WO2018137413A1 - 授时的方法、终端设备和网络设备 - Google Patents

授时的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2018137413A1
WO2018137413A1 PCT/CN2017/114995 CN2017114995W WO2018137413A1 WO 2018137413 A1 WO2018137413 A1 WO 2018137413A1 CN 2017114995 W CN2017114995 W CN 2017114995W WO 2018137413 A1 WO2018137413 A1 WO 2018137413A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
message
terminal device
moment
network device
Prior art date
Application number
PCT/CN2017/114995
Other languages
English (en)
French (fr)
Inventor
高峰
于光炜
于峰
张武荣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17893622.5A priority Critical patent/EP3565328B1/en
Publication of WO2018137413A1 publication Critical patent/WO2018137413A1/zh
Priority to US16/515,747 priority patent/US11178632B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/003Arrangements to increase tolerance to errors in transmission or reception timing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time

Definitions

  • Embodiments of the present invention relate to the field and, more particularly, to a method, a terminal device, and a network device for timing.
  • TSN Time sensitive network
  • the TSN can provide communication services as well as provide time service for the robot.
  • TSN is based on wired Ethernet technology
  • industrial robots need to connect Ethernet cables for production operations.
  • Industrial robots based on TSN technology have two defects: In the first aspect, wired network construction and deployment are complex, and later maintenance is also difficult; in the second aspect, industrial robots are limited in mobility because they need to connect Ethernet cables.
  • the time synchronization between the terminal and the base station is based on the time alignment of the frame boundary, and does not support absolute time synchronization. Specifically, regardless of the uplink synchronization or the downlink synchronization, time alignment of the boundary of the received signal frame is implemented to correctly demodulate the data. This timing method does not consider the delay problem in the signal transmission process, so that the signal propagation is delayed, and there is a timing error.
  • the embodiment of the invention provides a method for timing, a terminal device and a network device, which can effectively reduce the timing error.
  • a method of timing comprising:
  • the starting time, the fourth time is a starting time of the time unit used by the network device to receive the first uplink message.
  • the terminal device considers the propagation delay of the uplink and downlink, and passes the first downlink.
  • the first time and the second time of the message, and the third time and the fourth time of the first uplink message can perform absolute time timing for the terminal device, and effectively reduce the timing error.
  • the method before the terminal device determines the first moment and the second moment of the first downlink message, the method further includes:
  • the terminal device Receiving, by the terminal device, the cell timing information sent by the network device, where the cell timing information includes downlink resource information of the first downlink message; and the terminal device receives, according to the downlink resource information, the network device to send The first downlink message.
  • the terminal device receives the cell timing information sent by the network device, where the terminal device receives the system message block SIB information broadcast by the network device, where the SIB information includes the cell Timing information.
  • the cell timing information further includes a multicast wireless network temporary identifier TG-RNTI of the second message, where the terminal device determines the first moment of the first downlink message, including: The terminal device receives the second message sent by the network device according to the TG-RNTI, where the second message includes the first moment.
  • TG-RNTI multicast wireless network temporary identifier
  • the cell grant information further includes an initial time stamp of the network device, where the initial time stamp is a start time corresponding to an initial time unit of a frame period.
  • the determining, by the terminal device, the first moment of the first downlink message includes: determining, by the terminal device, the predicted moment of the first moment according to the initial absolute time and the following formula; The terminal device determines the first time according to the predicted time of the first moment.
  • the T 1exp is a predicted time of the first time
  • the T is the initial time scale
  • the n is a frame number of the first downlink message
  • the m is the first time
  • the t 1 is the length of time of the frame
  • the t 2 is the length of time of the subframe.
  • the cell timing information further includes a multicast wireless network temporary identifier TG-RNTI of the second message, where the terminal device determines the first moment according to the predicted moment of the first moment
  • the second device includes, according to the TG-RNTI, a second message sent by the network device, where the second message includes an offset value between the first time and a predicted time of the first time;
  • the terminal device determines the first time according to the predicted time of the first moment and the following formula.
  • T 1 T 1exp + ⁇ T 1
  • the T 1 is the first time
  • the ⁇ T 1 is an offset value between the first time and the predicted time of the first time.
  • the network device avoids sending the complete first moment to the terminal device, and only needs to send the offset value between the first moment and the predicted moment of the first moment to the terminal device, so that the first The first moment of a downlink message effectively reduces the transmission overhead of the air interface.
  • the determining, by the terminal device, the first moment according to the predicted moment of the first moment the determining, by the terminal device, determining the predicted moment of the first moment as the first moment .
  • the information exchange between the network device and the terminal device is further reduced, and the network device is prevented from transmitting the second message to the terminal device, thereby further reducing the transmission overhead of the air interface.
  • the determining, by the terminal device, the second time of the first downlink message the determining, by the terminal device, the detection time of the first downlink message, the detection of the first downlink message
  • the terminal device always connect to the terminal device Receiving a start time of the first downlink message; the terminal device determines an offset value between the detection time of the first downlink message and the second time; the terminal device determines, according to the following formula Said the second moment.
  • the T 2 is the second time, the detection time of the first downlink message of the T 2 ', the ⁇ t d is the detection time and the second time of the first downlink message The offset between the values.
  • the method before the terminal device determines the fourth time of the first uplink message, the method further includes: receiving, by the terminal device, a response message of the first uplink message sent by the network device .
  • the response message of the first uplink message includes the fourth time, or the response message of the first uplink message includes an offset between the predicted time and the fourth time of the fourth time .
  • the response message of the first uplink message includes an offset value between the predicted time and the fourth time of the fourth time; wherein the terminal device determines the first uplink message
  • the fourth moment includes: the terminal device determines the fourth moment according to the following formula.
  • T 4 T 4exp + ⁇ T 4
  • T 4exp is a predicted time of the fourth time
  • T 4 is the fourth time
  • ⁇ T 4 is a deviation between the predicted time and the fourth time of the fourth time Move the value.
  • the network device avoids sending the complete fourth time to the terminal device, and only needs to send the offset value between the fourth time and the predicted time of the fourth time to the terminal device, so that the first The fourth moment of an uplink message effectively reduces the transmission overhead of the air interface.
  • the method before the terminal device determines the fourth moment of the first uplink message, the method further includes: determining, by the terminal device, the predicted moment of the fourth moment according to the following formula.
  • the T is the initial time stamp
  • the a is the frame number of the first uplink message
  • the b is the subframe number of the first uplink message
  • the t 1 is the length of the frame.
  • the t 2 is the length of time of the subframe.
  • the method before the terminal device determines the third moment of the first uplink message, the method further includes: a resource request message sent by the terminal device to the network device, where the request message is used by Receiving, by the network device, a resource location for the first uplink message; the terminal device receiving response information of the resource request message sent by the network device, where the response information of the resource request message includes the first Uplink resource information of the uplink message; the terminal device sends the first uplink message to the network device according to the uplink resource information.
  • the terminal device determines, between the terminal device and the network device, according to the first time, the second time, the third time, and the fourth time
  • the time deviation includes: the terminal device determines the time deviation according to the following formula.
  • the O is the time deviation
  • the T 1 is the first time
  • the T 2 is the second time
  • the T 3 is the third time
  • the T 4 is The fourth moment.
  • the terminal device adjusts the time offset to adjust the clock of the terminal device.
  • a method of timing comprising:
  • the network device sends the second message to the terminal device.
  • the method before the first time that the network device determines the first downlink message, the method further includes: the network device sending cell timing information, the cell authorization information, to the terminal device The downlink resource information of the first downlink message is included; the network device sends the first downlink message to the terminal device according to the downlink resource information.
  • the network device sends the cell timing information to the terminal device, including:
  • the network device broadcasts system message block SIB information to the terminal device, where the SIB information includes the cell timing information.
  • the second message includes an offset value between the predicted moment of the first moment and the first moment
  • the ⁇ T 1 is an offset value between the predicted time of the first time and the first time, where T 1 is the first time, and T 1exp is the first time Forecasting moment
  • the network device generates the second message, where the second message includes an offset value between the predicted moment of the first moment and the first moment.
  • the method further includes: determining, by the network device, a fourth moment of the first uplink message, where the fourth time is a time unit used by the network device to receive the first uplink message a start time of the network device, where the network device generates a response message of the first uplink message according to the fourth time, the response message of the first uplink message includes the fourth time, or the first uplink message
  • the response message includes an offset value between the predicted time and the fourth time of the fourth time; the network device sends a response message of the first uplink message to the terminal device.
  • the determining, by the network device, the fourth time of the first uplink message the determining, by the network device, the detection time of the first uplink message, where the detection time of the first uplink message is
  • the network device receives a start time of the first uplink message; the network device determines an offset value between the detection time of the first uplink message and the fourth time; the network device determines according to the following formula The fourth moment.
  • T 4 T 4 '- ⁇ t u
  • the ⁇ T 4 is an offset value between the predicted time and the fourth time of the fourth time, the T 4 is the fourth time, and the T 4exp is the fourth time Forecast moments.
  • the network device generates a response message of the first uplink message, where the response message of the first uplink message includes an offset value between the predicted time and the fourth time of the fourth time.
  • the method before the fourth time that the network device determines the first uplink message, the method further includes: the network device receiving a resource request message sent by the terminal device, where the request message is used by The network device is configured to allocate a resource location for the first uplink message, and the network device sends a response message to the terminal device according to the resource request message, where the response information includes an uplink resource of the first uplink message.
  • the network device receives the first uplink message sent by the terminal device according to the uplink resource information.
  • a terminal device where the terminal device includes:
  • a first determining unit configured to determine a first time of the first downlink message, and determine a second time of the first downlink message, where the first time is used by the network device to send the first downlink message a start time of the time unit, where the second time is a start time of the time unit used by the terminal device to receive the first downlink message;
  • a second determining unit configured to determine a third time of the first uplink message, and determine a fourth time of the first uplink message, where the third time is used by the terminal device to send the first uplink message
  • a third determining unit configured to determine a time offset between the terminal device and the network device according to the first time, the second time, the third time, and the fourth time.
  • a fourth aspect provides a terminal device, where the terminal device includes a processor, and the processor is specifically configured to:
  • the second time is a start time of the time unit used by the terminal device to receive the first downlink message.
  • Determining a time offset between the terminal device and the network device according to the first time, the second time, the third time, and the fourth time.
  • the terminal devices of the third aspect and the fourth aspect are capable of implementing the method of timing performed by the terminal device in the method of the first aspect.
  • a network device where the network device includes:
  • a processing unit configured to determine a first time of the first downlink message, where the first time is a start time of a time unit used by the network device to send the first downlink message, and generate a first time according to the first time a second message, where the second message includes the first time, or the second message includes an offset value between the predicted time of the first time and the first time;
  • transceiver unit configured to send the second message to the terminal device.
  • a network device where the network device includes:
  • a processor configured to determine a first time of the first downlink message, where the first time is a start time of a time unit used by the network device to send the first downlink message, and generate a first time according to the first time a second message, where the second message includes the first time, or the second message includes an offset value between the predicted time of the first time and the first time;
  • transceiver configured to send the second message to the terminal device.
  • the network device of the fifth aspect and the sixth aspect is capable of implementing the method of timing performed by the network device in the method of the first aspect.
  • the first uplink message is a sounding reference signal SRS, or the first uplink message is a physical random access channel (PRACH).
  • SRS sounding reference signal
  • PRACH physical random access channel
  • the first downlink message is a cell reference signal CRS.
  • FIG. 1 is a schematic diagram of an example of a scenario to which an embodiment of the present invention may be applied.
  • FIG. 2 is a schematic flowchart of a method for timing according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for a terminal device to determine a first moment and a second moment according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for determining, by a terminal device, a third time and a fourth time according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 6 is another schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a network device according to an embodiment of the present invention.
  • FIG. 8 is another schematic block diagram of a network device according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • the embodiment of the present invention can be applied to a cellular network communication system in which a terminal requires absolute time granting, and the system can include at least one network device and at least one terminal device, wherein some or all of the at least one terminal device requires absolute time timing .
  • the embodiment of the present invention can be applied to a cellular network communication system including two terminal devices requiring absolute time granting.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS general packet radio service
  • 5G communication system Long Term Evolution (LTE), LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), general purpose Mobile communication system (Universal Mobile Telecommunication System, UMTS) and the like.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • Terminal devices include, but are not limited to, User Equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user A proxy or user device, the terminal device can communicate with one or more core networks via a wireless access network, for example, the terminal device can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, wireless Wireless Local Loop (WLL) station, Personal Digital Assistant (PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, Terminal devices in future 5G networks or terminal devices in future evolved PLMN networks.
  • UE User Equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user A proxy or user device
  • the terminal device can communicate with one or more core networks via a wireless access network
  • the terminal device can be
  • the network device may be a device for communicating with the terminal device, and the network device may include a base station or a network side device having a base station function.
