for short) sent by the base station, and the random access response includes a valid TA.
  • RAR random access response
  • the UE can trigger a random access (random access) procedure.
  • the base station measures the effective TA according to the preamble sent by the UE, and carries the effective TA in the RAR and sends it to the UE.
  • the UE sends a first request message to the base station, the first request message is used to request the base station to send a TA command (command), and the UE receives the TA command sent by the base station.
  • the TA command includes a valid TA.
  • the UE When the UE is in the RRC connected state, the UE requests a TA command from the base station, and obtains a valid TA from the TA command.
  • the UE receives the TA command sent by the base station, and the TA command includes a valid TA.
  • this method is suitable for the RRC connected state. UE.
  • the UE receives the Physical Downlink Control Channel (PDCCH) order sent by the base station, and the UE establishes a random access procedure according to the PDCCH order.
  • the UE receives the effective TA sent by the base station during the establishment of the random access. .
  • PDCCH Physical Downlink Control Channel
  • This method is suitable for the UE in the RRC connected state.
  • the base station sends a PDCCH order to the UE.
  • the UE establishes a random access process according to the PDCCH order, and the UE is in the random access process Get a valid TA.
  • the difference between this method and the method (1) is that the random access process is triggered by the UE in the method (1), and the random access process is triggered by the network side in the method (4).
  • the UE receives a paging command sent by the base station, the UE establishes a random access procedure according to the paging command, and the UE receives an effective TA sent by the base station during the random access establishment process.
  • This method is suitable for the UE in the idle state or RRC inactive state.
  • the base station sends the paging command to the UE.
  • the UE establishes the random access process according to the paging command, and the UE obtains it during the random access process. Effective TA.
  • the difference between this method and the method (1) is that the random access process is triggered by the UE in the method (1), and the random access process is triggered by the network side in the method (5).
  • the UE determines whether the current TA is valid according to the first information.
  • the first information may also be used to determine whether delay compensation needs to be performed.
  • the first information includes at least one of the following information: the status of the UE, and the status of the UE includes: radio resource control (Radio Resource Control, RRC for short) connected state, idle state or RRC inactive state (RRC inactive); Whether the UE's time alignment timer (timeAlignmentTimer) is on or running;
  • radio resource control Radio Resource Control, RRC for short
  • RRC inactive RRC inactive
  • timeAlignmentTimer Whether the UE's time alignment timer (timeAlignmentTimer) is on or running;
  • the service characteristics of the delay-sensitive communication TSC service currently running by the UE is used to indicate whether the UE has established or activated the TSC service; and the UE's delay compensation capability information.
  • the UE For example, if the UE is out of synchronization in the uplink (that is, the uplink is out of synchronization) and there is no valid delay compensation value, the UE triggers a random access procedure, or the UE requests the base station to send a TA command.
  • the UE if the UE is out of synchronization in the uplink and there is no valid delay compensation value at time t1, the UE triggers a random access procedure at time t1, or the UE requests the base station to send a TA command.
  • the UE if the UE is out of synchronization in the uplink and there is no effective delay compensation value at t1, the UE triggers a random access procedure at t0, or the UE requests the base station to send a TA command, where t0 is earlier than t1.
  • the base station actively sends a TA command to the UE, where t0 is earlier than t1.
  • the UE if the UE is out of synchronization in the uplink and the TSC service is activated/arrival/transmitted, the UE triggers a random access procedure, and the UE requests the base station to send a TA command.
  • the UE if the UE is out of synchronization in the uplink and the TSC service is activated/arrival/transmitted at time t1, the UE triggers a random access procedure at time t1, or the UE requests the base station to send a TA command.
  • the UE if the UE is out of synchronization in the uplink and the TSC service is activated/arrival/transmitted at time t1, the UE triggers a random access procedure at time t0, or the UE requests the base station to send a TA command, where t0 is earlier than t1.
  • the base station actively sends a TA command to the UE, where t0 is earlier than t1.
  • the UE determines that the uplink is out of synchronization.
  • the base station may also obtain the delay compensation parameter in the same manner as the UE, which is not described in detail in this embodiment.
  • step S100 is further included: the UE determines to perform delay compensation on the reference time information.
  • the UE determines the delay compensation for the reference time information according to at least one of the following information: the first delay compensation information sent by the base station, the second predefined delay compensation information, and the delay of the UE Compensation capability information.
  • the first delay compensation information is sent by the base station to the UE through a system information block (System Information Block, SIB for short) or an RRC message.
  • SIB System Information Block
  • the SIB message may be a SIB9 message or other SIB messages, which is not limited in the embodiment of the present application.
  • the RRC message is a dedicated RRC (dedicated RRC) message.
  • the dedicated RRC message can be a DLInformationTransfer message or a new dedicated RRC message containing synchronization information.
  • the first delay compensation information includes at least one of the following information: delay compensation parameters, first indication information, effective time information for delay compensation, judgment conditions for the UE to perform delay compensation, second indication information, time Delay compensation mode and TSN clock identifier, where the first indication information is used to indicate whether the UE needs to perform delay compensation on the reference time information, and the second indication information is used to indicate whether the base station performs delay compensation on the reference time information.
  • the delay compensation parameter may be determined by the base station, or may be determined by the UE and reported to the base station.
  • the first indication information and the second indication information are carried by two different IEs or bits.
  • the first indication information When the value of the first IE or the first bit is true, it means that the UE is required to compensate for the reference time information. When the value of the first IE or the first bit is false, it means that the UE is not required to compensate for the reference time. Information compensation.
  • the base station When the value of the second IE or the second bit used to carry the second indication information is true, it means that the base station has performed delay compensation for the reference time information. When the value of the second IE or the second bit is true When false, it means that the base station does not perform delay compensation for the reference time information.
  • the base station compensates for the reference time information, the value of the second IE or the second bit is true, and the value of the first IE or the first bit is false, that is, the UE does not need to compensate for the reference time information. If no base station compensates for the reference time information, the value of the second IE or the second bit is false, and the value of the first IE or the first bit is true, and the UE needs to compensate for the reference time information.
  • the UE determines that it needs to check the reference time Information compensation. In other cases, the UE determines that it is not necessary to perform delay compensation on the reference time information.
  • This other situation includes: the value of the second IE or the second bit is true, and the value of the first IE or the first bit is false. Or, the value of the second IE or the second bit is true, and the value of the first IE or the first bit is true. Or, the value of the second IE or the second bit is false, and the value of the first IE or the first bit is fales.
  • the UE receives the first indication information, if the first indication information indicates that the UE needs to compensate for the reference time information, then The UE determines to perform delay compensation on the reference time information. If the first indication information indicates that the UE does not need to compensate for the reference time information, the UE determines not to perform delay compensation for the reference time information.
  • the UE determines not to perform delay compensation for the reference time information, and if the second indication information indicates that the base station does not perform delay compensation for the reference time information information, the UE determines to perform delay compensation for the reference time information.
  • the UE determines to perform delay compensation on the reference time information according to the first indication information and/or the second indication information
  • the UE may perform delay compensation on the reference time information according to the delay compensation parameter included in the first delay compensation information or the delay compensation parameter calculated by the UE itself. If the first time delay compensation information includes a time delay compensation parameter, the time delay compensation parameter is used to perform time delay compensation on the reference time information. If the first delay compensation information does not include the delay compensation parameter, the UE may determine the delay compensation according to the delay compensation mode included in the first delay compensation information or the delay compensation mode included in the second delay compensation information Parameter, and then use the delay compensation parameter to perform delay compensation on the reference time information.
  • the delay compensation parameter may also be used by the UE to determine whether to perform delay compensation on the reference time information. For example, when the UE receives the delay compensation parameter, the UE determines to perform delay compensation on the reference time information, and performs delay compensation on the reference time information according to the delay compensation parameter. In this manner, the first delay compensation information does not need to include the first indication information and the second indication information.
  • the UE may determine the start time and/or end time of the delay compensation according to the effective time of the delay compensation.
  • the effective time information of the first time delay compensation may include the start time and/or the duration of time delay compensation performed by the UE.
  • the UE performs delay compensation on the reference time information according to the delay compensation parameter, it compensates the reference time information according to the effective time information of the delay compensation and the delay compensation parameter.
  • the UE performs delay compensation on the reference time information according to the delay compensation parameter at the start time of the delay compensation, and stops performing the delay compensation on the reference time information at the end time of the delay compensation. If the first delay compensation information does not include the effective time information of the delay compensation, the UE can always perform delay compensation on the reference time information, or the UE decides when to start the delay compensation and when to end the delay compensation.
  • the effective time information of the delay compensation may also be used by the UE to determine whether it is necessary to perform delay compensation on the reference time information.
  • the UE determines to perform delay compensation on the reference time information. In this manner, the first delay compensation information does not need to include the first indication information and the second indication information.
  • the delay compensation parameter is used to perform delay compensation on the reference time information . If the first delay compensation information does not include the delay compensation parameter, the UE may determine the delay compensation parameter according to the delay compensation mode included in the first delay compensation information, and then use the delay compensation parameter to perform the reference time information Time delay compensation.
  • the UE determines to perform the delay compensation on the reference time information, which may be: the UE measures the measurement object according to the judgment condition, and obtains the measurement result. When the result meets the judgment condition, the UE determines to perform delay compensation on the reference time information.
  • the measurement object may be configured by the network side, and the measurement object may be a channel status reference indicator signal (Channel Status Indicator Reference Signal, referred to as CSI-RS) and/or a synchronization signal block (Synchronization Signal Block, referred to as SSB).
  • CSI-RS Channel Status Indicator Reference Signal
  • SSB Synchronization Signal Block
  • the measurement result includes at least one of the following parameters: Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), Channel to Interference and Noise Ratio (RSRP) Signal to Interference plus Noise Ratio (SINR for short), path loss.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSRP Channel to Interference and Noise Ratio
  • SINR Signal to Interference plus Noise Ratio
  • the judgment condition for the UE to perform delay compensation may include any one of the conditions:
  • the UE determines to perform delay compensation on the reference time information.
  • the UE determines to perform delay compensation on the reference time information.
  • the UE determines to perform delay compensation on the reference time information.
  • the UE determines not to perform delay compensation on the reference time information.
  • the UE determines not to perform delay compensation on the reference time information.
  • the UE determines not to perform delay compensation on the reference time information.
  • the base station can configure two thresholds, one threshold is used for the judgment of performing delay compensation, and the other is used for judgment of not performing delay compensation.
  • the network indicates TH1 and TH2.
  • the UE determines not to perform delay compensation on the reference time information, and when the path loss is greater than TH2, the UE determines to perform delay compensation on the reference time information.
  • the UE may also determine whether to perform delay compensation on the reference time information in combination with multiple measurement results. For example, when the RSRP or SIRQ is less than or equal to the preset first threshold or after a period of time, and the path loss is greater than the second After the threshold period of time, the UE determines to perform delay compensation on the reference time information.
  • the UE determines the delay compensation for the reference time information according to the judgment condition for executing the delay compensation, if the first delay compensation information includes the delay compensation parameter, the delay compensation parameter is used to delay the reference time information make up. If the first delay compensation information does not include the delay compensation parameter, the UE may determine the delay compensation parameter according to the delay compensation mode included in the first delay compensation information, and then use the delay compensation parameter to perform the reference time information Time delay compensation. If the first delay compensation information also includes effective time information of the delay compensation, the UE may perform delay compensation on the reference time information according to the effective time information of the delay compensation.
  • the UE may also combine the judgment condition for performing delay compensation with other information to determine whether it is necessary to perform delay compensation on the reference time information. For example, the UE first determines the need for delay compensation according to the first indication information and/or the second indication information. Perform delay compensation on the reference time information. If it is determined that the reference time information needs to be compensated for the delay, it further determines whether it meets the judgment conditions for performing the delay compensation. When the judgment conditions are met, the UE determines to delay the reference time information make up.
  • the delay compensation method includes at least one of the following methods: using a fixed delay compensation value, calculating the delay compensation value based on TA, or calculating the delay compensation value based on the implementation of the UE. If the first delay compensation information includes only one delay compensation method, the UE determines the delay compensation parameter according to the delay compensation method. If the first delay compensation information includes multiple delay compensation methods, the UE first selects a delay compensation method from the multiple delay compensation methods when determining the delay compensation parameters according to the delay compensation method.
  • the first delay compensation information may not carry the delay compensation mode.
  • a delay compensation manner may also be carried to notify the UE that the base station uses the delay compensation manner to obtain the delay compensation parameter.
  • the delay compensation manner can also be used for the UE to determine whether to perform delay compensation on the reference time information by itself. For example, when the first delay compensation information includes the delay compensation mode indication, the UE determines to perform delay compensation on the reference time information by itself.
  • the TSN clock (TSN clock) identifier can be used to indicate which TSN clock the UE performs delay compensation. If the UE communicates with multiple TSNs, some TSN clocks may not require delay compensation, and some TSN clocks require delay compensation Therefore, the TSN clock identifier needs to be used to indicate which TSN clock the UE performs delay compensation. Optionally, it can also be used for the UE to determine whether to perform delay compensation on the reference time information by itself. If the first delay compensation information includes the clock identifier of the TSN, the UE determines that it is responsible for the delay compensation on the reference time information.
  • the first delay compensation information may also include other information, for example, it may also include the TSN clock number (TSN clock number).
  • the second delay compensation information is information specified by the agreement, and the second delay compensation information may be completely or partially the same as the first delay compensation information.
  • the second delay compensation information includes at least one of the following information: delay compensation parameters, third indication information, effective time information of delay compensation, judgment conditions for the UE to perform delay compensation, delay compensation mode, TSN Clock identifier, and the third indication information is used to indicate that the base station or the UE performs delay compensation for the reference time information.
  • the base station does not need to send the first delay compensation information to the UE.
  • the UE can determine the delay compensation for the reference time information according to the second delay compensation information.
  • the specific determination method refers to the parameters of the first delay compensation information. description.
  • the UE may also combine the first delay compensation information and the second delay compensation information to perform delay compensation on the reference time information.
  • the UE will use the first indication information and/or The second indication information determines that the reference time information should be compensated by itself, and the reference time information is compensated according to the delay compensation parameter included in the second delay compensation information, or the UE according to the second delay compensation information includes The delay compensation method determines the delay compensation parameters, and uses the determined delay compensation parameters to compensate the reference time information.
  • the second delay compensation information includes third indication information
  • the third indication information is used to indicate that the UE performs delay compensation on the reference time information
  • the first delay compensation information includes a delay compensation parameter or a delay compensation method
  • the UE determines whether to perform delay compensation on the reference time information according to the third indication information included in the second delay compensation information and the judgment condition for the UE to perform delay compensation included in the first delay compensation information.
  • the delay compensation capability information of the UE is used to indicate whether the UE has the delay compensation capability. If the UE has the delay compensation capability, the UE determines to perform delay compensation on the reference time information by itself.
  • the UE may also determine whether to perform delay compensation on the reference time information in combination with the delay compensation capability information of the UE and the first delay compensation information. For example, the UE first performs delay compensation according to the first indication information and the second delay compensation information in the first delay compensation information When the indication information or the delay compensation parameter or the effective time information of the delay compensation are known to require delay compensation for the reference time information, the UE then determines whether it has the delay compensation capability according to the delay compensation capability information, if the delay compensation capability information It means that the UE has the delay compensation capability, and the UE determines to perform delay compensation on the reference time information. If the delay compensation capability information indicates that the UE does not have the delay compensation capability, the UE determines not to perform delay compensation on the reference time information.
  • the UE may also determine whether to perform delay compensation on the reference time information in combination with the delay compensation capability information of the UE and the second delay compensation information. For example, the UE first performs delay compensation according to the third indication information in the second delay compensation information or Knowing the delay compensation parameter or the effective time information of the delay compensation requires delay compensation for the reference time information, the UE then determines whether it has the delay compensation capability according to the delay compensation capability information. If the delay compensation capability information indicates that the UE has With the delay compensation capability, the UE determines to perform delay compensation on the reference time information. If the delay compensation capability information indicates that the UE does not have the delay compensation capability, the UE determines not to perform delay compensation on the reference time information.
  • the UE may also report its own delay compensation capability information to the base station.
  • the UE determines the synchronization time information that needs to be compensated. For example, the UE determines that the reference time needs to be compensated for delay, or the UE determines that the reference frame corresponding to the reference SFN needs to be compensated for delay.
  • the reference time and reference SFN may be sent by the base station to the UE through an RRC message or a broadcast message.
  • the reference time includes at least one of the following time information: days (refDays), seconds (refSeconds), milliseconds (refMilliSeconds), microseconds (refQuarterMicroSeconds), ten nanoseconds (ref10NaroSeconds)
  • the base station can carry the reference time through the following two IEs:
  • Method 1 Compared with the prior art, the granularity time of refMicroSeconds and ref10NaroSeconds is increased. Compared with the prior art, the second method increases the granularity time of ref10NaroSeconds. Increasing the refMicroSeconds and/or ref10NaroSeconds time is equivalent to increasing the time synchronization accuracy.
  • the UE After the UE obtains the reference time and the reference SFN, it learns that the SFN is the mth frame according to the reference SFN, and knows the SFN time and seconds according to the reference time, so that the UE knows the time of the mth frame In a few seconds, the time synchronization is completed.
  • the delay compensation parameter is the delay compensation value
  • the UE is Increase or decrease the delay compensation value on the basis.
  • the UE performs X or X/2 bias on the basis of Y
  • Y+X or Y+X/2 therefore, the final reference time is Y+X or Y+X/2
  • X is the delay compensation value.
  • the UE obtains the delay compensation parameter, and performs delay compensation on the reference time information according to the delay compensation parameter.
  • the delay compensation parameter By compensating the time delay of the reference time information, the error of the reference time information due to the propagation delay between the base station and the UE can be compensated, making the reference time information more accurate, and improving the subsequent UE to use the time-delay-compensated reference time information for time The time synchronization accuracy that can be obtained by synchronization.
  • FIG. 5 is a flowchart of a delay compensation method provided by Embodiment 2 of the present invention. As shown in FIG. 5, the method provided by this embodiment includes the following steps:
  • the base station generates first delay compensation information, where the first delay compensation information is used by the UE to determine whether to perform delay compensation on the reference time information.
  • the first delay compensation information includes at least one of the following information: first indication information, effective time information of delay compensation, judgment conditions for UE to perform delay compensation, second indication information, and delay compensation mode , TSN clock identifier, where the first indication information is used to indicate whether the UE needs to perform delay compensation, and the second indication information is used to indicate whether the base station has compensated for the reference time information.
  • the first delay compensation information further includes the number of TSN clocks.
  • the base station sends the first delay compensation information to the UE.
  • the base station may send multiple pieces of information in the first delay compensation information to the UE through one or more messages.
  • the base station may send the first delay compensation information to the UE through a SIB message or an RRC message, and the SIB message may be SIB9 Message, the RRC message may be a dedicated RRC message.
  • the UE may perform delay compensation according to the first delay compensation information, or may not perform delay compensation. If the UE determines to perform delay compensation according to the first delay compensation information, refer to the determination method and the specific compensation method in Embodiment 1.
  • the UE may also calculate the delay compensation parameters according to the delay compensation mode in the first delay compensation information, and send the delay compensation parameters to the base station.
  • the base station receives the delay compensation parameter sent by the UE, performs delay compensation on the reference time information according to the delay compensation parameter, and sends the reference time information after the delay compensation to the UE.
  • the base station performs time delay compensation on the reference time information, which can be: the base station increases or decreases the time delay compensation parameter on the basis of the reference time information, or multiplies the reference time information and the time delay compensation parameter to increase or decrease Hourly delay compensation parameters.
  • the reference time information includes: reference time and/or reference frame. Wherein, the reference time includes at least one of the following time information: days, seconds, milliseconds, microseconds, ten nanoseconds, and nanoseconds.
  • the compensation of the base station for the reference time information is the same as the compensation of the UE for the reference time information. Refer to the related description of the first embodiment, which will not be repeated here.
  • the base station generates the first delay compensation information and sends the first delay compensation information to the UE.
  • the first delay compensation information is used by the UE to determine whether to perform delay compensation on the reference time information.
  • the base station triggers the base station or the UE to perform time delay compensation on the reference time information through the first time delay compensation information, and the time synchronization accuracy is improved by compensating the reference time information.
  • FIG. 6 is a flowchart of a delay compensation method provided in Embodiment 3 of the present invention. As shown in FIG. 6, the method provided in this embodiment includes the following steps:
  • the base station generates first delay compensation information, where the first delay compensation information is used by the UE to determine whether to perform delay compensation on the reference time information.
