WO2020256081A1 - 領域判定システム - Google Patents

領域判定システム Download PDF

Info

Publication number
WO2020256081A1
WO2020256081A1 PCT/JP2020/024032 JP2020024032W WO2020256081A1 WO 2020256081 A1 WO2020256081 A1 WO 2020256081A1 JP 2020024032 W JP2020024032 W JP 2020024032W WO 2020256081 A1 WO2020256081 A1 WO 2020256081A1
Authority
WO
WIPO (PCT)
Prior art keywords
beacon
terminal
identification information
area
beacons
Prior art date
Application number
PCT/JP2020/024032
Other languages
English (en)
French (fr)
Inventor
伸亨 赤澤
Original Assignee
株式会社Where
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Where filed Critical 株式会社Where
Publication of WO2020256081A1 publication Critical patent/WO2020256081A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/68Marker, boundary, call-sign, or like beacons transmitting signals not carrying directional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/16Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived sequentially from receiving antennas or antenna systems having differently-oriented directivity characteristics or from an antenna system having periodically-varied orientation of directivity characteristic
    • G01S3/18Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived sequentially from receiving antennas or antenna systems having differently-oriented directivity characteristics or from an antenna system having periodically-varied orientation of directivity characteristic derived directly from separate directional antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders

Definitions

  • the present invention relates to an area determination system.
  • beacon radio beacon
  • Some beacons send information to mobile terminals.
  • some beacons for mobile terminals use Bluetooth (registered trademark), and by receiving identification information from a plurality of transmitters, the receiving mobile terminal can know its own position.
  • beacon mesh there is a technology to configure a beacon mesh with multiple beacons.
  • Beacons also referred to as mesh-type beacons
  • the mesh beacon transmits a radio beacon containing its own identification information to other beacons.
  • Beacon meshes can be connected to other networks via gateways. The gateway can individually send a setting change command to the beacons in the beacon mesh.
  • a plurality of receivers receive radio waves of a transmitter attached to the object.
  • a method of judging based on the signal strength of the radio wave received by each receiver may be adopted.
  • the reception intensity of the radio wave received by the receiver changes with time due to the influence of the surrounding environment and the like, and may not be stable even when the object does not move. Therefore, when determining the area where the object exists using a plurality of receivers, an erroneous determination may be made.
  • An object of the present invention is to provide a technique for improving the presence area determination performance in space.
  • the first aspect is A plurality of beacons that can communicate with each other within a predetermined radio wave reach and transmit and receive a predetermined signal, and are at least one other beacon in a space including a plurality of areas in which a moving body with a terminal moves.
  • An area determination system including a plurality of beacons arranged within the radio wave range and an information processing device capable of communicating with at least one beacon among the plurality of beacons.
  • the plurality of said beacons include a set of beacons including the two said beacons.
  • the first beacon which is one of the beacons included in the beacon set, is A first directional antenna with directivity in the first direction, The first directional antenna receives a signal including terminal identification information for identifying the terminal from the terminal existing in any region of the space, measures the reception strength of the signal, and uses the terminal identification information.
  • a first communication unit that transmits the beacon identification information for identifying the beacon and the reception strength to the information processing device is provided.
  • the second beacon which is the other beacon included in the beacon set, is A second directional antenna having directivity in a second direction different from the first direction, The second directional antenna receives a signal including terminal identification information for identifying the terminal from the terminal existing in any region of the space, measures the reception strength of the signal, and uses the terminal identification information.
  • a second communication unit that transmits the beacon identification information for identifying the beacon and the reception strength to the information processing device is provided.
  • the information processing device A storage unit that stores the beacon identification information of the beacon and the information of the communicable area of the beacon.
  • a third communication unit that receives the terminal identification information, the beacon identification information, and the reception strength, The terminal identification information, the beacon identification information, the reception strength, and the information of the communicable area stored in the storage unit, which are identified by the terminal identification information, are identified by the terminal identification information received by the third communication unit.
  • the aspect of disclosure may be realized by executing the program by the information processing device. That is, the structure of the disclosure can be specified as a program for causing the information processing apparatus to execute the process executed by each means in the above-described embodiment, or as a computer-readable recording medium on which the program is recorded. Further, the structure of the disclosure may be specified by a method in which the information processing apparatus executes the processing executed by each of the above means. The configuration of the disclosure may be specified as a system including an information processing device that performs processing executed by each of the above means.
  • FIG. 1 is a diagram showing a configuration example of a system according to an embodiment.
  • FIG. 2 is a diagram showing an example of a functional block of the beacon 10.
  • FIG. 3 is a diagram showing an example of a radiation pattern of a directional antenna.
  • FIG. 4 is a diagram showing an example of a functional block of the control device 20.
  • FIG. 5 is a diagram showing an example of a functional block of the terminal 30.
  • FIG. 6 is a diagram showing an example of a functional block of the server 40.
  • FIG. 7 is a diagram showing a hardware configuration example of the information processing device.
  • FIG. 8 is a diagram showing an example of a space and a beacon installed in the space.
  • FIG. 9 is a diagram showing an example of an operation sequence when the server acquires the reception strength of a signal from a terminal existing in the vicinity of any beacon in the space.
  • FIG. 10 is a diagram showing an example of an operation flow of determining the existence area of the terminal by the server.
  • FIG. 11 is a diagram showing an example of a space and a beacon installed in the space.
  • FIG. 12 is a diagram showing an example of a space and a beacon installed in the space.
  • FIG. 13 is a diagram showing an example of an operation sequence when the server acquires the reception strength of a signal from a beacon in space in the second modification.
  • FIG. 1 is a diagram showing a configuration example of a system according to the present embodiment.
  • the radio beacon transmitting / receiving device is referred to as a beacon.
  • the system according to the present embodiment includes beacons 10A, 10B, 10C, 10D (when each beacon is not distinguished, it is simply referred to as beacon 10), a control device 20, a terminal 30, and a server 40.
  • Each beacon has a similar configuration.
  • the number of beacons 10 to be installed is not limited to the example of FIG. 1, and is determined according to the space and the area within the space.
  • the terminal 30 is located at a position where a signal can be transmitted / received to / from any beacon 10.
  • the terminal 30 is, for example, carried by a user or attached to a predetermined object.
  • the control device 20 and the server 40 are connected so as to be able to communicate with each other via a network 100 such as the Internet.
  • the control device 20 and the server 40 may be directly connected so as to be able to communicate with each other.
  • the terminal 30 may be connected to the network 100.
  • Beacons 10A to 10D form a multi-hop wireless network.
  • the beacon 10 is installed on a ceiling, a beam, a wall, a pillar, or the like in a space such as a factory or an office.
  • the number of beacons 10 to be installed is not limited to the example of FIG.
  • the system of the present embodiment determines in which region the terminal 30 exists.
  • the system of the present embodiment calculates (determines) the area where the user (person) who carries (accompanied) the terminal 30 exists, but moves in a space such as a factory instead of the user (person). It may be a machine or an animal. It is assumed that these machines and animals are accompanied by a terminal 30. Users, machines, and animals are examples of moving objects.
  • the user, the machine, and the animal accompanied by the terminal 30 exist in a space such as a factory or an office where the beacon 10 is installed.
  • a plurality of users and the like accompanied by the terminal 30 may exist in the space.
  • Each terminal 30 has its own unique identification information.
  • Beacon 10 transmits a radio beacon including identification information for identifying the beacon 10 and a transmission date and time. Further, the beacon 10 according to the present embodiment has a function of communicating with other beacons 10 installed within the reach of radio waves, and forms a multi-hop wireless network as a whole. Further, each of the plurality of beacons shall be arranged within the radio wave range of at least one other beacon.