  • the network device may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or a base station (NodeB, NB) in the WCDMA system, or an evolved base station (Evolved Node B in the LTE system).
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolved Node B evolved base station
  • the eNB or eNodeB), or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network side device in a future 5G network.
  • downlink time synchronization is achieved by relying on detection of a synchronization signal or a cell reference signal.
  • the terminal device detects the synchronization signal to achieve frame boundary alignment of the received signal.
  • the cell reference signal can be used to perform signal estimation and tracking.
  • the estimation of the time offset is relative to the frame boundary of the received signal, mainly for data demodulation, which is relative time synchronization, and cannot achieve absolute time timing for the terminal device, and does not consider uplink or downlink. There is a timing error in the delay during data transmission.
  • the Timing Adjustment (TA) of the uplink is a Physical Random Access Channel (PRACH), a Demodulation Reference Signal (DMRS), or a Sounding Reference Signal (Sounding Reference Signal) transmitted by the network device.
  • PRACH Physical Random Access Channel
  • DMRS Demodulation Reference Signal
  • Sounding Reference Signal Sounding Reference Signal
  • SRS Sounding Reference Signal
  • the TA uses 16Ts for quantization, and there is quantization error, which cannot achieve absolute time synchronization with the network device, and does not consider the uplink or downlink data transmission process. Delay, there is a timing error.
  • the embodiment of the present invention provides a timing method, in which the terminal device considers the propagation delay of the uplink and downlink, passes the first time and the second time of the first downlink message, and the third time of the first uplink message. At the fourth moment, it is possible to perform absolute time timing for the terminal device, thereby effectively reducing the timing error.
  • the time when the first downlink message is detected and the start time of the time unit where the first downlink message is located may not be equal.
  • the first downlink message may be a sequence mapped in the middle of the time unit.
  • the time recorded is the detection time when the first downlink message is detected, and is not the starting time of the time unit where the terminal device receives the first downlink message.
  • the start time of the time unit for transmitting the first downlink message is recorded.
  • the terminal device sends the first uplink message to the network device, the start time of the time unit for transmitting the first uplink message is recorded.
  • First moment a starting moment of a time unit used by the network device to send the first downlink message.
  • the second time the starting time of the time unit used by the terminal device to receive the first downlink message.
  • the detection moment of the first downlink message the moment when the terminal device detects the first downlink message.
  • the third time the starting time of the time unit used by the terminal device to send the first uplink message.
  • the fourth time the starting time of the time unit used by the network device to receive the first uplink message.
  • the detection time of the first uplink message the time when the network device detects the first uplink message.
  • the second time in the embodiment of the present invention and the detection time of the first downlink message may not be equal.
  • the fourth time in the embodiment of the present invention and the detection time of the first uplink message may not be equal.
  • the embodiment of the present invention further relates to the predicted time of the first time and the predicted time of the fourth time.
  • the resource location and start of the first downlink message may be adopted.
  • the ideal time when the first downlink message arrives at the base station is calculated.
  • the ideal time when the first downlink message arrives at the base station is defined as the predicted time of the first time.
  • the ideal time at which the first uplink message arrives at the base station is defined as the predicted time at the fourth time.
  • the first downlink message in the embodiment of the present invention is a Cell-specific Reference Signal (CRS).
  • CRS Cell-specific Reference Signal
  • the first uplink message in the embodiment of the present invention is a Sounding Reference Signal (SRS), or the first uplink message is a physical random access channel (Physical Random). Access Channel, PRACH).
  • SRS Sounding Reference Signal
  • PRACH Physical Random Access Channel
  • time unit in the embodiment of the present invention may refer to a unit time length of the first downlink message or the first uplink message mapped in the time domain.
  • the specific embodiments of the present invention are not limited.
  • the time unit may be a frame.
  • downstream and uplink are used to indicate the transmission direction of a signal or data, wherein “downstream” is used to indicate that the transmission direction of the signal or data is transmitted from the network device to the terminal.
  • downstream is used to indicate that the transmission direction of the signal or data is transmitted from the network device to the terminal.
  • uplink is used to indicate the direction in which the signal or data is transmitted from the terminal device to the network device.
  • first moment is used to indicate the direction in which the signal or data is transmitted from the terminal device to the network device.
  • first moment “second moment”, “third moment”, and “fourth moment” are merely for distinguishing different moments, and the order, length, type, and the like of time are not limited.
  • the terminal device may determine a time offset between the terminal device and the network device according to the following formula.
  • the uplink delay and the downlink delay are symmetric.
  • the following formula can be obtained:
  • delay refers to the delay in the uplink or downlink transmission
  • formula (1) can be obtained by the calculation of the above formula (2) and formula (3).
  • the transmission of the first downlink message is based on the network device, and the transmission of the first uplink message is based on the terminal device.
  • the time reference of the above formula (2) is the time of the network device
  • the time reference of the above formula (3) is the time of the terminal device.
  • the time deviation between the terminal device and the network device can be determined.
  • the terminal device considers the propagation delay of the uplink and downlink, the first time and the second time of the first downlink message, and the third time and the fourth time of the first uplink message. Moment, can end The terminal device performs absolute time timing, which effectively reduces the timing error.
  • FIG. 2 is a schematic flowchart of a method 100 for timing according to an embodiment of the present invention. As shown in FIG. 1, the method 100 includes:
  • the terminal device determines a first moment of the first downlink message, and determines a second moment of the first downlink message.
  • the terminal device determines a first moment of the first downlink message, and determines a second moment of the first downlink message, where the first moment is a time unit used by the network device to send the first downlink message.
  • the start time is the start time of the time unit used by the terminal device to receive the first downlink message.
  • FIG. 2 is a schematic flowchart of a method for determining, by a terminal device, a first time and a second time according to an embodiment of the present invention.
  • step 110 includes:
  • the network device sends the cell timing information to the terminal device, where the cell timing information includes downlink resource information of the first downlink message.
  • the terminal device receives the cell grant information sent by the network device to receive the first downlink message.
  • the terminal device receives system message block SIB information broadcast by the network device, where the SIB information includes the cell timing information.
  • the downlink resource information includes a resource location and a period of the first downlink message, a subframe number, a mask number of the frame number (different masks correspond to different periods), and a frame number plus a masked value. , base station clock accuracy level and other information.
  • the network device sends the first downlink message to the terminal device according to the downlink resource information.
  • the terminal device can receive the first downlink message sent by the network device according to the downlink resource information.
  • the terminal device may determine the detection time of the first downlink message by detecting the first downlink message, and determine the first time according to the detection time of the first downlink message.
  • the terminal device determines a detection time of the first downlink message, where the detection time of the first downlink message is a start time of the terminal device receiving the first downlink message; the terminal device determines the first time An offset value between the detection time of the downlink message and the second time; the terminal device determines the second time according to the following formula;
  • the T 2 is the second time, the T 2 'the detection time of the first downlink message, and the ⁇ t d is the offset value between the detection time of the first downlink message and the second time.
  • the terminal obtains the detection time of the first downlink message according to the subframe of the first downlink message specified in the cell timing information.
  • the detection time of the first downlink message has a fixed time deviation ⁇ t d from the second time.
  • the terminal device determines the second time according to the above formula (4).
  • the network device may record the first time of the first downlink message while sending the first downlink message to the terminal device.
  • the network device may generate a second message according to the first moment, where the second message may include the first moment, Or the second message may include time information for the terminal device to determine the first moment.
  • the network device sends the second message to the terminal device, so that the terminal device determines the first moment of the first downlink message according to the information in the second message.
  • the terminal device receives the second message sent by the network device, and determines the first time of the first downlink message according to the information in the second message.
  • the cell timing information further includes a multicast wireless network temporary identifier TG-RNTI of the second message; the terminal device receives the second message sent by the network device according to the TG-RNTI, where the second message includes the first moment .
  • TG-RNTI multicast wireless network temporary identifier
  • the network device sends the first downlink message in the first downlink message resource location indicated by the cell timing information, and records the first time. After the network device sends the first downlink message, the network device broadcasts or multicasts the second message to the terminal device that needs the time service, and the second message carries the first time. The terminal device receives the second message and learns the first moment.
  • the cell authorization information further includes an initial time stamp of the network device, where the initial time stamp is a start time corresponding to an initial time unit of the frame period. That is to say, after the terminal device determines the initial time stamp of the first downlink message, the predicted time of the first moment can be accurately calculated.
  • the terminal device determines the predicted time of the first time according to the initial time stamp of the first downlink message, so that the terminal device determines the first time according to the predicted time of the first time.
  • the terminal device determines the predicted moment of the first moment according to the initial absolute time and the following formula; the terminal device determines the first moment according to the predicted moment of the first moment.
  • T 1exp T+n ⁇ t 1 +m ⁇ t 2 (5)
  • the T1exp is the predicted time of the first time
  • the T is the initial time stamp
  • the n is the frame number of the first downlink message
  • the m is the subframe number of the first downlink message, where T 1 is the length of time of the frame, and t 2 is the length of time of the subframe.
  • the initial time stamp may be the initial absolute time of the frame number 0 and the subframe number 0.
  • t 1 and t 2 are not limited in the embodiment of the present invention.
  • the t 1 10 ms
  • the length of the frame is 20 ms
  • the subframe is 5 ms.
  • t 1 20 ms
  • t 2 5 ms.
  • the cell timing information further includes a multicast wireless network temporary identifier TG-RNTI of the second message, and the terminal device receives the second message sent by the network device according to the TG-RNTI, where the second message includes the first message The offset value between the current time and the predicted time of the first time; the terminal device determines the first time according to the predicted time of the first time and the following formula.
  • TG-RNTI multicast wireless network temporary identifier
  • T 1 T 1exp + ⁇ T 1 (6)
  • the T 1 is the first time
  • the ⁇ T 1 is an offset value between the first time and the predicted time of the first time.
  • the network device can also calculate the predicted time of the first downlink message according to the initial time stamp of the first downlink message and the above formula (5), and then determine the offset value between T 1exp and T 1 ( ⁇ T). 1 ) Finally, ⁇ T 1 is sent to the terminal device in the form of a second message.
  • the network device transmits to the terminal device avoids a complete T 1, the terminal device only needs to send ⁇ T 1 can be determined that the first time of the first downlink message, effectively reducing the transmission overhead in the air interface.
  • the network device is prevented from transmitting the second message to the terminal device.
  • the terminal device determines the predicted moment of the first moment as the first moment.
  • FIG. 3 is merely an exemplary method for determining the first time and the second time by the terminal device, and the embodiment of the present invention is not limited thereto.
  • the second message may also include only one index information, and the terminal device determines the first time according to the index information, or determines an offset value between the first time and the predicted time of the first time according to the index information, and the like.
  • the method 100 of the timing of the embodiment of the present invention further includes:
  • the terminal device determines a third moment of the first uplink message, and determines a fourth moment of the first uplink message.
  • the terminal device determines a third moment of the first uplink message, and determines a fourth moment of the first uplink message, where the third moment is a start of a time unit used by the terminal device to send the first uplink message.
  • the fourth moment is a starting moment of a time unit used by the network device to receive the first uplink message.
  • FIG. 4 is a schematic flowchart of determining, by a terminal device, a third time and a fourth time according to an embodiment of the present invention.
  • step 120 includes:
  • the terminal device sends the first uplink message to the network device.
  • the network device receives a resource request message sent by the terminal device, where the request message is used to request the network device to allocate a resource location for the first uplink message; and the network device sends a resource request message according to the resource request message.
  • the terminal device sends the response information, where the response information includes the uplink resource information of the first uplink message, and the network device receives the first uplink message sent by the terminal device according to the uplink resource information.
  • the terminal device sends the first uplink message in the uplink resource indicated by the response message of the resource request message, and records the third time of the sending moment.
  • the terminal device can record the third time of the first uplink message while transmitting the first uplink message, and the terminal device only needs to determine the fourth time of the first uplink message.
  • the network device determines a fourth time of the first uplink message, and generates a response message of the first uplink message according to the fourth time, so that the terminal device can determine, according to the received response message of the first uplink message, Four moments.
  • the network device determines a detection time of the first uplink message, and an offset value between the detection time of the first uplink message and the fourth time; and determines the fourth time according to formula (7);
  • the T 4 for the fourth time T 4, the T 4 'on the detection timing of the first uplink message, ⁇ t u for the offset value between the detection time of the first uplink message and the fourth time.
  • the response message of the first uplink message includes the fourth time, or the response message of the first uplink message includes an offset value between the predicted time and the fourth time of the fourth time.
  • the network device sends the fourth time to the terminal device in the form of a response message of the first uplink message. Engraved, or an offset value between the predicted time of the fourth moment and the fourth moment.
  • the response message of the first uplink message includes the fourth moment.
  • the network device listens to the first uplink message, records the detection time of receiving the fourth time of the first uplink message, and determines the fourth time according to the detection time of the fourth time.
