WO2021139188A1 - 一种上行同步调整方法及装置 - Google Patents

一种上行同步调整方法及装置 Download PDF

Info

Publication number
WO2021139188A1
WO2021139188A1 PCT/CN2020/113052 CN2020113052W WO2021139188A1 WO 2021139188 A1 WO2021139188 A1 WO 2021139188A1 CN 2020113052 W CN2020113052 W CN 2020113052W WO 2021139188 A1 WO2021139188 A1 WO 2021139188A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
dmrs
srs
terminal
valid
Prior art date
Application number
PCT/CN2020/113052
Other languages
English (en)
French (fr)
Inventor
常博
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2021139188A1 publication Critical patent/WO2021139188A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the field of mobile communication technology, and in particular to an uplink synchronization adjustment method and device.
  • an important feature of uplink transmission is that different user equipment (also called terminal User Equipment, UE) implement orthogonal multiple access (Orthogonal Multiple Access, OMA) in time and frequency, that is, different users from the same cell
  • OFMA Orthogonal Multiple Access
  • the base station In order to ensure the orthogonality of uplink transmission and avoid intra-cell interference, the base station requires that the signals from UEs in the same subframe but with different frequency domain resources (different resource blocks RB) arrive at the base station to be basically aligned. . As long as the base station receives the uplink data sent by the UE within the cyclic prefix (CP) range, it can decode the uplink data correctly. Therefore, uplink synchronization requires that the signals from different UEs in the same subframe arrive at the base station at all times. Within the CP.
  • CP cyclic prefix
  • the network side proposes an uplink timing advance (UTA) mechanism.
  • UTA uplink timing advance
  • the timing advance (Timing Advance, TA) is essentially a negative offset (Negative Offset) between the start time of receiving the downlink subframe and the time of transmitting the uplink subframe.
  • the base station can control the time at which uplink signals from different UEs arrive at the base station by appropriately controlling the offset of each UE. For UEs that are far away from the base station, due to greater transmission delay, it is necessary to send uplink data earlier than UEs that are closer to the base station.
  • the distance between different UEs and the base station is different, and the moving speed and moving azimuth of different UEs relative to the base station are different. Therefore, the base station will individually control and adjust the uplink delay of each UE to ensure that the uplink data reaches the base station in different scenarios. The time point is consistent.
  • the network side usually measures the TA through a Physical Random Access Channel (PRACH), and the measurement error is relatively large, which causes the uplink synchronization position to be unsatisfactory, and ultimately affects the uplink demodulation performance.
  • PRACH Physical Random Access Channel
  • the embodiments of the present disclosure provide an uplink synchronization adjustment method and device to solve the problem in the prior art that the network side measures TA through PRACH, and the measurement error is relatively large.
  • the embodiments of the present disclosure provide an uplink synchronization adjustment method, which is applied to a network side device, and the method includes:
  • first TA and the second TA are in the same direction and both are valid TAs, determine a target TA based on the first TA and the second TA;
  • the target TA is carried in a first TA command, and the first TA command is issued to the terminal.
  • the method further includes:
  • the third TA has the same direction for the first preset number of consecutive times, then determine whether the third TA is valid:
  • the third TA is invalid, it is determined whether the fourth TA measured based on the DMRS is valid.
  • the method includes:
  • the target TA is carried in a fourth TA command, and the fourth TA command is issued to the terminal.
  • the step of determining the issuing period of the TA command includes:
  • the effective TA is that the received signal power of the source parameter of the TA is greater than a preset power threshold, and the signal-to-noise ratio of the received signal of the source parameter is greater than the preset signal-to-noise ratio threshold;
  • the source parameter is SRS or DMRS.
  • the step of obtaining the channel sounding reference signal SRS and the demodulation reference signal DMRS of the terminal includes:
  • the channel sounding reference signal SRS and the demodulation reference signal DMRS of the terminal are acquired.
  • an embodiment of the present disclosure also provides an uplink synchronization adjustment device, which is applied to a network side device, and the device includes:
  • the parameter acquisition module is used to acquire the channel sounding reference signal SRS and the demodulation reference signal DMRS of the terminal;
  • TA measurement module configured to measure a first timing advance TA based on the SRS and a second TA based on the DMRS;
  • a TA determination module configured to determine a target TA based on the first TA and the second TA if the first TA and the second TA are in the same direction and both are valid TAs;
  • the TA issuing module is configured to carry the target TA in a first TA command and issue the first TA command to the terminal.
  • the device further includes:
  • the cycle determination module is used to determine the issuing cycle of the TA command
  • the first judgment module is configured to judge whether the third TA is valid if the direction of the third TA is the same for the first preset number of consecutive times within the issuance period or based on SRS measurement at the current moment:
  • a first issuing module configured to, if the third TA is valid, carry the third TA in a second TA command, and issue the second TA command to the terminal;
  • the second judgment module is configured to judge whether the fourth TA measured based on the DMRS is valid if the third TA is invalid.
  • the device includes:
  • the second issuing module is used for after the second judging module judges whether the fourth TA measured based on the DMRS is valid,
  • the target TA is carried in a fourth TA command, and the fourth TA command is issued to the terminal.
  • the period determining module includes:
  • the measurement sub-module is configured to measure the frequency offset value based on the DMRS
  • the determining sub-module is configured to determine the issuing period of the TA command according to the frequency offset value and the preset center frequency point of the network side device.
  • the effective TA is that the received signal power of the source parameter of the TA is greater than a preset power threshold, and the signal-to-noise ratio of the received signal of the source parameter is greater than the preset signal-to-noise ratio threshold;
  • the source parameter is SRS or DMRS.
  • the parameter acquisition module is used to:
  • the channel sounding reference signal SRS and the demodulation reference signal DMRS of the terminal are acquired.
  • embodiments of the present disclosure also provide an electronic device, which includes a memory, a processor, and a computer program stored on the memory and running on the processor.
  • the processor implements the computer program when the computer program is executed. The steps in the uplink synchronization adjustment method as described above.
  • embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned uplink synchronization adjustment method is implemented step.
  • the channel sounding reference signal SRS and the demodulation reference signal DMRS of the terminal are acquired; the first TA is measured based on the SRS and the second TA is measured based on the DMRS; The two TAs are in the same direction and are both valid TAs, the target TA is determined based on the first TA and the second TA; the target TA is carried in the first TA command, and the first TA command is issued to The terminal; measures TA based on SRS and DMRS, improves TA measurement accuracy, realizes rapid adjustment of uplink synchronization, and improves the consistency of uplink data arrival time at the station.
  • FIG. 1 is one of the steps of a flow chart of an uplink synchronization adjustment method provided by an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram of an uplink synchronization adjustment device provided by an embodiment of the disclosure.
  • Fig. 4 is a structural block diagram of an electronic device provided by an embodiment of the disclosure.
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present disclosure. Therefore, the appearances of "in one embodiment” or “in an embodiment” in various places throughout the specification do not necessarily refer to the same embodiment. In addition, these specific features, structures or characteristics can be combined in one or more embodiments in any suitable manner.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • FIG. 1 shows a schematic flowchart of an uplink synchronization adjustment method provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides an uplink synchronization adjustment method, which is applied to a network-side device.
  • the network-side device may be a base station (Base Station, BS), which is a type of base station deployed in an access network.
  • BS Base Station
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • gNodeB or gNB With the evolution of mobile communication technology, the name "base station” may change.
  • the above-mentioned devices that provide wireless communication functions for the UE are collectively referred to as network-side devices.
  • the method includes:
  • Step 101 Obtain the channel sounding reference signal SRS and the demodulation reference signal DMRS of the terminal.
  • a sounding reference signal (Sounding Reference Signal, SRS) is an uplink reference signal, which is sent by the UE to the network-side device for the network-side device to schedule network resources for the UE as a reference; in a wireless communication network, the network-side device is usually Allocate a part of the system bandwidth to a specific UE, and assign a specific frequency area resource to the UE within a specific time. At this time, the network-side device knows which part of the specific frequency area is of better quality through SRS, and selects the frequency area with better quality. Priority is given to the UE, so that the UE's service quality is more guaranteed.
  • SRS Sounding Reference Signal