  • the beacon 10 receives a signal from the terminal 30 including the identification information of the terminal 30.
  • the beacon 10 measures the reception strength of the signal from the terminal 30.
  • the beacon 10 may receive the reception strength of the signal from the beacon 10 at the terminal 30 from the terminal 30.
  • the beacon 10 transmits the identification information and the like of the beacon 10 itself to the other beacon 10 together with the identification information and the like from the terminal 30.
  • a plurality of beacons that can communicate with each other are also collectively referred to as a beacon mesh.
  • beacons 10 Although four beacons 10 are illustrated in FIG. 1, the number of beacons 10 is not limited to four. Further, the beacon 10 has, for example, a microcontroller and an antenna, and realizes various functions by cooperating with each other.
  • the antenna is a directional antenna having directivity in a predetermined direction.
  • Beacon 10 may include various sensors as internal sensors. Various sensors include, for example, microphones, thermometers, hygrometers, optical sensors, infrared sensors, electric meters, gas meters, water meters, measuring instruments and the like. Sound, air environment, values, etc. are detected by various sensors. Further, various sensors may be connected to the beacon 10 as an external sensor.
  • the beacon 10 can measure the remaining amount of the battery built in the beacon 10.
  • the external sensor may have a wireless communication function such as Bluetooth. At this time, the external sensor can transmit the detection result or the like on the Bluetooth packet.
  • the control device 20 is a device that centrally controls the operation of a plurality of beacons 10.
  • the control device 20 transmits, for example, specific information including identification information for identifying any of the plurality of beacons 10 and predetermined information to the surrounding beacons 10.
  • the beacon 10 relays the received specific information to the surrounding beacons 10, and when it receives the specific information including the identification information indicating itself, the beacon 10 performs a predetermined process based on the specific information.
  • the specific information may include, for example, information that controls the operation of the beacon 10.
  • the control device 20 operates as a gateway that connects the beacon mesh and the network 100.
  • the terminal 30 transmits identification information that identifies the terminal 30 itself to the beacon 10.
  • the terminal 30 may receive a radio beacon from the beacon 10.
  • FIG. 1 shows one terminal 30, the number of terminals 30 is not limited to one.
  • the terminal 30 may have a function as a beacon 10.
  • the terminal 30 may function as one beacon 10 in the beacon mesh.
  • the terminal 30 may include an internal sensor or may be connected to an external sensor.
  • the terminal 30 may be carried by a user or attached to a movable machine or the like.
  • the server 40 acquires, for example, the identification information of the terminal 30, the identification information of the beacon 10 that has received the signal from the terminal 30, the reception date and time, and the like via the beacon mesh, the control device 20, the network 100, and the like.
  • the server 40 can acquire information indicating the state of the beacon 10. Further, the server 40 determines the area where the terminal 30 existing in the space exists based on the acquired information.
  • FIG. 2 is a diagram showing an example of a functional block of the beacon 10 according to the embodiment.
  • the beacons 10 are installed in a space such as a factory or an office at intervals of a predetermined radio wave reach or less capable of communicating with at least one other beacon 10.
  • a plurality of beacons 10 are installed in the space.
  • the beacon 10 includes a communication unit 11, a directional antenna 12, and a storage unit 13.
  • the beacon 10 is installed so that the direction of the directional antenna 12 of the beacon 10 is directed to a predetermined direction according to the region that divides the space.
  • the communication unit 11 receives a signal (radio beacon) including identification information for identifying the terminal 30 from the terminal 30. Further, the communication unit 11 receives a signal from another beacon 10 including identification information for identifying the beacon 10.
  • the communication unit 11 is connected to a directional antenna 12 having directivity in a predetermined direction. The communication unit 11 receives the signal via the directional antenna 12. The communication unit 11 measures the reception strength of the signal received from the terminal 30. The communication unit 11 receives a signal including identification information of the terminal 30 or the like from the terminal 30 or the like. The communication unit 11 stores the information included in the received signal in the storage unit 13 in association with the reception strength of the signal.
  • the communication unit 11 transmits a radio beacon including the identification information for identifying the beacon 10 based on the information stored in the storage unit 13.
  • the radio beacon may include date and time information indicating the transmission time and the like. Specifically, a technology such as BLE (Bluetooth Low Energy) can be used, and broadcast communication of radio beacons may be performed.
  • BLE Bluetooth Low Energy
  • the communication unit 11 transmits and receives information in both directions to and from the other beacon 10 and the control device 20. For example, mutual communication may be performed based on a profile such as GATT (Generic Attribute Profile) in BLE.
  • the communication unit 11 may perform connection-type communication.
  • the communication unit 11 may transmit the information stored in the storage unit 13 to the control device 20 via the beacon mesh network in response to the request from the control device 20.
  • the information stored in the storage unit 13 may include identification information of the terminal 30 received from the terminal 30, reception strength, and the like. Further, unique identification information may be assigned in advance to the information transmitted / received between the beacons 10.
  • the communication unit 11 stores the identification information of the transferred information once in the storage unit 13, and when the information is transferred, the identification information of the information is combined with the identification information of the information previously transferred to the storage unit 13. It is not necessary to transfer the information after confirming whether or not they match and if the information has been transferred in the past. This makes it possible to prevent the same information from being continuously transferred within the beacon mesh.
  • the directional antenna 12 is an antenna having a higher sensitivity in a specific direction than in other directions.
  • the directional antenna 12 is connected to the communication unit 11 and receives a signal from the terminal 30 or the like.
  • the directional antenna 12 has a highly sensitive direction directed to a predetermined direction according to a region that divides the space.
  • FIG. 3 is a diagram showing an example of the radiation pattern of the directional antenna of the beacon.
  • the radiation pattern of the directional antenna 12 indicates the magnitude of the reception sensitivity in each direction from the directional antenna 12.
  • the radiation pattern of the directional antenna 12 in FIG. 3 has greater sensitivity in the direction of 0 to 180 degrees than in the direction of 180 degrees to 360 degrees.
  • the radiation pattern of the directional antenna 12 in FIG. 3 has a sensitivity peak in the direction of 90 degrees.
  • the radiation pattern of the directional antenna 12 in FIG. 3 is a radiation pattern in the horizontal direction.
  • the radiation pattern of the directional antenna 12 is not limited to those listed here.
  • the radiation pattern of the directional antenna 12 may have a higher sensitivity in the direction of 0 to 180 degrees than in the direction of 180 degrees to 360 degrees.
  • the direction in which the sensitivity of the radiation pattern of the directional antenna 12 is maximized (the direction of 90 degrees in FIG. 3) is assumed to be the direction of the directional antenna 12.
  • the direction of the directional antenna 12 is the directional direction of the directional antenna 12.
  • the storage unit 13 is a non-volatile memory, and is realized by, for example, an EEPROM (Electrically Erasable Programmable Read-Only Memory) such as a flash memory possessed by a microprocessor.
  • the storage unit 13 stores predetermined identification information (beacon ID) unique to the beacon 10 and a set value of radio wave intensity when the communication unit 11 transmits a radio beacon.
  • the storage unit 13 stores information included in the received signal, reception strength of the signal, and the like.
  • FIG. 4 is a diagram showing an example of a functional block of the control device 20 according to the embodiment.
  • the control device 20 is, for example, a general computer, and includes a beacon communication unit 21, a communication unit 22, and a storage unit 23.
  • the beacon communication unit 21 performs bidirectional communication with the beacon 10. That is, the beacon communication unit 21 transmits the above-mentioned specific information, receives life-and-death information from the beacon 10, and information held by the beacon 10.