  • the network device sends a response message of the first uplink message to the terminal device, where the response message of the first uplink message carries the fourth time.
  • the terminal device receives the response message of the first uplink message to learn the fourth time.
  • the response message of the first uplink message includes an offset value between the predicted time and the fourth time of the fourth time.
  • the network device may determine the predicted time of the fourth time according to the following formula (8), and determine the offset value between the predicted time and the fourth time of the fourth time according to formula (9).
  • T 4exp T+a ⁇ t 1 +b ⁇ t 2 (8)
  • the T is the initial time stamp
  • the a is the frame number of the first uplink message
  • the b is the subframe number of the first uplink message
  • the t 1 is the time length of the frame
  • the t 2 is a sub The length of time of the frame.
  • the ⁇ T 4 is an offset value between the predicted time and the fourth time of the fourth time
  • the T 4 is the fourth time
  • the T 4exp is the predicted time of the fourth time.
  • the predicted time of the fourth time may be determined according to formula (8) above, and according to Equation (10) determines the fourth moment.
  • the initial time-scale corresponding to the first downlink message is equal to the initial time-scale corresponding to the first uplink message, but the embodiment of the present invention does not limit this, for example, the first downlink message and the first An uplink message may be carried on different radio frame periods, that is, the initial time stamp corresponding to the first downlink message and the initial time stamp corresponding to the first uplink message may not be equal.
  • the network device sends a response message of the first uplink message to the terminal device.
  • the network device sends a response message of the first uplink message to the terminal device, and the terminal device determines the fourth time according to the received response message of the first uplink message.
  • FIG. 3 is merely an exemplary method for determining the third time and the fourth time of the terminal device, and the embodiment of the present invention is not limited thereto.
  • the response message of the first uplink message may also include only one index information, and the terminal device determines the fourth time according to the index information, or determines an offset value between the predicted time of the fourth time and the fourth time according to the index information. and many more.
  • the method 100 of the timing of the embodiment of the present invention further includes:
  • the terminal device determines a time offset between the terminal device and the network device according to the first time, the second time, the third time, and the fourth time.
  • the terminal device may determine a time offset between the terminal device and the network device.
  • the terminal device adjusts the time offset to adjust the clock of the terminal device.
  • FIG. 5 is a schematic block diagram of a terminal device for timing in accordance with an embodiment of the present invention.
  • the terminal device 200 includes:
  • the first determining unit 210 is configured to determine a first moment of the first downlink message, and determine a second moment of the first downlink message, where the first time is used by the network device to send the first downlink message The start time of the unit, where the second time is the start time of the time unit used by the terminal device to receive the first downlink message.
  • a second determining unit 220 configured to determine a third time of the first uplink message, and determine a fourth time of the first uplink message, where the third time is a time unit used by the terminal device to send the first uplink message
  • the starting time is the starting time of the time unit used by the network device to receive the first uplink message.
  • the third determining unit 230 is configured to determine a time offset between the terminal device and the network device according to the first time, the second time, the third time, and the fourth time.
  • the terminal device considers the propagation delay of the uplink and downlink, and the first time and the second time of the first downlink message, and the third time and the fourth time of the first uplink message, It can perform absolute time timing for the terminal equipment, effectively reducing the timing error.
  • the terminal device 200 further includes:
  • the transceiver unit is configured to receive the cell timing information sent by the network device, where the cell timing information includes the downlink resource information of the first downlink message, before the terminal device determines the first time and the second time of the first downlink message. And receiving, according to the downlink resource information, the first downlink message sent by the network device.
  • the transceiver unit is specifically configured to: receive system message block SIB information broadcast by the network device, where the SIB information includes the cell timing information.
  • the cell timing information further includes a multicast radio network temporary identifier TG-RNTI of the second message, where the first determining unit 210 is specifically configured to: receive, according to the TG-RNTI, the second message sent by the network device, The second message includes the first moment.
  • TG-RNTI multicast radio network temporary identifier
  • the cell authorization information further includes an initial time stamp of the network device, where the initial time stamp is a start time corresponding to an initial time unit of the frame period.
  • the first determining unit 210 is specifically configured to: determine a predicted moment of the first moment according to the initial absolute time and the formula (11); and determine the first moment according to the predicted moment of the first moment.
  • the T1exp is the predicted time of the first time
  • the T is the initial time stamp
  • the n is the frame number of the first downlink message
  • the m is the subframe number of the first downlink message, where T 1 is the length of time of the frame, and t 2 is the length of time of the subframe.
  • the cell timing information further includes a multicast radio network temporary identifier TG-RNTI of the second message, where the first determining unit 210 is specifically configured to: receive, according to the TG-RNTI, the second message sent by the network device, The second message includes an offset value between the first time and the predicted time of the first time; the first time is determined according to the predicted time of the first time and the formula (12).
  • TG-RNTI multicast radio network temporary identifier
  • the T 1 is the first time
  • the ⁇ T 1 is an offset value between the first time and the predicted time of the first time.
  • the network device avoids sending the complete first moment to the terminal device, and only needs to send the offset value between the first moment and the predicted moment of the first moment to the terminal device, so that the first The first moment of a downlink message effectively reduces the transmission overhead of the air interface.
  • the first determining unit 210 is specifically configured to: determine the predicted moment of the first moment as the first moment.
  • the information exchange between the network device and the terminal device is further reduced, and the network device is prevented from transmitting the second message to the terminal device.
  • the second determining unit 220 is specifically configured to: determine a detection time of the first downlink message, where the detection time of the first downlink message is a start time of the terminal device receiving the first downlink message; Determining an offset value between the detection time of the first downlink message and the second time; determining the second time according to formula (13).
  • the T 2 is the second time, the T 2 'the detection time of the first downlink message, and the ⁇ t d is the offset value between the detection time of the first downlink message and the second time.
  • the transceiver unit is further configured to: receive a response message of the first uplink message sent by the network device, where the response message of the first uplink message includes the fourth time, or the first uplink message
  • the response message includes an offset value between the predicted time of the fourth moment and the fourth moment.
  • the response message of the first uplink message includes an offset value between the predicted time and the fourth time of the fourth time; wherein the second determining unit 220 is specifically configured to: determine according to formula (14) The fourth moment.
  • the T 4exp is the predicted time of the fourth time, and the T 4 is the fourth time, and the ⁇ T 4 is the offset value between the predicted time and the fourth time of the fourth time.
  • the network device avoids sending the complete fourth time to the terminal device, and only needs to send the offset value between the fourth time and the predicted time of the fourth time to the terminal device, so that the first The fourth moment of an uplink message effectively reduces the transmission overhead of the air interface.
  • the second determining unit 220 is specifically configured to: determine a predicted moment of the fourth moment according to formula (15).
  • the T is the initial time stamp
  • the a is the frame number of the first uplink message
  • the b is the subframe number of the first uplink message
  • the t 1 is the time length of the frame
  • the t 2 is a sub The length of time of the frame.
  • the transceiver unit is further configured to: send a resource request message to the network device, where the request message is used to request the network device to be the The first uplink message allocates a resource location, and receives response information of the resource request message sent by the network device, where the response information of the resource request message includes uplink resource information of the first uplink message; and according to the uplink resource information, the network device Sending the first uplink message.
  • the third determining unit 230 is specifically configured to: determine the time offset according to formula (16).
  • the terminal device further includes: a setting unit, configured to adjust the time offset to adjust the clock of the terminal device.
  • the first determining unit 210, the second determining unit 220, and the third determining unit 230 may all be implemented by a processor.
  • the terminal device 300 may include a processor 310, a transceiver 320, and a memory 330.
  • the memory 330 can be used to store indication information, and can also be used to store code, instructions, and the like executed by the processor 310.
  • the various components in the terminal device 300 are connected by a bus system, wherein the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the terminal device 300 shown in FIG. 6 can implement the various processes implemented by the terminal device in the foregoing method embodiments of FIG. 2 to FIG. 4, and details are not repeatedly described herein.
  • FIG. 7 is a schematic block diagram of a network device according to an embodiment of the present invention.
  • the network device 400 includes:
  • the processing unit 410 is configured to determine a first time of the first downlink message, where the first time is a start time of a time unit used by the network device to send the first downlink message, and generate a second message according to the first time
  • the second message includes the first time, or the second message includes an offset value between the predicted time of the first time and the first time;
  • the transceiver unit 420 is configured to send the second message to the terminal device.
  • the transceiver unit 420 is further configured to: send, to the terminal device, cell timing information, where the cell authorization information includes a downlink of the first downlink message.
  • the resource information is sent to the terminal device according to the downlink resource information.
  • the transceiver unit 420 is specifically configured to: broadcast system message block SIB information to the terminal device, where the SIB information includes the cell timing information.
  • the second message includes an offset value between the predicted moment of the first moment and the first moment.
  • the processing unit 410 is specifically configured to: determine the prediction of the first moment according to formula (17) An offset value between the time and the first time; generating the second message, the second message including an offset value between the predicted time of the first time and the first time.
  • the ⁇ T 1 is an offset value between the predicted time of the first time and the first time, and the T 1 is the first time, and the T 1exp is the predicted time of the first time.
  • the processing unit 410 is further configured to: determine a fourth time of the first uplink message, where the fourth time is a start time of the time unit used by the network device to receive the first uplink message; And generating a response message of the first uplink message, where the response message of the first uplink message includes the fourth time, or the response message of the first uplink message includes the predicted time of the fourth time and the fourth time Offset value.
  • the transceiver unit 420 is further configured to: send a response message of the first uplink message to the terminal device.
  • the processing unit 410 is specifically configured to: determine a detection time of the first uplink message, where the detection time of the first uplink message is a start time of the network device receiving the first uplink message; determining the first uplink An offset value between the detected time of the message and the fourth time; the fourth time is determined according to formula (18).
  • the T 4 for the fourth time T 4, the T 4 'on the detection timing of the first uplink message, ⁇ t u for the offset value between the detection time of the first uplink message and the fourth time.
  • the processing unit 410 is specifically configured to: determine an offset value between the predicted moment and the fourth moment according to the formula (19); the network device generates a response message of the first uplink message, The first uplink message The response message includes an offset value between the predicted time of the fourth moment and the fourth moment.
  • the ⁇ T 4 is an offset value between the predicted time and the fourth time of the fourth time, and the T 4 is the fourth time, and the T 4exp is the predicted time of the fourth time.
  • the transceiver unit 420 is further configured to: receive a resource request message sent by the terminal device, where the request message is used to request the network device to be the first An uplink message is allocated to the resource location, and the response information is sent to the terminal device according to the resource request message, where the response information includes uplink resource information of the first uplink message, and the first uplink sent by the terminal device is received according to the uplink resource information. Message.
  • network device 500 can include a processor 510, a transceiver 520, and a memory 530.
  • the memory 530 can be used to store indication information, and can also be used to store code, instructions, and the like executed by the processor 510.
  • the various components in the network device 500 are connected by a bus system, wherein the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the network device 500 shown in FIG. 8 can implement the various processes implemented by the network device in the foregoing method embodiments of FIG. 2 to FIG. 4, and details are not repeatedly described herein.