  • the first delay compensation information includes at least one of the following information: first indication information, effective time information of delay compensation, judgment conditions for UE to perform delay compensation, second indication information, and delay compensation mode , TSN clock identifier, where the first indication information is used to indicate whether the UE needs to perform delay compensation, and the second indication information is used to indicate whether the base station has compensated for the reference time information.
  • the first delay compensation information further includes the number of TSN clocks.
  • the UE generates a delay compensation parameter.
  • the base station can generate the delay compensation parameters according to the delay compensation mode.
  • the base station first determines the delay compensation mode.
  • the delay compensation method can be issued by the high-level network or specified by the agreement.
  • the delay compensation method includes at least one of the following methods: adopting a fixed delay compensation value, calculating the delay compensation value based on TA, calculating the delay compensation value based on the realization of the UE, or calculating the delay compensation value based on the realization of the base station.
  • the base station can select a delay compensation method from multiple delay compensation methods.
  • the base station After the base station determines the delay compensation mode, it can generate the delay compensation parameters in the following ways:
  • the base station determines the fixed delay compensation value as a delay compensation parameter.
  • the base station obtains the effective TA, and calculates the delay compensation value according to the effective TA and a preset algorithm.
  • the base station acquiring a valid TA may be: the base station determines whether the current TA is valid according to the first information. If the current TA is valid, the base station determines that the current TA is a valid TA. If the current TA is invalid, the base station obtains a valid TA through measurement.
  • the first information includes one or more of the following information: the state of the UE, the state of the UE includes: RRC connected state, idle state or RRC inactive state; whether the time calibration timer of the UE is on or running; the UE is currently The service characteristics of the running TSC service; the third information is used to characterize or indicate whether the UE has established or activated the TSC service; the UE’s delay compensation capability information.
  • the first information may also be used to determine whether delay compensation needs to be performed.
  • the base station can measure the effective TA in the following manner:
  • the base station sends a PDCCH order to the UE.
  • the base station measures the effective TA during the random access establishment process.
  • the random access establishment process is triggered by the UE according to the PDCCH order.
  • the base station sends a paging command to the UE.
  • the base station measures the effective TA during the random access establishment process.
  • the random access establishment process is triggered by the UE according to the paging command.
  • the base station measures the effective TA according to the uplink channel or random access preamble sent by the UE.
  • the specific implementation manner for the base station to calculate the delay compensation parameter is the same as that of the UE. Refer to the description of the foregoing embodiment 1, which is not repeated here.
  • the base station sends the first delay compensation information and the delay compensation parameter to the UE.
  • the base station may send the first delay compensation information and the delay compensation parameters to the UE through one message, or may also send them to the UE through different messages.
  • the base station generates the first delay compensation information and the delay compensation parameter, and sends the first delay compensation information and the delay compensation parameter to the UE.
  • the first delay compensation information is used by the UE to determine whether to adjust the reference time Information is time-delay compensation, and the time-delay compensation parameter is used to compensate the time-delay of reference time information.
  • the base station triggers the base station or the UE to perform time delay compensation on the reference time information through the first time delay compensation information, and the time synchronization accuracy is improved by compensating the reference time information.
  • FIG. 7 is a flowchart of a delay compensation method provided by Embodiment 4 of the present invention. As shown in FIG. 7, the method provided by this embodiment includes the following steps:
  • the base station obtains a delay compensation parameter.
  • the base station receives the delay compensation parameter sent by the UE, and the delay compensation parameter is generated by the UE.
  • the delay compensation parameter is generated by the UE.
  • the base station In another method, the base station generates the delay compensation parameter according to the delay compensation method.
  • the manner in which the base station generates the delay compensation parameter refers to the description of the second embodiment, which will not be repeated here.
  • S402 The base station performs time delay compensation on the reference time information according to the time delay compensation parameter.
  • the base station increases or decreases the delay compensation parameter on the basis of the reference time information, or multiplies the reference time information with the delay compensation parameter to increase or decrease the delay compensation parameter.
  • the reference time information includes: reference time and/or reference frame. Wherein, the reference time includes at least one of the following time information: days, seconds, milliseconds, microseconds, ten nanoseconds, and nanoseconds.
  • the compensation of the base station for the reference time information is the same as the compensation of the UE for the reference time information. Refer to the related description of the first embodiment, which will not be repeated here.
  • the base station sends the reference time information after delay compensation to the UE.
  • the base station obtains the delay compensation parameter, performs delay compensation on the reference time information according to the delay compensation parameter, and sends the reference time information after the delay compensation to the UE.
  • the base station can compensate for the error of the reference time information due to the propagation delay between the base station and the UE through the delay compensation of the reference time information, making the reference time information more accurate, and improving the subsequent UE to use the reference time information after the delay compensation. Time synchronization accuracy that can be obtained by time synchronization.
  • the UE or the base station calculates the delay compensation value based on the TA.
  • the TA accuracy may be improved. For example, modify the TA adjustment accuracy to 1/2 of the existing accuracy. For example, modify the accuracy from ⁇ 256Tc to ⁇ 128Tc.
  • TC is the minimum time unit of the physical layer. Tc can be obtained by looking up the table.
  • the modified TA adjustment accuracy can also be called To enhance TA adjustment accuracy.
  • the enhanced TA adjustment accuracy can be stored in the base station in the form of a table in a predefined manner.
  • Table 1 is a schematic diagram of the enhanced TA adjustment accuracy, and Table 1 is as follows:
  • the enhanced TA adjustment accuracy can be used in combination with the solutions of Embodiment 1 to Embodiment 3, or can be used alone, that is, the existing TA adjustment accuracy is modified to the enhanced TA adjustment accuracy provided by this embodiment.
  • the UE may report the delay compensation capability to the base station.
  • the base station may send an enhanced TA command MAC CE and/or an enhanced random access response to the UE.
  • the enhanced TA command can be distinguished from the existing TA command through a new logical channel identification (logical channel identification, LCID for short), that is, the LCID of the enhanced TA command has a different value from the LCID of the existing TA command.
  • logical channel identification logical channel identification
  • the enhanced TA command can also be distinguished from the existing TA command through the new MAC CE format. For example, the number of bits occupied by the enhanced TA command is greater than 6.
  • Figure 8 is the format of the MAC CE of the existing TA command
  • Figure 9 is a schematic diagram of the format of the MAC CE of the enhanced TA command. Comparing Figures 8 and 9, it can be seen that the MAC CE of the existing TA command only occupies 1 word. Octet, and the existing TA command only occupies 6 bits, the enhanced TA command occupies 8 bits or the enhanced TA command MAC CE is expanded to 2 bytes. As shown in Figure 9, the position of the bits occupied by the enhanced TA command has changed.
  • the existing TA command and TAG ID (tag ID) jointly occupy an octet, and the enhanced TA command occupies a separate octet, TAG ID.
  • the extended 6 reserved bits R occupy one octet.
  • the number of bits occupied by the effective TA command in the enhanced random access response format is greater than 12, and the number of bits occupied by the effective TA command in the existing random access response format is equal to 12.
  • the enhanced random access response is used to transmit the extended TA command.
  • the effective TAcommand in the enhanced random access response occupies reserved bits in the existing random access response.
  • Figure 10 is a schematic diagram of the format of an existing random access response
  • Figure 11 is a schematic diagram of a format of an enhanced random access response.
  • the existing random access response occupies a total of 56 bits, and a total of 56 bits is 7 octets, among which, the reserved bit R occupies the first bit of oct1, TA command occupies the second bit of oct1 to the fifth bit of oct2, and TA command occupies a total of 12 bits.
  • the uplink authorization occupies the last three bits of oct2 and all bits of oct3-oct5, and temporary-Cell Radio Network Temporary Identifier (C-RNTI) occupies oct6 and oct7.
  • C-RNTI temporary-Cell Radio Network Temporary Identifier
  • the number of bits occupied by TA command in the existing random access response format is equal to 12, and the number of bits occupied by effective TA command in the enhanced random access response is 13 bits, that is, the number of bits occupied by TA command is The bit R is reserved in the existing random access response.
  • the base station may send an enhanced TA command and an existing TA command to the UE. Similarly, the base station may send an enhanced random access response and an existing random access response to the UE. For a UE with delay compensation capability, optionally, the UE may only detect the enhanced TA command and/or the enhanced random access response, and not the existing random access response and/or the existing TA command.
  • the UE may only detect the enhanced TA command and/or the enhanced random access response after sending the delay compensation capability supported by the UE to the base station. If the UE does not send the delay compensation capability supported by the UE to the base station, the UE needs to detect: the existing random access response, the existing TA command, the enhanced TA command, and the enhanced random access response.
  • the base station instructs the UE to use the enhanced TA command and/or the detection method corresponding to the enhanced random access response, and the UE detects only the enhanced TA command according to the instructions of the base station And/or enhanced random access response. If the UE does not receive an indication sent by the base station after the delay compensation capability reported by the UE, the UE needs to detect: the existing random access response, the existing TA command, the enhanced TA command, and the enhanced random access response.
  • the base station actively instructs the UE to adopt an enhanced TA command and/or an enhanced random access response corresponding detection method, and the UE detects only the enhanced TA command and/or enhanced random access response according to the instructions of the base station.
  • FIG. 12 is a schematic structural diagram of a UE provided in Embodiment 7 of this application. As shown in FIG. 12, the UE 100 includes:
  • the obtaining module 11 is used to obtain time delay compensation parameters
  • the compensation module 12 is configured to perform time delay compensation on the reference time information according to the time delay compensation parameter.
  • the reference time information is used for time synchronization between the UE and the base station.
  • a synchronization module configured to perform time synchronization with the base station according to the reference time information after delay compensation.
  • a determining module configured to determine the delay compensation for the reference time information.
  • the determining module is specifically configured to: determine the delay compensation for the reference time information according to at least one of the following information:
  • the first delay compensation information, the predefined second delay compensation information sent by the base station, and the delay compensation capability information of the UE are included in the first delay compensation information, the predefined second delay compensation information sent by the base station, and the delay compensation capability information of the UE.
  • a receiving module configured to receive the first delay compensation information sent by the base station through a system information block SIB or a radio resource control RRC message.
  • the first delay compensation information includes at least one of the following information: the delay compensation parameter, the first indication information, the effective time information of the delay compensation, the judgment condition for the UE to perform the delay compensation, The second indication information, the delay compensation method, and the clock identifier of the time-sensitive network TSN, where the first indication information is used to indicate whether the UE needs to perform delay compensation, and the second indication information is used to indicate whether the base station The reference time information is compensated.
  • the determining module is specifically configured to: measure the measurement object according to the judgment condition to obtain the measurement result
  • the measurement result includes at least one of the following parameters: reference signal received power RSRP, reference signal received quality RSRQ, channel to interference plus noise ratio SINR, path loss; when the measurement result meets the judgment condition, it is determined Perform delay compensation with reference to time information.
  • the delay compensation method includes at least one of the following methods: adopting a fixed delay compensation value, calculating a delay compensation value based on a timing advance TA, or calculating a delay compensation value based on the realization of the UE.
  • the acquiring module 11 is specifically configured to receive the delay compensation parameter sent by the base station.
  • the acquiring module 11 is specifically configured to acquire the delay compensation parameter according to a delay compensation mode indicated by the base station.
  • the acquisition module 11 is specifically configured to: when the delay compensation mode is to use a fixed delay compensation value, determine the fixed delay compensation value as the delay compensation parameter.
  • the acquiring module 11 is specifically configured to: when the delay compensation method is to calculate a delay compensation value based on TA, acquire an effective TA, and calculate the delay compensation value according to the effective TA and a preset algorithm .
  • the acquiring module 11 is specifically configured to: when the current TA is valid, determine that the current TA is the valid TA; when the current TA is invalid, acquire the valid TA through the base station.
  • the obtaining module 11 is also used for:
  • the first information includes at least one of the following information:
  • the state of the UE includes: a radio resource control RRC connected state, an idle state or an RRC inactive state;
  • the third information is used to indicate whether the UE has established or activated the TSC service
  • the acquiring module 11 is specifically configured to: send a random access preamble to the base station, and receive a random access response sent by the base station, where the random access response includes the effective TA.
  • the acquiring module 11 is specifically configured to: send a first request message to the base station, where the first request message is used to request the base station to send a TA command, and to receive the TA command sent by the base station.
  • the TA command includes the valid TA.
  • the acquiring module 11 is specifically configured to: receive a TA command sent by the base station, where the TA command includes the effective TA.
  • the acquiring module 11 is specifically configured to: receive a physical downlink control channel PDCCH order or paging command sent by the base station, establish a random access process according to the PDCCH order or paging command, and establish a random access In the process, the effective TA sent by the base station is received.
  • the compensation module 12 is specifically configured to increase or decrease the delay compensation parameter based on the reference time information.
  • the reference time information includes: reference time and/or reference frame.
  • the reference time includes at least one of the following time information: days, seconds, milliseconds, microseconds, ten nanoseconds, and nanoseconds.
  • the number of bits occupied by the valid TA in the format of the random access response is greater than 12.
  • the effective TA occupies reserved bits.
  • the number of bits occupied by the TA command is greater than 6.
  • the acquiring module is specifically configured to perform detection only according to the format of the random access response.
  • the acquiring module is specifically configured to perform detection only according to the format of the TA command.
  • the UE provided in any implementation manner of this embodiment is used to implement the technical solution implemented by the UE in any of the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 13 is a schematic structural diagram of a base station provided in Embodiment 8 of this application. As shown in FIG. 13, the base station 200 includes:
  • the generating module 21 is configured to generate first delay compensation information, where the first delay compensation information is used by the user equipment UE to determine whether to perform delay compensation on the reference time information;
  • the sending module 22 is configured to send the first delay compensation information to the UE.
  • the first delay compensation information includes at least one of the following information: first indication information, effective time information for delay compensation, judgment conditions for the UE to perform delay compensation, second indication information, time Delay compensation mode, the clock identifier of the time-sensitive network TSN, wherein the first indication information is used to indicate whether the UE needs to perform delay compensation, and the second indication information is used to indicate whether the base station performs the reference time information make up.
  • the sending module 22 is further configured to send a delay compensation parameter to the UE.
  • the generating module 21 is further configured to generate the delay compensation parameter according to a delay compensation manner.
  • it further includes: a determining module, configured to determine the delay compensation mode.
  • Optional also includes:
  • a receiving module configured to receive the delay compensation parameter sent by the UE
  • a compensation module configured to perform delay compensation on the reference time information according to the delay compensation parameter
  • the sending module is further configured to send the reference time information after delay compensation to the UE.
  • the delay compensation method includes at least one of the following methods: adopting a fixed delay compensation value, calculating a delay compensation value based on a timing advance TA, calculating a delay compensation value based on the implementation of the UE, or calculating a delay compensation value based on The implementation of the base station calculates the delay compensation value.
  • the generating module 21 is specifically configured to determine that the fixed delay compensation value is the delay compensation parameter when the delay compensation mode is a fixed delay compensation value.
  • the generating module 21 includes:
  • the obtaining sub-module is used to obtain a valid TA when the delay compensation method is to calculate a delay compensation value based on the TA;
  • the calculation sub-module is configured to calculate the delay compensation value according to the effective TA and a preset algorithm.
  • the acquiring submodule is specifically configured to: when the current TA is valid, determine that the current TA is the valid TA; when the current TA is invalid, obtain the valid TA through measurement.
  • the acquiring submodule is further configured to: determine whether the current TA is valid according to the first information;
  • the first information includes at least one of the following information:
  • the state of the UE includes: a radio resource control RRC connected state, an idle state or an RRC inactive state;
  • the third information is used to indicate whether the UE has established or activated the TSC service
  • the acquisition submodule is specifically configured to: send a physical downlink control channel PDCCH order or a paging command to the UE, and measure the effective TA during the random access establishment process, and the random access establishment process is The UE is triggered according to the PDCCH order or the paging order.
  • the acquiring submodule is specifically configured to measure the effective TA according to an uplink channel or a random access preamble sent by the UE.
  • the compensation module is specifically configured to increase or decrease the delay compensation parameter on the basis of the reference time information interval.
  • the reference time information includes: reference time and/or reference frame.
  • the reference time includes at least one of the following time information:
  • the base station provided in any implementation manner of this embodiment is used to implement the technical solution executed by the base station in the second method embodiment.
  • the implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 14 is a schematic structural diagram of a base station according to Embodiment 9 of this application. As shown in FIG. 14, the base station 300 includes:
  • the obtaining module 31 is used to obtain time delay compensation parameters
  • the compensation module 32 is configured to perform delay compensation on the reference time information according to the delay compensation parameter
  • the sending module 33 is configured to send the reference time information after delay compensation to the user equipment UE.
  • the acquiring module 31 is specifically configured to: receive the delay compensation parameter sent by the UE.
  • the acquisition module 31 is specifically configured to generate the delay compensation parameter according to a delay compensation mode.
  • the delay compensation method includes at least one of the following methods: adopting a fixed delay compensation value, calculating a delay compensation value based on a timing advance TA, calculating a delay compensation value based on the implementation of the UE, or calculating a delay compensation value based on The implementation of the base station calculates the delay compensation value.
  • the acquisition module 31 is specifically configured to: when the delay compensation mode is to adopt a fixed delay compensation value, determine the fixed delay compensation value as the delay compensation parameter.
  • the acquisition module 31 is specifically configured to: when the delay compensation method is to calculate a delay compensation value based on TA, acquire an effective TA, and calculate the delay compensation value according to the effective TA and a preset algorithm .
  • the acquiring module 31 is specifically configured to: when the current TA is valid, determine that the current TA is the valid TA; when the current TA is invalid, obtain the valid TA through measurement.
  • the acquiring module 31 is further configured to: determine whether the current TA is valid according to the first information;
  • the first information includes at least one of the following information:
  • the state of the UE includes: a radio resource control RRC connected state, an idle state or an RRC inactive state;
  • the third indication information is used to characterize or indicate whether the UE has established or activated the TSC service
  • the acquiring module 31 is specifically configured to: send a physical downlink control channel PDCCH command or a paging command to the UE; measure the effective TA during the random access establishment process, and the random access establishment process is The UE is triggered according to the PDCCH order or the paging order.
  • the acquiring module 31 is specifically configured to measure the effective TA according to an uplink channel or a random access preamble sent by the UE.
  • the compensation module 32 is specifically configured to increase or decrease the delay compensation parameter on the basis of the reference time corresponding to the reference time information.
  • the reference time information includes: reference time and/or reference frame.
  • the reference time includes at least one of the following time information: days, seconds, milliseconds, microseconds, ten nanoseconds, and nanoseconds.
  • FIG. 14 is a schematic structural diagram of a UE provided in Embodiment 9 of this application. As shown in FIG. 14, the UE 400 includes:
  • Processor 41 memory 42, interface 43 for communicating with other devices;
  • the memory 42 stores computer execution instructions
  • the processor 41 executes the computer-executable instructions stored in the memory, so that the processor 41 executes the technical solution executed by the UE in any of the foregoing method embodiments.
  • FIG. 14 is a simple design of the UE.
  • the embodiment of the present application does not limit the number of processors and memories in the UE.
  • FIG. 14 only uses 1 as an example for illustration.
  • FIG. 15 is a schematic structural diagram of a base station provided in Embodiment 10 of this application. As shown in FIG. 15, the base station 500 includes:
  • Processor 51 memory 52, interface 53 for communicating with other devices;
  • the memory 52 stores computer execution instructions
  • the processor 51 executes the computer-executable instructions stored in the memory, so that the processor 51 executes the technical solution executed by the base station in any of the foregoing method embodiments.
  • FIG. 15 is a simple design of the base station.
  • the embodiment of the present application does not limit the number of processors and memories in the base station.
  • FIG. 15 only uses 1 as an example for illustration.
  • the memory, the processor, and the interface may be connected by a bus.
  • the memory may be integrated in the processor.
  • the embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, it is used to implement the UE execution in any of the foregoing method embodiments Technical solutions.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, it is used to implement the base station in any of the foregoing method embodiments The technical solution implemented.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the technical solution executed by the UE in any of the foregoing method embodiments.
  • the embodiment of the present application also provides a program, which is used to execute the technical solution executed by the base station in any of the foregoing method embodiments when the program is executed by the processor.
  • the foregoing processor may be a chip.
  • the embodiment of the present application also provides a computer program product, including program instructions, which are used to implement the technical solution executed by the UE in any of the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product, including program instructions, which are used to implement the technical solution executed by the base station in any of the foregoing method embodiments.
  • An embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution executed by the UE in any of the foregoing method embodiments.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute any of the foregoing The technical solution executed by the UE in the method embodiment.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute any of the foregoing The technical solution executed by the UE in the method embodiment.
  • An embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution executed by the base station in any of the foregoing method embodiments.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute any of the foregoing The technical solution executed by the base station in the method embodiment.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute any of the foregoing The technical solution executed by the base station in the method embodiment.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division, and there may be other divisions in actual implementation, for example, multiple modules can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces.
  • the indirect coupling or communication connection of the modules may be in electrical, mechanical or other forms.
  • the processor can be a central processing unit (English: Central Processing Unit, abbreviated as: CPU), or other general-purpose processors or digital signal processors (English: Digital Signal Processor). , Abbreviation: DSP), Application Specific Integrated Circuit (English: Application Specific Integrated Circuit, Abbreviation: ASIC), etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like. The steps of the method disclosed in this application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • All or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a readable memory.
  • the program executes the steps including the foregoing method embodiments; and the foregoing memory (storage medium) includes: read-only memory (English: read-only memory, abbreviated as: ROM), RAM, flash memory, hard disk, Solid state drives, magnetic tapes (English: magnetic tape), floppy disks (English: floppy disk), optical discs (English: optical disc) and any combination thereof.