  • the control device 20 may be connected to one beacon 10 by wire or the like so as to be able to communicate with the beacon 10.
  • the beacon communication unit 21 stores the information acquired from the beacon 10 and the like in the storage unit 23. Further, the beacon communication unit 21 may transmit specific information based on an input from a user who operates the control device 20 or the like to change the setting of the beacon 10.
  • the beacon communication unit 21 may include the identification information corresponding to all the beacons 10 in the specific information, and the beacon 10 may broadcast the same specific information only once.
  • the beacon 10 increments the number of hops each time the setting change information is transferred so as to include the number of hops indicating the number of times the specific information is transferred on the beacon mesh network, and the beacon 10 is transferred between the beacons 10 a predetermined number of times.
  • the specific information may be deleted from the beacon mesh.
  • the beacon communication unit 21 may perform bidirectional communication with the terminal 30 that operates as a beacon.
  • the communication unit 22 communicates with the server 40, the terminal 30, and the like via, for example, a network 100 such as the Internet or a dedicated line.
  • the communication unit 22 transmits the information acquired from the beacon 10 or the like stored in the storage unit 23 to the server 40.
  • the storage unit 23 is realized by, for example, an HDD (Hard-disk Drive), an SSD (Solid State Drive), a flash memory, or the like.
  • the storage unit 23 stores position information, operation settings, and the like indicating the installation locations of the plurality of beacons 10 in association with the identification information (beacon ID) of each beacon.
  • FIG. 5 is a diagram showing an example of a functional block of the terminal 30 according to the embodiment.
  • the terminal 30 is a computer such as a smartphone or a tablet terminal, and includes a beacon communication unit 31, a communication unit 32, a storage unit 33, and a display unit 34.
  • the beacon communication unit 31 and the communication unit 32 are realized by, for example, application software (also referred to as a program) installed in the terminal 30 by using the communication function of the terminal 30.
  • the beacon communication unit 31 transmits a radio beacon including identification information for identifying the terminal 30 as a beacon based on the information stored in the storage unit 33, and performs proximity notification to the receiving device. ..
  • the radio beacon may include date and time information indicating the transmission time and the like. Specifically, a technology such as BLE can be used, and broadcast communication of radio beacons may be performed.
  • the radio beacon (information) including the identification information of the terminal 30 transmitted by the terminal 30 can be received by a plurality of beacons. Further, the beacon communication unit 31 receives the radio beacon transmitted by the beacon 10 and stores it in the storage unit 33.
  • the beacon communication unit 31 transmits and receives information in both directions with the beacon 10 and the like. For example, mutual communication may be performed based on a profile such as GATT in BLE.
  • the beacon communication unit 31 may perform connection-type communication.
  • the beacon communication unit 31 receives the specific information including the identification information of the beacon 10
  • the beacon communication unit 31 relays the specific information to the surrounding beacon 10.
  • the specific information is stored in the storage unit 33, and a predetermined process is performed based on the specific information.
  • the beacon communication unit 31 may respond to the control device 20 via the network of the beacon mesh with the information stored in the storage unit 33 in response to the request from the control device 20. Further, the beacon communication unit 31 may send and receive information in both directions to and from the control device 20.
  • the communication unit 32 communicates with the control device 20, the server 40, the terminal 30, and the like via, for example, a network 100 such as the Internet or a dedicated line.
  • the communication unit 32 can transmit information such as identification information acquired from the beacon 10 or the like stored in the storage unit 33 to the control device 20, the server 40, or the like.
  • the storage unit 33 is realized by, for example, an HDD (Hard-disk Drive), an SSD (Solid State Drive), an EEPROM such as a flash memory, or the like.
  • the storage unit 33 stores unique terminal identification information (terminal ID) for identifying the terminal 30.
  • the identification information for identifying the terminal 30 may be an ID provided by an OS (Operating System) such as a smartphone, or the server 40 may use the identification information unique to the application software of the terminal 30. May be issued.
  • the storage unit 33 stores the identification information and the like of the beacon 10 received from the beacon 10 and the like.
  • the display unit 34 displays the information and the like stored in the storage unit 33 on the monitor provided in the terminal 30.
  • the terminal 30 does not have to include the display unit 34.
  • FIG. 6 is a diagram showing an example of a functional block of the server 40 according to the embodiment.
  • the server 40 is, for example, a stationary computer, and includes a communication unit 41, a calculation unit 42, and a storage unit 43.
  • the control device 20 and the server 40 may be integrated and operate as one information processing device.
  • the communication unit 41 transmits / receives information to / from the control device 20 or the like via a network 100 such as the Internet or a dedicated line.
  • the calculation unit 42 performs a predetermined calculation based on the information from the beacon 10 and the terminal 30.
  • the calculation unit 42 calculates an area in which the terminal 30 exists (an area in which a user or the like carrying the terminal 30 exists).
  • the calculation unit 42 calculates the area where the terminal 30 exists from the terminal ID of the terminal 30 acquired from the beacon 10 and the position information of the beacon 10 that has received the terminal ID.
  • the storage unit 43 is composed of, for example, an HDD, an SSD, a flash memory, or the like, and stores information received from the terminal 30 via the beacon mesh and the control device 20 and an area in which the terminal 30 calculated based on the information exists. Memorize the information shown.
  • the storage unit 43 stores the beacon identification information (beacon ID) for identifying each beacon 10 of the beacon mesh and the position information indicating the existence position of each beacon 10 in association with each other.
  • the storage unit 43 associates the identification information of each beacon 10 with the communicable area of the signal of each beacon 10 (the area where the signal can be received with higher sensitivity than the other beacons of the pair) and the information of the installation position of each beacon 10.
  • the storage unit 43 stores the beacon IDs of the two paired beacons 10 in association with each other.
  • the two beacons 10 as a pair are a set of beacons 10 that are installed in the vicinity and the directions of the directional antennas 12 are opposite to each other.
  • the beacon 10, the control device 20, and the terminal 30 are dedicated or general-purpose computers such as smartphones, mobile phones, tablet terminals, PDAs (Personal Digital Assistants), and PCs (Personal Computers), or electronic devices equipped with computers. It is feasible to use.
  • the server 40 can be realized by using a dedicated or general-purpose computer such as a PC or a workstation (WS, Work Station), or an electronic device equipped with the computer.
  • FIG. 7 is a diagram showing a hardware configuration example of the information processing device.
  • the information processing device 90 shown in FIG. 7 has a general computer configuration.
  • the beacon 10, the control device 20, the terminal 30, and the server 40 can be realized by the information processing device 90 as shown in FIG.
  • the information processing device 90 includes a processor 91, a memory 92, a storage unit 93, an input unit 94, an output unit 95, and a communication control unit 96. These are connected to each other by a bus.
  • the memory 92 and the storage unit 93 are computer-readable recording media.
  • the hardware configuration of the information processing device is not limited to the example shown in FIG. 7, and components may be omitted, replaced, or added as appropriate.
  • the information processing device 90 meets a predetermined purpose by having the processor 91 load the program stored in the recording medium into the work area of the memory 92 and execute the program, and each component or the like is controlled through the execution of the program.
  • the function can be realized.
  • the processor 91 is, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor).
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 92 includes, for example, a RAM (RandomAccessMemory) and a ROM (ReadOnlyMemory).
  • the memory 92 is also called a main storage device.
  • the storage unit 93 is, for example, an EPROM (ErasableProgrammableROM), a hard disk drive (HDD, HardDiskDrive), and a solid state drive (SSD, SolidStateDrive). Further, the storage unit 93 can include a removable medium, that is, a portable recording medium.