  • the term "and/or" in the embodiment of the present invention is merely an association relationship describing an associated object, indicating that there may be three relationships. Specifically, A and/or B may indicate that A exists separately, and A and B exist simultaneously, and B cases exist alone. In addition, the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple networks. On the unit. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in the embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present invention, or the part contributing to the prior art or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method of the embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种授时的方法、终端设备和网络设备。该方法包括:终端设备确定第一下行消息的第一时刻,并确定该第一下行消息的第二时刻;该终端设备确定第一上行消息的第三时刻,并确定该第一上行消息的第四时刻;该终端设备根据该第一时刻、该第二时刻、该第三时刻和该第四时刻,确定该终端设备和该网络设备之间的时间偏差。本发明实施例提供的方法,终端设备考虑了上下行的传播时延,通过第一下行消息的第一时刻和第二时刻,以及第一上行消息的第三时刻和第四时刻,能够为终端设备进行绝对时间的授时,有效降低授时误差。

Description

授时的方法、终端设备和网络设备
本申请要求于2017年1月24日提交中国专利局、申请号为201710055195.3、申请名称为“授时的方法、终端设备和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及领域,并且更具体地,涉及授时的方法、终端设备和网络设备。
背景技术
随着工业自动化的发展,工业机器人越来越多的被使用在工业生产中。很多场景下,工业机器人之间需要协同作业。协同作业就需要工业机器人之间进行信息交互。除了信息交互之外,机器人之间还需要高精度的绝对时间同步,以便协同作业。
工业场景下,工业机器人的通信主要采用时间敏感网络(Time sensitive network,TSN)技术。TSN可以提供通信服务,也可以为机器人提供授时服务。
但是,TSN是基于有线以太网技术的,工业机器人需要连接以太网线缆进行生产作业。基于TSN技术的工业机器人存在两方面缺陷:第一方面,有线网络施工和部署复杂,后期维护也存在较大难度;第二方面,工业机器人因为需要连接以太网线缆,移动性受到限制。
现有的蜂窝网络系统中,终端与基站的时间同步是基于帧边界的时间对齐,并不支持绝对时间同步。具体地,无论上行同步,还是下行同步,都是实现接收信号帧边界的时间对齐,以便正确的解调数据。这种授时方法并未考虑信号传输过程中的时延问题,使得信号传播存在时延时,存在授时误差。
发明内容
本发明实施例提供一种授时的方法、终端设备和网络设备,能够有效降低授时误差。
第一方面,提供了一种授时的方法,所述方法包括:
终端设备确定第一下行消息的第一时刻,并确定所述第一下行消息的第二时刻,所述第一时刻为网络设备用于发送所述第一下行消息的时间单元的起始时刻,所述第二时刻为所述终端设备用于接收所述第一下行消息的时间单元的起始时刻。
所述终端设备确定第一上行消息的第三时刻,并确定所述第一上行消息的第四时刻,所述第三时刻为所述终端设备用于发送所述第一上行消息的时间单元的起始时刻,所述第四时刻为所述网络设备用于接收所述第一上行消息的时间单元的起始时刻。
所述终端设备根据所述第一时刻、所述第二时刻、所述第三时刻和所述第四时刻,确定所述终端设备和所述网络设备之间的时间偏差。
本发明实施例提出的授时的方法,终端设备考虑了上下行的传播时延,通过第一下行 消息的第一时刻和第二时刻,以及第一上行消息的第三时刻和第四时刻,能够为终端设备进行绝对时间的授时,有效降低授时误差。
在一种可能的设计中,在所述终端设备确定第一下行消息的第一时刻和第二时刻之前,所述方法还包括:
所述终端设备接收所述网络设备发送的小区授时信息,所述小区授时信息包括所述第一下行消息的下行资源信息;所述终端设备根据所述下行资源信息,接收所述网络设备发送的所述第一下行消息。
在一种可能的设计中,所述终端设备接收所述网络设备发送的小区授时信息,包括:所述终端设备接收所述网络设备广播的系统消息块SIB信息,所述SIB信息包括所述小区授时信息。
在一种可能的设计中,所述小区授时信息还包括第二消息的组播无线网络临时标识TG-RNTI;其中,所述终端设备确定第一下行消息的第一时刻,包括:所述终端设备根据所述TG-RNTI接收网络设备发送的第二消息,所述第二消息包括所述第一时刻。
在一种可能的设计中,所述小区授权信息还包括所述网络设备的初始时标,所述初始时标为帧周期的初始时间单元对应的起始时刻。
在一种可能的设计中,所述终端设备确定第一下行消息的第一时刻,包括:所述终端设备根据所述起始绝对时间和以下公式确定所述第一时刻的预测时刻;所述终端设备根据所述第一时刻的预测时刻确定所述第一时刻。
T1exp=T+n×t1+m×t2
其中,所述T1exp为所述第一时刻的预测时刻,所述T为所述初始时标,所述n为所述第一下行消息的帧号,所述m为所述第一下行消息的子帧号,所述t1为帧的时间长度,所述t2为子帧的时间长度。
在一种可能的设计中,所述小区授时信息还包括第二消息的组播无线网络临时标识TG-RNTI;其中,所述终端设备根据所述第一时刻的预测时刻确定所述第一时刻,包括:所述终端设备根据所述TG-RNTI接收网络设备发送的第二消息,所述第二消息包括所述第一时刻与所述第一时刻的预测时刻之间的偏移值;所述终端设备根据所述第一时刻的预测时刻和以下公式确定所述第一时刻。
T1=T1exp+ΔT1
其中,所述T1为所述第一时刻,所述ΔT1为所述第一时刻与所述第一时刻的预测时刻之间的偏移值。
在本发明实施例中,网络设备避免了向终端设备发送完整的第一时刻,只需要向终端设备发送第一时刻与该第一时刻的预测时刻之间的偏移值,即可确定出第一下行消息的第一时刻,有效降低了空口的传输开销。
在一种可能的设计中,所述终端设备根据所述第一时刻的预测时刻确定所述第一时刻,包括:所述终端设备将所述第一时刻的预测时刻确定为所述第一时刻。
在本发明实施例中,进一步减少网络设备和终端设备之间的信息交互,避免网络设备向终端设备发送该第二消息,进一步降低了空口的传输开销。
在一种可能的设计中,所述终端设备确定第一下行消息的第二时刻,包括:所述终端设备确定所述第一下行消息的检测时刻,所述第一下行消息的检测时刻为所述终端设备接 收所述第一下行消息的起始时刻;所述终端设备确定所述第一下行消息的检测时刻和所述第二时刻之间的偏移值;所述终端设备根据以下公式确定所述第二时刻。
T2=T2′-Δtd
其中,所述T2为所述第二时刻,所述T2′所述第一下行消息的检测时刻,所述Δtd为所述第一下行消息的检测时刻和所述第二时刻之间的偏移值。
在一种可能的设计中,在所述终端设备确定第一上行消息的第四时刻之前,所述方法还包括:所述终端设备接收所述网络设备发送的所述第一上行消息的响应消息。
其中,所述第一上行消息的响应消息包括所述第四时刻,或者,所述第一上行消息的响应消息包括所述第四时刻的预测时刻和所述第四时刻之间的偏移值。
在一种可能的设计中,所述第一上行消息的响应消息包括所述第四时刻的预测时刻和所述第四时刻之间的偏移值;其中,所述终端设备确定第一上行消息的第四时刻,包括:所述终端设备根据以下公式确定所述第四时刻。
T4=T4exp+ΔT4
其中,所述T4exp为所述第四时刻的预测时刻,所述T4为所述第四时刻,所述ΔT4为所述第四时刻的预测时刻和所述第四时刻之间的偏移值。
在本发明实施例中,网络设备避免了向终端设备发送完整的第四时刻,只需要向终端设备发送第四时刻与该第四时刻的预测时刻之间的偏移值,即可确定出第一上行消息的第四时刻,有效降低了空口的传输开销。
在一种可能的设计中,在所述终端设备确定第一上行消息的第四时刻之前,所述方法还包括:所述终端设备根据以下公式确定所述第四时刻的预测时刻。
T4exp=T+a×t1+b×t2
其中,所述T为所述初始时标,所述a为所述第一上行消息的帧号,所述b为所述第一上行消息的子帧号,所述t1为帧的时间长度,所述t2为子帧的时间长度。
在一种可能的设计中,在所述终端设备确定第一上行消息的第三时刻之前,所述方法还包括:所述终端设备向所述网络设备发送的资源请求消息,所述请求消息用于请求所述网络设备为所述第一上行消息分配资源位置;所述终端设备接收所述网络设备发送的所述资源请求消息的响应信息,所述资源请求消息的响应信息包括所述第一上行消息的上行资源信息;所述终端设备根据所述上行资源信息,向所述网络设备发送所述第一上行消息。
在一种可能的设计中,所述终端设备根据所述第一时刻、所述第二时刻、所述第三时刻和所述第四时刻,确定所述终端设备和所述网络设备之间的时间偏差,包括:所述终端设备根据以下公式确定所述时间偏差。
O=(T1-T2-T3+T4)/2
其中,所述O为所述时间偏差,所述T1为所述第一时刻,所述T2为所述第二时刻,所述T3为所述第三时刻,所述T4为所述第四时刻。
在一种可能的设计中,所述终端设备将所述时间偏差调整所述终端设备的时钟。
第二方面,提供了一种授时的方法,所述方法包括:
网络设备确定第一下行消息的第一时刻,所述第一时刻为网络设备用于发送所述第一下行消息的时间单元的起始时刻;
所述网络设备根据所述第一时刻生成第二消息,所述第二消息包括所述第一时刻,或 者,所述第二消息包括所述第一时刻的预测时刻和所述第一时刻之间的偏移值;
所述网络设备向终端设备发送所述第二消息。
在一种可能的设计中,在所述网络设备确定第一下行消息的第一时刻之前,所述方法还包括:所述网络设备向所述终端设备发送小区授时信息,所述小区授权信息包括所述第一下行消息的下行资源信息;所述网络设备根据所述下行资源信息,向所述终端设备发送所述第一下行消息。
在一种可能的设计中,所述网络设备向所述终端设备发送小区授时信息,包括:
所述网络设备向终端设备广播系统消息块SIB信息,所述SIB信息包括所述小区授时信息。
在一种可能的设计中,所述第二消息包括所述第一时刻的预测时刻和所述第一时刻之间的偏移值;
其中,所述网络设备根据所述第一时刻生成第二消息,包括:所述网络设备根据以下公式确定所述第一时刻的预测时刻和所述第一时刻之间的偏移值。
ΔT1=T1-T1exp
其中,所述ΔT1为所述第一时刻的预测时刻和所述第一时刻之间的偏移值,所述T1为所述第一时刻,所述T1exp为所述第一时刻的预测时刻;
所述网络设备生成所述第二消息,所述第二消息包括所述第一时刻的预测时刻和所述第一时刻之间的偏移值。
在一种可能的设计中,所述方法还包括:所述网络设备确定第一上行消息的第四时刻,所述第四时刻为所述网络设备用于接收所述第一上行消息的时间单元的起始时刻;所述网络设备根据所述第四时刻生成所述第一上行消息的响应消息,所述第一上行消息的响应消息包括所述第四时刻,或者,所述第一上行消息的响应消息包括所述第四时刻的预测时刻和所述第四时刻之间的偏移值;所述网络设备向所述终端设备发送所述第一上行消息的响应消息。
在一种可能的设计中,所述网络设备确定第一上行消息的第四时刻,包括:所述网络设备确定所述第一上行消息的检测时刻,所述第一上行消息的检测时刻为所述网络设备接收所述第一上行消息的起始时刻;所述网络设备确定所述第一上行消息的检测时刻和所述第四时刻之间的偏移值;所述网络设备根据以下公式确定所述第四时刻。
T4=T4′-Δtu
其中,所述T4为所述第四时刻,所述T4′所述第一上行消息的检测时刻,所述Δtu为所述第一上行消息的检测时刻和所述第四时刻之间的偏移值。
在一种可能的设计中,所述网络设备根据所述第四时刻生成所述第一上行消息的响应消息,包括:所述网络设备根据以下公式确定所述第四时刻的预测时刻和所述第四时刻之间的偏移值。
ΔT4=T4-T4exp
其中,所述ΔT4为所述第四时刻的预测时刻和所述第四时刻之间的偏移值,所述T4为所述第四时刻,所述T4exp为所述第四时刻的预测时刻。
所述网络设备生成所述第一上行消息的响应消息,所述第一上行消息的响应消息包括所述第四时刻的预测时刻和所述第四时刻之间的偏移值。
在一种可能的设计中,在所述网络设备确定第一上行消息的第四时刻之前,所述方法还包括:所述网络设备接收所述终端设备发送的资源请求消息,所述请求消息用于请求所述网络设备为所述第一上行消息分配资源位置;所述网络设备根据所述资源请求消息向所述终端设备发送响应信息,所述响应信息包括所述第一上行消息的上行资源信息;所述网络设备根据所述上行资源信息,接收所述终端设备发送的所述第一上行消息。
第三方面,提供了一种终端设备,所述终端设备包括:
第一确定单元,用于确定第一下行消息的第一时刻,并确定所述第一下行消息的第二时刻,所述第一时刻为网络设备用于发送所述第一下行消息的时间单元的起始时刻,所述第二时刻为所述终端设备用于接收所述第一下行消息的时间单元的起始时刻;
第二确定单元,用于确定第一上行消息的第三时刻,并确定所述第一上行消息的第四时刻,所述第三时刻为所述终端设备用于发送所述第一上行消息的时间单元的起始时刻,所述第四时刻为所述网络设备用于接收所述第一上行消息的时间单元的起始时刻。
第三确定单元,用于根据所述第一时刻、所述第二时刻、所述第三时刻和所述第四时刻,确定所述终端设备和所述网络设备之间的时间偏差。
第四方面,提供了一种终端设备,所述终端设备包括处理器,所述处理器具体用于:
确定第一下行消息的第一时刻,并确定所述第一下行消息的第二时刻,所述第一时刻为网络设备用于发送所述第一下行消息的时间单元的起始时刻,所述第二时刻为所述终端设备用于接收所述第一下行消息的时间单元的起始时刻。
确定第一上行消息的第三时刻,并确定所述第一上行消息的第四时刻,所述第三时刻为所述终端设备用于发送所述第一上行消息的时间单元的起始时刻,所述第四时刻为所述网络设备用于接收所述第一上行消息的时间单元的起始时刻。