Abstract

本申请提供一种时延补偿方法、设备及存储介质,包括:UE或者基站获取时延补偿参数,根据时延补偿参数,对参考时间信息进行时延补偿,UE根据补偿后的参考时间信息与基站进行时间同步。通过对参考时间信息时延补偿,可以补偿参考时间信息由于基站和UE之间的传播时延导致的误差,使得参考时间信息更加准确,提高了后续UE使用时延补偿后的参考时间信息进行时间同步所能获取的时间同步精度。

Description

时延补偿方法、设备及存储介质 技术领域
本申请实施例涉及通信技术,尤其涉及一种时延补偿方法、设备及存储介质。
背景技术
随着通信技术的飞速发展,第五代移动通信(5 Generation,简称5G)网络逐渐被广泛应用。5G网络主要包括以下几类业务:增强型移动宽带(Enhanced mobile broadband,简称eMBB)、海量机器类通信(Massive Machine Type Communications,简称mMTC)和超可靠、低时延通信(Ultra-reliable and Low Latency Communications,URLLC)业务。
不同业务对时间同步(或称为时钟同步)精度的要求不同,以URLLC业务为例,URLLC业务需要5G网络提供更低的时延保证和更高的时间同步精度。传统方案中,用户设备(user quipment,简称UE)在上行传输过程中,根据基站发送的定时提前量(timing advance,简称TA)确定上行帧的传输提前量,根据传输提前量提前将上行传输帧发送给基站,以使得上行帧在期望的时间到达基站,从而补偿了由于距离引起的射频传输的时延。
但是,上述方案仍然无法满足UE对时间同步的要求。
发明内容
本申请实施例提供一种时延补偿方法、设备及存储介质,通过对参考时间进行补偿,提高了UE和网络侧的时间同步精度。
第一方面,本申请实施例可提供一种时延补偿方法,所述方法包括:
UE获取时延补偿参数;
所述UE根据所述时延补偿参数,对参考时间信息进行时延补偿。
第二方面,本申请实施例可提供一种时延补偿方法,所述方法包括:
基站生成第一时延补偿信息,所述第一时延补偿信息用于用户设备UE确定是否对参考时间信息进行时延补偿;
基站向所述UE发送所述第一时延补偿信息。
第三方面,本申请实施例可提供一种时延补偿方法,所述方法包括:
基站获取时延补偿参数;
所述基站根据所述时延补偿参数,对参考时间信息进行时延补偿;
所述基站将时延补偿后的参考时间信息发送给用户设备UE。
第四方面,本申请实施例可提供一种UE,包括:
获取模块,用于获取时延补偿参数;
补偿模块,用于根据所述时延补偿参数,对参考时间信息进行时延补偿。
第五方面,本申请实施例可提供一种基站,包括:
生成模块,用于生成第一时延补偿信息,所述第一时延补偿信息用于用户设备UE确定是否对参考时间信息进行时延补偿;
发送模块,用于向所述UE发送所述第一时延补偿信息。
第六方面,本申请实施例可提供一种基站,包括:
获取模块,用于时延补偿参数;
补偿模块,用于根据所述时延补偿参数,对参考时间信息进行时延补偿;
发送模块,用于将时延补偿后的参考时间信息发送给UE。
第七方面,本申请实施例可提供一种UE,包括:
处理器、存储器、与其他设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第一方面所述的时延补偿方法。
第八方面,本申请实施例可提供一种基站,包括:
处理器、存储器、与其他设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第二方面所述的时延补偿方法。
第九方面,本申请实施例可提供一种基站,包括:
处理器、存储器、与其他设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第三方面所述的时延补偿方法。
第十方面,本申请实施例可提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第一方面所述的时延补偿方法。
第十一方面,本申请实施例可提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第二方面所述的时延补偿方法。
第十二方面,本申请实施例可提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第三方面所述的时延补偿方法。
第十三方面,本申请实施例提供一种程序,当该程序被处理器执行时,用于执行如上第一方面所述的时延补偿方法。
第十四方面,本申请实施例提供一种程序,当该程序被处理器执行时,用于执行如上第二方面所述的时延补偿方法。
第十五方面,本申请实施例提供一种程序,当该程序被处理器执行时,用于执行如上第三方面所述的时延补偿方法。
第十六方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现上述第一方面所述的时延补偿方法。
第十七方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现上述第二方面所述的时延补偿方法。
第十八方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现上述第三方面所述的时延补偿方法。
第十九方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行上述第一方面所述的时延补偿方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第一方面所述的时延补偿方法。
第二十方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行上述第二方面所述的时延补偿方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第二方面所述的时延补偿方法。
第二十一方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行上述第三方面所述的时延补偿方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第三方面所述的时延补偿方法。
本申请提供一种时延补偿方法、设备及存储介质,包括:UE或者基站获取时延补偿参数,根据时延补偿参数,对参考时间信息进行时延补偿,UE根据补偿后的参考时间信息与基站进行时间同步。通过对参考时间信息时延补偿,可以补偿参考时间信息由于基站和UE之间的传播时延导致的误差,使得参考时间信息更加准确,提高了后续UE使用时延补偿后的参考时间信息进行时间同步所能获取的时间同步精度。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1为本发明实施例适用的通信系统的架构示意图;
图2为UE和网络侧设备的时间同步示意图;
图3为TSN网络的一种架构示意图;
图4为本发明实施例一提供的一种时延补偿方法的流程图;
图5为本发明实施例二提供的一种时延补偿方法的流程图;
图6为本发明实施例三提供的一种时延补偿方法的流程图;
图7为本发明实施例四提供的一种时延补偿方法的流程图;
图8为现有的TA command的MAC CE的格式;
图9为增强的TA command的MAC CE的一种格式示意图;
图10为现有的随机接入响应的格式示意图;
图11为增强的随机接入响应的一种格式示意图;
图12为本申请实施例七提供的一种UE的结构示意图;
图13为本申请实施例八提供的一种基站的结构示意图;
图14为本申请实施例九提供的一种基站的结构示意图;
图15为本申请实施例十提供的一种UE的结构示意图;
图16为本申请实施例十一提供的一种基站的结构示意图。
通过上述附图,已示出本发明明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本发明构思的范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例提供一种时延补偿方法,图1为本发明实施例适用的通信系统架构的一种示例,如图1所示,该通信系统包括基站和多个终端设备。该通信系统可以为全球移动通讯(Global System of Mobile communication,简称GSM)系统、码分多址(Code Division Multiple Access,简称CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)系统、长期演进(Long Term Evolution,简称LTE)系统或第五代移动通信(5th-Generation,简称5G)系统。相应的,该基站可以为GSM系统或CDMA系统中的基站(Base Transceiver Station,简称BTS),也可以是WCDMA系统中的基站(NodeB,简称NB),还可以是LTE系统中的演进型基站(evolved NodeB,简称eNB)、接入点(access point,AP)或者中继站,也可以是5G系统中的基站等,在此不作限定。
该终端设备也称为用户设备(User Equipment,UE),终端设备可以是:手机、电脑,还可以为蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、智能电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、电脑、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡、电视机顶盒(set top box,STB)、车载设备、可穿戴设备、智能家居设备、工业设备、用于在无线系统上进行通信的其它设备等。
基站和UE保证正常通信的前提是:UE和基站保持时间同步(或称为时钟同步),现有技术中,由网络侧设备向UE发送时间同步信息和时间同步精度(accuracy),UE根据该时间同步信息和时间同步精度与基站进行时间同步,以满足UE与参考时钟的时间同步以及同步精度。网络侧设备可以将该时间同步信息和时间同步精度携带在RRC消息或广播消息中发送给UE,例如可以携带在RRC消息或广播消息中。具体的,携带的IE可以为TimeReferenceInfo信息元素(information element,简称IE)。
图2为UE和网络侧设备进行时间同步的一种示意图,如图2所示,UE侧的时间同步精度由网络侧通知的时间同步精度和UE侧的时间同步精度误差Δ1相关,UE侧的时间同步精度误差Δ1由物理层确定,与传播损耗、设备限制等很多因素相关。
其中,不同业务需求对时间同步精度要求不一样,有些业务对时间同步精度要求高,有些业务对 时间同步精度要求低。例如,工业互联网(Industrial internet of Things,简称IIoT)业务对时延和可靠性要求高,很多情况下需要满足1us的时间同步精度需求。
IIoT可以将数以亿计的工业设备连接到互联网中,通过这些工业设备上安装的传感器进行数据采集并传输给控制中心,由控制中心对这些数据进行处理以对设备进行管理和控制。IIoT中的工业设备可以通过已有的通信系统(例如LTE或者5G系统)进行数据传输。
5G系统的诞生,使得IIoT能够支持工业自动化(Factory automation),传输自动化(Transport Industry),智能电力(Electrical Power Distribution)等更多的业务。由于IIoT业务对时延和可靠性要求更高,基于此IIoT中引入了时间敏感性网络(Time sensitive network,简称TSN),5G网络作为TSN的桥梁,对TSN起着至关重要的作用。
在TSN中,5G网络需要提供更低的时延保证和更高的时钟同步精度,以便TSN业务在5G网络中传输的时候,机械操作的每一个点的操作和接续精准,且是符合时间要求的。
图3为TSN网络架构的一种示意图,如图3所示,TSN网络包括5G系统、用户侧TSN转换器、网络侧的TSN转换器和TSN控制中心。其中,用户侧TSN转换器与UE通过接口N60连接,用于对UE的数据进行协议和格式转换等操作。网络侧的TSN转换器包括用户面(user plane,UP)转换器和控制面(control plane,简称CP)转换器,UP转换器用于对UP数据进行协议和格式转换等操作,CP转换器用于对CP数据进行协议和格式转换等操作。
TSN控制中心包括TSN集中用户配置(Centralized User Configuration,简称CUC)节点、TSN集中网络配置(Centralized Network Configuration,简称CNC)节点和结束节点(end station)。其中,TSN CUC用于调整TSN end station的TSC stream需求,TSN CNC用于统一控制TSC网络的stream传输,end station即TSN talker和TSN listener,代表发送或接收TSC业务的每个网络节点。
5G系统也称为新接入技术(New Radio,NR)或者下一代移动通信系统,如图3所示,5G系统包括:接入网(access network,AN)和核心网。
5G系统中的AN可以是无线接入网(radio access network,RAN)或者有线AN,5G系统中的AN设备(RAN设备或者有线AN设备)可以由多个5G-AN节点组成,该5G-AN节点可以包括:非3GPP的接入网络的接入点(access point,AP)(如WiFi网络的接入点),下一代基站。下一代基站可统称为新一代无线接入网节点(NG-RAN node),其中,下一代基站包括新空口基站(NR nodeB,gNB)、新一代演进型基站(NG-eNB)、中心单元(central unit,CU)和分布式单元(distributed unit,DU)分离形态的gNB等)、收发点(transmission receive point,TRP)、传输点(transmission point,TP)或其它节点。
5G系统的核心网包括接入和移动性管理功能(Access and Mobility Management Function,AMF)网元、会话管理功能(Session Management Function,SMF)网元、用户面功能(User Plane Function,UPF)网元、鉴权服务器功能(Authentication Server Function,AUSF)网元、策略控制功能(Policy Control Function,PCF)网元、应用功能(Application Function,AF)网元、统一数据管理功能(unified data management,UDM)网元、网络切片选择功能(Network Slice Selection Function,NSSF)网元等多个功能单元。
AMF网元主要负责移动性管理、接入管理等服务。SMF网元主要负责会话管理、UE地址管理和分配、动态主机配置协议功能、用户面功能的选择和控制等。UPF主要负责对外连接到数据网络(data network,DN)以及用户面的数据包路由转发、报文过滤、执行服务质量(quality of service,QoS)控制相关功能等。AUSF主要负责对终端设备的认证功能等。PCF网元主要负责为网络行为管理提供统一的策略框架、提供控制面功能的策略规则、获取与策略决策相关的注册信息等。需要说明的是,这些功能单元可以独立工作,也可以组合在一起实现某些控制功能,如对终端设备的接入鉴权、安全加密、位置注册等接入控制和移动性管理功能,以及用户面传输路径的建立、释放和更改等会话管理功能。
5G核心网中各功能单元之间可以通过下一代网络(next generation,NG)接口进行通信,如:UE可以通过NG接口1(简称N1)与AMF网元进行控制面消息的传输,RAN设备可以通过NG接口3(简称N3)与UPF建立用户面数据传输通道,AN/RAN设备可以通过NG接口2(简称N2)与AMF网元建立控制面信令连接,UPF可以通过NG接口4(简称N4)与SMF网元进行信息交互,UPF可以通过NG接口6(简称N6)与数据网络DN交互用户面数据,AMF网元可以通过NG接口11(简称N11)与SMF网元进行信息交互,SMF网元可以通过NG接口7(简称N7)与PCF网元进行信息交互,AMF网元可以通过NG接口12(简称N12)与AUSF进行信息交互。需要说明的是,图2仅为示例性架构图,除图2中所示功能单元之外,该网络架构还可以包括其他功能单元。
UP转换器与5G系统中的UPF网元连接通信,UP转换器可以通过N6接口与UPF网元连接。CP 转换器与5G系统中的PCF网元连接通信,CP转换器可以通过N5接口与PCF网元连接。可选的,CP转换器可以为AP网元。