  • the removable medium is, for example, a USB (Universal Serial Bus) memory or a disc recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
  • the storage unit 93 is also called a secondary storage device.
  • the storage unit 93 stores various programs, various data, and various tables in a readable and writable recording medium.
  • the storage unit 93 stores an operating system (Operating System: OS), various programs, various tables, and the like.
  • OS Operating System
  • the information stored in the storage unit 93 may be stored in the memory 92. Further, the information stored in the memory 92 may be stored in the storage unit 93.
  • the operating system is software that mediates between software and hardware, manages memory space, manages files, manages processes and tasks, and so on.
  • the operating system includes a communication interface.
  • the communication interface is a program that exchanges data with other external devices and the like connected via the communication control unit 96.
  • External devices and the like include, for example, other information processing devices, external storage devices, and the like.
  • the input unit 94 includes a keyboard, a pointing device, a wireless remote controller, a touch panel, and the like. Further, the input unit 94 can include a video or image input device such as a camera, or an audio input device such as a microphone.
  • the output unit 95 includes a display device such as a CRT (Cathode Ray Tube) display, an LCD (Liquid Crystal Display), a PDP (Plasma Display Panel), an EL (Electroluminescence) panel, and an output device such as a printer. Further, the output unit 95 can include an audio output device such as a speaker.
  • a display device such as a CRT (Cathode Ray Tube) display, an LCD (Liquid Crystal Display), a PDP (Plasma Display Panel), an EL (Electroluminescence) panel, and an output device such as a printer.
  • the output unit 95 can include an audio output device such as a speaker.
  • the communication control unit 96 connects to another device and controls communication between the information processing device 90 and the other device.
  • the communication control unit 96 is, for example, a LAN (Local Area Network) interface board, a wireless communication circuit for wireless communication such as Bluetooth (registered trademark), and a communication circuit for telephone communication.
  • the LAN interface board and wireless communication circuit are connected to a network such as the Internet.
  • the computer that realizes the beacon 10, the control device 20, the terminal 30, and the server 40 realizes each function by loading the program stored in the secondary storage device into the main storage device and executing the program. Further, the storage unit of each device is provided in the storage area of the main storage device or the secondary storage device.
  • beacons 10 are installed on the ceiling of a space such as a factory or an office.
  • Each beacon 10 has unique identification information (beacon ID).
  • Each beacon 10 forms a beacon mesh. All beacons 10 are installed at positions capable of communicating with any other beacon 10. Further, at least one beacon 10 is installed at a position where it can communicate with the control device 20.
  • the control device 20 is communicably connected to the server 40 via the network 100 or the like or directly. It is assumed that a user or the like carrying the terminal 30 is moving in a space such as a factory or an office. It is assumed that the space is divided into a plurality of areas. A user or the like carrying the terminal 30 can freely move between the areas.
  • FIG. 8 is a diagram showing an example of a space and a beacon installed in the space.
  • FIG. 8 shows an example (example of a plan view) of a space such as a factory or an office viewed from above.
  • the space of FIG. 8 is a quadrangle and is divided into an area A on the left half and an area B on the right half.
  • Beacon 10A and Beacon 10B are installed on the ceiling in the center of the space. Beacon 10A is installed in area A, and beacon 10B is installed in area B.
  • the direction of the arrow extending from each beacon 10 indicates the direction of each directional antenna 12.
  • the direction of the directional antenna 12 of the beacon 10A is the left direction in the figure, and the direction of the directional antenna 12 of the beacon 10B is the right direction in the figure.
  • the beacon 10B is installed to the right of the figure of the beacon 10A.
  • the directional antenna 12 of the beacon 10A has a greater sensitivity to the direction in the region A than in the direction in the region B. Further, the directional antenna 12 of the beacon 10B has a greater sensitivity to the direction in the region B than in the direction in the region A.
  • the beacon 10B is not installed in the direction in which the directional antenna 12 of the beacon 10A has a large sensitivity. Further, the beacon 10A is not installed in the direction in which the directional antenna 12 of the beacon 10B has a large sensitivity.
  • the beacon 10A and the direction of the directional antenna 12 of the beacon 10B are opposite to each other, it is assumed that the beacon 10A and the beacon 10B are installed in the vicinity and therefore can communicate with each other. ..
  • a user or the like carrying the terminal 30 freely moves in the space.
  • a plurality of users or the like carrying the terminal 30 may exist in the space.
  • the beacon 10B is communicably connected to the control device 20.
  • the orientation of the directional antenna 12 is parallel to the ceiling of the space.
  • the reception intensity of the signal from the terminal 30 received by the beacon 10A from the direction of each directional antenna 12 is the reception of the signal from the terminal 30 received by the beacon 10B. Greater than strength.
  • the beacon 10B may not receive the signal from the terminal 30.
  • the area A is an area in which the beacon 10A can receive a signal from the terminal 30 with higher sensitivity than the beacon 10B.
  • the area A is also referred to as a communicable area of the beacon 10A.
  • the reception strength of the signal from the terminal 30 received by the beacon 10A is smaller than the reception strength of the signal from the terminal 30 received by the beacon 10B.
  • the beacon 10A may not receive the signal from the terminal 30.
  • the area B is an area in which the beacon 10B can receive a signal from the terminal 30 with higher sensitivity than the beacon 10A.
  • the area B is also referred to as a communicable area of the beacon 10B. Therefore, the server 40 can determine in which area the terminal 30 exists by acquiring the reception strength and comparing the reception strength. Beacons 10A and 10B, whose directions of the directional antennas are opposite to each other, are paired and their reception intensities are compared at the time of determination.
  • the beacon ID of the beacon 10A and the area A are associated with each other, and the beacon ID of the beacon 10B and the area B (communicable area) are associated with each other. It is stored.
  • FIG. 9 is a diagram showing an example of an operation sequence when the server acquires the reception strength of a signal from a terminal existing in the vicinity of any beacon in the space.
  • the server 40 acquires the signal from the terminal 30 received by the beacon 10A is shown.
  • the terminal 30 the user who carries the terminal 30
  • FIG. 9 it is assumed that the terminal 30 (the user who carries the terminal 30) exists in the area A in the space as shown in FIG.
  • the terminal 30 transmits a signal including a terminal ID which is information for identifying itself to the beacon 10 in the space.
  • the signal is, for example, an advertisement signal.
  • the terminal 30 transmits the signal at predetermined intervals (for example, once per second).
  • the signal including the terminal ID transmitted from the terminal 30 may be received by the plurality of beacons 10.
  • the beacon 10A it is assumed that the signal including the terminal ID from the terminal 30 is received by the beacon 10A.
  • the terminal 30 may transmit a signal including the terminal ID, triggered by receiving the radio beacon from the beacon 10 forming the beacon mesh.
  • the terminal 30 may transmit a signal including the terminal ID as a beacon radio beacon.
  • the beacon 10A that has received the signal including the terminal ID from the terminal 30 measures the reception strength (RSSI: Received Signal Strength Indicator) of the signal.
  • RSSI Received Signal Strength Indicator
  • the reception intensity decreases as the distance between the beacon 10A and the terminal 30 increases. Further, when the distance from the beacon 10 is the same, the reception intensity becomes larger as the direction from the beacon 10A to the terminal 30 is closer to the direction of the directional antenna 12.
  • the reception intensity (energy) is, for example, proportional to the second power of the distance.
  • the beacon 10A stores the terminal ID and the reception strength in association with each other in the storage unit 13.
  • the beacon 10A may store the terminal ID and the reception intensity in association with the reception time.