  • SRS is located in the last single-carrier frequency-division multiple access (SC-FDMA) symbol of a subframe. It is sent periodically and has nothing to do with uplink data transmission, because it is a periodic report. For scheduling reference, the network side also detects the time alignment status of the UE through SRS.
  • SC-FDMA single-carrier frequency-division multiple access
  • DMRS Demodulation Reference Signal
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the network side device acquires the SRS and DMRS of the UE when the UE accesses or is handed over to the cell covered by the network side device.
  • Step 102 Measure a first timing advance TA based on the SRS and measure a second TA based on the DMRS.
  • the network side device obtains the SRS and DMRS of the UE, measures the first TA based on the SRS, and measures the second TA based on the DMRS.
  • TA is used for UE uplink transmission.
  • the radio frequency transmission delay caused by the distance is estimated to send the data packet in advance.
  • the network side equipment obtains two TAs based on the SRS and DMRS measurements respectively.
  • DMRS is placed in the fourth block in every 0.5 millisecond time slot. There are two DMRS in a subframe; SRS is placed in the last block of a subframe.
  • the network side determines SRS and DMRS based on the positions of SRS and DMRS. Then, the corresponding TA is determined according to the time difference between the respective arrival time and the transmission time of the last downlink subframe.
  • Step 103 If the first TA and the second TA are in the same direction and both are valid TAs, a target TA is determined based on the first TA and the second TA.
  • the TA of the same subframe is theoretically the same, but in the actual measurement process, it is inevitable that there will be a certain deviation; therefore, the implementation of the present disclosure
  • the TA is measured separately based on two source parameters, and then the final target TA is determined based on the measured two TAs.
  • the TA can be regarded as the target TA; wherein the valid TA is the reception of the source parameter of the TA
  • the signal power is greater than the preset power threshold, and the signal-to-noise ratio of the received signal of the source parameter is greater than the preset signal-to-noise ratio threshold; the source parameter is SRS or DMRS.
  • the first TA if the received signal power of the SRS is higher than the preset power threshold of the SRS, and the signal-to-noise ratio is greater than the preset signal-to-noise ratio threshold of the SRS, the first TA is determined to be a valid TA.
  • the first TA and the second TA are in the same direction, that is, their offset directions (or time advance or time delay) are the same; in addition, if the two values are different, the target TA can be determined by averaging.
  • Step 104 Carry the target TA in a first TA command, and issue the first TA command to the terminal.
  • the network side device informs the UE of the timing advance time size by sending a timing advance command (Timing Advance Command, TAC) to the UE; therefore, the network side device carries the target TA in the first TA command and adds the The first TA command is issued to the terminal.
  • TAC Timing Advance Command
  • the channel sounding reference signal SRS and the demodulation reference signal DMRS of the terminal are obtained; the first TA is measured based on the SRS and the second TA is measured based on the DMRS; TAs are in the same direction and both are valid TAs, the target TA is determined based on the first TA and the second TA; the target TA is carried in the first TA command, and the first TA command is issued to all
  • the terminal measures TA based on SRS and DMRS, improves TA measurement accuracy, realizes rapid adjustment of uplink synchronization, and improves the consistency of uplink data arrival time at the station.
  • the embodiments of the present disclosure solve the problem in the prior art that the network side measures TA through PRACH, and the measurement error is relatively large.
  • another embodiment of the present disclosure provides an uplink synchronization adjustment method, which is applied to a network side device, and the method includes:
  • Step 201 Obtain the channel sounding reference signal SRS and the demodulation reference signal DMRS of the terminal.
  • SRS is an uplink reference signal, which is sent by the UE to the network-side device, and is used by the network-side device as a reference for scheduling network resources for the UE; in a wireless communication network, the network-side device usually allocates a part of the system bandwidth to a specific area The UE allocates a specific frequency region resource to the UE within a specific time. At this time, the network side device knows which part of the specific frequency region has better quality through SRS, and preferentially allocates the better quality frequency region to the UE, so that the UE's business The quality is more guaranteed.
  • the SRS is located in the last SC-FDMA symbol of a subframe. Its periodic transmission has nothing to do with uplink data transmission. Because it is reported periodically, it is used as a scheduling reference and the network side also detects the time alignment status of the UE through the SRS.
  • DMRS exists in PUSCH and PUCCH, and is used by network side equipment to evaluate the uplink channel from the same frequency position.
  • the network side device acquires the SRS and DMRS of the UE when the UE accesses or switches to the cell covered by the UE.
  • Step 202 Measure a first timing advance TA based on the SRS and measure a second TA based on the DMRS.
  • the network side device obtains the SRS and DMRS of the UE, measures the first TA based on the SRS, and measures the second TA based on the DMRS.
  • TA is used for UE uplink transmission.
  • the radio frequency transmission delay caused by the distance is estimated to send the data packet in advance.
  • the network side equipment obtains two TAs based on the SRS and DMRS measurements respectively.
  • DMRS is placed in the fourth block in every 0.5 millisecond time slot. There are two DMRS in a subframe; SRS is placed in the last block of a subframe.
  • the network side determines SRS and DMRS based on the positions of SRS and DMRS. Then, the corresponding TA is determined according to the time difference between the respective arrival time and the transmission time of the last downlink subframe.
  • Step 203 If the first TA and the second TA are in the same direction and both are valid TAs, a target TA is determined based on the first TA and the second TA.
  • the TA of the same subframe is theoretically the same, but in the actual measurement process, it is inevitable that there will be a certain deviation; therefore, the implementation of the present disclosure
  • the TA is measured separately based on two source parameters, and then the final target TA is determined based on the measured two TAs.
  • the TA can be regarded as the target TA; wherein the valid TA is the reception of the source parameter of the TA
  • the signal power is greater than the preset power threshold, and the signal-to-noise ratio of the received signal of the source parameter is greater than the preset signal-to-noise ratio threshold; the source parameter is SRS or DMRS.
  • the first TA if the received signal power of the SRS is higher than the preset power threshold of the SRS, and the signal-to-noise ratio is greater than the preset signal-to-noise ratio threshold of the SRS, the first TA is determined to be a valid TA.
  • the first TA and the second TA are in the same direction, that is, their offset directions (or time advance or time delay) are the same; in addition, if the two values are different, the target TA can be determined by averaging.
  • Step 204 Carry the target TA in a first TA command, and issue the first TA command to the terminal.
  • the network side device informs the UE of the timing advance by sending a TAC to the UE; therefore, the network side device carries the target TA in the first TA command, and sends the first TA command to the terminal.
  • Step 205 Determine the issuing period of the TA command.
  • the issuing period of the TA command is the issuing period of all TA commands of the network side device; when the issuing period of the TA command arrives, the network side device sends the TA command to the UE.
  • Step 206 If the current time is within the delivery period or based on the SRS measurement, the third TA has the same direction for the first preset number of consecutive times, then determine whether the third TA is valid.
  • the TA command issuance period is reached at the current moment, or the third TA measured by the network side device based on the SRS has the same direction for the first preset number of consecutive times, it is determined whether the third TA based on the current SRS measurement is valid.
  • the first preset number can be any positive integer. For example, when the first preset number is 3, the third TA measured by the network-side device based on the SRS has the same direction three consecutive times;
  • the third TA based on SRS measurement is valid, that is, determine that the received signal power of the SRS is higher than the preset power threshold of the SRS, and the signal-to-noise ratio is greater than the preset signal-to-noise ratio threshold of the SRS, then the third TA is determined to be valid TA.
  • Step 207 If the third TA is valid, carry the third TA in a second TA command, and issue the second TA command to the terminal.
  • the third TA is valid, the third TA is used as the target TA, the third TA is carried in a second TA command, and the second TA command is issued to the terminal.
  • Step 208 If the third TA is invalid, determine whether the fourth TA measured based on the DMRS is valid.
  • the third TA is invalid, based on the fourth TA measured by the current DMRS, and according to whether the fourth TA is valid, it is determined whether to use the fourth TA as the target TA.
  • the change trend of the uplink channel quality is grasped in real time through SRS and DMRS, and the value of TA is adjusted in real time according to the change trend.
  • the method includes:
  • the target TA is carried in a fourth TA command, and the fourth TA command is issued to the terminal.
  • the fourth TA is valid, the fourth TA is used as the target TA, the fourth TA is carried in a third TA command, and the third TA command is issued to the terminal. If the fourth TA is invalid, the original target TA is still delivered to the terminal, and the delivery cycle of the next TA command arrives, and step 206 is continued.
  • the step of determining the issuing period of the TA command includes:
  • the issuing cycle of the TA command is determined according to the following formula:
  • T represents the issuing cycle of the TA command
  • T0 represents the preset minimum TA command adjustment cycle
  • F represents the frequency value of the preset center frequency point
  • f0 represents the frequency offset value.
  • the period of adjusting the uplink synchronization position of the UE (that is, the TA command issuance period) is too short, it will cause ping-pong to adjust the UE delay, waste downlink scheduling resources, and increase the probability of uplink synchronization position adjustment.
  • the UE's uplink synchronization position cycle is too long, which will cause the UE's uplink synchronization position to be unsatisfactory, which will affect the uplink demodulation performance, and at the same time cause the high-speed mobile user's synchronization position to deviate beyond the guard interval.
  • the user-level frequency offset value is measured based on the physical layer DMRS, and the TA command issuance period is dynamically adjusted adaptively to avoid the waste of downlink scheduling resources caused by frequent TA adjustments on the network side. , Reduce the risk of TA being transferred, make the uplink synchronization in an ideal position, thereby improving the uplink demodulation performance and improving the overall uplink throughput.
  • an embodiment of the present disclosure also provides an uplink synchronization adjustment device, which is applied to a base station, and the device includes:
  • the parameter acquisition module 301 is used to acquire the channel sounding reference signal SRS and the demodulation reference signal DMRS of the terminal.
  • SRS is an uplink reference signal, which is sent by the UE to the network-side device, and is used by the network-side device as a reference for scheduling network resources for the UE; in a wireless communication network, the network-side device usually allocates a part of the system bandwidth to a specific area The UE allocates a specific frequency region resource to the UE within a specific time. At this time, the network side device knows which part of the specific frequency region has better quality through SRS, and preferentially allocates the better quality frequency region to the UE, so that the UE's business The quality is more guaranteed.
  • the SRS is located in the last SC-FDMA symbol of a subframe. Its periodic transmission has nothing to do with uplink data transmission. Because it is reported periodically, it is used as a scheduling reference and the network side also detects the time alignment status of the UE through the SRS.
  • DMRS exists in PUSCH and PUCCH, and is used by network side equipment to evaluate the uplink channel from the same frequency position.
  • the network side device acquires the SRS and DMRS of the UE when the UE accesses or switches to the cell covered by the UE.
  • the TA measurement module 302 is configured to measure a first timing advance TA based on the SRS and a second TA based on the DMRS.
  • the network side device obtains the SRS and DMRS of the UE, measures the first TA based on the SRS, and measures the second TA based on the DMRS.
  • TA is used for UE uplink transmission.
  • the radio frequency transmission delay caused by the distance is estimated to send the data packet in advance.
  • the network side equipment obtains two TAs based on the SRS and DMRS measurements respectively.
  • DMRS is placed in the fourth block in every 0.5 millisecond time slot. There are two DMRS in a subframe; SRS is placed in the last block of a subframe.
  • the network side determines SRS and DMRS based on the positions of SRS and DMRS. Then, the corresponding TA is determined according to the time difference between the respective arrival time and the transmission time of the last downlink subframe.
  • the TA determination module 303 is configured to determine a target TA based on the first TA and the second TA if the first TA and the second TA are in the same direction and both are valid TAs.
  • the TA of the same subframe is theoretically the same, but in the actual measurement process, it is inevitable that there will be a certain deviation; therefore, the implementation of the present disclosure
  • the TA is measured separately based on two source parameters, and then the final target TA is determined based on the measured two TAs.
  • the TA can be regarded as the target TA; wherein the valid TA is the reception of the source parameter of the TA
  • the signal power is greater than the preset power threshold, and the signal-to-noise ratio of the received signal of the source parameter is greater than the preset signal-to-noise ratio threshold; the source parameter is SRS or DMRS.
  • the first TA if the received signal power of the SRS is higher than the preset power threshold of the SRS, and the signal-to-noise ratio is greater than the preset signal-to-noise ratio threshold of the SRS, the first TA is determined to be a valid TA.
  • the first TA and the second TA are in the same direction, that is, their offset directions (or time advance or time delay) are the same; in addition, if the two values are different, the target TA can be determined by averaging.
  • the TA issuing module 304 is configured to carry the target TA in a first TA command and issue the first TA command to the terminal.
  • the network side device informs the UE of the timing advance by sending a TAC to the UE; therefore, the network side device carries the target TA in the first TA command, and sends the first TA command to the terminal.
  • the device further includes:
  • the cycle determination module is used to determine the issuing cycle of the TA command
  • the first judgment module is configured to judge whether the third TA is valid if the direction of the third TA is the same for the first preset number of consecutive times within the issuance period or based on SRS measurement at the current moment:
  • a first issuing module configured to, if the third TA is valid, carry the third TA in a second TA command, and issue the second TA command to the terminal;
  • the second judgment module is configured to judge whether the fourth TA measured based on the DMRS is valid if the third TA is invalid.
  • the device includes:
  • the second issuing module is used for after the second judging module judges whether the fourth TA measured based on the DMRS is valid,
  • the target TA is carried in a fourth TA command, and the fourth TA command is issued to the terminal.
  • the period determining module includes:
  • the measurement sub-module is configured to measure the frequency offset value based on the DMRS
  • the determining sub-module is configured to determine the issuing period of the TA command according to the frequency offset value and the preset center frequency point of the network side device.
  • the effective TA is that the received signal power of the source parameter of the TA is greater than a preset power threshold, and the signal-to-noise ratio of the received signal of the source parameter is greater than the preset signal-to-noise ratio threshold ;
  • the source parameter is SRS or DMRS.
  • the parameter acquisition module 301 is configured to:
  • the channel sounding reference signal SRS and the demodulation reference signal DMRS of the terminal are acquired.
  • the uplink synchronization adjustment device provided in the embodiment of the present disclosure can implement the various processes implemented by the network side device in the method embodiments of FIG. 1 to FIG. 2. In order to avoid repetition, details are not described herein again.
  • the parameter acquisition module 301 acquires the channel sounding reference signal SRS and the demodulation reference signal DMRS of the terminal; the TA measurement module 302 measures the first quantity TA based on the SRS and measures the second TA based on the DMRS; TA The determining module 303 determines the target TA based on the first TA and the second TA if the first TA and the second TA are in the same direction and are valid TAs; the TA issuing module 304 carries the target TA in the first TA In a TA command, the first TA command is issued to the terminal; the TA is measured based on the SRS and DMRS, the TA measurement accuracy is improved, the uplink synchronization is quickly adjusted, and the consistency of the uplink data arrival time at the station is improved.
  • the embodiments of the present disclosure solve the problem in the prior art that the network side measures TA through PRACH, and the measurement error is relatively large.
  • the embodiments of the present disclosure also provide an electronic device, including a memory, a processor, a bus, and a computer program stored in the memory and running on the processor, and the processor implements the foregoing when the program is executed. Steps in the uplink synchronization adjustment method.
  • FIG. 4 shows a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor 410, a communication interface 440, a memory 430, and a communication bus 420.
  • the processor 410, the communication interface 440, and the memory 430 pass through The communication bus 420 completes mutual communication.
  • the processor 410 may call the logic instructions in the memory 430 to execute the following methods:
  • first TA and the second TA are in the same direction and both are valid TAs, determine a target TA based on the first TA and the second TA;
  • the target TA is carried in a first TA command, and the first TA command is issued to the terminal.
  • the aforementioned logic instructions in the memory 430 can be implemented in the form of software functional units and when sold or used as independent products, they can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is implemented when executed by a processor to perform the uplink synchronization adjustment method provided by the foregoing embodiments, for example, including :
  • first TA and the second TA are in the same direction and both are valid TAs, determine a target TA based on the first TA and the second TA;
  • the target TA is carried in a first TA command, and the first TA command is issued to the terminal.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units.
  • Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • each implementation manner can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the above technical solution essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic A disc, an optical disc, etc., include a number of instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute the methods described in each embodiment or some parts of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种上行同步调整方法及装置。所述方法应用于网络侧设备,所述方法包括:获取终端的信道探测参考信号SRS以及解调参考信号DMRS;基于所述SRS测量第一时间提前量TA以及基于所述DMRS测量第二TA;若第一TA与所述第二TA同向且均为有效TA,基于所述第一TA以及所述第二TA确定目标TA;将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端。