相关技术中,UE根据基站发送的同步时间信息进行时间同步,由于基站和UE之间存在传输时延,因此,基站发送给UE的同步时间信息可能由于传输时延导致不准确,从而使得UE和基站之间的同步精度无法满足业务需求。
本申请实施例中参考时间信息用于UE与基站之间进行时间同步,UE和基站之间进行时间同步包括:获取时间同步精度,或者,满足UE与参考时钟的时间同步精度。该时间参考信息包括参考时间(reference time)和/或参考帧(reference SFN)。
本申请实施例中,reference time包括以下时间信息中的至少一个:天(refDays)、秒(refSeconds)、毫秒(refMilliSeconds)、微秒(refQuarterMicroSeconds)、十纳秒(ref10NaroSeconds)和纳秒(ref50NaroSeconds)。
本申请实施例中,该参考帧通过参考帧的系统帧号(System Frame Number,简称SFN)标识。
本申请实施例中,时延补偿参数用于对参考时间信息进行时延补偿,该时延补偿参数可以为时延补偿值或者时延补偿值对应的索引值,该时延补偿值为一个具体的时间值。该时延补偿参数还可以为一个时延补偿系数(或者称为时延补偿因子),该时延补偿系数的取值大于0。
本申请实施例不对时延补偿参数的具体形式进行限制,可以理解,不同的时延补偿参数对应的补偿算法不同,例如,当时延补偿参数为时延补偿值时,将参考时间与时延补偿值进行相加或相减,得到补偿后的参考时间。当时延补偿参数为时延补偿值的索引时,根据该索引值查找对应的时延补偿值,将参考时间与时延补偿值进行相加或相减,得到补偿后的参考时间。当时延补偿参数为时延补偿系数时,将参考时间与时延补偿系数进行相乘,得到补偿后的参考时间。当时延补偿参数为时延补偿系数时,还可以将一个预定义的值与时延补偿系数进行相乘得到一个时延补偿值,将参考时间与该时延补偿值进行相加或相减,得到补偿后的参考时间。
为了解决现有技术的问题,本发明实施例一提供一种时延补偿方法,该方法由UE对参考时间信息进行时延补偿,补偿后的参考时间信息更加准确,从而提高了UE和基站之间的同步精度。
本发明实施例提供的时延补偿方法可以应用在任何需要进行时间同步的场景,不限于URLLC业务或者IIoT业务等对时间同步精度要求高的业务。
实施例一
图4为本发明实施例一提供的一种时延补偿方法的流程图,如图4所示,本实施例提供的方法包括以下步骤:
S101、UE获取时延补偿参数。
时延补偿参数用于对参考时间信息进行时延补偿,该时延补偿参数可以为时延补偿值或者时延补偿值对应的索引值,该时延补偿值为一个具体的时间值。该时延补偿参数还可以为一个时延补偿系数(或者称为时延补偿因子),该时延补偿系数的取值大于0。
S102、UE根据时延补偿参数,对参考时间信息进行时延补偿。
该参考时间信息包括参考时间(reference time)和/或参考帧(reference SFN)。本实施例中,reference time包括以下时间信息中的至少一个:天(refDays)、秒(refSeconds)、毫秒(refMilliSeconds)、微秒(refQuarterMicroSeconds)、十纳秒(ref10NaroSeconds)和纳秒(ref50NaroSeconds)。本实施例中,该参考帧通过参考帧的SFN标识。
可以理解,不同的时延补偿参数对应的补偿算法不同,例如,当时延补偿参数为时延补偿值时,将参考时间与时延补偿值进行相加或相减,得到补偿后的参考时间。当时延补偿参数为时延补偿值的索引时,根据该索引值查找对应的时延补偿值,将参考时间与时延补偿值进行相加或相减,得到补偿后的参考时间。当时延补偿参数为时延补偿系数时,将参考时间与时延补偿系数进行相乘,得到补偿后的参考时间,补偿后的参考时间相对于原参考时间增大了或者减少了。当时延补偿参数为时延补偿系数时,还可以将一个预定义的值与时延补偿系数进行相乘得到一个时延补偿值,将参考时间与该时延补偿值进行相加或相减,得到补偿后的参考时间。
本申请实施例中,通过对参考时间信息进行时延补偿,相当于对参考时间信息进行了一个X的偏移。
UE在对参考时间信息进行时延补偿之后,可以根据时延补偿后的参考时间信息,与基站进行时间同步,具体同步方法参考已有方案,本实施例不对此进行赘述。
在S101中,UE可以通过如下两种方式获取时延补偿参数:方式一,UE接收基站发送的时延补偿参数。方式二,UE根据时延补偿方式,获取时延补偿参数。
该时延补偿方式包括以下至少一种:采用固定时延补偿值、基于定时提前量(timing advanced,简 称TA)计算时延补偿值以及基于UE的实现计算时延补偿值。该时延补偿方式可以预先配置在UE上,也可以由基站向UE指示。
方式二中,UE根据时延补偿方式获取时延补偿参数具体为:
(1)当时延补偿方式为采用固定时延补偿值时,UE确定固定时延补偿值为时延补偿值。该固定时延补偿值预先配置在UE上,或者由基站向UE指示时延补偿方式时发送给UE。
(2)当时延补偿方式为基于TA计算时延补偿值时,UE获取有效TA,根据有效TA和预设算法计算时延补偿值。
时延补偿值例如为N TA/2,或者,N TA/2+Δ,其中,N TA为有效TA,Δ可以为一个固定值或者Δ为固定值与系数的乘积,该系数与路损大小相关。
UE根据有效TA和预设算法计算时延补偿值,可以为:UE根据第一信息,确定当前TA是否有效。如果当前TA有效,则UE确定当前TA为该有效TA。如果当前TA无效,则UE通过基站获取该有效TA。
示例性的,UE可以通过如下几种方式向基站获取有效TA:
(1)UE向基站发送随机接入前导(preamble),UE接收基站发送的随机接入响应(random access response,简称RAR),该随机接入响应中包括有效TA。
当UE处于空闲态或者RRC inactive态时,可以由UE触发随机接入(random access)流程,基站根据UE发送的preamble测量得到有效TA,并将有效TA携带在RAR中发送给UE。
(2)UE向基站发送第一请求消息,该第一请求消息用于请求基站发送TA命令(command),UE接收基站发送的TA命令,TA命令中包括有效TA。
当UE处于RRC连接态时,UE向基站请求TA command,从TA command中获取有效TA。
(3)UE接收基站发送的TA命令,TA命令中包括有效TA。
该方式与方式(2)的区别在于,该方式中由基站主动向UE发送TA command,不需要UE向基站请求TA command,UE从TA command中获取有效TA,该方式适用于处于RRC连接态的UE。
(4)UE接收基站发送的物理下行控制信道(Physical Downlink Control Channel,简称PDCCH)命令(order),UE根据PDCCH命令建立随机接入过程,UE在随机接入建立过程中接收基站发送的有效TA。
该方式适用于处于RRC连接态的UE,当网络侧有下行数据向UE发送但上行失步时,基站向UE发送PDCCH命令,UE根据PDCCH命令建立随机接入过程,UE在随机接入过程中获取有效TA。该方式与方式(1)的区别在于,方式(1)中由UE触发随机接入过程,方式(4)中由网络侧触发随机接入过程。
(5)UE接收基站发送的寻呼(paging)命令,UE根据paging命令建立随机接入过程,UE在随机接入建立过程中接收基站发送的有效TA。
该方式适用于处于空闲态或者RRC inactive态的UE,当网络侧有下行数据向UE发送时,基站向UE发送paging命令,UE根据paging命令建立随机接入过程,UE在随机接入过程中获取有效TA。该方式与方式(1)的区别在于,方式(1)中由UE触发随机接入过程,方式(5)中由网络侧触发随机接入过程。
本实施例中,UE根据第一信息,确定当前TA是否有效。可选的,第一信息还可以用于判断是否需要执行时延补偿。
示例性的,该第一信息包括以下信息中的至少一种:UE的状态,UE的状态包括:无线资源控制(Radio Resource Control,简称RRC)连接态、空闲态(idle)或RRC非激活态(RRC inactive);UE的时间校准定时器(timeAlignmentTimer)是否开启或运行;
UE当前运行的时延敏感通信TSC业务的业务特性;第三信息,用于指示UE是否建立或者激活了TSC业务;UE的时延补偿能力信息。
例如,若UE上行失步(即上行不同步),且没有有效的时延补偿值,则UE触发随机接入过程,或者,UE向基站请求发送TA command。
或者,若UE上行失步,且在t1时刻没有有效的时延补偿值,则UE在t1时刻触发随机接入过程,或者,UE向基站请求发送TA command。
或者,若UE上行失步,且在t1时刻没有有效的时延补偿值,则UE在t0时刻UE触发随机接入过程,或者,UE向基站请求发送TA command,其中t0早于t1。
或者,若UE上行失步,且在t1时刻没有有效的时延补偿值,则在在t0时刻,基站向UE主动发送TA command,其中t0早于t1。
又例如,若UE上行失步,且TSC业务激活/到达/传输的情况下,UE触发随机接入过程,UE向 基站请求发送TA command。
或者,若UE上行失步,且在t1时刻TSC业务激活/到达/传输,UE在t1时刻触发随机接入过程,或者,UE向基站请求发送TA command。
或者,若UE上行失步,且在t1时刻TSC业务激活/到达/传输,UE在t0时刻UE触发随机接入过程,或者,UE向基站请求发送TA command,其中t0早于t1。
具体的,若UE上行失步,且在t1时刻TSC业务激活/到达/传输,则在在t0时刻,基站向UE主动发送TA command,其中t0早于t1。
示例性的,当UE没有有效TA时,UE确定上行失步。
可选的,基站也可以采用与UE相同的方式获取时延补偿参数,本实施例不再详细说明。
可选的,在步骤S101之前,还包括步骤S100:UE确定对参考时间信息进行时延补偿。
本实施例中,UE根据以下信息中的至少一个信息,确定对参考时间信息进行时延补偿:基站发送的第一时延补偿信息,预定义的第二时延补偿信息,以及UE的时延补偿能力信息。
可选的,该第一时延补偿信息是基站通过系统信息块(System Information Block,简称SIB)或者RRC消息发送给UE的。该SIB消息可以为SIB9消息或者其他SIB消息,本申请实施例不对此进行限制。可选的,该RRC消息为专用RRC(dedicated RRC)消息。该专用RRC消息可以为DLInformationTransfer消息,也可以为一个新的包含同步信息的专用RRC消息。
其中,该第一时延补偿信息包括以下信息中的至少一个:时延补偿参数、第一指示信息、时延补偿的生效时间信息、UE执行时延补偿的判断条件、第二指示信息、时延补偿方式、TSN的时钟标识,其中,第一指示信息用于表示UE是否需要对参考时间信息进行时延补偿,第二指示信息用于表示基站是否对参考时间信息进行了时延补偿。
当第一时延补偿信息中包括时延补偿参数时,该时延补偿参数可以由基站确定,也可以由UE确定并上报给基站。
当第一时延补偿信息中同时包括第一指示信息和第二指示信息时,第一指示信息和第二指示信息由两个不同的IE或者比特位携带,当用于携带第一指示信息的第一IE或者第一比特位的取值为true时,表示需要UE对参考时间信息进行时延补偿,当第一IE或者第一比特位的取值为false时,表示不需要UE对参考时间信息补偿。
当用于携带第二指示信息的第二IE或者第二比特位的取值为true时,表示基站已对参考时间信息进行了时延补偿,当第二IE或者第二比特位的取值为false时,表示基站没有对参考时间信息进行时延补偿。
如果基站对参考时间信息进行了补偿,则第二IE或者第二比特位的取值为true,第一IE或者第一比特位的取值为false,即不需要UE对参考时间信息补偿。如果没有基站对参考时间信息进行补偿,则第二IE或者第二比特位的取值为false,第一IE或者第一比特位的取值为true,需要UE对参考时间信息补偿。
相应的,UE接收到第一时延补偿信息后,当第二IE或者第二比特位的取值为false,第一IE或者第一比特位的取值为true时,UE确定需要对参考时间信息补偿。在其他情况下,UE确定不需要对参考时间信息进行时延补偿。
该其他情况包括:第二IE或者第二比特位的取值为true,第一IE或者第一比特位的取值为false。或者,第二IE或者第二比特位的取值为true,第一IE或者第一比特位的取值为true。或者,第二IE或者第二比特位的取值为false,第一IE或者第一比特位的取值为fales。
当第一时延补偿信息中只包括第一指示信息,不包括第二指示信息的情况下,UE接收到第一指示信息后,如果第一指示信息表示UE需要对参考时间信息信息补偿,则UE确定对参考时间信息进行时延补偿。如果第一指示信息表示UE不需要对参考时间信息信息补偿,则UE确定不对参考时间信息进行时延补偿。
当第一时延补偿信息中只包括第二指示信息,不包括第一指示信息的情况下,UE接收到第二指示信息后,如果第二指示信息表示基站对参考时间信息信息进行了时延补偿,则UE确定不对参考时间信息进行时延补偿,如果第二指示信息表示基站没有对参考时间信息信息进行时延补偿,则UE确定对参考时间信息进行时延补偿。
本实施例中,在UE根据第一指示信息和/或第二指示信息确定对参考时间信息进行时延补偿的情况下,
UE可以根据第一时延补偿信息中包括的时延补偿参数或者UE自己计算得到的时延补偿参数对参考时间信息进行时延补偿。如果第一时延补偿信息中包括时延补偿参数,则使用该时延补偿参数对参考时间信息进行时延补偿。如果第一时延补偿信息中不包括时延补偿参数,则UE可以根据第一时延 补偿信息中包括的时延补偿方式或者第二时延补偿信息中包括的时延补偿方式确定时延补偿参数,进而使用该时延补偿参数对参考时间信息进行时延补偿。
可选的,该时延补偿参数还可以用于UE确定是否对参考时间信息进行时延补偿。例如,当UE收到时延补偿参数时,UE确定对参考时间信息进行时延补偿,并根据该时延补偿参数对参考时间信息进行时延补偿。该方式中,第一时延补偿信息中不需要包括第一指示信息和第二指示信息。
当第一时延补偿信息中包括时延补偿的生效时间信息时,UE可以根据时延补偿的生效时间确定时延补偿的起始时间和/或结束时间。第一时延时延补偿的生效时间信息可以包括UE执行时延补偿的起始时间和/或执行时延补偿的持续时间(duration)。相应的,UE在根据时延补偿参数对参考时间信息进行时延补偿时,根据时延补偿的生效时间信息和时延补偿参数对参考时间信息进行补偿。
具体的,UE在时延补偿的起始时间,根据时延补偿参数对参考时间信息进行时延补偿,在时延补偿的结束时间,停止对参考时间信息进行时延补偿。如果第一时延补偿信息中不包括时延补偿的生效时间信息,UE可以一直对参考时间信息进行时延补偿,或者,UE自己决定何时开始时延补偿,何时结束时延补偿。
可选的,该时延补偿的生效时间信息还可以用于UE确定是否需要对参考时间信息进行时延补偿。示例性的,如果第一时延补偿信息中包括时延补偿的生效时间信息,则UE确定对参考时间信息进行时延补偿。该方式中,第一时延补偿信息中不需要包括第一指示信息和第二指示信息。UE根据时延补偿的生效时间信息,确定对参考时间信息进行时延补偿后,如果第一时延补偿信息中包括时延补偿参数,则使用该时延补偿参数对参考时间信息进行时延补偿。如果第一时延补偿信息中不包括时延补偿参数,则UE可以根据第一时延补偿信息中包括的时延补偿方式确定时延补偿参数,进而使用该时延补偿参数对参考时间信息进行时延补偿。
当第一时延补偿信息中包括UE执行时延补偿的判断条件时,UE确定对参考时间信息进行时延补偿,可以为:UE根据判断条件,对测量对象进行测量,得到测量结果,当测量结果满足判断条件时,UE确定对参考时间信息进行时延补偿。
该测量对象可以为由网络侧配置,该测量对象可以为信道状态参考指示信号(Channel Status Indicator Reference Signal,简称CSI-RS)和/或同步信号块(Synchronization Signal Block,简称SSB)。
示例性的,该测量结果中包括以下参数中至少一个:参考信号接收功率(Reference Signal Received Power,简称RSRP)、参考信号接收质量(Reference Signal Received Quality,简称RSRQ)、信道与干扰加噪声比(Signal to Interference plus Noise Ratio,简称SINR)、路损。
相应的,UE执行时延补偿的判断条件可以包括条件中的任意一个:
当RSRP或者SIRQ小于或等于预设的第一门限时或者一段时间或一定次数之后,UE确定对参考时间信息进行时延补偿。