  • the beacon 10A has a terminal ID stored in the storage unit 13, a reception strength, and a beacon ID which is identification information for identifying the beacon 10A with respect to another beacon 10 (here, beacon 10B).
  • the including signal is transmitted.
  • the beacon ID has, for example, each value of UUID (8Byte), Major (2Byte), and Minor (2Byte).
  • the UUID is used as an identifier to identify an organization, building, project, or the like.
  • Major is used as an identifier for identifying a group, floor, team, etc. within an organization or the like.
  • Minor is used as an identifier for identifying individual beacons in a group or the like.
  • the terminal ID is, for example, 2Bite.
  • the signal is transmitted to the control device 20.
  • the signal may include identification information that identifies the signal.
  • the signal may include a reception time associated with a terminal ID or the like. The reception time may be included in the signal and transferred to the server 40.
  • the signal may include identification information that identifies the control device 20 that is the destination of the signal. Here, it is assumed that the signal is received by the beacon 10B.
  • the beacon 10B transmits the signal received from the beacon 10A toward other beacons 10 and the like around the beacon 10B.
  • the signal transmitted from the beacon 10B is received by the control device 20.
  • the control device 20 stores the information included in the signal from the received beacon 10B in the storage unit 23 in association with the current time. Since it is considered that the signal transfer in the beacon mesh is performed at a speed much faster than the moving speed of the terminal 30, the current time here is the time when the beacon 10D receives the terminal ID from the terminal 30 (reception time). ) Can be regarded as the same. Therefore, the current time is stored as the reception time.
  • the control device 20 does not have to store the current time in the storage unit 23.
  • the control device 20 may also receive a signal including a terminal ID received from the terminal 30 by the beacon 10 other than the beacon 10A. This is because another beacon 10 may exist around the terminal 30. In this case, the control device 20 receives a signal including the terminal ID of the terminal 30 from the other beacon 10. The control device 20 may consider that the signal including the same terminal ID received in the predetermined period is based on the signal including the terminal ID transmitted from the terminal 30 at the same time.
  • the beacon 10B measures the reception strength (RSSI) of the signal.
  • the beacon 10B stores the terminal ID and the reception strength in association with each other in the storage unit 13.
  • the beacon 10B may store the terminal ID and the reception intensity in association with the reception time. Further, the beacon 10B transmits a signal including the terminal ID, the reception strength, and the beacon ID of the beacon 10B toward the control device 20 to the beacon 10 and the like in the surroundings.
  • the control device 20 transmits a signal including the terminal ID of the terminal 30 stored in the storage unit 23 to the server 40.
  • the control device 20 transmits, for example, a signal including the terminal ID of the terminal 30 received in a predetermined period (for example, 1 minute) to the server 40 at predetermined period intervals.
  • the server 40 receives a signal from the control device 20.
  • the beacon 10 may transmit a signal including the terminal ID and the beacon ID without measuring the reception strength.
  • the server 40 stores the information included in the received signal in the storage unit 33. As a result, the server 40 acquires the reception strength of the signal from the terminal 30. The server 40 can determine the area where the user carrying the terminal 30 exists based on the reception strength of the signal from the terminal 30 received by each beacon 10.
  • FIG. 10 is a diagram showing an example of an operation flow of determining the existence area of the terminal by the server.
  • the server 40 uses the beacon network or the like to provide information on a set of the terminal ID of the terminal 30, the reception strength of the signal from the terminal 30, and the beacon ID of the beacon 10 that has received the signal from the terminal 30. Based on this, the existing area of the terminal 30 (the user who carries the terminal 30) is determined.
  • the operation of the server 40 described here may be performed by an information processing device in which the control device 20 and the server 40 are integrated.
  • the calculation unit 42 of the server 40 uses the communication unit 41 to enter the terminal ID of the terminal 30 carried by the user, the reception strength of the signal from the terminal 30, the reception time, and the beacon 10 that has received the signal. Receive the beacon ID.
  • the server 40 stores the received terminal ID, reception strength, and beacon ID in the storage unit 43.
  • the calculation unit 42 of the server 40 determines the existence area of the user carrying the terminal 30 identified by the terminal ID received in S101 based on the received information.
  • the calculation unit 42 determines in which area the terminal 30 (user) exists.
  • the calculation unit 42 compares the reception strength of the signal from the terminal 30 received by each beacon 10 at the same time (or within a predetermined period).
  • the calculation unit 42 acquires the beacon ID of the beacon 10 that has received the signal having the higher reception strength than the compared reception strength.
  • the calculation unit 42 extracts an area associated with the beacon ID (a region that can be received with higher sensitivity than other beacons) from the storage unit 43. For example, when the reception intensity of the beacon 10A is higher, the calculation unit 42 extracts the area A associated with the beacon ID of the beacon 10A.
  • the reception intensity from the terminal 30 may be an average value or a maximum value of the reception intensity of the signal received from the terminal 30 received within a predetermined period. Since the strength of the signal from the terminal 30 may not be stable, the region can be determined more appropriately by using the average value or the maximum value within a predetermined period.
  • the calculation unit 42 of the server 40 stores the area A extracted in S102, the terminal ID of the terminal 30, and the reception time when the signal from the terminal 30 is received by the beacon 10 in the storage unit 43 in association with each other. To do.
  • the existence area of the terminal 30 identified by the terminal ID (the existence area of the mobile body with the terminal 30 identified by the terminal ID) can be determined.
  • the server 40 determines the existence area of each terminal 30 according to the above operation flow.
  • the difference in signal reception intensity from the terminal 30 in each beacon 10 can be increased.
  • the server 40 can easily determine the area where the terminal 30 (mobile body) exists.
  • Opera example 2 The operation example 2 of the system of this embodiment will be described.
  • the operation example 2 has something in common with the operation example 1.
  • the differences from the operation example 1 will be mainly described, and the common points will be omitted.
  • FIG. 11 is a diagram showing an example of a space and a beacon installed in the space.
  • FIG. 11 shows an example (example of a plan view) of a space such as a factory or an office viewed from above.
  • the space of FIG. 11 is a quadrangle and is divided into an upper left portion area A, an upper right portion region B, a lower left portion region C, and a lower right portion region D.
  • Beacon 10A, beacon 10B, beacon 10C, and beacon 10D are installed on the ceiling in the center of the space.
  • Beacon 10A is installed at the boundary between area A and area B
  • beacon 10B is installed at the boundary between area B and area D
  • beacon 10C is installed at the boundary between area D and area C
  • beacon 10D is installed at the boundary between area C and area A.
  • the direction of the arrow extending from each beacon 10 indicates the direction of each directional antenna 12.
  • the direction of the directional antenna 12 of the beacon 10A is the upper direction in the figure
  • the direction of the directional antenna 12 of the beacon 10B is the right direction in the figure.
  • the direction of the directional antenna 12 of the beacon 10C is the lower direction in the figure
  • the direction of the directional antenna 12 of the beacon 10D is the left direction in the figure.
  • the angle between the direction of the directional antenna 12 of the beacon 10A and the direction of the directional antenna 12 of the beacon 10B is 90 degrees.
  • the directional antenna 12 of the beacon 10A has a greater sensitivity to the directions in the regions A and B than the directions in the other regions.
  • the area A and the area B are also referred to as a communicable area of the beacon 10A.
  • the directional antenna 12 of the beacon 10B has a greater sensitivity to the directions in the regions B and D than in the directions in the other regions.
  • the area B and the area D are also referred to as a communicable area of the beacon 10B.
  • the directional antenna 12 of the beacon 10C has a greater sensitivity to the directions in the regions D and C than in the directions in the other regions.
  • the area D and the area C are also referred to as a communicable area of the beacon 10C.