Description

一种上行同步调整方法及装置
本公开要求在2020年1月10日提交中国专利局、申请号为:202010027851.0、发明名称为“一种上行同步调整方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及移动通信技术领域,尤其涉及一种上行同步调整方法及装置。
背景技术
在无线通信系统中,上行传输的一个重要特征是不同用户设备(也称终端User Equipment,UE)在时频上实现正交多址接入(Orthogonal Multiple Access,OMA),即来自同一小区的不同UE的上行传输之间互不干扰。
为了保证上行传输的正交性,避免小区内(Intra-Cell)干扰,基站要求来自同一子帧但不同频域资源(不同的资源块RB)的UE的信号到达基站的时间基本上是对齐的。基站只要在循环前缀(Cyclic Prefix,CP)范围内接收到UE所发送的上行数据,就能够正确地解码上行数据,因此,上行同步要求来自同一子帧的不同UE的信号到达基站的时间都落在CP之内。
为了保证接收侧(基站侧)的时间同步,网络侧提出了上行定时提前(Uplink Timing Advance,UTA)的机制。
对于UE来说,定时提前(Timing Advance,TA)本质上是接收到下行子帧的起始时间与传输上行子帧的时间之间的一个负偏移(Negative Offset)。基站通过适当地控制每个UE的偏移,可以控制来自不同UE的上行信号到达基站的时间。对于离基站较远的UE,由于有较大的传输延迟,就要比离基站较近的UE提前发送上行数据。
不同UE和基站距离不同,不同UE相对基站的移动速度和移动方位角不同,因此,基站会个性化控制调整每个UE的上行时延,以保证不同 终端在不同场景下,上行数据到达基站的时间点是一致的。
现有技术中,网络侧通常通过物理随机接入信道(Physical Random Access Channel,PRACH)测量TA,其测量误差较大,引起上行同步位置不理想,最终影响上行解调性能。
发明内容
本公开实施例提供一种上行同步调整方法及装置,以解决现有技术中,网络侧通过PRACH测量TA,其测量误差较大的问题。
一方面,本公开实施例提供了一种上行同步调整方法,应用于网络侧设备,所述方法包括:
获取终端的信道探测参考信号SRS以及解调参考信号DMRS;
基于所述SRS测量第一时间提前量TA以及基于所述DMRS测量第二TA;
若第一TA与所述第二TA同向且均为有效TA,基于所述第一TA以及所述第二TA确定目标TA;
将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端。
可选地,所述将所述第一TA命令下发至所述终端的步骤之后,所述方法还包括:
确定TA命令的下发周期;
若当前时刻在所述下发周期内或基于SRS测量的第三TA连续第一预设数目次方向相同,则判断所述第三TA是否有效:
若所述第三TA有效,将所述第三TA携带在第二TA命令中,并将所述第二TA命令下发至所述终端;
若所述第三TA无效,则判断基于所述DMRS测量的第四TA是否有效。
可选地,所述判断基于所述DMRS测量的第四TA是否有效的步骤之后,所述方法包括:
若所述第四TA有效,将所述第四TA携带在第三TA命令中,并将所述第三TA命令下发至所述终端;
若所述第四TA无效,则将所述目标TA携带在第四TA命令中,并将所述第四TA命令下发至所述终端。
可选地,所述确定TA命令的下发周期的步骤,包括:
基于所述DMRS测量频率偏移值;
根据所述频率偏移值以及所述网络侧设备的预设中心频点,确定TA命令的下发周期。
可选地,所述有效TA为所述TA的源参数的接收信号功率大于预设功率门限,且所述源参数的接收信号的信噪比大于预设信噪比门限;
所述源参数为SRS或DMRS。
可选地,所述获取终端的信道探测参考信号SRS以及解调参考信号DMRS的步骤,包括:
检测到终端接入至所述网络侧设备的小区时,获取终端的信道探测参考信号SRS以及解调参考信号DMRS。
另一方面,本公开实施例还提供一种上行同步调整装置,应用于网络侧设备,所述装置包括:
参数获取模块,用于获取终端的信道探测参考信号SRS以及解调参考信号DMRS;
TA测量模块,用于基于所述SRS测量第一时间提前量TA以及基于所述DMRS测量第二TA;
TA确定模块,用于若第一TA与所述第二TA同向且均为有效TA,基于所述第一TA以及所述第二TA确定目标TA;
TA下发模块,用于将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端。
可选地,所述装置还包括:
周期确定模块,用于确定TA命令的下发周期;
第一判断模块,用于若当前时刻在所述下发周期内或基于SRS测量的第三TA连续第一预设数目次方向相同,则判断所述第三TA是否有效:
第一下发模块,用于若所述第三TA有效,将所述第三TA携带在第二TA命令中,并将所述第二TA命令下发至所述终端;
第二判断模块,用于若所述第三TA无效,则判断基于所述DMRS 测量的第四TA是否有效。
可选地,所述装置包括:
第二下发模块,用于所述第二判断模块判断基于所述DMRS测量的第四TA是否有效之后,
若所述第四TA有效,将所述第四TA携带在第三TA命令中,并将所述第三TA命令下发至所述终端;
若所述第四TA无效,则将所述目标TA携带在第四TA命令中,并将所述第四TA命令下发至所述终端。
可选地,所述周期确定模块包括:
测量子模块,用于基于所述DMRS测量频率偏移值;
确定子模块,用于根据所述频率偏移值以及所述网络侧设备的预设中心频点,确定TA命令的下发周期。
可选地,所述有效TA为所述TA的源参数的接收信号功率大于预设功率门限,且所述源参数的接收信号的信噪比大于预设信噪比门限;
所述源参数为SRS或DMRS。
可选地,所述参数获取模块用于:
检测到终端接入至所述网络侧设备的小区时,获取终端的信道探测参考信号SRS以及解调参考信号DMRS。
又一方面,本公开实施例还提供一种电子设备,该电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的上行同步调整方法中的步骤。
再一方面,本公开实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的上行同步调整方法中的步骤。
在本公开实施例中,通过获取终端的信道探测参考信号SRS以及解调参考信号DMRS;基于所述SRS测量第一量TA以及基于所述DMRS测量第二TA;若第一TA与所述第二TA同向且均为有效TA,基于所述第一TA以及所述第二TA确定目标TA;将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端;基于SRS以及DMRS 测量TA,提高TA测量精度,实现上行同步的快速调整,提高上行数据到达站时间的一致性。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的上行同步调整方法的步骤流程图之一;
图2为本公开实施例提供的上行同步调整方法的步骤流程图之二;
图3为本公开实施例提供的上行同步调整装置的结构框图;
图4为本公开实施例提供的电子设备的结构框图。
具体实施例
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本公开的各种实施例中,应理解,下述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
在本公开所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
图1示出了本公开实施例提供的一种上行同步调整方法的流程示意图。
如图1所示,本公开实施例提供了一种上行同步调整方法,应用于网络侧设备,网络侧设备可以是基站(Base Station,BS),所述基站是一种部署在接入网中用以为UE提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在5G新空口(New Radio,NR)系统中,称为gNodeB或者gNB。随着移动通信技术的演进,“基站”这一名称可能会变化。为方便描述,本公开实施例中,上述为UE提供无线通信功能的装置统称为网络侧设备。
所述方法包括:
步骤101,获取终端的信道探测参考信号SRS以及解调参考信号DMRS。
其中,探测参考信号(Sounding Reference Signal,SRS)为上行的参考信号,由UE发送给网络侧设备,用于网络侧设备为UE调度网络资源作参考;在无线通信网络中,网络侧设备通常是分配系统带宽的一部分区域给特定的UE,在一个特定时间内给UE分配特定的频率区域资源,此时,网络侧设备通过SRS获知哪一部分特定频率区域质量较好,将质量较好的频率区域优先分配给UE,使UE的业务质量更有保障。