当路损大于或等于预设的第二门限时或者一段时间或一定次数后,UE确定对参考时间信息进行时延补偿。
当SINR小于或等于预设的第三门限时或者一段时间或一定次数之后,UE确定对参考时间信息进行时延补偿。
当RSRP或者SIRQ大于或等于该第一门限时或者一段时间或一定次数之后,UE确定不对参考时间信息进行时延补偿。
当路损小于或等于该第二门限时或者一段时间或一定次数之后,UE确定不对参考时间信息进行时延补偿。
当SINR大于或等于第三门限时或者一段时间或一定次数之后,UE确定不对参考时间信息进行时延补偿。
可选的,针对每个测量对象,基站可以配置两个门限,一个门限用于用于执行时延补偿的判断,一个用于不执行时延补偿的判断。示例性的,网络指示TH1和TH2,当路损小于或等于TH1时,UE确定不对参考时间信息进行时延补偿,当路损大于TH2时,UE确定对参考时间信息进行时延补偿。
可选的,UE也可以结合多个测量结果确定是否对参考时间信息进行时延补偿,例如,当RSRP或者SIRQ小于或等于预设的第一门限时或者一段时间之后,且路损大于第二门限一段时间之后,UE确定对参考时间信息进行时延补偿。
当UE根据执行时延补偿的判断条件,确定对参考时间信息进行时延补偿后,如果第一时延补偿信息中包括时延补偿参数,则使用该时延补偿参数对参考时间信息进行时延补偿。如果第一时延补偿信息中不包括时延补偿参数,则UE可以根据第一时延补偿信息中包括的时延补偿方式确定时延补偿参数,进而使用该时延补偿参数对参考时间信息进行时延补偿。如果第一时延补偿信息中还包括时延补偿的生效时间信息,则UE可以根据时延补偿的生效时间信息,对参考时间信息进行时延补偿。
可选的,UE还可以将执行时延补偿的判断条件与其他信息结合共同确定是否需要对参考时间信息进行时延补偿,例如,UE先根据第一指示信息和/或第二指示信息确定需要对参考时间信息进行时延补偿,如果确定需要对参考时间信息进行时延补偿,则进一步判断自身是否满足执行时延补偿的判断条件,当满足判断条件时,UE确定对参考时间信息进行时延补偿。
该时延补偿方式包括以下方式中的至少一种:采用固定时延补偿值、基于TA计算时延补偿值或者基于UE的实现计算时延补偿值。如果第一时延补偿信息中只包括一种时延补偿方式,则UE根据该时延补偿方式,确定时延补偿参数。如果第一时延补偿信息中包括多种时延补偿方式,UE在根据时延补偿方式,确定时延补偿参数时,先从多种时延补偿方式中选择一种时延补偿方式。
当第一时延补偿信息中包括时延补偿参数时,第一时延补偿信息中可以不携带时延补偿方式。
当第一时延补偿信息中包括时延补偿参数时,也可以携带时延补偿方式,以通知UE基站是使用该时延补偿方式得到时延补偿参数的。
可选的,时延补偿方式还可以用于UE确定是否由自己对参考时间信息进行时延补偿。例如,当第一时延补偿信息中包括时延补偿方式指示时UE确定由自己对参考时间信息进行时延补偿。
TSN的时钟(TSN clock)标识可以用于指示UE对哪个TSN的时钟进行时延补偿,如果UE与多个TSN通信,有些TSN的时钟可能不需要时延补偿,有些TSN的时钟需要时延补偿,因此,需要通过TSN的时钟标识指示UE对哪个TSN的时钟进行时延补偿。可选的,还可以用于UE确定是否由自己对参考时间信息进行时延补偿,如果第一时延补偿信息中包括TSN的时钟标识,则UE确定由自己对参考时间信息进行时延补偿。
可选的,第一时延补偿信息中还可以包括其他信息,例如,还可以包括TSN的时钟数量(TSN clock number)。
本实施例中,第二时延补偿信息是协议规定的信息,第二时延补偿信息可以与第一时延补偿信息完全相同或者部分相同。例如,第二时延补偿信息包括以下信息中的至少一个:时延补偿参数、第三指示信息、时延补偿的生效时间信息、UE执行时延补偿的判断条件、时延补偿方式、TSN的时钟标识,第三指示信息用于表示由基站或者UE对参考时间信息进行时延补偿。此时,基站不需要向UE发送第一时延补偿信息,UE可以根据第二时延补偿信息,确定对参考时间信息进行时延补偿,具体确定方式参照第一时延补偿信息中各参数的描述。
UE还可以结合第一时延补偿信息和第二时延补偿信息,对参考时间信息进行时延补偿。
例如,第一时延补偿信息中包括第一指示信息和/或第二指示信息,第二时延补偿信息中包括时延补偿参数或时延补偿方式,则UE根据第一指示信息和/或第二指示信息确定由自己对参考时间信息进行补偿,并根据第二时延补偿信息中包括的时延补偿参数对参考时间信息进行时延补偿,或者,UE根据第二时延补偿信息中包括的时延补偿方式确定时延补偿参数,使用确定的时延补偿参数对参考时间信息进行时延补偿。
或者,第二时延补偿信息中包括第三指示信息,第三指示信息用于表示由UE对参考时间信息进行时延补偿,第一时延补偿信息中包括时延补偿参数或者时延补偿方式,UE根据第三指示确定由自己进行时延补偿后,根据第一时延补偿信息中包括的时延补偿参数对参考时间信息进行时延补偿,或者,根据第一时延补偿信息中包括的时延补偿方式确定时延补偿参数,使用确定的时延补偿参数对参考时间信息进行时延补偿。
或者,UE根据第二时延补偿信息中包括的第三指示信息和第一时延补偿信息中包括的UE执行时延补偿的判断条件,确定是否对参考时间信息进行时延补偿。
UE的时延补偿能力信息用于表示UE是否具备时延补偿能力,如果UE具备时延补偿能力,则UE确定由自己对参考时间信息进行进行时延补偿。
UE还可以结合UE的时延补偿能力信息和第一时延补偿信息确定是否对参考时间信息进行进行时延补偿,例如,UE先根据第一时延补偿信息中的第一指示信息、第二指示信息或者时延补偿参数或者时延补偿的生效时间信息等获知需要对参考时间信息进行时延补偿,UE再根据时延补偿能力信息确定自己是否具有时延补偿能力,如果时延补偿能力信息表示UE具有时延补偿能力,则UE确定对参考时间信息进行时延补偿。如果时延补偿能力信息表示UE不具有时延补偿能力,则UE确定不对参考时间信息进行时延补偿。
同样,UE还可以结合UE的时延补偿能力信息和第二时延补偿信息确定是否对参考时间信息进行进行时延补偿,例如,UE先根据第二时延补偿信息中的第三指示信息或者时延补偿参数或者时延补偿的生效时间信息等获知需要对参考时间信息进行时延补偿,UE再根据时延补偿能力信息确定自己是否具有时延补偿能力,如果时延补偿能力信息表示UE具有时延补偿能力,则UE确定对参考时间信息进行时延补偿。如果时延补偿能力信息表示UE不具有时延补偿能力,则UE确定不对参考时间信息进行 时延补偿。
可选的,UE还可以向基站上报自己的时延补偿能力信息。
可以理解,在步骤S102之前,UE确定需要补偿的同步时间信息,例如,UE确定需要对reference time进行时延补偿,或者,UE确定对reference SFN对应的参考帧进行时延补偿。该reference time和reference SFN可以是基站他通过RRC消息或者广播消息发送给UE的。
不同于已有技术,本申请实施例中,该reference time包括以下时间信息中的至少一个:天(refDays)、秒(refSeconds)、毫秒(refMilliSeconds)、微秒(refQuarterMicroSeconds)、十纳秒(ref10NaroSeconds
)和纳秒(ref50NaroSeconds)。
示例性的,基站可以通过如下两种IE携带reference time:
方式一
Figure PCTCN2019092801-appb-000001
方式二
Figure PCTCN2019092801-appb-000002
方式一,相比于已有技术,增加了refMicroSeconds和ref10NaroSeconds粒度的时间。方式二相比于已有技术,增加了ref10NaroSeconds粒度的时间。增加refMicroSeconds和/或ref10NaroSeconds时间,相当于增加了时间同步精度。
现有技术中,UE获取到reference time和reference SFN之后,根据reference SFN获知SFN是第m帧,根据reference time获知SFN是几点几分几秒,从而UE知道第m帧的时间为几点几分几秒,完成了时间同步。
本申请实施例中,对参考时间信息进行时延补偿后,相当于对参考时间信息进行一个X的偏移,示例性的,当时延补偿参数为时延补偿值时,UE在参考时间信息的基础上增加或者减少时延补偿值。
以方式二为例,当前reference time的取值为Y=refDays*86400*1000*100000+refSeconds*1000*100000+refMilliSeconds*100000+ref10NaroSeconds,则UE在Y的基础上进行X或者X/2的偏移,如Y+X或者Y+X/2,因此,最终的reference time为Y+X或者Y+X/2,X为时延补偿值。
本实施例中,UE获取时延补偿参数,根据时延补偿参数,对参考时间信息进行时延补偿。通过对参考时间信息时延补偿,可以补偿参考时间信息由于基站和UE之间的传播时延导致的误差,使得参考时间信息更加准确,提高了后续UE使用时延补偿后的参考时间信息进行时间同步所能获取的时间同步精度。
实施例二
图5为本发明实施例二提供的一种时延补偿方法的流程图,如图5所示,本实施例提供的方法包括以下步骤:
S201、基站生成第一时延补偿信息,该第一时延补偿信息用于UE确定是否对参考时间信息进行时延补偿。
示例性的,该第一时延补偿信息包括以下信息中的至少一个:第一指示信息、时延补偿的生效时间信息、UE执行时延补偿的判断条件、第二指示信息、时延补偿方式、TSN的时钟标识,其中,第一指示信息用于表示UE是否需要进行时延补偿,第二指示信息用于表示基站是否对参考时间信息进行了补偿。
可选的,该第一时延补偿信息中还包括TSN的时钟数量。
第一时延补偿信息中各信息的含义和取值参照实施例一的相关描述,这里不再赘述。
S202、基站向UE发送第一时延补偿信息。
基站可以将第一时延补偿信息中的多个信息通过一个或者多个消息发送给UE,例如,基站通过SIB消息或者RRC消息将第一时延补偿信息发送给UE,该SIB消息可以为SIB9消息,该RRC消息可以为专用RRC消息。
UE收到的第一时延补偿信息后,可以根据第一时延补偿信息进行时延补偿,也可以不进行时延补偿。如果UE根据第一时延补偿信息确定进行时延补偿,则参照实施例一的确定方式以及具体补偿方式。
UE收到的第一时延补偿信息后,还可以根据第一时延补偿信息中的时延补偿方式计算时延补偿参数,并将时延补偿参数发送给基站。相应的,基站接收UE发送的时延补偿参数,根据时延补偿参数,对参考时间信息进行时延补偿,将时延补偿后的参考时间信息发送给UE。
基站对参考时间信息进行时延补偿,可以为:基站在参考时间信息间的基础上增加或者减少时延补偿参数,或者,将参考时间信息与时延补偿参数进行相乘,已增大或者减小时延补偿参数。该参考时间信息包括:参考时间和/或参考帧。其中,参考时间包括以下时间信息中的至少一个:天、秒、毫秒、微秒、十纳秒和纳秒。
其中,基站对参考时间信息的补偿,与UE对参考时间信息的补偿相同,参照实施例一的相关描述,这里不再赘述。
本实施例中,基站生成第一时延补偿信息,并向UE发送第一时延补偿信息,该第一时延补偿信息用于UE确定是否对参考时间信息进行时延补偿。由基站通过第一时延补偿信息触发基站或者UE对参考时间信息进行时延补偿,通过对参考时间信息进行补偿,提高了时间同步精度。
实施例三
图6为本发明实施例三提供的一种时延补偿方法的流程图,如图6所示,本实施例提供的方法包括以下步骤:
S301、基站生成第一时延补偿信息,该第一时延补偿信息用于UE确定是否对参考时间信息进行时延补偿。
示例性的,该第一时延补偿信息包括以下信息中的至少一个:第一指示信息、时延补偿的生效时间信息、UE执行时延补偿的判断条件、第二指示信息、时延补偿方式、TSN的时钟标识,其中,第一指示信息用于表示UE是否需要进行时延补偿,第二指示信息用于表示基站是否对参考时间信息进行了补偿。
可选的,该第一时延补偿信息中还包括TSN的时钟数量。
第一时延补偿信息中各信息的含义和取值参照实施例一的相关描述,这里不再赘述。
S302、UE生成时延补偿参数。
基站可以根据时延补偿方式生成时延补偿参数。可选的,在基站根据时延补偿方式生成时延补偿参数之前,基站先确定时延补偿方式。
该时延补偿方式可以是高层网络下发的,也可以是协议规定的。该时延补偿方式包括以下方式中的至少一个:采用固定时延补偿值、基于TA计算时延补偿值、基于UE的实现计算时延补偿值或基于基站的实现计算时延补偿值。
如果高层网络或者协议规定了多种时延补偿方式,基站可以从多种时延补偿方式中选择一种时延补偿方式。
基站确定时延补偿方式后,可以通过如下方式生成时延补偿参数:
(1)当时延补偿方式为采用固定时延补偿值时,基站确定固定时延补偿值为时延补偿参数。
(2)当时延补偿方式为基于TA计算时延补偿值时,基站获取有效TA,根据有效TA和预设算法计算时延补偿值。
示例性的,基站获取有效TA,可以为:基站根据第一信息,确定当前TA是否有效。如果当前TA有效,则基站确定当前TA为有效TA。如果当前TA无效,则基站通过测量得到有效TA。
其中,第一信息包括以下信息中的一种或者多种:UE的状态,UE的状态包括:RRC连接态、空闲态或RRC非激活态;UE的时间校准定时器是否开启或运行;UE当前运行的TSC业务的业务特性;第三信息,用于表征或指示UE是否建立或者激活了TSC业务;UE的时延补偿能力信息。可选的,第一信息还可以用于判断是否需要执行时延补偿。
可选的,基站可以通过如下方式测量得到有效TA:
基站向UE发送PDCCH命令,基站在随机接入建立过程中测量有效TA,随机接入建立过程是UE根据PDCCH命令触发的。
基站向UE发送paging命令,基站在随机接入建立过程中测量有效TA,随机接入建立过程是UE根据paging命令触发的。
(3)基站根据UE发送的上行信道或随机接入前导测量有效TA。
基站计算时延补偿参数的具体实现方式与UE相同,参照前述实施例一的描述,这里不再赘述。
S303、基站向UE发送第一时延补偿信息和时延补偿参数。
基站可以将第一时延补偿信息和时延补偿参数通过一条消息发送给UE,也可以通过不同的消息发送给UE。
本实施例中,基站生成第一时延补偿信息和时延补偿参数,并向UE发送第一时延补偿信息和时延补偿参数,该第一时延补偿信息用于UE确定是否对参考时间信息进行时延补偿,时延补偿参数用于对参考时间信息时延补偿。由基站通过第一时延补偿信息触发基站或者UE对参考时间信息进行时延补偿,通过对参考时间信息进行补偿,提高了时间同步精度。
实施例四
图7为本发明实施例四提供的一种时延补偿方法的流程图,如图7所示,本实施例提供的方法包括以下步骤:
S401、基站获取时延补偿参数。
一种方式中,基站接收UE发送的时延补偿参数,时延补偿参数由UE生成,UE生成时延补偿参数的具体方式参照实施例一的描述,这里不再赘述。
另一种方式中,基站根据时延补偿方式生成时延补偿参数。
基站生成时延补偿参数的方式参照实施例二的描述,这里不再赘述。
S402、基站根据时延补偿参数,对参考时间信息进行时延补偿。
示例性的,基站在参考时间信息的基础上增加或者减少时延补偿参数,或者,将参考时间信息与时延补偿参数进行相乘,已增大或者减小时延补偿参数。该参考时间信息包括:参考时间和/或参考帧。其中,参考时间包括以下时间信息中的至少一个:天、秒、毫秒、微秒、十纳秒和纳秒。
其中,基站对参考时间信息的补偿,与UE对参考时间信息的补偿相同,参照实施例一的相关描述,这里不再赘述。
S403、基站将时延补偿后的参考时间信息发送给UE。
本实施例中,基站获取时延补偿参数,根据时延补偿参数,对参考时间信息进行时延补偿,将时延补偿后的参考时间信息发送给UE。基站通过对参考时间信息时延补偿,可以补偿参考时间信息由于基站和UE之间的传播时延导致的误差,使得参考时间信息更加准确,提高了后续UE使用时延补偿后的参考时间信息进行时间同步所能获取的时间同步精度。
实施例五
在实施例一至实施例四的方案中,UE或者基站在基于TA计算时延补偿值,为了提高时间同步精度,可以提高TA精度。例如修改TA调整精度为现有的精度的1/2,如精度从±256Tc修改为±128Tc,TC为物理层最小时间单位,Tc可以通过查表方式获得,修改后的TA调整精度也可以称为增强TA调整精度。
示例性的,可以采用预定义的方式将增强TA调整精度以表格的形式存储在基站中,表一为增强TA调整精度的示意图,表一如下所示:
表一
子载波间隔(kHz) 15 30 60 120
UE的TA调整精度 ±128Tc ±128Tc ±64Tc ±16Tc
通过表一可知,不同的子载波间隔(Sub Carrier Spacing,简称SCS)对应的TA调整精度不同,随着子载波间隔的增大,TA调整精度逐渐减小。