  • the directional antenna 12 of the beacon 10D has a greater sensitivity to the directions in the regions D and A than in the directions in the other regions.
  • the area D and the area A are also referred to as a communicable area of the beacon 10D.
  • the orientation of the directional antenna 12 of the beacon 10A and the orientation of the directional antenna 12 of the beacon 10C are opposite directions.
  • the orientation of the directional antenna 12 of the beacon 10B and the orientation of the directional antenna 12 of the beacon 10D are opposite directions. Since each beacon 10 is installed in the vicinity, it is assumed that they can communicate with each other.
  • a user or the like carrying the terminal 30 freely moves in the space.
  • a plurality of users or the like carrying the terminal 30 may exist in the space.
  • the beacon 10B is communicably connected to the control device 20.
  • the reception strength of the signal from the terminal 30 received by the beacon 10A is the reception of the signal from the terminal 30 received by the beacon 10C from the direction of each directional antenna 12. Greater than strength. Further, when the terminal 30 exists in the area A, the reception strength of the signal from the terminal 30 received by the beacon 10D is larger than the reception strength of the signal from the terminal 30 received by the beacon 10B. When the terminal 30 exists in the area A, the beacon 10B and the beacon 10C may not receive the signal from the terminal 30.
  • the area A is an area in which the beacon 10A can receive a signal from the terminal 30 with higher sensitivity than the beacon 10C.
  • the area A is an area in which the beacon 10D can receive a signal from the terminal 30 with higher sensitivity than the beacon 10B.
  • one of the beacon 10A and the beacon 10C can receive the signal from the terminal 30 with higher sensitivity than the other.
  • one of the beacon 10D and the beacon 10B can receive the signal from the terminal 30 with higher sensitivity than the other.
  • Beacons 10A and 10C in which the directions of the directional antennas are opposite to each other form a pair, and the reception intensities are compared at the time of determination. Further, the beacon 10D and the beacon 10B whose directional antennas are oriented in opposite directions are paired, and the reception intensities are compared at the time of determination.
  • the storage unit 43 of the server 40 is stored in association with an area (communicable area) in which a signal from the terminal 30 can be received with higher sensitivity than other beacons 10 paired with the beacon ID of each beacon 10.
  • the area A and the area B are associated with the beacon 10A and stored.
  • Area B and area D are associated with and stored in beacon 10B.
  • Area C and area D are associated with and stored in beacon 10C.
  • Area D and area A are associated with and stored in beacon 10D.
  • the server 40 acquires the reception intensities of each beacon 10 and compares the reception intensities to determine in which region the terminal 30 exists.
  • the terminal 30 existing in the space transmits a signal including the terminal ID toward the beacon 10.
  • a signal including the terminal ID is transmitted from the terminal 30, the reception strength is acquired by the server 40 by the operation sequence as shown in FIG.
  • the area where the terminal 30 exists is determined by the operation flow as shown in FIG. Specifically, in the determination process, the calculation unit 42 determines in which area the terminal 30 (user) exists. The calculation unit 42 compares the reception strength of the signal from the terminal 30 received by each beacon 10 at the same time (or within a predetermined period). The calculation unit 42 compares the reception intensities of the beacons 10A and 10C which are a set. The calculation unit 42 acquires the beacon ID of the beacon 10 that has received the signal having the higher reception strength among the compared reception strengths. The calculation unit 42 compares the reception intensities of the beacons 10B and 10D as a set.
  • the calculation unit 42 acquires the beacon ID of the beacon 10 that has received the signal having the higher reception strength among the compared reception strengths.
  • the calculation unit 42 extracts the area associated with the beacon ID acquired from the storage unit 43.
  • the calculation unit 42 determines that the most extracted area is the area where the terminal 30 exists. For example, when the acquired beacon ID is that of the beacon 10A and the beacon 10D, the calculation unit 42 has the area A and the area B associated with the beacon ID of the beacon 10A, and the area D associated with the beacon ID of the beacon 10D. Region A is extracted.
  • the calculation unit 42 determines that the area A is the area where the terminal 30 exists. By installing more beacons 10 in the space, it is possible to determine the existing area of the terminal 30 for a finer area.
  • the operation example 3 of the system of this embodiment will be described.
  • the operation example 3 has something in common with the operation example 1 and the operation example 2.
  • the differences from the operation example 1 and the operation example 2 will be mainly described, and the common points will be omitted.
  • FIG. 12 is a diagram showing an example of a space and a beacon installed in the space.
  • FIG. 12 shows an example (example of a plan view) of a space such as a factory or an office viewed from above.
  • the space in FIG. 12 is a quadrangle.
  • the space is divided into three in the vertical direction and three in the horizontal direction, and includes nine quadrangular areas.
  • the upper left part is the area A
  • the upper center part is the area B
  • the upper right part is the area C
  • the left center part is the area D
  • the center part is the area E
  • the right center part is the area F
  • the lower left part Is the area G
  • the lower central part is the area H
  • the lower right part is the area I.
  • beacons 10 are installed in the vicinity (ceiling) of the grid points of the lines indicating the boundaries of each region.
  • Beacons 10A, 10B, 10C, and 10D are installed in the vicinity of the upper left grid point.
  • Beacon 10E, beacon 10F, beacon 10G, and beacon 10H are installed in the vicinity of the upper right grid point.
  • Beacon 10I, beacon 10J, beacon 10K, and beacon 10L are installed in the vicinity of the lower left grid point.
  • Beacon 10M, beacon 10N, beacon 10O, and beacon 10P are installed in the vicinity of the upper right grid point.
  • Beacon 10A is installed at the boundary between area A and area B
  • beacon 10B is installed at the boundary between area B and area E
  • beacon 10C is installed at the boundary between area E and area D
  • beacon 10D is installed at the boundary between area D and area A.
  • the other beacons 10 are also installed in the same manner.
  • the direction of the arrow extending from each beacon 10 indicates the direction of each directional antenna 12.
  • the direction of the directional antenna 12 of the beacon 10A is the upper direction in the figure
  • the direction of the directional antenna 12 of the beacon 10B is the right direction in the figure.
  • the direction of the directional antenna 12 of the beacon 10C is the lower direction in the figure, and the direction of the directional antenna 12 of the beacon 10D is the left direction in the figure.
  • the angle between the direction of the directional antenna 12 of the beacon 10A and the direction of the directional antenna 12 of the beacon 10B is 90 degrees.
  • the directional antenna 12 of the beacon 10A has a greater sensitivity to the directions in the regions A and B than the directions in the other regions.
  • the area A and the area B are also referred to as a communicable area of the beacon 10A.
  • the directional antenna 12 of the beacon 10B has a greater sensitivity to the directions in the area B, the area C, the area E, and the area F than the directions in the other areas.
  • the area B, the area C, the area E, and the area F are also referred to as a communicable area of the beacon 10B.
  • the directional antenna 12 of the beacon 10C has a greater sensitivity to the directions in the area D, the area E, the area G, and the area H than the directions in the other areas.
  • the area D, the area E, the area G, and the area H are also referred to as a communicable area of the beacon 10C.
  • the directional antenna 12 of the beacon 10D has a greater sensitivity to the directions in the regions A and D than the directions in the other regions.
  • the area A and the area D are also referred to as a communicable area of the beacon 10C.
  • the orientation of the directional antenna 12 of the beacon 10A and the orientation of the directional antenna 12 of the beacon 10C are opposite directions.
  • the orientation of the directional antenna 12 of the beacon 10B and the orientation of the directional antenna 12 of the beacon 10D are opposite directions. The same applies to the directional antenna 12 of the other beacon 10.