SRS位于一个子帧的最后一个单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)符号,其周期性的发送,与上行数据传输无关,因其是周期上报,除用作调度参考,网络侧还通过SRS检测UE的时间对齐状态。
解调参考信号(Demodulation Reference Signal,DMRS)存在于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)和物理上行控制信道(Physical Uplink Control Channel,PUCCH)中,用于网络侧设备从相同的频率位置对上行信道进行评估。
网络侧设备在UE接入或切换至所述网络侧设备的覆盖的小区内时, 获取所述UE的SRS以及DMRS。
步骤102,基于所述SRS测量第一时间提前量TA以及基于所述DMRS测量第二TA。
其中,网络侧设备得到所述UE的SRS以及DMRS,基于SRS测量第一TA,并基于DMRS测量第二TA。
具体地,TA用于UE上行传输,为了将UE的上行数据包在预设的时间发送至网络侧设备,预估由于距离引起的射频传输时延,以提前相应时间发出数据包。
为了提高TA的测量精度,网络侧设备分别基于SRS以及DMRS测量得到两个TA。DMRS放在每0.5毫秒时隙中的第四块中,一个子帧中有两个DMRS;SRS被放置在一个子帧的最后一个块中,网络侧基于SRS以及DMRS的位置分别确定SRS以及DMRS的到达时间,然后根据各自的到达时间与最后一个下行子帧的发送时间之间的时间差确定各自对应的TA。
步骤103,若第一TA与所述第二TA同向且均为有效TA,基于所述第一TA以及所述第二TA确定目标TA。
其中,对于UE来说,即使测量的源参数(源参数即DMRS或SRS)不同,其同一个子帧的TA理论上相同,而实际测量的过程中,难免存在一定的偏差;因此,本公开实施例中,基于两个源参数分别测量TA,然后基于测量的两个TA确定最终的目标TA。
具体地,针对同一个子帧,若第一TA与所述第二TA同向且均为有效TA,则可认定该TA为目标TA;其中,所述有效TA为所述TA的源参数的接收信号功率大于预设功率门限,且所述源参数的接收信号的信噪比大于预设信噪比门限;所述源参数为SRS或DMRS。比如,对于第一TA来说,若所述SRS的接收信号功率高于SRS的预设功率门限,且信噪比大于SRS的预设信噪比门限,则认定第一TA为有效TA。
第一TA与所述第二TA同向,即二者的偏移方向(或时间提前或时间延后)相同;此外,若二者数值不同,可以采用取均值的方式确定目标TA。
步骤104,将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端。
其中,网络侧设备通过发送定时提前命令(Timing Advance Command,TAC)给UE,告知UE定时提前的时间大小;因此,网络侧设备将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端。
本公开实施例中,通过获取终端的信道探测参考信号SRS以及解调参考信号DMRS;基于所述SRS测量第一量TA以及基于所述DMRS测量第二TA;若第一TA与所述第二TA同向且均为有效TA,基于所述第一TA以及所述第二TA确定目标TA;将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端;基于SRS以及DMRS测量TA,提高TA测量精度,实现上行同步的快速调整,提高上行数据到达站时间的一致性。本公开实施例解决了现有技术中,网络侧通过PRACH测量TA,其测量误差较大的问题。
参见图2,本公开又一实施例提供了一种上行同步调整方法,应用于网络侧设备,所述方法包括:
步骤201,获取终端的信道探测参考信号SRS以及解调参考信号DMRS。
其中,SRS为上行的参考信号,由UE发送给网络侧设备,用于网络侧设备为UE调度网络资源作参考;在无线通信网络中,网络侧设备通常是分配系统带宽的一部分区域给特定的UE,在一个特定时间内给UE分配特定的频率区域资源,此时,网络侧设备通过SRS获知哪一部分特定频率区域质量较好,将质量较好的频率区域优先分配给UE,使UE的业务质量更有保障。
SRS位于一个子帧的最后一个SC-FDMA符号,其周期性的发送,与上行数据传输无关,因其是周期上报,除用作调度参考,网络侧还通过SRS检测UE的时间对齐状态。
DMRS存在于PUSCH和PUCCH中,用于网络侧设备从相同的频率位置对上行信道进行评估。
网络侧设备在UE接入或切换至其覆盖的小区内时,获取所述UE的SRS以及DMRS。
步骤202,基于所述SRS测量第一时间提前量TA以及基于所述DMRS测量第二TA。
其中,网络侧设备得到所述UE的SRS以及DMRS,基于SRS测量第一TA,并基于DMRS测量第二TA。
具体地,TA用于UE上行传输,为了将UE的上行数据包在预设的时间发送至网络侧设备,预估由于距离引起的射频传输时延,以提前相应时间发出数据包。
为了提高TA的测量精度,网络侧设备分别基于SRS以及DMRS测量得到两个TA。DMRS放在每0.5毫秒时隙中的第四块中,一个子帧中有两个DMRS;SRS被放置在一个子帧的最后一个块中,网络侧基于SRS以及DMRS的位置分别确定SRS以及DMRS的到达时间,然后根据各自的到达时间与最后一个下行子帧的发送时间之间的时间差确定各自对应的TA。
步骤203,若第一TA与所述第二TA同向且均为有效TA,基于所述第一TA以及所述第二TA确定目标TA。
其中,对于UE来说,即使测量的源参数(源参数即DMRS或SRS)不同,其同一个子帧的TA理论上相同,而实际测量的过程中,难免存在一定的偏差;因此,本公开实施例中,基于两个源参数分别测量TA,然后基于测量的两个TA确定最终的目标TA。
具体地,针对同一个子帧,若第一TA与所述第二TA同向且均为有效TA,则可认定该TA为目标TA;其中,所述有效TA为所述TA的源参数的接收信号功率大于预设功率门限,且所述源参数的接收信号的信噪比大于预设信噪比门限;所述源参数为SRS或DMRS。比如,对于第一TA来说,若所述SRS的接收信号功率高于SRS的预设功率门限,且信噪比大于SRS的预设信噪比门限,则认定第一TA为有效TA。
第一TA与所述第二TA同向,即二者的偏移方向(或时间提前或时间延后)相同;此外,若二者数值不同,可以采用取均值的方式确定目 标TA。
步骤204,将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端。
其中,网络侧设备通过发送TAC给UE,告知UE定时提前的时间大小;因此,网络侧设备将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端。
步骤205,确定TA命令的下发周期。
其中,TA命令的下发周期为网络侧设备的所有TA命令的下发周期;在TA命令的下发周期到达时,网络侧设备向UE发送TA命令。
步骤206,若当前时刻在所述下发周期内或基于SRS测量的第三TA连续第一预设数目次方向相同,则判断所述第三TA是否有效。
其中,若当前时刻到达TA命令的下发周期,或网络侧设备基于SRS测量的第三TA连续第一预设数目次方向相同,则判断基于当前的SRS测量的第三TA是否有效。
第一预设数目可以是任意正整数,比如,第一预设数目为3时,则网络侧设备基于SRS测量的第三TA连续3次方向相同;
判断基于SRS测量的第三TA是否有效,即判断所述SRS的接收信号功率高于SRS的预设功率门限,且信噪比大于SRS的预设信噪比门限,则认定第三TA为有效TA。
步骤207,若所述第三TA有效,将所述第三TA携带在第二TA命令中,并将所述第二TA命令下发至所述终端。
其中,若所述第三TA有效,则第三TA作为目标TA,将所述第三TA携带在第二TA命令中,并将所述第二TA命令下发至所述终端。
步骤208,若所述第三TA无效,则判断基于所述DMRS测量的第四TA是否有效。
其中,若所述第三TA无效,则基于当前的DMRS测量的第四TA,并根据第四TA是否有效,确定是否将第四TA作为目标TA。
上述实施例中,通过SRS以及DMRS实时掌握上行信道质量的变化趋势,并根据变化趋势实时调整TA的值。
可选地,本公开实施例中,所述判断基于所述DMRS测量的第四TA是否有效的步骤之后,所述方法包括:
若所述第四TA有效,将所述第四TA携带在第三TA命令中,并将所述第三TA命令下发至所述终端;
若所述第四TA无效,则将所述目标TA携带在第四TA命令中,并将所述第四TA命令下发至所述终端。