需要说明的是,增强TA调整精度可以与实施例一至实施例三的方案结合使用,也可以单独使用,即将现有的TA调整精度修改为本实施例提供的增强TA调整精度。
实施例六
UE可以向基站上报时延补偿能力,对于满足时延补偿能力的UE,基站可以向UE发送增强的TA command MAC CE和/或增强的随机接入响应。
该增强的TA command可以通过新的逻辑信道标识(logical channel identify,简称LCID)与现有的TA command进行区别,即增强的TA command的LCID与现有的TA command的LCID的取值不同。
该增强的TA command还可以通过新的MAC CE格式与现有的TA command进行区别,例如,该增强的TA command占用的比特数大于6。
图8为现有的TA command的MAC CE的格式,图9为增强的TA command的MAC CE的一种格式示意图,对比图8和图9可知,现有的TA command的MAC CE仅占1字节(octet),且现有的TA command仅占6比特,增强的TA command占用8比特或者增强的TA command MAC CE扩展为2字节。如图9所示,增强的TA command占用的比特位的位置发生了变化,现有的TA command和TAG  ID(标签ID)共同占用一个octet,增强的TA command占用了一个单独的octet,TAG ID和扩展的6个预留比特位R占用一个octet。
该增强的随机接入响应的格式中有效TA command占用的比特数大于12,现有的随机接入响应的格式中有效TA command占用的比特数等于12。该增强的随机接入响应用于传输扩展的TA command。可选的,该增强的随机接入响应中的有效TA command占用了现有的随机接入响应中的预留比特位。
图10为现有的随机接入响应的格式示意图,图11为增强的随机接入响应的一种格式示意图,如图10所示,现有的随机接入响应共占用56比特,56比特共7个octet,其中,预留比特R占用oct1的第一个比特位,TA command占用oct1第二个比特位至oct2的第五个比特位,TA command总共占用12个比特位,上行授权(UL Grant)占用oct2的后三个比特位以及oct3-oct5的所有比特位,临时(temporary)-小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)占用oct6和oct7。
对比图10和图11,现有的随机接入响应的格式中TA command占用的比特数等于12,该增强的随机接入响应中有效TA command占用的比特数为13比特,即TA command占用了现有的随机接入响应中预留比特位R。
基站可能向UE发送增强的TA command和现有的TA command,同样,基站可能向UE发送增强的随机接入响应和现有的随机接入响应。针对具备时延补偿能力的UE,可选的,UE可以仅检测增强的TA command和/或增强的随机接入响应,不检测现有的随机接入响应和/或现有的TA command。
可选的,UE可以在向基站发送UE支持的时延补偿能力之后,仅检测增强的TA command和/或增强的随机接入响应。如果UE没有向基站发送UE支持的时延补偿能力,则UE需要检测:现有的随机接入响应,现有的TA command,增强的TA command和增强的随机接入响应。
或者,基站接收UE上报的UE支持的时延补偿能力之后,基站指示UE采用增强的TA command和/或增强的随机接入响应对应的检测方式,UE根据基站的指示,仅检测增强的TA command和/或增强的随机接入响应。如果UE上报的UE支持的时延补偿能力之后,没有接收到基站发送的指示,则UE需要检测:现有的随机接入响应,现有的TA command,增强的TA command和增强的随机接入响应。
或者,基站主动指示UE采用增强的TA command和/或增强的随机接入响应对应的检测方式,UE根据基站的指示,仅检测增强的TA command和/或增强的随机接入响应。
图12为本申请实施例七提供的一种UE的结构示意图,如图12所示,该UE100包括:
获取模块11,用于获取时延补偿参数;
补偿模块12,用于根据所述时延补偿参数,对参考时间信息进行时延补偿。
可选的,所述参考时间信息用于所述UE与基站进行时间同步。
可选的,还包括:同步模块,用于根据时延补偿后的参考时间信息,与基站进行时间同步。
可选的,还包括:确定模块,用于确定对参考时间信息进行时延补偿。
可选的,所述确定模块具体用于:根据以下信息中的至少一个,确定对参考时间信息进行时延补偿:
所述基站发送的第一时延补偿信息,预定义的第二时延补偿信息,以及所述UE的时延补偿能力信息。
可选的,还包括:接收模块,用于接收所述基站通过系统信息块SIB或者无线资源控制RRC消息发送的所述第一时延补偿信息。
可选的,所述第一时延补偿信息包括以下信息中至少一个:所述时延补偿参数、第一指示信息、时延补偿的生效时间信息、所述UE执行时延补偿的判断条件、第二指示信息、时延补偿方式、时间敏感网络TSN的时钟标识,其中,所述第一指示信息用于表示所述UE是否需要进行时延补偿,所述第二指示信息用于表示基站是否对参考时间信息进行了补偿。
可选的,当所述第一时延补偿信息中包括所述UE执行时延补偿的判断条件时,所述确定模块具体用于:根据所述判断条件,对测量对象进行测量,得到测量结果,所述测量结果中包括以下参数中至少一个:参考信号接收功率RSRP、参考信号接收质量RSRQ、信道与干扰加噪声比SINR、路损;当所述测量结果满足所述判断条件时,确定对参考时间信息进行时延补偿。
可选的,所述时延补偿方式包括以下方式中的至少一个:采用固定时延补偿值、基于定时提前量TA计算时延补偿值或者基于所述UE的实现计算时延补偿值。
可选的,所述获取模块11具体用于:接收基站发送的所述时延补偿参数。
可选的,所述获取模块11具体用于:根据所述基站指示的时延补偿方式,获取所述时延补偿参数。
可选的,所述获取模块11具体用于:当所述时延补偿方式为采用固定时延补偿值时,确定所述固 定时延补偿值为所述时延补偿参数。
可选的,所述获取模块11具体用于:当所述时延补偿方式为基于TA计算时延补偿值时,获取有效TA,根据所述有效TA和预设算法计算所述时延补偿值。
可选的,所述获取模块11具体用于:当所述当前TA有效时,确定所述当前TA为所述有效TA;当所述当前TA无效时,通过所述基站获取所述有效TA。
可选的,所述获取模块11还用于:
根据第一信息,确定所述当前TA是否有效,其中,所述第一信息包括以下信息中的至少一种:
所述UE的状态,所述UE的状态包括:无线资源控制RRC连接态、空闲态或RRC非激活态;
所述UE的时间校准定时器是否开启或运行;
所述UE当前运行的时延敏感通信TSC业务的业务特性;
第三信息,用于指示所述UE是否建立或者激活了TSC业务;
所述UE的时延补偿能力信息。
可选的,所述获取模块11具体用于:向所述基站发送随机接入前导,接收所述基站发送的随机接入响应,所述随机接入响应中包括所述有效TA。
可选的,所述获取模块11具体用于:向所述基站发送第一请求消息,所述第一请求消息用于请求所述基站发送TA命令,接收所述基站发送的TA命令,所述TA命令中包括所述有效TA。
可选的,所述获取模块11具体用于:接收所述基站发送的TA命令,所述TA命令中包括所述有效TA。
可选的,所述获取模块11具体用于:接收所述基站发送的物理下行控制信道PDCCH命令或者寻呼命令,根据所述PDCCH命令或者寻呼命令建立随机接入过程,在随机接入建立过程中接收所述基站发送的所述有效TA。
可选的,所述补偿模块12具体用于:在所述参考时间信息的基础上增加或者减少所述时延补偿参数。
可选的,所述参考时间信息包括:参考时间和/或参考帧。
可选的,所述参考时间包括以下时间信息中的至少一个:天、秒、毫秒、微秒、十纳秒和纳秒。
可选的,所述随机接入响应的格式中所述有效TA占用的比特数大于12。
可选的,所述有效TA占用了预留比特位。
可选的,所述TA命令占用的比特数大于6。
可选的,所述获取模块具体用于:仅按照所述随机接入响应的格式进行检测。
可选的,所述获取模块具体用于:仅按照所述TA命令的格式进行检测。
本实施例任一实现方式提供的UE,用于执行前述任一方法实施例中UE执行的技术方案,其实现原理和技术效果类似,在此不再赘述。
图13为本申请实施例八提供的一种基站的结构示意图,如图13所示,该基站200包括:
生成模块21,用于生成第一时延补偿信息,所述第一时延补偿信息用于用户设备UE确定是否对参考时间信息进行时延补偿;
发送模块22,用于向所述UE发送所述第一时延补偿信息。
可选的,所述第一时延补偿信息包括以下信息中的至少一个:第一指示信息、时延补偿的生效时间信息、所述UE执行时延补偿的判断条件、第二指示信息、时延补偿方式、时间敏感网络TSN的时钟标识,其中,所述第一指示信息用于表示所述UE是否需要进行时延补偿,所述第二指示信息用于表示基站是否对参考时间信息进行了补偿。
可选的,所述发送模块22还用于:向所述UE发送时延补偿参数。相应的,所述生成模块21还用于:根据时延补偿方式生成所述时延补偿参数。
可选的,还包括:确定模块,用于确定所述时延补偿方式。
可选的,还包括:
接收模块,用于接收所述UE发送的所述时延补偿参数;
补偿模块,用于根据所述时延补偿参数,对参考时间信息进行时延补偿;
所述发送模块,还用于将时延补偿后的参考时间信息发送给所述UE。
可选的,所述时延补偿方式包括以下方式中的至少一种:采用固定时延补偿值、基于定时提前量TA计算时延补偿值、基于所述UE的实现计算时延补偿值或者基于所述基站的实现计算时延补偿值。
可选的,所述生成模块21具体用于:当所述时延补偿方式为采用固定时延补偿值时,确定所述固定时延补偿值为所述时延补偿参数。
可选的,所述生成模块21包括:
获取子模块,用于当所述时延补偿方式为基于TA计算时延补偿值时,获取有效TA;
计算子模块,用于根据所述有效TA和预设算法计算所述时延补偿值。
可选的,所述获取子模块具体用于:当所述当前TA有效时,确定所述当前TA为所述有效TA;当所述当前TA无效时,通过测量得到所述有效TA。
可选的,所述获取子模块还用于:根据第一信息,确定所述当前TA是否有效;
其中,所述第一信息包括以下信息中的至少一种:
所述UE的状态,所述UE的状态包括:无线资源控制RRC连接态、空闲态或RRC非激活态;
所述UE的时间校准定时器是否开启或运行;
所述UE当前运行的时延敏感通信TSC业务的业务特性;
第三信息,用于指示所述UE是否建立或者激活了TSC业务;
所述UE的时延补偿能力信息。
可选的,所述获取子模块具体用于:向所述UE发送物理下行控制信道PDCCH命令或者寻呼命令,在随机接入建立过程中测量所述有效TA,所述随机接入建立过程是所述UE根据所述PDCCH命令或者所述寻呼命令触发的。
可选的,所述获取子模块具体用于:根据所述UE发送的上行信道或随机接入前导测量所述有效TA。
可选的,所述补偿模块具体用于:在所述参考时间信息间的基础上增加或者减少所述时延补偿参数。
可选的,所述参考时间信息包括:参考时间和/或参考帧。
可选的,所述参考时间包括以下时间信息中的至少一个:
天、秒、毫秒、微秒、十纳秒和纳秒。
本实施例任一实现方式提供的基站,用于执行前述方法实施例二中基站执行的技术方案,其实现原理和技术效果类似,在此不再赘述。
图14为本申请实施例九提供的一种基站的结构示意图,如图14所示,该基站300包括:
获取模块31,用于获取时延补偿参数;
补偿模块32,用于根据所述时延补偿参数,对参考时间信息进行时延补偿;
发送模块33,用于将时延补偿后的参考时间信息发送给用户设备UE。
可选的,所述获取模块31具体用于:接收所述UE发送的所述时延补偿参数。
可选的,所述获取模块31具体用于:根据时延补偿方式生成所述时延补偿参数。
可选的,所述时延补偿方式包括以下方式中的至少一种:采用固定时延补偿值、基于定时提前量TA计算时延补偿值、基于所述UE的实现计算时延补偿值或者基于所述基站的实现计算时延补偿值。
可选的,所述获取模块31具体用于:当所述时延补偿方式为采用固定时延补偿值时,确定所述固定时延补偿值为所述时延补偿参数。
可选的,所述获取模块31具体用于:当所述时延补偿方式为基于TA计算时延补偿值时,获取有效TA,根据所述有效TA和预设算法计算所述时延补偿值。
可选的,所述获取模块31具体用于:当所述当前TA有效时,确定所述当前TA为所述有效TA;当所述当前TA无效时,通过测量得到所述有效TA。
可选的,所述获取模块31还用于:根据第一信息,确定所述当前TA是否有效;
其中,所述第一信息包括以下信息中的至少一种:
所述UE的状态,所述UE的状态包括:无线资源控制RRC连接态、空闲态或RRC非激活态;
所述UE的时间校准定时器定时器是否开启或者运行;
所述UE当前运行的时延敏感通信TSC业务的业务特性;
第三指示信息,用于表征或者指示所述UE是否建立或者激活了TSC业务;
所述UE的时延补偿能力信息。
可选的,所述获取模块31具体用于:向所述UE发送物理下行控制信道PDCCH命令或者寻呼命令;在随机接入建立过程中测量所述有效TA,所述随机接入建立过程是所述UE根据所述PDCCH命令或者所述寻呼命令触发的。
可选的,所述获取模块31具体用于:根据所述UE发送的上行信道或者随机接入前导测量所述有效TA。
可选的,所述补偿模块32具体用于:在所述参考时间信息对应的参考时间的基础上增加或者减少所述时延补偿参数。
可选的,所述参考时间信息包括:参考时间和/或参考帧。
可选的,所述参考时间包括以下时间信息中的至少一个:天、秒、毫秒、微秒、十纳秒和纳秒。
图14为本申请实施例九提供的一种UE的结构示意图,如图14所示,该UE 400包括:
处理器41、存储器42、与其他设备进行通信的接口43;
所述存储器42存储计算机执行指令;
所述处理器41执行所述存储器存储的计算机执行指令,使得所述处理器41执行前述任一方法实施例中UE执行的技术方案。
图14为UE的一种简单设计,本申请实施例不限制UE中处理器和存储器的个数,图14仅以个数为1作为示例说明。
图15为本申请实施例十提供的一种基站的结构示意图,如图15所示,该基站500包括:
处理器51、存储器52、与其他设备进行通信的接口53;
所述存储器52存储计算机执行指令;
所述处理器51执行所述存储器存储的计算机执行指令,使得所述处理器51执行前述任一方法实施例中基站执行的技术方案。
图15为基站的一种简单设计,本申请实施例不限制基站中处理器和存储器的个数,图15仅以个数为1作为示例说明。
在上述实施例所示的UE或基站的一种具体实现中,存储器、处理器以及接口之间可以通过总线连接,可选的,存储器可以集成在处理器内部。
本申请实施例还提供一种计算机可读存储介质所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中UE执行的技术方案。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中基站执行的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述任一方法实施例中UE执行的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述任一方法实施例中基站执行的技术方案。
可选地,上述处理器可以为芯片。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中UE执行的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中基站执行的技术方案。
本申请实施例还提供一种芯片,包括:处理模块与通信接口,该处理模块能执行前述任一方法实施例中UE执行的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述任一方法实施例中UE执行的技术方案。
本申请实施例还提供一种芯片,包括:处理模块与通信接口,该处理模块能执行前述任一方法实施例中基站执行的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述任一方法实施例中基站执行的技术方案。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述基站和UE的具体实现中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存 储介质)包括:只读存储器(英文:read-only memory,简称:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。