根据所述第一时刻、所述第二时刻、所述第三时刻和所述第四时刻,确定所述终端设备和所述网络设备之间的时间偏差。
第三方面和第四方面的终端设备能够实现第一方面的方法中由终端设备执行的授时的方法。
第五方面,提供了一种网络设备,所述网络设备包括:
处理单元,用于确定第一下行消息的第一时刻,所述第一时刻为网络设备用于发送所述第一下行消息的时间单元的起始时刻;根据所述第一时刻生成第二消息,所述第二消息包括所述第一时刻,或者,所述第二消息包括所述第一时刻的预测时刻和所述第一时刻之间的偏移值;
收发单元,用于向终端设备发送所述第二消息。
第六方面,提供了一种网络设备,所述网络设备包括:
处理器,用于确定第一下行消息的第一时刻,所述第一时刻为网络设备用于发送所述第一下行消息的时间单元的起始时刻;根据所述第一时刻生成第二消息,所述第二消息包括所述第一时刻,或者,所述第二消息包括所述第一时刻的预测时刻和所述第一时刻之间的偏移值;
收发器,用于向终端设备发送所述第二消息。
第五方面和第六方面的网络设备能够实现第一方面的方法中由网络设备执行的授时的方法。
结合上述各个方面,在一些可能的设计中,所述第一上行消息为探测参考信号SRS,或者,所述第一上行消息为物理随机接入信道PRACH。
结合上述各个方面,所述第一下行消息为小区参考信号CRS。
附图说明
图1是可应用本发明实施例的场景例子的示意图。
图2是根据本发明实施例的本发明实施例的授时的方法的示意性流程图。
图3是根据本发明实施例的终端设备确定第一时刻和第二时刻的方法的示意性流程图。
图4是根据本发明实施例的终端设备确定第三时刻和第四时刻的方法的示意性流程图。
图5是根据本发明实施例的本发明实施例的终端设备的示意性框图。
图6是根据本发明实施例的本发明实施例的终端设备的另一示意性框图。
图7是根据本发明实施例的本发明实施例的网络设备的示意性框图。
图8是根据本发明实施例的本发明实施例的网络设备的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本发明实施例的应用场景的示意图。
本发明实施例可以应用于终端需要绝对时间授时的蜂窝网络通信系统,该系统可以包括至少一个网络设备和至少一个终端设备,其中,该至少一个终端设备中的部分或者全部终端设备需要绝对时间授时。例如,如图1所示,本发明实施例可以应用于包括两个终端设备都需要绝对时间授时的蜂窝网络通信系统。
应理解,本发明实施例将以蜂窝网络通信系统为例进行说明,但本发明并不限于此。也就是说,本发明实施例的技术方案可以应用于各种终端需要绝对时间授时的通信系统。例如,全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、5G通信系统、长期演进(Long Term Evolution,LTE)、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
本发明结合网络设备和终端设备描述了各个实施例。终端设备包括但不限于用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置,该终端设备可以经无线接入网与一个或多个核心网进行通信,例如,该终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
网络设备可以是用于与终端设备进行通信的设备,网络设备可以包括基站或者具有基站功能的网络侧设备。例如,网络设备可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolved Node B,eNB或eNodeB),或者网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备等。
在LTE中,下行的时间同步是依赖同步信号或小区参考信号的检测实现的。终端设备检测同步信号实现接收信号的帧边界对齐。终端设备一旦接入成功后,就可以利用小区参考信号进行接收信号时偏估计和跟踪。
但是,这种时偏的估计是相对接收信号帧边界来说的,主要是为了数据解调使用,属于相对时间同步,并不能实现对终端设备的绝对时间授时,同时,也没有考虑上行或者下行数据传输过程中的时延,存在授时误差。
上行的定时调整(Timing Adjustment,TA)是网络设备依赖终端发送的物理随机接入信道(Physical Random Access Channel,PRACH)、解调参考信号(Demodulation Reference Signal,DMRS)或者探测参考信号(Sounding Reference Signal,SRS)等信号进行上行时偏测量,得到网络设备接收的终端信号与帧边界的时间偏差作为TA,并发给终端设备进行时间调整。
但是,LTE系统中,考虑数据解调的性能容限,TA采用16Ts进行量化,存在量化误差,并不能实现对与网络设备的绝对时间同步,同时,也没有考虑上行或者下行数据传输过程中的时延,存在授时误差。
因此,本发明实施例提出了一种授时的方法,终端设备考虑了上下行的传播时延,通过第一下行消息的第一时刻和第二时刻,以及第一上行消息的第三时刻和第四时刻,能够为终端设备进行绝对时间的授时,有效降低授时误差。
应注意,在本发明实施例中,检测到第一下行消息的时刻和该第一下行消息所在的时间单元的起始时刻有可能不相等。
例如,第一下行消息可以是映射在时间单元的中间位置的序列。终端设备接收该第一下行消息时,记录的时刻是检测到该第一下行消息时的检测时刻,并不是用于终端设备接收该第一下行消息所在的时间单元的起始时刻。
还应注意,为了靠近现有标准,网络设备在向终端设备发送该第一下行消息时,记录的是用于发送该第一下行消息的时间单元的起始时刻。同样地,终端设备在向网络设备发送该第一上行消息时,记录的是用于发送该第一上行消息的时间单元的起始时刻。
为方便描述,在本发明实施例中,下面将对第一下行消息和第一上行消息各个时刻的物理意义做了详细描述。
第一时刻:网络设备用于发送该第一下行消息的时间单元的起始时刻。
第二时刻:终端设备用于接收该第一下行消息的时间单元的起始时刻。
第一下行消息的检测时刻:终端设备检测到该第一下行消息的时刻。
第三时刻:终端设备用于发送该第一上行消息的时间单元的起始时刻。
第四时刻:网络设备用于接收该第一上行消息的时间单元的起始时刻。
第一上行消息的检测时刻:网络设备检测到该第一上行消息的时刻。
即,本发明实施例中的第二时刻和第一下行消息的检测时刻有可能不相等。同样地, 本发明实施例中的第四时刻和第一上行消息的检测时刻有可能不相等。
除了上述与第一下行消息和第一上行消息的记录时刻有关的时刻外,本发明实施例还涉及了第一时刻的预测时刻和第四时刻的预测时刻。
应理解,假设第一下行消息和第一上行消息在同一个无线帧循环中传输,并且该循环中的每个无线帧之间没有误差,可以通过第一下行消息的资源位置和起始帧的绝对时刻,计算出第一下行消息到达基站时的理想时刻,本发明实施例中将该第一下行消息到达基站时的理想时刻定义为第一时刻的预测时刻。同理,将第一上行消息到达基站的理想时刻定义为第四时刻的预测时刻。
为了减少下行信令开销,可选地,本发明实施例中的第一下行消息为小区参考信号(Cell-specific Reference Signal,CRS)。
为了减少上行信令开销,可选地,本发明实施例中的第一上行消息为探测参考信号(Sounding Reference Signal,SRS),或者,所述第一上行消息为物理随机接入信道(Physical Random Access Channel,PRACH)。
应理解,本发明实施例中的时间单元可以指第一下行消息或者第一上行消息映射在时间域的单位时间长度。本发明实施例对其具体形式不做限定。
例如,在LTE系统中,当第一下行消息为CRS时,该时间单元可以是帧。
还应理解,在本发明实施例中,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从网络设备发送至终端设备的方向,“上行”用于表示信号或数据的传输方向为从终端设备发送至网络设备的方向。术语“第一时刻”、“第二时刻”、“第三时刻”以及“第四时刻”仅仅为了区分不同的时刻,而对时间的顺序、长度、类型等并没有限定。
可选地,在终端设备确定上述第一时刻、第二时刻、第三时刻之后,终端设备可以根据下列公式,确定出终端设备和网络设备之间的时间偏差。
O=(T1-T2-T3+T4)/2      (1)
其中,该O为该时间偏差,该T1为该第一时刻,该T2为该第二时刻,该T3为该第三时刻,该T4为该第四时刻。
具体而言,在本发明实施例中,假设上行时延和下行时延对称,在考虑上下行的传播时延时,则可以得到以下公式:
T2-T1=delay-O        (2)
T4-T3=delay+O        (3)
其中,delay指上行或者下行传输中的时延,由此可知,通过上述公式(2)和公式(3)的计算可以得到公式(1)。
应注意,在本发明实施例中,针对第一下行消息的传输以网络设备为准,针对第一上行消息的传输以终端设备为准。换句话说,上述公式(2)的时间基准为网络设备的时间,上述公式(3)的时间基准为终端设备的时间。
由此,通过上述公式(2)和公式(3),即可确定出终端设备和网络设备之间的时间偏差。
因此,本发明实施例提出的授时的方法,终端设备考虑了上下行的传播时延,通过第一下行消息的第一时刻和第二时刻,以及第一上行消息的第三时刻和第四时刻,能够为终 端设备进行绝对时间的授时,有效降低授时误差。
下面将结合图2至图4对终端设备确定各个时刻的具体实现进行说明。
图2是本发明实施例的授时的方法100的示意性流程图。如图1所示,该方法100包括:
110,终端设备确定第一下行消息的第一时刻,并确定该第一下行消息的第二时刻。
具体而言,终端设备确定第一下行消息的第一时刻,并确定该第一下行消息的第二时刻,该第一时刻为网络设备用于发送该第一下行消息的时间单元的起始时刻,该第二时刻为该终端设备用于接收该第一下行消息的时间单元的起始时刻。
图2是本发明实施例的终端设备确定第一时刻和第二时刻的方法的示意性流程图。
下面结合图2介绍终端设备确定第一时刻和第二时刻的具体实现方式。
可选地,如图2所示,步骤110包括:
111,发送小区授时信息。
具体而言,网络设备向终端设备发送小区授时信息,该小区授时信息包括该第一下行消息的下行资源信息。换句话说,终端设备接收该网络设备发送的小区授时信息以便接收第一下行消息。
可选地,该终端设备接收该网络设备广播的系统消息块SIB信息,该SIB信息包括该小区授时信息。
可选地,该下行资源信息包括该第一下行消息的的资源位置及周期、子帧号、帧号的掩码位数(不同掩码对应不同的周期)、帧号加掩后的值、基站时钟精度等级等信息。
112,发送第一下行消息。
具体而言,网络设备根据该下行资源信息向终端设备发送第一下行消息。换句话说,该终端设备可以根据该下行资源信息接收该网络设备发送的该第一下行消息。
113,确定该第一下行消息的第二时刻。
具体而言,终端设备可以通过检测第一下行消息确定该第一下行消息的检测时刻;根据该第一下行消息的检测时刻确定该第一时刻。
可选地,该终端设备确定该第一下行消息的检测时刻,该第一下行消息的检测时刻为该终端设备接收该第一下行消息的起始时刻;该终端设备确定该第一下行消息的检测时刻和该第二时刻之间的偏移值;该终端设备根据以下公式确定该第二时刻;
T2=T2′-Δtd        (4)
其中,该T2为该第二时刻,该T2′该第一下行消息的检测时刻,该Δtd为该第一下行消息的检测时刻和该第二时刻之间的偏移值。
具体而言,终端根据从小区授时信息中指定的第一下行消息的子帧上,并获得第一下行消息的检测时刻。可选地,第一下行消息的检测时刻与第二时刻具有固定时间偏差Δtd。终端设备根据上述公式(4)确定该第二时刻。
下面结合图3中114至117介绍终端设备确定第一时刻的具体实现方式。
114,确定该第一下行消息的第一时刻,根据该第一时刻生成第二消息。
具体而言,网络设备可以在向终端设备发送第一下行消息的同时,可以记录到该第一下行消息的第一时刻。
也就是说,网络设备可以根据第一时刻生成第二消息,该第二消息可以包括第一时刻, 或者该第二消息可以包括用于终端设备确定该第一时刻的时间信息。
115,发送该第二消息。
网络设备向终端设备发送该第二消息,以便终端设备根据该第二消息中的信息确定第一下行消息的第一时刻。
116,根据该第二消息确定该第一时刻。
具体而言,终端设备接收网络设备发送的第二消息,并根据该第二消息中的信息确定第一下行消息的第一时刻。
可选地,该小区授时信息还包括第二消息的组播无线网络临时标识TG-RNTI;该终端设备根据该TG-RNTI接收网络设备发送的第二消息,该第二消息包括该第一时刻。
具体而言,网络设备在小区授时信息中指示的第一下行消息资源位置发送第一下行消息,并记录第一时刻。网络设备在广播发送第一下行消息之后,广播或组播发送第二消息给需要授时服务的终端设备,该第二消息携带第一时刻。终端设备接收第二消息并获知第一时刻。
可选地,该小区授权信息还包括该网络设备的初始时标,该初始时标为帧周期的初始时间单元对应的起始时刻。也就是说,终端设备确定第一下行消息的初始时标后,能够准确计算出该第一时刻的预测时刻。
具体而言,终端设备根据第一下行消息的初始时标确定出第一时刻的预测时刻,以便于终端设备再根据第一时刻的预测时刻确定该第一时刻。
可选地,该终端设备根据该起始绝对时间和以下公式确定该第一时刻的预测时刻;该终端设备根据该第一时刻的预测时刻确定该第一时刻。
T1exp=T+n×t1+m×t2           (5)
其中,该T1exp为该第一时刻的预测时刻,该T为该初始时标,该n为该第一下行消息的帧号,该m为该第一下行消息的子帧号,该t1为帧的时间长度,该t2为子帧的时间长度。
可选地,在LTE系统中,该初始时标可以是帧号0、子帧号0的起始绝对时间。
应理解,本发明实施例中对t1、t2的具体取值不做限定。例如,在长期演进系统中,该t1=10ms,该t2=1ms,即T1exp=T+(帧号*10ms)+(子帧号*1ms)。又例如,在未来可能出现的帧结构中,帧的时间长度为20ms,子帧为5ms,则本发明实施例中的t1=20ms,该t2=5ms。
在一个实施例中,该小区授时信息还包括第二消息的组播无线网络临时标识TG-RNTI;该终端设备根据该TG-RNTI接收网络设备发送的第二消息,该第二消息包括该第一时刻与该第一时刻的预测时刻之间的偏移值;该终端设备根据该第一时刻的预测时刻和以下公式确定该第一时刻。
T1=T1exp+ΔT1           (6)