其中,若所述第四TA有效,则第四TA作为目标TA,将所述第四TA携带在第三TA命令中,并将所述第三TA命令下发至所述终端。若所述第四TA无效,仍将原始的目标TA下发至终端,并等待下一个TA命令的下发周期到达,继续执行步骤206。
可选地,本公开实施例中,所述确定TA命令的下发周期的步骤,包括:
基于所述DMRS测量频率偏移值;
根据所述频率偏移值以及所述网络侧设备的预设中心频点,确定TA命令的下发周期。
其中,根据以下公式确定TA命令的下发周期:
T=T0*F/f0
T表示TA命令的下发周期,T0表示预设的最小TA命令调整周期,F表示预设中心频点的频率值,f0表示表示频率偏移值。
现有技术中,若调整UE上行同步位置周期(即TA命令的下发周期)过短,会造成乒乓调整UE时延,也浪费下行调度资源,同时增加上行同步位置调飞的概率;若调整UE上行同步位置周期过长,会导致UE上行同步位置不理想,而影响上行解调性能,同时导致高速移动用户同步位置偏离超过保护间隔。本公开实施例中,基于物理层DMRS测量用户级的频率偏移值,以动态自适应调整TA命令的下发周期,避免了网络侧频繁调整TA导致下行调度资源浪费,实时进行TA命令下发,降低TA被调飞风险,使上行同步处于理想位置,从而提升上行解调性能,提升整体上行吞吐量。
以上介绍了本公开实施例提供的上行同步调整方法,下面将结合附 图介绍本公开实施例提供的上行同步调整装置。
参见图3,本公开实施例还提供了一种上行同步调整装置,应用于基站,所述装置包括:
参数获取模块301,用于获取终端的信道探测参考信号SRS以及解调参考信号DMRS。
其中,SRS为上行的参考信号,由UE发送给网络侧设备,用于网络侧设备为UE调度网络资源作参考;在无线通信网络中,网络侧设备通常是分配系统带宽的一部分区域给特定的UE,在一个特定时间内给UE分配特定的频率区域资源,此时,网络侧设备通过SRS获知哪一部分特定频率区域质量较好,将质量较好的频率区域优先分配给UE,使UE的业务质量更有保障。
SRS位于一个子帧的最后一个SC-FDMA符号,其周期性的发送,与上行数据传输无关,因其是周期上报,除用作调度参考,网络侧还通过SRS检测UE的时间对齐状态。
DMRS存在于PUSCH和PUCCH中,用于网络侧设备从相同的频率位置对上行信道进行评估。
网络侧设备在UE接入或切换至其覆盖的小区内时,获取所述UE的SRS以及DMRS。
TA测量模块302,用于基于所述SRS测量第一时间提前量TA以及基于所述DMRS测量第二TA。
其中,网络侧设备得到所述UE的SRS以及DMRS,基于SRS测量第一TA,并基于DMRS测量第二TA。
具体地,TA用于UE上行传输,为了将UE的上行数据包在预设的时间发送至网络侧设备,预估由于距离引起的射频传输时延,以提前相应时间发出数据包。
为了提高TA的测量精度,网络侧设备分别基于SRS以及DMRS测量得到两个TA。DMRS放在每0.5毫秒时隙中的第四块中,一个子帧中有两个DMRS;SRS被放置在一个子帧的最后一个块中,网络侧基于SRS以及DMRS的位置分别确定SRS以及DMRS的到达时间,然后根据各自 的到达时间与最后一个下行子帧的发送时间之间的时间差确定各自对应的TA。
TA确定模块303,用于若第一TA与所述第二TA同向且均为有效TA,基于所述第一TA以及所述第二TA确定目标TA。
其中,对于UE来说,即使测量的源参数(源参数即DMRS或SRS)不同,其同一个子帧的TA理论上相同,而实际测量的过程中,难免存在一定的偏差;因此,本公开实施例中,基于两个源参数分别测量TA,然后基于测量的两个TA确定最终的目标TA。
具体地,针对同一个子帧,若第一TA与所述第二TA同向且均为有效TA,则可认定该TA为目标TA;其中,所述有效TA为所述TA的源参数的接收信号功率大于预设功率门限,且所述源参数的接收信号的信噪比大于预设信噪比门限;所述源参数为SRS或DMRS。比如,对于第一TA来说,若所述SRS的接收信号功率高于SRS的预设功率门限,且信噪比大于SRS的预设信噪比门限,则认定第一TA为有效TA。
第一TA与所述第二TA同向,即二者的偏移方向(或时间提前或时间延后)相同;此外,若二者数值不同,可以采用取均值的方式确定目标TA。
TA下发模块304,用于将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端。
其中,网络侧设备通过发送TAC给UE,告知UE定时提前的时间大小;因此,网络侧设备将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端。
可选地,本公开实施例中,所述装置还包括:
周期确定模块,用于确定TA命令的下发周期;
第一判断模块,用于若当前时刻在所述下发周期内或基于SRS测量的第三TA连续第一预设数目次方向相同,则判断所述第三TA是否有效:
第一下发模块,用于若所述第三TA有效,将所述第三TA携带在第二TA命令中,并将所述第二TA命令下发至所述终端;
第二判断模块,用于若所述第三TA无效,则判断基于所述DMRS 测量的第四TA是否有效。
可选地,本公开实施例中,所述装置包括:
第二下发模块,用于所述第二判断模块判断基于所述DMRS测量的第四TA是否有效之后,
若所述第四TA有效,将所述第四TA携带在第三TA命令中,并将所述第三TA命令下发至所述终端;
若所述第四TA无效,则将所述目标TA携带在第四TA命令中,并将所述第四TA命令下发至所述终端。
可选地,本公开实施例中,所述周期确定模块包括:
测量子模块,用于基于所述DMRS测量频率偏移值;
确定子模块,用于根据所述频率偏移值以及所述网络侧设备的预设中心频点,确定TA命令的下发周期。
可选地,本公开实施例中,所述有效TA为所述TA的源参数的接收信号功率大于预设功率门限,且所述源参数的接收信号的信噪比大于预设信噪比门限;
所述源参数为SRS或DMRS。
可选地,本公开实施例中,所述参数获取模块301用于:
检测到终端接入至所述网络侧设备的小区时,获取终端的信道探测参考信号SRS以及解调参考信号DMRS。
本公开实施例提供的上行同步调整装置能够实现图1至图2的方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
本公开的实施例中,参数获取模块301获取终端的信道探测参考信号SRS以及解调参考信号DMRS;TA测量模块302基于所述SRS测量第一量TA以及基于所述DMRS测量第二TA;TA确定模块303若第一TA与所述第二TA同向且均为有效TA,基于所述第一TA以及所述第二TA确定目标TA;TA下发模块304将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端;基于SRS以及DMRS测量TA,提高TA测量精度,实现上行同步的快速调整,提高上行数据到达站时间的一致性。本公开实施例解决了现有技术中,网络侧通过PRACH 测量TA,其测量误差较大的问题。
另一方面,本公开实施例还提供了一种电子设备,包括存储器、处理器、总线以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述上行同步调整方法中的步骤。
举个例子如下,图4示出了一种电子设备的实体结构示意图。
如图4所示,该电子设备可以包括:处理器(processor)410、通信接口(Communications Interface)440、存储器(memory)430和通信总线420,其中,处理器410,通信接口440,存储器430通过通信总线420完成相互间的通信。处理器410可以调用存储器430中的逻辑指令,以执行如下方法:
获取终端的信道探测参考信号SRS以及解调参考信号DMRS;
基于所述SRS测量第一时间提前量TA以及基于所述DMRS测量第二TA;
若第一TA与所述第二TA同向且均为有效TA,基于所述第一TA以及所述第二TA确定目标TA;
将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端。
此外,上述的存储器430中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
再一方面,本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实 施例提供的上行同步调整方法,例如包括:
获取终端的信道探测参考信号SRS以及解调参考信号DMRS;
基于所述SRS测量第一时间提前量TA以及基于所述DMRS测量第二TA;
若第一TA与所述第二TA同向且均为有效TA,基于所述第一TA以及所述第二TA确定目标TA;
将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (14)