  • each beacon 10 installed near each grid point can communicate with each other because they are installed in the vicinity. Further, when the beacons 10B and the beacon 10H are installed so that the directions of the directional antennas 12 face each other, the beacon 10B and the beacon 10H can communicate with each other. Therefore, at least one of the four beacons 10 installed near the grid points can communicate with each other with at least one of the four beacons 10 installed near the adjacent grid points. .. Therefore, each beacon 10 in the space can form one beacon mesh.
  • a user or the like carrying the terminal 30 freely moves in the space. A plurality of users or the like carrying the terminal 30 may exist in the space.
  • the beacon 10B is communicably connected to the control device 20.
  • the reception strength of the signal from the terminal 30 received by the beacon 10A is the reception of the signal from the terminal 30 received by the beacon 10C from the direction of each directional antenna 12. Greater than strength. Further, when the terminal 30 exists in the area A, the reception strength of the signal from the terminal 30 received by the beacon 10D is larger than the reception strength of the signal from the terminal 30 received by the beacon 10B. When the terminal 30 exists in the area A, the beacon 10B and the beacon 10C may not receive the signal from the terminal 30.
  • the area A is an area in which the beacon 10A can receive a signal from the terminal 30 with higher sensitivity than the beacon 10C.
  • the area A is an area in which the beacon 10D can receive a signal from the terminal 30 with higher sensitivity than the beacon 10B.
  • Beacons 10A and 10C which are arranged in the vicinity of the same grid point and whose directional antennas 12 are oriented in opposite directions, form a pair, and the reception intensities are compared at the time of determination.
  • beacons 10D and beacons 10B which are arranged in the vicinity of the same grid point and whose directional antennas are oriented in opposite directions, are paired and their reception intensities are compared at the time of determination.
  • beacon 10E and beacon 10G, beacon 10F and beacon 10H, beacon 10I and beacon 10K, beacon 10J and beacon 10L, beacon 10M and beacon 10O, beacon 10N and beacon 10P are paired and received at the time of determination.
  • the strengths are compared.
  • the storage unit 43 of the server 40 has an area in which signals from the terminal 30 can be received more sensitively than other beacons 10 paired with the beacon ID of each beacon 10 (from the terminal 30 more than the other beacons 10 paired). Areas with high signal reception strength, communicable areas) are stored in association with each other.
  • the region where it is difficult to receive the signal from the terminal 30 (for example, the region where the reception strength of the signal from the terminal 30 is less than a predetermined value) can be received more sensitively than the other paired beacons 10. , It does not have to be stored in association with the beacon ID of the beacon 10. That is, in the beacon 10, the region where it is difficult to receive the signal from the terminal 30 (for example, the region where the reception strength of the signal from the terminal 30 is less than a predetermined value) may not be included in the communicable region.
  • the area A and the area B are associated with the beacon 10A and stored.
  • the reception strength of the signal from the terminal 30 existing in the region C is larger in the beacon 10A than in the paired beacon 10C.
  • the area C is not included in the communicable area of the beacon 10A (and 10C).
  • Area B, area C, area E, and area F are associated with the beacon 10B and stored.
  • Area D, area E, area G, and area H are associated with the beacon 10C and stored.
  • Area A and area D are associated with the beacon 10D and stored.
  • Areas corresponding to the orientation of the directional antenna 12 are also associated with and stored in the other beacons 10.
  • the server 40 acquires the reception strength of each beacon 10 and compares the reception strength for each pair, so that it is possible to determine in which region the terminal 30 exists.
  • the terminal 30 existing in the space transmits a signal including the terminal ID toward the beacon 10.
  • a signal including the terminal ID is transmitted from the terminal 30, the reception strength is acquired by the server 40 by the operation sequence as shown in FIG.
  • the area where the terminal 30 exists is determined by the operation flow as shown in FIG.
  • the calculation unit 42 can perform the determination process in the same manner as in the operation example 2.
  • the calculation unit 42 compares the reception intensities of each set, and acquires the beacon ID of the beacon 10 that has received the signal having the higher reception intensity among the compared reception intensities.
  • the beacon ID is not acquired in the group.
  • the calculation unit 42 extracts the area associated with the beacon ID acquired from the storage unit 43.
  • the calculation unit 42 determines that the most extracted area is the area where the terminal 30 exists.
  • the calculation unit 42 extracts the area associated with each beacon ID.
  • the areas associated with the beacon ID of the beacon 10A are the area A and the area B.
  • the areas associated with the beacon ID of the beacon 10D are the area A and the area D.
  • the regions associated with the beacon ID of the beacon 10H are region A, region B, region D, and region E.
  • the regions associated with the beacon ID of the beacon 10I are region A, region B, region D, and region E.
  • the calculation unit 42 determines that the most extracted area is the area where the terminal 30 exists.
  • the calculation unit 42 determines that the area A is the area where the terminal 30 exists.
  • the space is divided into nine areas, three in the vertical direction and three in the horizontal direction, but the method of division is not limited to this, and the space is divided into other numbers. The same is true if there is one. Further, the size of one region may be different from the size of the other region. Further, although the beacons 10 are installed in the vicinity of all the grid points here, the grid points on which the beacons 10 are installed may be staggered. That is, for example, in the example of FIG. 12, beacons 10E, 10F, 10G, 10H, 10I, 10J, 10K, and 10L may be omitted.
  • the set of beacon 10 is not installed at the grid point adjacent to the grid point where the set of beacon 10 (beacon 10A-10D, etc.) is installed, and the set of beacon 10 is not installed adjacent to the grid point.
  • This can be achieved by installing a set of beacons 10 at the grid points.
  • two sets of four beacons 10 are installed in the vicinity of all the grid points, but the beacons 10 installed at the grid points may be set as one set of two beacons 10.
  • the orientation of the directional antenna 12 of the beacon 10 to be installed is different between the adjacent grid points.
  • the number of beacons 10 to be installed can be reduced without changing the number of areas to be determined (9 areas).
  • a set of two beacons 10 are installed one by one with a boundary line (boundary surface) indicating the boundary of each area. That is, at least one set of two beacons 10 are installed on one boundary line (boundary surface). In the example of FIG. 12, since there are four boundary lines (boundary surfaces), at least four sets of beacons 10 (eight beacons 10) may be installed. One of the boundary lines (boundary surface) exists between one beacon 10 of the pair of two beacons 10 and the other beacon 10.
  • the beacon 10 is installed on the ceiling of the space, the direction of the directional antenna 12 is the horizontal direction, and a set of four beacons 10 is installed for one lattice point (one place).
  • the area may be divided by a plane (boundary plane) parallel to the floor of the space.
  • a beacon 10 having a directional antenna 12 having directivity downward (toward the floor) is installed in the lower region of the area parallel to the floor (boundary surface) in the vicinity of the boundary surface.
  • the terminal 30 exists in the region above the boundary surface. It can be determined whether it exists in the region below the boundary surface. Further, by combining with the beacon 10 having the directional antenna 12 having the directivity in the horizontal direction as described above, the area of the space to be determined can be set more finely.
  • the beacon 10 in the beacon mesh of the present embodiment receives a signal from the terminal 30 including the terminal ID of the terminal 30.
  • the beacon 10 transmits a terminal ID and a signal including the beacon ID of the beacon 10 that has received the terminal ID toward the control device 20.
  • the control device 20 acquires a set of a terminal ID and a beacon ID from the beacon mesh.
  • the control device 20 transmits the information of the set of the terminal ID and the beacon ID to the server 40.
  • the server 40 determines an area in which a user of the terminal 30 identified by each terminal ID exists, based on the information of the set of the terminal ID and the beacon ID.