其中,该T1为该第一时刻,该ΔT1为该第一时刻与该第一时刻的预测时刻之间的偏移值。
换句话说,网络设备同样可以根据第一下行消息的初始时标和上述公式(5)推算出该第一下行消息预测时刻,再确定T1exp与T1之间的偏移值(ΔT1),最后将ΔT1以第二消息的形式发送给终端设备。
在本发明实施例中,网络设备避免了向终端设备发送完整的T1,只需要向终端设备发 送ΔT1即可确定出第一下行消息的第一时刻,有效降低了空口的传输开销。
为了进一步减少网络设备和终端设备之间的信息交互,避免网络设备向终端设备发送该第二消息。
可选地,该终端设备将该第一时刻的预测时刻确定为该第一时刻。
应理解,图3仅仅是示例性的说明了终端设备确定第一时刻和第二时刻的方法,本发明实施例并不限于此。
例如,第二消息也可以仅仅包括一个索引信息,终端设备根据该索引信息确定第一时刻,或者根据该索引信息确定第一时刻与第一时刻的预测时间之间的偏移值等等。
如图2所示,本发明实施例的授时的方法100还包括:
120,该终端设备确定第一上行消息的第三时刻,并确定该第一上行消息的第四时刻。
具体而言,终端设备确定第一上行消息的第三时刻,并确定该第一上行消息的第四时刻,该第三时刻为该终端设备用于发送该第一上行消息的时间单元的起始时刻,该第四时刻为该网络设备用于接收该第一上行消息的时间单元的起始时刻。
图4是本发明实施例的终端设备确定第三时刻和第四时刻的示意性流程图。
可选地,如图4所示,步骤120包括:
121,发送第一上行消息。
具体而言,终端设备向网络设备发送该第一上行消息。
可选地,在121步骤之前,该网络设备接收该终端设备发送的资源请求消息,该请求消息用于请求该网络设备为该第一上行消息分配资源位置;该网络设备根据该资源请求消息向该终端设备发送响应信息,该响应信息包括该第一上行消息的上行资源信息;该网络设备根据该上行资源信息,接收该终端设备发送的该第一上行消息。
122,确定该第一上行消息的第三时刻。
具体而言,针对第一上行消息,终端设备在资源请求消息的响应消息中指示的上行资源发送第一上行消息,并记录发送时刻第三时刻。
也就是说,终端设备在发送该第一上行消息的同时,即可记录该第一上行消息的第三时刻,终端设备只要再确定该第一上行消息的第四时刻即可。
123,确定该第一上行消息的第四时刻,根据该第四时刻生成该第一上行消息的响应消息。
具体而言,网络设备确定该第一上行消息的第四时刻,并根据该第四时刻生成第一上行消息的响应消息,以便终端设备能够根据接收到的该第一上行消息的响应消息确定第四时刻。
具体而言,网络设备确定该第一上行消息的检测时刻,以及该第一上行消息的检测时刻和该第四时刻之间的偏移值;并根据公式(7)确定该第四时刻;
T4=T4′-Δtu            (7)
其中,该T4为该第四时刻,该T4′该第一上行消息的检测时刻,该Δtu为该第一上行消息的检测时刻和该第四时刻之间的偏移值。
可选地,该第一上行消息的响应消息包括该第四时刻,或者,该第一上行消息的响应消息包括该第四时刻的预测时刻和该第四时刻之间的偏移值。
具体而言,网络设备以该第一上行消息的响应消息的形式向终端设备发送该第四时 刻,或者该第四时刻的预测时刻和该第四时刻之间的偏移值。
可选地,该第一上行消息的响应消息包括该第四时刻。
具体而言,网络设备侦听第一上行消息,并记录接收第一上行消息第四时刻的检测时刻,根据该第四时刻的检测时刻确定该第四时刻。网络设备发送第一上行消息的响应消息给该终端设备,该第一上行消息的响应消息携带第四时刻。终端设备接收该第一上行消息的响应消息获知第四时刻。
可选地,该第一上行消息的响应消息包括该第四时刻的预测时刻和该第四时刻之间的偏移值。
具体而言,网络设备可以根据下列公式(8)确定出第四时刻的预测时刻,并根据公式(9)确定出该第四时刻的预测时刻和该第四时刻之间的偏移值。
T4exp=T+a×t1+b×t2          (8)
ΔT4=T4-T4exp           (9)
其中,该T为该初始时标,该a为该该第一上行消息的帧号,该b为该第一上行消息的子帧号,该t1为帧的时间长度,该t2为子帧的时间长度。该ΔT4为该第四时刻的预测时刻和该第四时刻之间的偏移值,该T4为该第四时刻,该T4exp为该第四时刻的预测时刻。
换句话说,终端设备接收到包括该第四时刻的预测时刻和该第四时刻之间的偏移值的响应消息时,可以根据上述公式(8)确定出第四时刻的预测时刻,并根据公式(10)确定出该第四时刻。
T4=T4exp+ΔT4          (10)
应理解,本发明实施例中,第一下行消息对应的初始时标等于第一上行消息对应的初始时标,但本发明实施例对此不做限定,例如,第一下行消息和第一上行消息可以分别承载在不同的无线帧周期上,即第一下行消息对应的初始时标与第一上行消息对应的初始时标可以不相等。
124,发送该第一上行消息的响应消息。
具体而言,网络设备向终端设备发送该第一上行消息的响应消息。
125,根据该第一上行消息的响应消息确定该第四时刻。
具体而言,网络设备向终端设备发送第一上行消息的响应消息,终端设备根据接收到的该第一上行消息的响应消息确定第四时刻。
应理解,图3仅仅是示例性的说明了终端设备确定第三时刻和第四时刻的方法,本发明实施例并不限于此。
例如,第一上行消息的响应消息也可以仅仅包括一个索引信息,终端设备根据该索引信息确定第四时刻,或者根据该索引信息确定第四时刻与第四时刻的预测时间之间的偏移值等等。
如图2所示,本发明实施例的授时的方法100还包括:
130,该终端设备根据该第一时刻、该第二时刻、该第三时刻和该第四时刻,确定该终端设备和网络设备之间的时间偏差。
具体而言,终端设备在确定出该第一时刻、该第二时刻、该第三时刻和该第四时刻后,即可确定该终端设备和网络设备之间的时间偏差。
可选地,该终端设备将该时间偏差调整该终端设备的时钟。
应理解,图2至图4中的序号仅为示例性的。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上述结合图2至图4介绍了本发明实施例的授时的方法,下面结合图5至图8对本发明实施例的终端设备和网络设备进行说明。
图5示出了本发明实施例的授时的终端设备的示意性框图。
如图5所示,该终端设备200包括:
第一确定单元210,用于确定第一下行消息的第一时刻,并确定该第一下行消息的第二时刻,该第一时刻为网络设备用于发送该第一下行消息的时间单元的起始时刻,该第二时刻为该终端设备用于接收该第一下行消息的时间单元的起始时刻。
第二确定单元220,用于确定第一上行消息的第三时刻,并确定该第一上行消息的第四时刻,该第三时刻为该终端设备用于发送该第一上行消息的时间单元的起始时刻,该第四时刻为该网络设备用于接收该第一上行消息的时间单元的起始时刻。
第三确定单元230,用于根据该第一时刻、该第二时刻、该第三时刻和该第四时刻,确定该终端设备和该网络设备之间的时间偏差。
本发明实施例提出的授时的方法,终端设备考虑了上下行的传播时延,通过第一下行消息的第一时刻和第二时刻,以及第一上行消息的第三时刻和第四时刻,能够为终端设备进行绝对时间的授时,有效降低授时误差。
可选地,该终端设备200还包括:
收发单元,用于在该终端设备确定第一下行消息的第一时刻和第二时刻之前,接收该网络设备发送的小区授时信息,该小区授时信息包括该第一下行消息的下行资源信息;根据该下行资源信息,接收该网络设备发送的该第一下行消息。
可选地,该收发单元具体用于:接收该网络设备广播的系统消息块SIB信息,该SIB信息包括该小区授时信息。
可选地,该小区授时信息还包括第二消息的组播无线网络临时标识TG-RNTI;其中,该第一确定单元210具体用于:根据该TG-RNTI接收网络设备发送的第二消息,该第二消息包括该第一时刻。
可选地,该小区授权信息还包括该网络设备的初始时标,该初始时标为帧周期的初始时间单元对应的起始时刻。
可选地,该第一确定单元210具体用于:根据该起始绝对时间和公式(11)确定该第一时刻的预测时刻;根据该第一时刻的预测时刻确定该第一时刻。
T1exp=T+n×t1+m×t2            (11)
其中,该T1exp为该第一时刻的预测时刻,该T为该初始时标,该n为该第一下行消息的帧号,该m为该第一下行消息的子帧号,该t1为帧的时间长度,该t2为子帧的时间长度。
可选地,该小区授时信息还包括第二消息的组播无线网络临时标识TG-RNTI;其中,该第一确定单元210具体用于:根据该TG-RNTI接收网络设备发送的第二消息,该第二消息包括该第一时刻与该第一时刻的预测时刻之间的偏移值;根据该第一时刻的预测时刻和公式(12)确定该第一时刻。
T1=T1exp+ΔT1             (12)
其中,该T1为该第一时刻,该ΔT1为该第一时刻与该第一时刻的预测时刻之间的偏移值。
在本发明实施例中,网络设备避免了向终端设备发送完整的第一时刻,只需要向终端设备发送第一时刻与该第一时刻的预测时刻之间的偏移值,即可确定出第一下行消息的第一时刻,有效降低了空口的传输开销。
可选地,该第一确定单元210具体用于:将该第一时刻的预测时刻确定为该第一时刻。
在本发明实施例中,进一步减少网络设备和终端设备之间的信息交互,避免网络设备向终端设备发送该第二消息。
可选地,该第二确定单元220具体用于:确定该第一下行消息的检测时刻,该第一下行消息的检测时刻为该终端设备接收该第一下行消息的起始时刻;确定该第一下行消息的检测时刻和该第二时刻之间的偏移值;根据公式(13)确定该第二时刻。
T2=T2′-Δtd             (13)
其中,该T2为该第二时刻,该T2′该第一下行消息的检测时刻,该Δtd为该第一下行消息的检测时刻和该第二时刻之间的偏移值。
可选地,该收发单元还用于:接收该网络设备发送的该第一上行消息的响应消息;其中,该该第一上行消息的响应消息包括该第四时刻,或者,该第一上行消息的响应消息包括该第四时刻的预测时刻和该第四时刻之间的偏移值。
可选地,该第一上行消息的响应消息包括该第四时刻的预测时刻和该第四时刻之间的偏移值;其中,该第二确定单元220具体用于:根据公式(14)确定该第四时刻。
T4=T4exp+ΔT4         (14)
其中,该T4exp为该第四时刻的预测时刻,该T4为该第四时刻,该ΔT4为该第四时刻的预测时刻和该第四时刻之间的偏移值。
在本发明实施例中,网络设备避免了向终端设备发送完整的第四时刻,只需要向终端设备发送第四时刻与该第四时刻的预测时刻之间的偏移值,即可确定出第一上行消息的第四时刻,有效降低了空口的传输开销。
可选地,在该第二确定单元220确定该第四时刻之前,该第二确定单元220具体用于:根据公式(15)确定该第四时刻的预测时刻。
T4exp=T+a×t1+b×t2         (15)
其中,该T为该初始时标,该a为该该第一上行消息的帧号,该b为该第一上行消息的子帧号,该t1为帧的时间长度,该t2为子帧的时间长度。
可选地,在该第二确定单元220确定第一上行消息的第三时刻之前,该收发单元还用于:向该网络设备发送的资源请求消息,该请求消息用于请求该网络设备为该第一上行消息分配资源位置;接收该网络设备发送的该资源请求消息的响应信息,该资源请求消息的响应信息包括该第一上行消息的上行资源信息;根据该上行资源信息,向该网络设备发送该第一上行消息。
可选地,该第三确定单元230具体用于:根据公式(16)确定该时间偏差。
O=(T1-T2-T3+T4)/2        (16)
其中,该O为该时间偏差,该T1为该第一时刻,该T2为该第二时刻,该T3为该第三时刻,该T4为该第四时刻。
可选地,该终端设备还包括:设置单元,用于将该时间偏差调整该终端设备的时钟。
应注意,本发明实施例中,第一确定单元210、第二确定单元220和第三确定单元230均可以由处理器实现。如图6所示,终端设备300可以包括处理器310、收发器320和存储器330。其中,存储器330可以用于存储指示信息,还可以用于存储处理器310执行的代码、指令等。终端设备300中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图6所示的终端设备300能够实现前述图2至图4的方法实施例中由终端设备所实现的各个过程,为避免重复,这里不再赘述。
图7是本发明实施例的网络设备的示意性框图。
如图7所示,该网络设备400包括:
处理单元410,用于确定第一下行消息的第一时刻,该第一时刻为网络设备用于发送该第一下行消息的时间单元的起始时刻;根据该第一时刻生成第二消息,该第二消息包括该第一时刻,或者,该第二消息包括该第一时刻的预测时刻和该第一时刻之间的偏移值;
收发单元420,用于向终端设备发送该第二消息。
可选地,在处理单元410确定第一下行消息的第一时刻之前,该收发单元420还用于:向该终端设备发送小区授时信息,该小区授权信息包括该第一下行消息的下行资源信息;根据该下行资源信息,向该终端设备发送该第一下行消息。
可选地,该收发单元420具体用于:向终端设备广播系统消息块SIB信息,该SIB信息包括该小区授时信息。
可选地,该第二消息包括该第一时刻的预测时刻和该第一时刻之间的偏移值;其中,该处理单元410具体用于:根据公式(17)确定该第一时刻的预测时刻和该第一时刻之间的偏移值;生成该第二消息,该第二消息包括该第一时刻的预测时刻和该第一时刻之间的偏移值。
ΔT1=T1-T1exp        (17)
其中,该ΔT1为该第一时刻的预测时刻和该第一时刻之间的偏移值,该T1为该第一时刻,该T1exp为该第一时刻的预测时刻。
可选地,该处理单元410还用于:确定第一上行消息的第四时刻,该第四时刻为该网络设备用于接收该第一上行消息的时间单元的起始时刻;根据该第四时刻生成该第一上行消息的响应消息,该第一上行消息的响应消息包括该第四时刻,或者,该第一上行消息的响应消息包括该第四时刻的预测时刻和该第四时刻之间的偏移值。
该收发单元420还用于:向该终端设备发送该第一上行消息的响应消息。
可选地,该处理单元410具体用于:确定该第一上行消息的检测时刻,该第一上行消息的检测时刻为该网络设备接收该第一上行消息的起始时刻;确定该第一上行消息的检测时刻和该第四时刻之间的偏移值;根据公式(18)确定该第四时刻。
T4=T4′-Δtu          (18)
其中,该T4为该第四时刻,该T4′该第一上行消息的检测时刻,该Δtu为该第一上行消息的检测时刻和该第四时刻之间的偏移值。
可选地,该处理单元410具体用于:根据公式(19)确定该第四时刻的预测时刻和该第四时刻之间的偏移值;该网络设备生成该第一上行消息的响应消息,该第一上行消息的 响应消息包括该第四时刻的预测时刻和该第四时刻之间的偏移值。
ΔT4=T4-T4exp        (19)