  1. 一种上行同步调整方法,应用于网络侧设备,其中,所述方法包括:
    获取终端的信道探测参考信号SRS以及解调参考信号DMRS;
    基于所述SRS测量第一时间提前量TA以及基于所述DMRS测量第二TA;
    若第一TA与所述第二TA同向且均为有效TA,基于所述第一TA以及所述第二TA确定目标TA;
    将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端。
  2. 根据权利要求1所述的上行同步调整方法,其中,所述将所述第一TA命令下发至所述终端的步骤之后,所述方法还包括:
    确定TA命令的下发周期;
    若当前时刻在所述下发周期内或基于SRS测量的第三TA连续第一预设数目次方向相同,则判断所述第三TA是否有效:
    若所述第三TA有效,将所述第三TA携带在第二TA命令中,并将所述第二TA命令下发至所述终端;
    若所述第三TA无效,则判断基于所述DMRS测量的第四TA是否有效。
  3. 根据权利要求2所述的上行同步调整方法,其中,所述判断基于所述DMRS测量的第四TA是否有效的步骤之后,所述方法包括:
    若所述第四TA有效,将所述第四TA携带在第三TA命令中,并将所述第三TA命令下发至所述终端;
    若所述第四TA无效,则将所述目标TA携带在第四TA命令中,并将所述第四TA命令下发至所述终端。
  4. 根据权利要求2所述的上行同步调整方法,其中,所述确定TA 命令的下发周期的步骤,包括:
    基于所述DMRS测量频率偏移值;
    根据所述频率偏移值以及所述网络侧设备的预设中心频点,确定TA命令的下发周期。
  5. 根据权利要求1至4中任一项所述的上行同步调整方法,其中,所述有效TA为所述TA的源参数的接收信号功率大于预设功率门限,且所述源参数的接收信号的信噪比大于预设信噪比门限;
    所述源参数为SRS或DMRS。
  6. 根据权利要求1所述的上行同步调整方法,其中,所述获取终端的信道探测参考信号SRS以及解调参考信号DMRS的步骤,包括:
    检测到终端接入至所述网络侧设备的小区时,获取终端的信道探测参考信号SRS以及解调参考信号DMRS。
  7. 一种上行同步调整装置,应用于网络侧设备,其中,所述装置包括:
    参数获取模块,用于获取终端的信道探测参考信号SRS以及解调参考信号DMRS;
    TA测量模块,用于基于所述SRS测量第一时间提前量TA以及基于所述DMRS测量第二TA;
    TA确定模块,用于若第一TA与所述第二TA同向且均为有效TA,基于所述第一TA以及所述第二TA确定目标TA;
    TA下发模块,用于将所述目标TA携带在第一TA命令中,并将所述第一TA命令下发至所述终端。
  8. 根据权利要求7所述的上行同步调整装置,其中,所述装置还包括:
    周期确定模块,用于确定TA命令的下发周期;
    第一判断模块,用于若当前时刻在所述下发周期内或基于SRS测量 的第三TA连续第一预设数目次方向相同,则判断所述第三TA是否有效:
    第一下发模块,用于若所述第三TA有效,将所述第三TA携带在第二TA命令中,并将所述第二TA命令下发至所述终端;
    第二判断模块,用于若所述第三TA无效,则判断基于所述DMRS测量的第四TA是否有效。
  9. 根据权利要求8所述的上行同步调整装置,其中,所述装置包括:
    第二下发模块,用于所述第二判断模块判断基于所述DMRS测量的第四TA是否有效之后,
    若所述第四TA有效,将所述第四TA携带在第三TA命令中,并将所述第三TA命令下发至所述终端;
    若所述第四TA无效,则将所述目标TA携带在第四TA命令中,并将所述第四TA命令下发至所述终端。
  10. 根据权利要求8所述的上行同步调整装置,其中,所述周期确定模块包括:
    测量子模块,用于基于所述DMRS测量频率偏移值;
    确定子模块,用于根据所述频率偏移值以及所述网络侧设备的预设中心频点,确定TA命令的下发周期。
  11. 根据权利要求7至10中任一项所述的上行同步调整装置,其中,所述有效TA为所述TA的源参数的接收信号功率大于预设功率门限,且所述源参数的接收信号的信噪比大于预设信噪比门限;
    所述源参数为SRS或DMRS。
  12. 根据权利要求7所述的上行同步调整装置,其中,所述参数获取模块用于:
    检测到终端接入至所述网络侧设备的小区时,获取终端的信道探测参考信号SRS以及解调参考信号DMRS。
  13. 一种电子设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时实现如权利要求1至6中任一项所述的上行同步调整方法的步骤。
  14. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6中任一项所述的上行同步调整方法的步骤。
PCT/CN2020/113052 2020-01-10 2020-09-02 一种上行同步调整方法及装置 WO2021139188A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010027851.0A CN113115428B (zh) 2020-01-10 2020-01-10 一种上行同步调整方法及装置
CN202010027851.0 2020-01-10