Claims (112)

  1. 一种时延补偿方法,其特征在于,包括:
    用户设备UE获取时延补偿参数;
    所述UE根据所述时延补偿参数,对参考时间信息进行时延补偿。
  2. 根据权利要求1所述的方法,其特征在于,所述参考时间信息用于所述UE与基站进行时间同步。
  3. 根据权利要求2所述的方法,其特征在于,还包括:
    所述UE根据时延补偿后的参考时间信息,与基站进行时间同步。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述UE获取时延补偿参数之前,还包括:
    所述UE确定对所述参考时间信息进行时延补偿。
  5. 根据权利要求4所述的方法,其特征在于,所述UE确定对所述参考时间信息进行时延补偿,包括:
    所述UE根据以下至少一个信息,确定对参考时间信息进行时延补偿:
    所述基站发送的第一时延补偿信息,预定义的第二时延补偿信息,以及所述UE的时延补偿能力信息。
  6. 根据权利要求5所述的方法,其特征在于,还包括:
    所述UE接收所述基站通过系统信息块SIB或者无线资源控制RRC消息发送的所述第一时延补偿信息。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一时延补偿信息包括以下信息中的至少一个:所述时延补偿参数、第一指示信息、时延补偿的生效时间信息、所述UE执行时延补偿的判断条件、第二指示信息、时延补偿方式、时间敏感网络TSN的时钟标识,其中,所述第一指示信息表示所述UE是否需要对参考时间信息进行时延补偿,所述第二指示信息表示基站是否对参考时间信息进行了时延补偿。
  8. 根据权利要求7所述的方法,其特征在于,当所述第一时延补偿信息中包括所述UE执行时延补偿的判断条件时,所述UE确定对参考时间信息进行时延补偿,包括:
    所述UE根据所述判断条件,对测量对象进行测量,得到测量结果,所述测量结果中包括以下参数中至少一个:参考信号接收功率RSRP、参考信号接收质量RSRQ、信道与干扰加噪声比SINR、路损;
    当所述测量结果满足所述判断条件时,所述UE确定对参考时间信息进行时延补偿。
  9. 根据权利要求7或8所述的方法,其特征在于,所述时延补偿方式包括以下方式中的至少一个:采用固定时延补偿值、基于定时提前量TA计算时延补偿值或者基于所述UE的实现计算时延补偿值。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述UE获取时延补偿参数,包括:
    所述UE接收基站发送的所述时延补偿参数。
  11. 根据权利要求1-9任一项所述的方法,其特征在于,所述UE获取时延补偿参数,包括:
    所述UE根据所述基站指示的时延补偿方式,获取所述时延补偿参数。
  12. 根据权利要求11所述的方法,其特征在于,所述UE根据所述基站指示的时延补偿方式,获取所述时延补偿参数,包括:
    当所述时延补偿方式为采用固定时延补偿值时,所述UE确定所述固定时延补偿值为所述时延补偿参数。
  13. 根据权利要求11所述的方法,其特征在于,所述UE根据所述基站指示的时延补偿方式,获取所述时延补偿参数,包括:
    当所述时延补偿方式为基于TA计算时延补偿值时,所述UE获取有效TA;
    所述UE根据所述有效TA和预设算法计算所述时延补偿值。
  14. 根据权利要求13所述的方法,其特征在于,所述UE获取有效TA,包括:
    当所述当前TA有效时,所述UE确定所述当前TA为所述有效TA;
    当所述当前TA无效时,所述UE通过所述基站获取所述有效TA。
  15. 根据权利要求14所述方法,其特征在于,还包括:
    所述UE根据第一信息,确定所述当前TA是否有效;
    所述第一信息包括以下信息中的至少一种:
    所述UE的状态,所述UE的状态包括:无线资源控制RRC连接态、空闲态或RRC非激活态;
    所述UE的时间校准定时器是否开启或运行;
    所述UE当前运行的时延敏感通信TSC业务的业务特性;
    第三信息,用于指示所述UE是否建立或者激活了TSC业务;
    所述UE的时延补偿能力信息。
  16. 根据权利要求14或15所述方法,其特征在于,所述UE通过所述基站获取所述有效TA,包括:
    所述UE向所述基站发送随机接入前导;
    所述UE接收所述基站发送的随机接入响应,所述随机接入响应中包括所述有效TA。
  17. 根据权利要求14或15所述方法,其特征在于,所述UE通过所述基站获取所述有效TA,包括:
    所述UE向所述基站发送第一请求消息,所述第一请求消息用于请求所述基站发送TA命令;
    所述UE接收所述基站发送的TA命令,所述TA命令中包括所述有效TA。
  18. 根据权利要求14或15所述方法,其特征在于,所述UE通过所述基站获取所述有效TA,包括:
    所述UE接收所述基站发送的TA命令,所述TA命令中包括所述有效TA。
  19. 根据权利要求14或15所述方法,其特征在于,所述UE通过所述基站获取所述有效TA,包括:
    所述UE接收所述基站发送的物理下行控制信道PDCCH命令或者寻呼命令;
    所述UE根据所述PDCCH命令或者寻呼命令建立随机接入过程,所述UE在随机接入建立过程中接收所述基站发送的所述有效TA。
  20. 根据权利要求1-19任一项所述的方法,其特征在于,所述参考时间信息包括:参考时间和/或参考帧。
  21. 根据权利要求20所述的方法,其特征在于,所述参考时间包括以下时间信息中的至少一个:
    天、秒、毫秒、微秒、十纳秒和纳秒。
  22. 根据权利要求16所述的方法,其特征在于,所述随机接入响应的格式中所述有效TA占用的比特数大于12。
  23. 根据权利要求22所述的方法,其特征在于,所述有效TA占用了预留比特位。
  24. 根据权利要求17或18所述的方法,其特征在于,所述TA命令占用的比特数大于6。
  25. 根据权利要求22所述的方法,其特征在于,所述UE接收所述基站发送的随机接入响应,包括:
    所述UE仅按照所述随机接入响应的格式进行检测。
  26. 根据权利要求23所述的方法,其特征在于,所述UE接收所述基站发送的TA命令,包括:
    所述UE仅按照所述TA命令的格式进行检测。
  27. 一种时延补偿方法,其特征在于,包括:
    基站生成第一时延补偿信息,所述第一时延补偿信息用于用户设备UE确定是否对参考时间信息进行时延补偿;
    基站向所述UE发送所述第一时延补偿信息。
  28. 根据权利要求27所述的方法,其特征在于,所述第一时延补偿信息包括以下信息中的至少一个:第一指示信息、时延补偿的生效时间信息、所述UE执行时延补偿的判断条件、第二指示信息、时延补偿方式、时间敏感网络TSN的时钟标识,其中,所述第一指示信息用于表示所述UE是否需要对参考时间信息进行时延补偿,所述第二指示信息用于表示基站是否对参考时间信息进行了补偿。
  29. 根据权利要求27或28所述的方法,其特征在于,还包括:
    所述基站向所述UE发送时延补偿参数。
  30. 根据权利要求29所述的方法,其特征在于,还包括:
    所述基站根据时延补偿方式生成所述时延补偿参数。
  31. 根据权利要求30所述的方法,其特征在于,所述基站根据时延补偿方式生成所述时延补偿参数之前,还包括:
    所述基站确定所述时延补偿方式。
  32. 根据权利要求27或28所述的方法,其特征在于,所述方法还包括:
    所述基站接收所述UE发送的时延补偿参数;
    所述基站根据所述时延补偿参数,对参考时间信息进行时延补偿;
    所述基站将时延补偿后的参考时间信息发送给所述UE。
  33. 根据权利要求30或31所述的方法,其特征在于,所述时延补偿方式包括以下方式中的至少一种:采用固定时延补偿值、基于定时提前量TA计算时延补偿值、基于所述UE的实现计算时延补偿值或者基于所述基站的实现计算时延补偿值。
  34. 根据权利要求33所述的方法,其特征在于,所述基站根据时延补偿方式生成时延补偿参数,包括:
    当所述时延补偿方式为采用固定时延补偿值时,所述基站确定所述固定时延补偿值为所述时延补偿参数。
  35. 根据权利要求33所述的方法,其特征在于,所述基站根据时延补偿方式生成所述时延补偿参数,包括:
    当所述时延补偿方式为基于TA计算时延补偿值时,所述基站获取有效TA;
    所述基站根据所述有效TA和预设算法计算所述时延补偿值。
  36. 根据权利要求35所述的方法,其特征在于,所述基站获取有效TA,包括:
    当所述当前TA有效时,所述基站确定所述当前TA为所述有效TA;
    当所述当前TA无效时,所述基站通过测量得到所述有效TA。
  37. 根据权利要求36所述方法,其特征在于,还包括:
    所述UE根据第一信息,确定所述当前TA是否有效;
    所述第一信息包括以下信息中的至少一种:
    所述UE的状态,所述UE的状态包括:无线资源控制RRC连接态、空闲态或RRC非激活态;
    所述UE的时间校准定时器是否开启或运行;
    所述UE当前运行的时延敏感通信TSC业务的业务特性;
    第三信息,用于指示所述UE是否建立或者激活了TSC业务;
    所述UE的时延补偿能力信息。
  38. 根据权利要求36或37所述方法,其特征在于,所述基站通过测量得到所述有效TA,包括:
    所述基站向所述UE发送物理下行控制信道PDCCH命令或者寻呼命令;
    所述基站在随机接入建立过程中测量所述有效TA,所述随机接入建立过程是所述UE根据所述PDCCH命令或者所述寻呼命令触发的。
  39. 根据权利要求36或37所述方法,其特征在于,所述基站通过测量得到所述有效TA,包括:
    所述基站根据所述UE发送的上行信道或随机接入前导测量所述有效TA。
  40. 根据权利要求31所述的方法,其特征在于,所述参考时间信息包括:参考时间和/或参考帧。
  41. 根据权利要求40所述的方法,其特征在于,所述参考时间包括以下时间信息中的至少一个:
    天、秒、毫秒、微秒、十纳秒和纳秒。
  42. 一种时延补偿方法,其特征在于,包括:
    基站获取时延补偿参数;
    所述基站根据所述时延补偿参数,对参考时间信息进行时延补偿;
    所述基站将时延补偿后的参考时间信息发送给用户设备UE。
  43. 根据权利要求42所述的方法,其特征在于,所述基站获取时延补偿参数,包括:
    所述基站接收所述UE发送的所述时延补偿参数。
  44. 根据权利要求42所述的方法,其特征在于,所述基站获取时延补偿参数,包括:
    所述基站根据时延补偿方式生成所述时延补偿参数。
  45. 根据权利要求44所述的方法,其特征在于,所述时延补偿方式包括以下方式中的至少一种:采用固定时延补偿值、基于定时提前量TA计算时延补偿值、基于所述UE的实现计算时延补偿值或者基于所述基站的实现计算时延补偿值。
  46. 根据权利要求45所述的方法,其特征在于,所述基站根据时延补偿方式生成所述时延补偿参数,包括:
    当所述时延补偿方式为采用固定时延补偿值时,所述基站确定所述固定时延补偿值为所述时延补偿参数。
  47. 根据权利要求45所述的方法,其特征在于,所述基站根据时延补偿方式生成所述时延补偿参数,包括:
    当所述时延补偿方式为基于TA计算时延补偿值时,所述基站获取有效TA;
    所述基站根据所述有效TA和预设算法计算所述时延补偿值。
  48. 根据权利要求47所述的方法,其特征在于,所述基站获取有效TA,包括:
    当所述当前TA有效时,所述基站确定所述当前TA为所述有效TA;
    当所述当前TA无效时,所述基站通过测量得到所述有效TA。
  49. 根据权利要求48所述方法,其特征在于,还包括:
    所述UE根据第一信息,确定所述当前TA是否有效;
    所述第一信息包括以下信息中的至少一种:
    所述UE的状态,所述UE的状态包括:无线资源控制RRC连接态、空闲态或RRC非激活态;
    所述UE的时间校准定时器定时器是否开启或者运行;
    所述UE当前运行的时延敏感通信TSC业务的业务特性;
    第三指示信息,用于指示所述UE是否建立或者激活了TSC业务;
    所述UE的时延补偿能力信息。
  50. 根据权利要求48或49所述方法,其特征在于,所述基站通过测量得到所述有效TA,包括:
    所述基站向所述UE发送物理下行控制信道PDCCH命令或者寻呼命令;
    所述基站在随机接入建立过程中测量所述有效TA,所述随机接入建立过程是所述UE根据所述 PDCCH命令或者所述寻呼命令触发的。
  51. 根据权利要求48或49所述方法,其特征在于,所述基站通过测量得到所述有效TA,包括:
    所述基站根据所述UE发送的上行信道或者随机接入前导测量所述有效TA。
  52. 根据权利要求42-51中任一项所述的方法,其特征在于,所述参考时间信息包括:参考时间和/或参考帧。
  53. 根据权利要求52所述的方法,其特征在于,所述参考时间包括以下时间信息中的至少一个:
    天、秒、毫秒、微秒、十纳秒和纳秒。
  54. 一种用户设备UE,其特征在于,包括:
    获取模块,用于获取时延补偿参数;
    补偿模块,用于根据所述时延补偿参数,对参考时间信息进行时延补偿。
  55. 根据权利要求54所述的UE,其特征在于,所述参考时间信息用于所述UE与基站进行时间同步。
  56. 根据权利要求55所述的UE,其特征在于,还包括:
    同步模块,用于根据时延补偿后的参考时间信息,与基站进行时间同步。
  57. 根据权利要求54-56任一项所述的UE,其特征在于,还包括:
    确定模块,用于确定对所述参考时间信息进行时延补偿。
  58. 根据权利要求57所述的UE,其特征在于,所述确定模块具体用于:
    根据以下信息中的至少一个信息确定对所述参考时间信息进行时延补偿:
    所述基站发送的第一时延补偿信息,预定义的第二时延补偿信息,以及所述UE的时延补偿能力信息。
  59. 根据权利要求58所述的UE,其特征在于,还包括:
    接收模块,用于接收所述基站通过系统信息块SIB或者无线资源控制RRC消息发送的所述第一时延补偿信息。
  60. 根据权利要求58或59所述的UE,其特征在于,所述第一时延补偿信息包括以下至少一个信息:所述时延补偿参数、第一指示信息、时延补偿的生效时间信息、所述UE执行时延补偿的判断条件、第二指示信息、时延补偿方式、时间敏感网络TSN的时钟标识,其中,所述第一指示信息用于表示所述UE是否需要对参考时间信息进行时延补偿,所述第二指示信息用于表示基站是否对参考时间信息进行了补偿。
  61. 根据权利要求60所述的UE,其特征在于,当所述第一时延补偿信息中包括所述UE执行时延补偿的判断条件时,所述确定模块具体用于:
    根据所述判断条件,对测量对象进行测量,得到测量结果,所述测量结果中包括以下参数中至少一个:参考信号接收功率RSRP、参考信号接收质量RSRQ、信道与干扰加噪声比SINR、路损;
    当所述测量结果满足所述判断条件时,确定对参考时间信息进行时延补偿。
  62. 根据权利要求60或61所述的UE,其特征在于,所述时延补偿方式包括以下方式中的至少:采用固定时延补偿值、基于定时提前量TA计算时延补偿值或者基于所述UE的实现计算时延补偿值。
  63. 根据权利要求54-62任一项所述的UE,其特征在于,所述获取模块具体用于:
    接收基站发送的所述时延补偿参数。
  64. 根据权利要求54-62任一项所述的UE,其特征在于,所述获取模块具体用于:
    根据所述基站指示的时延补偿方式,获取所述时延补偿参数。
  65. 根据权利要求64所述的UE,其特征在于,所述获取模块具体用于:
    当所述时延补偿方式为采用固定时延补偿值时,确定所述固定时延补偿值为所述时延补偿参数。
  66. 根据权利要求64所述的UE,其特征在于,所述获取模块具体用于:
    当所述时延补偿方式为基于TA计算时延补偿值时,获取有效TA;
    根据所述有效TA和预设算法计算所述时延补偿值。
  67. 根据权利要求66所述的UE,其特征在于,所述获取模块具体用于:
    当所述当前TA有效时,确定所述当前TA为所述有效TA;
    当所述当前TA无效时,通过所述基站获取所述有效TA。
  68. 根据权利要求67所述UE,其特征在于,所述获取模块还用于:
    根据第一信息,确定所述当前TA是否有效;
    所述第一信息包括以下信息中的至少一种:
    所述UE的状态,所述UE的状态包括:无线资源控制RRC连接态、空闲态或RRC非激活态;
    所述UE的时间校准定时器是否开启或运行;
    所述UE当前运行的时延敏感通信TSC业务的业务特性;
    第三信息,用于指示所述UE是否建立或者激活了TSC业务;
    所述UE的时延补偿能力信息。
  69. 根据权利要求67或68所述UE,其特征在于,所述获取模块具体用于:
    向所述基站发送随机接入前导;
    接收所述基站发送的随机接入响应,所述随机接入响应中包括所述有效TA。
  70. 根据权利要求67或68所述UE,其特征在于,所述获取模块具体用于:
    向所述基站发送第一请求消息,所述第一请求消息用于请求所述基站发送TA命令;
    接收所述基站发送的TA命令,所述TA命令中包括所述有效TA。
  71. 根据权利要求67或68所述UE,其特征在于,所述获取模块具体用于:
    接收所述基站发送的TA命令,所述TA命令中包括所述有效TA。
  72. 根据权利要求67或68所述UE,其特征在于,所述获取模块具体用于:
    接收所述基站发送的物理下行控制信道PDCCH命令或者寻呼命令;
    根据所述PDCCH命令或者寻呼命令建立随机接入过程,在随机接入建立过程中接收所述基站发送的所述有效TA。
  73. 根据权利要求54-72任一项所述的UE,其特征在于,所述参考时间信息包括:参考时间和/或参考帧。
  74. 根据权利要求73所述的方法,其特征在于,所述参考时间包括以下时间信息中的至少一个:
    天、秒、毫秒、微秒、十纳秒和纳秒。
  75. 根据权利要求69所述的UE,其特征在于,所述随机接入响应的格式中所述有效TA占用的比特数大于12。
  76. 根据权利要求75所述的UE,其特征在于,所述有效TA占用了预留比特位。
  77. 根据权利要求70或71所述的UE,其特征在于,所述TA命令占用的比特数大于6。
  78. 根据权利要求75所述的UE,其特征在于,所述获取模块具体用于:
    仅按照所述随机接入响应的格式进行检测。
  79. 根据权利要求76所述的UE,其特征在于,所述获取模块具体用于:
    仅按照所述TA命令的格式进行检测。
  80. 一种基站,其特征在于,包括:
    生成模块,用于生成第一时延补偿信息,所述第一时延补偿信息用于用户设备UE确定是否对参考时间信息进行时延补偿;
    发送模块,用于向所述UE发送所述第一时延补偿信息。
  81. 根据权利要求80所述的基站,其特征在于,所述第一时延补偿信息包括以下信息中的至少一个:所述时延补偿参数、第一指示信息、时延补偿的生效时间信息、所述UE执行时延补偿的判断条件、第二指示信息、时延补偿方式、时间敏感网络TSN的时钟标识,其中,所述第一指示信息用于表示所述UE是否需要对参考时间信息进行时延补偿,所述第二指示信息用于表示基站是否对参考时间信息进行了补偿。
  82. 根据权利要求80或81所述的基站,其特征在于,所述发送模块还用于:
    向所述UE发送时延补偿参数。
  83. 根据权利要求82所述的基站,其特征在于,所述生成模块还用于:
    根据时延补偿方式生成所述时延补偿参数。
  84. 根据权利要求83所述的基站,其特征在于,还包括:
    确定模块,用于确定所述时延补偿方式。
  85. 根据权利要求80或81所述的基站,其特征在于,还包括:
    接收模块,用于接收所述UE发送的时延补偿参数;
    补偿模块,用于根据所述时延补偿参数,对参考时间信息进行时延补偿;
    所述发送模块,还用于将时延补偿后的参考时间信息发送给所述UE。
  86. 根据权利要求83或84所述的基站,其特征在于,所述时延补偿方式包括以下方式中的至少一种:采用固定时延补偿值、基于定时提前量TA计算时延补偿值、基于所述UE的实现计算时延补偿值或者基于所述基站的实现计算时延补偿值。
  87. 根据权利要求86所述的基站,其特征在于,所述生成模块具体用于:
    当所述时延补偿方式为采用固定时延补偿值时,确定所述固定时延补偿值为所述时延补偿参数。
  88. 根据权利要求86所述的基站,其特征在于,所述生成模块包括:
    获取子模块,用于当所述时延补偿方式为基于TA计算时延补偿值时,获取有效TA;
    计算子模块,用于根据所述有效TA和预设算法计算所述时延补偿值。
  89. 根据权利要求86所述的基站,其特征在于,所述获取子模块具体用于:
    当所述当前TA有效时,确定所述当前TA为所述有效TA;
    当所述当前TA无效时,通过测量得到所述有效TA。
  90. 根据权利要求89所述UE,其特征在于,所述获取子模块还用于:
    根据第一信息,确定所述当前TA是否有效;
    所述第一信息包括以下信息中的至少一种:
    所述UE的状态,所述UE的状态包括:无线资源控制RRC连接态、空闲态或RRC非激活态;
    所述UE的时间校准定时器是否开启或运行;
    所述UE当前运行的时延敏感通信TSC业务的业务特性;
    第三信息,用于指示所述UE是否建立或者激活了TSC业务;
    所述UE的时延补偿能力信息。
  91. 根据权利要求89或90所述基站,其特征在于,所述获取子模块具体用于:
    向所述UE发送物理下行控制信道PDCCH命令或者寻呼命令;
    在随机接入建立过程中测量所述有效TA,所述随机接入建立过程是所述UE根据所述PDCCH命令或者所述寻呼命令触发的。
  92. 根据权利要求89或90所述基站,其特征在于,所述获取子模块具体用于:
    根据所述UE发送的上行信道或随机接入前导测量所述有效TA。
  93. 根据权利要求85所述的基站,其特征在于,所述参考时间信息包括:参考时间和/或参考帧。
  94. 根据权利要求93所述的基站,其特征在于,所述参考时间包括以下时间信息中的至少一个:
    天、秒、毫秒、微秒、十纳秒和纳秒。
  95. 一种基站,其特征在于,包括:
    获取模块,用于获取时延补偿参数;
    补偿模块,用于根据所述时延补偿参数,对参考时间信息进行时延补偿;
    发送模块,用于将时延补偿后的参考时间信息发送给用户设备UE。
  96. 根据权利要求95所述的基站,其特征在于,所述获取模块具体用于:
    接收所述UE发送的所述时延补偿参数。
  97. 根据权利要求95所述的基站,其特征在于,所述获取模块具体用于:
    根据时延补偿方式生成所述时延补偿参数。
  98. 根据权利要求97所述的基站,其特征在于,所述时延补偿方式包括以下方式中的至少一种:采用固定时延补偿值、基于定时提前量TA计算时延补偿值、基于所述UE的实现计算时延补偿值或者基于所述基站的实现计算时延补偿值。
  99. 根据权利要求98所述的基站,其特征在于,所述获取模块具体用于:
    当所述时延补偿方式为采用固定时延补偿值时,确定所述固定时延补偿值为所述时延补偿参数。
  100. 根据权利要求98所述的基站,其特征在于,所述获取模块具体用于:
    当所述时延补偿方式为基于TA计算时延补偿值时,获取有效TA;
    根据所述有效TA和预设算法计算所述时延补偿值。
  101. 根据权利要求100所述的基站,其特征在于,所述获取模块具体用于:
    当所述当前TA有效时,确定所述当前TA为所述有效TA;
    当所述当前TA无效时,通过测量得到所述有效TA。
  102. 根据权利要求101所述基站,其特征在于,所述获取模块还用于:
    根据第一信息,确定所述当前TA是否有效;
    所述第一信息包括以下信息中的至少一种:
    所述UE的状态,所述UE的状态包括:无线资源控制RRC连接态、空闲态或RRC非激活态;
    所述UE的时间校准定时器定时器是否开启或者运行;
    所述UE当前运行的时延敏感通信TSC业务的业务特性;
    第三指示信息,用于指示所述UE是否建立或者激活了TSC业务;
    所述UE的时延补偿能力信息。
  103. 根据权利要求101或102所述基站,其特征在于,所述获取模块具体用于:
    向所述UE发送物理下行控制信道PDCCH命令或者寻呼命令;
    在随机接入建立过程中测量所述有效TA,所述随机接入建立过程是所述UE根据所述PDCCH命令或者所述寻呼命令触发的。
  104. 根据权利要求101或102所述基站,其特征在于,所述获取模块具体用于:
    根据所述UE发送的上行信道或者随机接入前导测量所述有效TA。
  105. 根据权利要求95-104中任一项所述的基站,其特征在于,所述参考时间信息包括:参考时间和/ 或参考帧。
  106. 根据权利要求105所述的基站,其特征在于,所述参考时间包括以下时间信息中的至少一个:
    天、秒、毫秒、微秒、十纳秒和纳秒。
  107. 一种用户设备UE,其特征在于,包括:
    处理器、存储器、与终端设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至26中任一项所述的时延补偿方法。
  108. 一种基站,其特征在于,包括:
    处理器、存储器、与终端设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求27至41中任一项所述的时延补偿方法。
  109. 一种基站,其特征在于,包括:
    处理器、存储器、与终端设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求42至53中任一项所述的时延补偿方法。
  110. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1至26中任一项所述的时延补偿方法。
  111. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求27至41中任一项所述的时延补偿方法。
  112. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求42至53中任一项所述的时延补偿方法。
PCT/CN2019/092801 2019-06-25 2019-06-25 时延补偿方法、设备及存储介质 WO2020258032A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980097834.XA CN114026926A (zh) 2019-06-25 2019-06-25 时延补偿方法、设备及存储介质
PCT/CN2019/092801 WO2020258032A1 (zh) 2019-06-25 2019-06-25 时延补偿方法、设备及存储介质
US17/547,489 US20220104160A1 (en) 2019-06-25 2021-12-10 Latency compensation method, device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/092801 WO2020258032A1 (zh) 2019-06-25 2019-06-25 时延补偿方法、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/547,489 Continuation US20220104160A1 (en) 2019-06-25 2021-12-10 Latency compensation method, device and storage medium