其中,该ΔT4为该第四时刻的预测时刻和该第四时刻之间的偏移值,该T4为该第四时刻,该T4exp为该第四时刻的预测时刻。
可选地,在该处理单元410确定第一上行消息的第四时刻之前,该收发单元420还用于:接收该终端设备发送的资源请求消息,该请求消息用于请求该网络设备为该第一上行消息分配资源位置;根据该资源请求消息向该终端设备发送响应信息,该响应信息包括该第一上行消息的上行资源信息;根据该上行资源信息,接收该终端设备发送的该第一上行消息。
应注意,本发明实施例中,处理单元410可以由处理器实现。如图6所示,网络设备500可以包括处理器510、收发器520和存储器530。其中,存储器530可以用于存储指示信息,还可以用于存储处理器510执行的代码、指令等。网络设备500中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图8所示的网络设备500能够实现前述图2至图4的方法实施例中由网络设备所实现的各个过程,为避免重复,这里不再赘述。
还应理解,在本发明实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明实施例。
例如,本发明实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
又例如,在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例的目的。
另外,在本发明实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明实施例的保护范围之内。因此,本发明实施例的保护范围应所述以权利要求的保护范围为准。

Claims (30)

  1. 一种授时的方法,所述方法包括:
    终端设备确定第一下行消息的第一时刻,并确定所述第一下行消息的第二时刻,所述第一时刻为网络设备用于发送所述第一下行消息的时间单元的起始时刻,所述第二时刻为所述终端设备用于接收所述第一下行消息的时间单元的起始时刻;
    所述终端设备确定第一上行消息的第三时刻,并确定所述第一上行消息的第四时刻,所述第三时刻为所述终端设备用于发送所述第一上行消息的时间单元的起始时刻,所述第四时刻为所述网络设备用于接收所述第一上行消息的时间单元的起始时刻;
    所述终端设备根据所述第一时刻、所述第二时刻、所述第三时刻和所述第四时刻,确定所述终端设备和所述网络设备之间的时间偏差。
  2. 根据权利要求1所述的方法,其特征在于,在所述终端设备确定第一下行消息的第一时刻之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的小区授时信息,所述小区授时信息包括所述第一下行消息的下行资源信息;
    所述终端设备根据所述下行资源信息,接收所述网络设备发送的所述第一下行消息。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备接收所述网络设备发送的小区授时信息,包括:
    所述终端设备接收所述网络设备广播的系统消息块SIB信息,所述SIB信息包括所述小区授时信息。
  4. 根据权利要求2或3所述的方法,其特征在于,所述小区授时信息还包括第二消息的组播无线网络临时标识TG-RNTI;
    其中,所述终端设备确定第一下行消息的第一时刻,包括:
    所述终端设备根据所述TG-RNTI接收网络设备发送的第二消息,所述第二消息包括所述第一时刻。
  5. 根据权利要求2或3所述的方法,其特征在于,所述小区授权信息还包括所述网络设备的初始时标,所述初始时标为帧周期的初始时间单元对应的起始时刻。
  6. 根据权利要求5所述的方法,其特征在于,所述终端设备确定第一下行消息的第一时刻,包括:
    所述终端设备根据所述起始时标和以下公式确定所述第一时刻的预测时刻;
    T1exp=T+n×t1+m×t2
    其中,所述T1exp为所述第一时刻的预测时刻,所述T为所述初始时标,所述n为所述第一下行消息的帧号,所述m为所述第一下行消息的子帧号,所述t1为帧的时间长度,所述t2为子帧的时间长度;
    所述终端设备根据所述第一时刻的预测时刻确定所述第一时刻。
  7. 根据权利要求6所述的方法,其特征在于,所述小区授时信息还包括第二消息的组播无线网络临时标识TG-RNTI;
    其中,所述终端设备根据所述第一时刻的预测时刻确定所述第一时刻,包括:
    所述终端设备根据所述TG-RNTI接收网络设备发送的第二消息,所述第二消息包括所述第一时刻与所述第一时刻的预测时刻之间的偏移值;
    所述终端设备根据所述第一时刻的预测时刻和以下公式确定所述第一时刻;
    T1=T1exp+ΔT1
    其中,所述T1为所述第一时刻,所述ΔT1为所述第一时刻与所述第一时刻的预测时刻之间的偏移值。
  8. 根据权利要求6所述的方法,其特征在于,所述终端设备根据所述第一时刻的预测时刻确定所述第一时刻,包括:
    所述终端设备将所述第一时刻的预测时刻确定为所述第一时刻。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述终端设备确定第一下行消息的第二时刻,包括:
    所述终端设备确定所述第一下行消息的检测时刻,所述第一下行消息的检测时刻为所述终端设备接收所述第一下行消息的起始时刻;
    所述终端设备确定所述第一下行消息的检测时刻和所述第二时刻之间的偏移值;
    所述终端设备根据以下公式确定所述第二时刻;
    T2=T′2-Δtd
    其中,所述T2为所述第二时刻,所述T′2所述第一下行消息的检测时刻,所述Δtd为所述第一下行消息的检测时刻和所述第二时刻之间的偏移值。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,在所述终端设备确定第一上行消息的第四时刻之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的所述第一上行消息的响应消息;
    其中,所述第一上行消息的响应消息包括所述第四时刻,或者,所述第一上行消息的响应消息包括所述第四时刻的预测时刻和所述第四时刻之间的偏移值。
  11. 根据权利要求10所述的方法,其特征在于,所述第一上行消息的响应消息包括所述第四时刻的预测时刻和所述第四时刻之间的偏移值;
    其中,所述终端设备确定第一上行消息的第四时刻,包括:
    所述终端设备根据以下公式确定所述第四时刻;
    T4=T4exp+ΔT4
    其中,所述T4exp为所述第四时刻的预测时刻,所述T4为所述第四时刻,所述ΔT4为所述第四时刻的预测时刻和所述第四时刻之间的偏移值。
  12. 根据权利要求5至11中任一项所述的方法,其特征在于,在所述终端设备确定第一上行消息的第四时刻之前,所述方法还包括:
    所述终端设备根据以下公式确定所述第四时刻的预测时刻;
    T4exp=T+a×t1+b×t2
    其中,所述T为所述初始时标,所述a为所述所述第一上行消息的帧号,所述b为所述第一上行消息的子帧号,所述t1为帧的时间长度,所述t2为子帧的时间长度。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,在所述终端设备确定第一上行消息的第三时刻之前,所述方法还包括:
    所述终端设备向所述网络设备发送的资源请求消息,所述请求消息用于请求所述网络 设备为所述第一上行消息分配资源位置;
    所述终端设备接收所述网络设备发送的所述资源请求消息的响应信息,所述资源请求消息的响应信息包括所述第一上行消息的上行资源信息;
    所述终端设备根据所述上行资源信息,向所述网络设备发送所述第一上行消息。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述终端设备根据所述第一时刻、所述第二时刻、所述第三时刻和所述第四时刻,确定所述终端设备和所述网络设备之间的时间偏差,包括:
    所述终端设备根据以下公式确定所述时间偏差;
    O=(T1-T2-T3+T4)/2
    其中,所述O为所述时间偏差,所述T1为所述第一时刻,所述T2为所述第二时刻,所述T3为所述第三时刻,所述T4为所述第四时刻。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一下行消息为小区参考信号CRS。
  16. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一上行消息为探测参考信号SRS,或者,所述第一上行消息为物理随机接入信道PRACH。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备将所述时间偏差调整所述终端设备的时钟。
  18. 一种授时的方法,所述方法包括:
    网络设备确定第一下行消息的第一时刻,所述第一时刻为网络设备用于发送所述第一下行消息的时间单元的起始时刻;
    所述网络设备根据所述第一时刻生成第二消息,所述第二消息包括所述第一时刻,或者,所述第二消息包括所述第一时刻的预测时刻和所述第一时刻之间的偏移值;
    所述网络设备向终端设备发送所述第二消息。
  19. 根据权利要求18所述的方法,其特征在于,在所述网络设备确定第一下行消息的第一时刻之前,所述方法还包括:
    所述网络设备向所述终端设备发送小区授时信息,所述小区授权信息包括所述第一下行消息的下行资源信息;
    所述网络设备根据所述下行资源信息,向所述终端设备发送所述第一下行消息。
  20. 根据权利要求19所述的方法,其特征在于,所述网络设备向所述终端设备发送小区授时信息,包括:
    所述网络设备向终端设备广播系统消息块SIB信息,所述SIB信息包括所述小区授时信息。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述第二消息包括所述第一时刻的预测时刻和所述第一时刻之间的偏移值;
    其中,所述网络设备根据所述第一时刻生成第二消息,包括:
    所述网络设备根据以下公式确定所述第一时刻的预测时刻和所述第一时刻之间的偏移值;
    ΔT1=T1-T1exp
    其中,所述ΔT1为所述第一时刻的预测时刻和所述第一时刻之间的偏移值,所述T1为 所述第一时刻,所述T1exp为所述第一时刻的预测时刻;
    所述网络设备生成所述第二消息,所述第二消息包括所述第一时刻的预测时刻和所述第一时刻之间的偏移值。
  22. 根据权利要求18至21中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定第一上行消息的第四时刻,所述第四时刻为所述网络设备用于接收所述第一上行消息的时间单元的起始时刻;
    所述网络设备根据所述第四时刻生成所述第一上行消息的响应消息,所述第一上行消息的响应消息包括所述第四时刻,或者,所述第一上行消息的响应消息包括所述第四时刻的预测时刻和所述第四时刻之间的偏移值;
    所述网络设备向所述终端设备发送所述第一上行消息的响应消息。
  23. 根据权利要求22所述的方法,其特征在于,所述网络设备确定第一上行消息的第四时刻,包括:
    所述网络设备确定所述第一上行消息的检测时刻,所述第一上行消息的检测时刻为所述网络设备接收所述第一上行消息的起始时刻;
    所述网络设备确定所述第一上行消息的检测时刻和所述第四时刻之间的偏移值;
    所述网络设备根据以下公式确定所述第四时刻;
    T4=T′4-Δtu
    其中,所述T4为所述第四时刻,所述T′4所述第一上行消息的检测时刻,所述Δtu为所述第一上行消息的检测时刻和所述第四时刻之间的偏移值。
  24. 根据权利要求23所述的方法,其特征在于,所述网络设备根据所述第四时刻生成所述第一上行消息的响应消息,包括:
    所述网络设备根据以下公式确定所述第四时刻的预测时刻和所述第四时刻之间的偏移值;
    ΔT4=T4-T4exp
    其中,所述ΔT4为所述第四时刻的预测时刻和所述第四时刻之间的偏移值,所述T4为所述第四时刻,所述T4exp为所述第四时刻的预测时刻;
    所述网络设备生成所述第一上行消息的响应消息,所述第一上行消息的响应消息包括所述第四时刻的预测时刻和所述第四时刻之间的偏移值。
  25. 根据权利要求22至24中任一项所述的方法,其特征在于,在所述网络设备确定第一上行消息的第四时刻之前,所述方法还包括:
    所述网络设备接收所述终端设备发送的资源请求消息,所述请求消息用于请求所述网络设备为所述第一上行消息分配资源位置;
    所述网络设备根据所述资源请求消息向所述终端设备发送响应信息,所述响应信息包括所述第一上行消息的上行资源信息;
    所述网络设备根据所述上行资源信息,接收所述终端设备发送的所述第一上行消息。
  26. 一种终端设备,其特征在于,所述终端设备包括:
    第一确定单元,用于确定第一下行消息的第一时刻,并确定所述第一下行消息的第二时刻,所述第一时刻为网络设备用于发送所述第一下行消息的时间单元的起始时刻,所述第二时刻为所述终端设备用于接收所述第一下行消息的时间单元的起始时刻;
    第二确定单元,用于确定第一上行消息的第三时刻,并确定所述第一上行消息的第四时刻,所述第三时刻为所述终端设备用于发送所述第一上行消息的时间单元的起始时刻,所述第四时刻为所述网络设备用于接收所述第一上行消息的时间单元的起始时刻;
    第三确定单元,用于根据所述第一时刻、所述第二时刻、所述第三时刻和所述第四时刻,确定所述终端设备和所述网络设备之间的时间偏差。
  27. 根据权利要求26所述的终端设备,其特征在于,所述终端设备还包括:
    收发单元,用于在所述终端设备确定第一下行消息的第一时刻之前,接收所述网络设备发送的小区授时信息,所述小区授时信息包括所述第一下行消息的下行资源信息;根据所述下行资源信息,接收所述网络设备发送的所述第一下行消息。
  28. 根据权利要求27所述的终端设备,其特征在于,所述小区授时信息还包括第二消息的组播无线网络临时标识TG-RNTI;
    其中,所述第一确定单元具体用于:
    根据所述TG-RNTI接收网络设备发送的第二消息,所述第二消息包括所述第一时刻。
    根据所述第一时刻的预测时刻确定所述第一时刻。
  29. 一种网络设备,其特征在于,所述网络设备包括:
    处理单元,用于确定第一下行消息的第一时刻,所述第一时刻为网络设备用于发送所述第一下行消息的时间单元的起始时刻;根据所述第一时刻生成第二消息,所述第二消息包括所述第一时刻,或者,所述第二消息包括所述第一时刻的预测时刻和所述第一时刻之间的偏移值;
    收发单元,用于向终端设备发送所述第二消息。
  30. 根据权利要求29所述的网络设备,其特征在于,
    所述处理单元还用于:确定第一上行消息的第四时刻,所述第四时刻为所述网络设备用于接收所述第一上行消息的时间单元的起始时刻;根据所述第四时刻生成所述第一上行消息的响应消息,所述第一上行消息的响应消息包括所述第四时刻,或者,所述第一上行消息的响应消息包括所述第四时刻的预测时刻和所述第四时刻之间的偏移值;
    所述收发单元还用于:向所述终端设备发送所述第一上行消息的响应消息。
PCT/CN2017/114995 2017-01-24 2017-12-07 授时的方法、终端设备和网络设备 WO2018137413A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17893622.5A EP3565328B1 (en) 2017-01-24 2017-12-07 Time service method, terminal device and network device
US16/515,747 US11178632B2 (en) 2017-01-24 2019-07-18 Time service method, terminal device, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710055195.3A CN108347763B (zh) 2017-01-24 2017-01-24 授时的方法、终端设备和网络设备
CN201710055195.3 2017-01-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/515,747 Continuation US11178632B2 (en) 2017-01-24 2019-07-18 Time service method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2018137413A1 true WO2018137413A1 (zh) 2018-08-02

Family

ID=62962108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114995 WO2018137413A1 (zh) 2017-01-24 2017-12-07 授时的方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US11178632B2 (zh)
EP (1) EP3565328B1 (zh)
CN (1) CN108347763B (zh)
WO (1) WO2018137413A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112512111A (zh) * 2019-12-23 2021-03-16 上海中兴软件有限责任公司 一种时间的确定方法及装置、信号的发送方法及装置
CN112956249A (zh) * 2018-11-01 2021-06-11 株式会社Ntt都科摩 基站、用户装置以及发送方法
CN113572559A (zh) * 2018-11-21 2021-10-29 华为技术有限公司 同步的方法和装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11297541B2 (en) * 2018-08-17 2022-04-05 Qualcomm Incorporated Signaling timing information for a time sensitive network in a wireless communications system
CN111526577A (zh) * 2019-02-01 2020-08-11 华为技术有限公司 一种时钟同步方法及设备
CN111865830B (zh) * 2019-04-29 2022-04-22 华为技术有限公司 一种时延敏感网络业务tsn的处理方法、装置及系统
CN111867040B (zh) * 2019-04-30 2021-12-28 华为技术有限公司 一种通信方法、终端设备以及网络设备
CN111867073B (zh) * 2019-04-30 2023-09-19 中国移动通信有限公司研究院 时间信息的处理方法、定时提前的确定方法及相关设备
WO2021088085A1 (zh) * 2019-11-08 2021-05-14 华为技术有限公司 一种资源指示的方法及装置
CN111294132B (zh) * 2020-02-04 2021-04-06 北京邮电大学 绝对时间同步方法、装置及电子设备
CN113473589B (zh) * 2020-03-31 2022-12-06 华为技术有限公司 一种定时提前量的确定方法及通信装置
CN112822770B (zh) * 2020-06-18 2022-03-29 中兴通讯股份有限公司 业务处理、发起方法、处理节点、发起节点、系统及介质
CN112019291B (zh) * 2020-08-31 2022-12-27 合肥中科君达视界技术股份有限公司 一种网络设备校时方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101489238A (zh) * 2008-01-14 2009-07-22 大唐移动通信设备有限公司 一种时间差的测量方法、系统及装置
CN101510801A (zh) * 2009-03-02 2009-08-19 华为技术有限公司 一种时间调整方法、系统以及基站和终端
CN101615946A (zh) * 2008-06-26 2009-12-30 展讯通信(上海)有限公司 一种在td-scdma系统中校准gps标准时间的方法与装置
KR101421988B1 (ko) * 2012-07-03 2014-07-23 주식회사 이노와이어리스 Lte 시스템에서 하향링크 동기화 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315478A (ja) * 2002-04-23 2003-11-06 Hidefumi Imoto インターネット接続機能を持った携帯電話機内蔵時計部の時刻補正方法。
US7602873B2 (en) * 2005-12-23 2009-10-13 Agilent Technologies, Inc. Correcting time synchronization inaccuracy caused by asymmetric delay on a communication link
US9161350B2 (en) 2010-12-30 2015-10-13 Telefonaktiebolaget L M Ericsson (Publ) Uplink transmission timing
CN104412676B (zh) * 2012-06-26 2018-11-16 Lg电子株式会社 无线通信系统中的d2d通信的同步方法和同步设备
US9386471B2 (en) * 2012-10-01 2016-07-05 Telefonaktiebolaget Lm Ericsson (Publ) Methods for requesting parallel uplink wireless signal measurements
US9137680B2 (en) * 2012-10-03 2015-09-15 Symbol Technologies, Llc Locationing using differential phase measurements of IEEE 802.11 preambles
US9191908B2 (en) 2013-03-05 2015-11-17 Qualcomm Incorporated Reducing impact of clock drift in wireless devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101489238A (zh) * 2008-01-14 2009-07-22 大唐移动通信设备有限公司 一种时间差的测量方法、系统及装置
CN101615946A (zh) * 2008-06-26 2009-12-30 展讯通信(上海)有限公司 一种在td-scdma系统中校准gps标准时间的方法与装置
CN101510801A (zh) * 2009-03-02 2009-08-19 华为技术有限公司 一种时间调整方法、系统以及基站和终端
KR101421988B1 (ko) * 2012-07-03 2014-07-23 주식회사 이노와이어리스 Lte 시스템에서 하향링크 동기화 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3565328A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112956249A (zh) * 2018-11-01 2021-06-11 株式会社Ntt都科摩 基站、用户装置以及发送方法
CN112956249B (zh) * 2018-11-01 2024-04-09 株式会社Ntt都科摩 基站、用户装置以及发送方法
CN113572559A (zh) * 2018-11-21 2021-10-29 华为技术有限公司 同步的方法和装置
US11838106B2 (en) 2018-11-21 2023-12-05 Huawei Technologies Co., Ltd. Synchronization method and apparatus
CN112512111A (zh) * 2019-12-23 2021-03-16 上海中兴软件有限责任公司 一种时间的确定方法及装置、信号的发送方法及装置

Also Published As

Publication number Publication date
US20190342849A1 (en) 2019-11-07
EP3565328A4 (en) 2019-12-25
CN108347763B (zh) 2021-06-01
EP3565328B1 (en) 2022-10-05
CN108347763A (zh) 2018-07-31
US11178632B2 (en) 2021-11-16
EP3565328A1 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
WO2018137413A1 (zh) 授时的方法、终端设备和网络设备
WO2020001585A1 (zh) 一种时钟同步的方法和装置
WO2018219334A1 (zh) 一种时钟同步方法及设备
US20220104160A1 (en) Latency compensation method, device and storage medium
US10764848B2 (en) Inter-base-station synchronization method and device
US20140301375A1 (en) Timing advance method for synchronized wifi network
US11678288B2 (en) Synchronization of time sensitive communication hold-and-forward buffers with time sensitive communication assistance information
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2013159596A1 (zh) 一种用户设备到用户设备的通信方法及用户设备
EP3888397A1 (en) Method and network device for terminal device positioning with integrated access backhaul
CN113141648B (zh) 一种定时信息上报方法、终端和网络侧设备
WO2022078472A1 (en) Method of propagation delay compensation and related devices
WO2022143926A1 (zh) 时间同步的方法和通信装置
CN113227819A (zh) 用于异步装置和无时间帧结构的装置处的信号检测的系统和方法
WO2020221237A1 (zh) 调整时域资源边界的方法和通信装置
US10667299B2 (en) Control plane latency reduction in a wireless communications network
CN116508361A (zh) 非活动状态下的周期性数据的传输
EP3657872B1 (en) Path switching method and related equipment
CN114503703A (zh) 基于前导码的定位方法和设备
WO2017193308A1 (zh) 通信方法和通信设备
CN115549872B (zh) Pusch信号的处理方法、装置及存储介质
EP3614703B1 (en) Method for transmitting reference signal, terminal and network device
US20230171629A1 (en) Measurement Enhancement for L1-RSRP
CN117897973A (zh) 无线通信方法、终端设备、基站以及定位服务器
CN115915470A (zh) 传播时延的处理方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017893622

Country of ref document: EP

Effective date: 20190729