Publications (1)

Publication Number Publication Date
WO2021139188A1 true WO2021139188A1 (zh) 2021-07-15

Family

ID=76708773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113052 WO2021139188A1 (zh) 2020-01-10 2020-09-02 一种上行同步调整方法及装置

Country Status (2)

Country Link
CN (1) CN113115428B (zh)
WO (1) WO2021139188A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198183A1 (zh) * 2022-04-15 2023-10-19 维沃移动通信有限公司 信息获取方法、信息发送方法、装置、终端及网络侧设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114449645A (zh) * 2022-02-15 2022-05-06 赛特斯信息科技股份有限公司 一种多扩展单元小站定时提前调整方法
WO2023174148A1 (zh) * 2022-03-14 2023-09-21 华为技术有限公司 一种定位方法及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120113939A1 (en) * 2009-07-06 2012-05-10 Lg Electronics Inc. Method and apparatus for random access in a wireless communication system
CN102647780A (zh) * 2011-02-17 2012-08-22 中兴通讯股份有限公司 Lte的时间调整方法及基站
CN108377504A (zh) * 2016-11-18 2018-08-07 北京佰才邦技术有限公司 一种非随机接入切换的增强方法、装置、基站及终端
CN110087302A (zh) * 2014-09-30 2019-08-02 华为技术有限公司 传输定时调整的方法及设备
CN110650527A (zh) * 2018-06-26 2020-01-03 中兴通讯股份有限公司 一种上行同步方法、装置和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647781A (zh) * 2011-02-17 2012-08-22 中兴通讯股份有限公司 Lte的时间提前调整方法及基站
CN108337728B (zh) * 2017-01-19 2022-03-18 中兴通讯股份有限公司 一种定时提前维护方法、装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120113939A1 (en) * 2009-07-06 2012-05-10 Lg Electronics Inc. Method and apparatus for random access in a wireless communication system
CN102647780A (zh) * 2011-02-17 2012-08-22 中兴通讯股份有限公司 Lte的时间调整方法及基站
CN110087302A (zh) * 2014-09-30 2019-08-02 华为技术有限公司 传输定时调整的方法及设备
CN108377504A (zh) * 2016-11-18 2018-08-07 北京佰才邦技术有限公司 一种非随机接入切换的增强方法、装置、基站及终端
CN110650527A (zh) * 2018-06-26 2020-01-03 中兴通讯股份有限公司 一种上行同步方法、装置和系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "PRACH design and UL timing management", 3GPP DRAFT; R1-1912165, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823243 *
ERICSSON: "Discussion on NR PUSCH UL Timing Adjustment", 3GPP DRAFT; R4-1912169, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Chongqing, CN; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051794379 *
ERICSSON: "On Doppler for 500 km/h for 15 kHz SCS for NR PUSCH HST scenarios", 3GPP DRAFT; R4-1914546, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Reno, Nevada, US; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051818909 *
SAMSUNG: "View on BS performance requirements for high speed scenario in NR Rel-16", 3GPP DRAFT; R4-1911378 VIEW ON BS PERFORMANCE REQUIREMENTS FOR HIGH SPEED SCENARIO IN NR REL-16_V3, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Chongqing, China; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051793655 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198183A1 (zh) * 2022-04-15 2023-10-19 维沃移动通信有限公司 信息获取方法、信息发送方法、装置、终端及网络侧设备

Also Published As

Publication number Publication date
CN113115428A (zh) 2021-07-13
CN113115428B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
US20230057591A1 (en) Autonomous timing adjustment for a wireless device
WO2021139188A1 (zh) 一种上行同步调整方法及装置
CN111511039B (zh) 用于跟踪信道的系统及方法
JP7291166B2 (ja) 無線通信ネットワークのためのノード及び動作方法
US9155084B2 (en) Methods and devices for transmitting data
JP6840233B2 (ja) 測定ギャップおよびサウンディング参照信号スイッチングを設定するためのシステムおよび方法
WO2018054099A1 (zh) 一种随机接入资源分配和随机接入方法、设备
JP5933108B2 (ja) パラメータ調整方法及び装置
WO2019141036A1 (zh) 交叉链路干扰测量通知方法、网络侧设备及移动通信终端
WO2016042500A1 (en) Drx cycle configuration in dual connectivity
JP2019533924A (ja) Numerologyに基づく同期および非同期動作の間の適合化
JP2018538735A (ja) ワイヤレス通信ネットワークにおけるシグナリングを管理するためのワイヤレスデバイス、無線ネットワークノード、及びそれらにおいて実行される方法
EP2346290B1 (en) Method, system and apparatus for timing adjustment
US20190297572A1 (en) On/off time mask for short tti
WO2020258032A1 (zh) 时延补偿方法、设备及存储介质
EP3513521A1 (en) Method and network node for enabling reduced interference in a wireless network
JP2020526134A (ja) 通信接続方法及び基地局
US20080259802A1 (en) Frequency domain packet scheduling under fractional load
WO2013029464A1 (zh) 定时提前量ta的确定方法和设备
CN114514771B (zh) 用于早期测量报告的增强过程
CN109391337B (zh) 一种同步方法、上报方法以及对应装置
CN113424604B (zh) 一种通信方法及设备
WO2015035567A1 (zh) 一种终端接入基站系统的方法、装置及系统
WO2017000269A1 (zh) 一种数据传输方法及装置
CN118019997A (zh) 定位测量和干扰事件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912794

Country of ref document: EP

Kind code of ref document: A1