Publications (1)

Publication Number Publication Date
WO2020258032A1 true WO2020258032A1 (zh) 2020-12-30

Family

ID=74059865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092801 WO2020258032A1 (zh) 2019-06-25 2019-06-25 时延补偿方法、设备及存储介质

Country Status (3)

Country Link
US (1) US20220104160A1 (zh)
CN (1) CN114026926A (zh)
WO (1) WO2020258032A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022155925A1 (zh) * 2021-01-22 2022-07-28 Oppo广东移动通信有限公司 无线通信方法、第一设备以及第二设备
WO2022208485A1 (en) * 2021-04-02 2022-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices on transmit and receive performance for time synchronization
WO2022252231A1 (zh) * 2021-06-04 2022-12-08 Oppo广东移动通信有限公司 用于时间同步的方法、终端设备和网络设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11743836B2 (en) * 2019-12-13 2023-08-29 Qualcomm Incorporated Reduction of path loss (PL) reference signal (RS) application time
US11799710B2 (en) * 2020-12-10 2023-10-24 Qualcomm Incorporated Techniques for signaling a source of dominant noise at a user equipment
CN117177352B (zh) * 2023-11-03 2024-01-30 深圳市佳贤通信科技股份有限公司 上行传输的定时提前补偿系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859743A (zh) * 2005-11-08 2006-11-08 上海华为技术有限公司 通过辅助全球定位系统实现定位的方法
US20140369389A1 (en) * 2013-06-12 2014-12-18 Broadcom Corporation Cellular-to-GNSS Fine Time Assistance and Power Amplifier (PA) Blanking

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093000A1 (en) * 2018-11-02 2020-05-07 Intel Corporation Time synchronization accuracy enhancements
WO2020167013A1 (en) * 2019-02-14 2020-08-20 Samsung Electronics Co., Ltd. Time synchronization method, ue, base station, device and computer readable storage medium
US11184872B2 (en) * 2019-04-04 2021-11-23 Qualcomm Incorporated Reference timing delivery to user equipment with propagation delay compensation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859743A (zh) * 2005-11-08 2006-11-08 上海华为技术有限公司 通过辅助全球定位系统实现定位的方法
US20140369389A1 (en) * 2013-06-12 2014-12-18 Broadcom Corporation Cellular-to-GNSS Fine Time Assistance and Power Amplifier (PA) Blanking

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Time Synchronization in IIoT, R2-1906044", 3GPP TSG-RAN WG2 MEETING #106, RENO, US, 13 MAY - 17 MAY 2019, HTTPS://WWW.3GPP.ORG/FTP/TSG_RAN/WG2_RL2/TSGR2_106/DOCS/R2-1906044.ZIP, 2 May 2019 (2019-05-02), XP051710374, DOI: 20200308081516A *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022155925A1 (zh) * 2021-01-22 2022-07-28 Oppo广东移动通信有限公司 无线通信方法、第一设备以及第二设备
WO2022208485A1 (en) * 2021-04-02 2022-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices on transmit and receive performance for time synchronization
WO2022252231A1 (zh) * 2021-06-04 2022-12-08 Oppo广东移动通信有限公司 用于时间同步的方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN114026926A (zh) 2022-02-08
US20220104160A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
WO2020258032A1 (zh) 时延补偿方法、设备及存储介质
US11671931B2 (en) Method and apparatus for implementing network synchronization
US11974246B2 (en) Method, terminal device and network device for time advance adjustment
US20210219254A1 (en) Time synchronization method and apparatus
US9730129B2 (en) PDCP operation for dual connection
US20170273015A1 (en) Cell and mobile terminal discovery method
WO2018137413A1 (zh) 授时的方法、终端设备和网络设备
WO2020221318A1 (zh) 一种上行波束管理方法及装置
JP2019161673A (ja) セル同期および同期セルインジケーション
US10764848B2 (en) Inter-base-station synchronization method and device
WO2013189367A2 (zh) 一种端到端用户动态复用蜂窝用户资源的方法及基站
WO2017035797A1 (zh) 一种测量方法及装置
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2019214732A1 (zh) 通信方法和装置
WO2021139188A1 (zh) 一种上行同步调整方法及装置
AU2020255012B2 (en) Communication method and communications apparatus
EP4027738B1 (en) Communication method and apparatus
JP2016536823A (ja) エナジーセービングセルの起動のためのユーザ機器検出
WO2018014666A1 (zh) 一种上行参考信号的传输方法和装置
WO2018153157A1 (zh) 一种信息发送方法及装置
WO2016138861A1 (zh) 一种信道检测方法和装置
US10823829B2 (en) Determining distances
CN114503703B (zh) 基于前导码的定位方法和设备
WO2020134897A1 (zh) 随机接入方法、装置、系统及存储介质
WO2022078472A1 (en) Method of propagation delay compensation and related devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934510

Country of ref document: EP

Kind code of ref document: A1