  • the difference in reception intensity between the paired beacons 10 becomes large, and the terminal 30 (movement) is more accurately compared to using the omnidirectional antenna.
  • the region where the body) exists can be determined.
  • the orientation of the directional antenna 12 is parallel to the floor surface. Further, while the beacon 10 is installed on the ceiling of the space, it is considered that the terminal 30 carried by the user is often located near the middle between the ceiling and the floor surface. Therefore, in the first modification, the direction of the directional antenna 12 of each beacon 10 is directed diagonally downward from a direction parallel to the floor surface to an angle of 45 degrees or less. By making the direction of the directional antenna 12 obliquely downward, it is possible to increase the reception strength of the signal from the terminal 30 existing near the middle between the ceiling and the floor surface.
  • the fourth direction, which is the direction of the direction of the directional antenna 12 of the beacon 10, which is the direction of the beacon 10, is opposite to each other.
  • each beacon 10 transmits a signal including the beacon ID, and the terminal 30 receives the signal from the beacon 10 and measures the reception intensity.
  • FIG. 13 is a diagram showing an example of an operation sequence when the server acquires the signal reception strength from the beacon in the space in the modification 2.
  • the server 40 acquires the signal from the beacon 10A received by the terminal 30 is shown.
  • the terminal 30 the user who carries the terminal 30
  • the terminal 30 exists in the area A in the space as shown in FIG. The same applies to the other beacon 10.
  • the beacon 10A transmits a signal including a terminal ID which is information for identifying itself to the terminal 30 in the space.
  • the signal from the beacon 10A is efficiently transmitted to the region A depending on the orientation of the directional antenna 12.
  • the signal is, for example, an advertisement signal.
  • Beacon 10A transmits the signal at predetermined intervals (for example, once per second).
  • the signal including the beacon ID transmitted from the beacon 10A may be received by a plurality of terminals 30.
  • the beacon 10A may transmit a signal including a beacon ID when the signal from the terminal 30 is received.
  • the beacon 10 may transmit a signal including a beacon ID as a radio beacon of the beacon.
  • the beacon communication unit 31 of the terminal 30 that has received the signal including the beacon ID from the beacon 10A measures the reception strength (RSSI: Received Signal Strength Indicator) of the signal.
  • RSSI Received Signal Strength Indicator
  • the reception intensity decreases as the distance between the beacon 10A and the terminal 30 increases. Further, when the distance from the beacon 10A is equal, the reception intensity becomes larger as the direction from the beacon 10A to the terminal 30 is closer to the direction of the directional antenna 12.
  • the reception intensity (energy) is, for example, proportional to the second power of the distance.
  • the terminal 30 stores the beacon ID and the reception strength in association with each other in the storage unit 33.
  • the terminal 30 may store the beacon ID and the reception intensity in association with the reception time.
  • the communication unit 32 of the terminal 30 transmits a signal including the beacon ID of the beacon 10A stored in the storage unit 33 to the server 40 via the network 100.
  • the server 40 receives a signal from the terminal 30.
  • the terminal 30 may transmit the signal to the server via the beacon mesh including the beacon 10, the control device 20, and the like.
  • the server 40 stores the information included in the received signal in the storage unit 33. As a result, the server 40 acquires the reception strength of the signal from the beacon 10. The server 40 can determine the area where the user carrying the terminal 30 exists, based on the reception strength of the signal from each beacon 10 received by the terminal 30.
  • the area where the terminal 30 exists is determined by the operation flow as shown in FIG.
  • the reception strength of the signal from the terminal 30 is replaced with the reception strength of the signal from the beacon 10.
  • the existing region of the terminal 30 can be determined by using the reception strength when the signal from the beacon 10 is received by the terminal 30.
  • the present invention is not limited to the above-described embodiment, and can be changed or combined within a range that does not deviate from the gist of the present invention.
  • Computer readable recording medium A program that enables a computer or other machine or device (hereinafter, computer or the like) to realize any of the above functions can be recorded on a recording medium that can be read by the computer or the like. Then, by causing a computer or the like to read and execute the program of this recording medium, the function can be provided.
  • a recording medium that can be read by a computer or the like is a recording medium that can store information such as data and programs by electrical, magnetic, optical, mechanical, or chemical action and can be read from the computer or the like.
  • elements constituting a computer such as a CPU and a memory may be provided, and the CPU may execute a program.
  • recording media those that can be removed from a computer or the like include, for example, flexible disks, magneto-optical disks, CD-ROMs, CD-R / Ws, DVDs, DATs, 8 mm tapes, memory cards, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

所定の電波到達距離内において相互に通信可能であり所定の信号を送受信する複数のビーコンであって、端末を伴う移動体が移動する複数の領域を含む空間において、他のビーコンの前記電波到達距離内に配置される複数のビーコンと、1つのビーコンと通信可能である情報処理装置とを含む領域判定システムであって、複数のビーコンは、指向性アンテナを有する2つの前記ビーコンを有するビーコンの組を含み、情報処理装置は、ビーコンのビーコン識別情報と、当該ビーコンの通信可能領域の情報とを格納する記憶部と、端末識別情報、ビーコン識別情報、受信強度を受信する通信部と、通信部で受信した、端末識別情報、ビーコン識別情報、受信強度と、記憶部に格納される通信可能領域の情報に基づいて、端末識別情報で識別される端末を伴う移動体が存在する領域を判定する演算部を備えるシステムとする。

Description

領域判定システム
 本発明は、領域判定システムに関する。
 電磁波等を発射することにより、受信機に位置等の様々な情報を通知するビーコン(無線標識)が存在する。ビーコンには、携帯端末に向けて情報を発信するものもある。例えば、携帯端末用のビーコンには、Bluetooth(登録商標)を利用したものもあり、複数の送信器から識別情報を受信することで、受信側の携帯端末は自身の位置を知ることができる。
 また、複数のビーコンによりビーコンメッシュを構成する技術がある。ビーコンメッシュを構成するビーコン(メッシュ型ビーコンともいう)は、電波の到達距離内に設置された他のビーコンと相互に通信を行う機能を有し、全体としてマルチホップ無線ネットワークを形成する。メッシュ型ビーコンは、他のビーコンに対して、自身の識別情報を含む無線標識を送信する。ビーコンメッシュは、ゲートウェイを介して、他のネットワークに接続され得る。ゲートウェイは、ビーコンメッシュ内のビーコンに対して、個別に、設定変更の命令を送信することができる。
特開2006-242871号公報
 従来、オフィスなどの複数の領域に分けられる空間等において、人や物などの移動する物体が存在する領域を判定するには、物体に取り付けられる発信機の電波を複数の受信機が受信し、各受信機で受信した電波の信号強度等に基づいて判定する方式が採用されることがある。しかし、受信機で受信する電波の受信強度は、周辺環境等の影響により時間変化し、物体が移動しない場合であっても安定しないことがある。したがって、複数の受信機を用いて物体が存在する領域を判定する際に、誤判定をすることがあった。
 本発明は、空間における存在領域判定性能を向上させる技術を提供することを目的とする。
 上記課題を解決するために、以下の手段を採用する。
 即ち、第1の態様は、
 所定の電波到達距離内において相互に通信可能であり、所定の信号を送受信する複数のビーコンであって、端末を伴う移動体が移動する複数の領域を含む空間において、少なくとも1つの他のビーコンの前記電波到達距離内に配置される複数のビーコンと、前記複数のビーコンのうちの少なくとも1つのビーコンと通信可能である情報処理装置とを含む領域判定システムであって、
 複数の前記ビーコンは、2つの前記ビーコンを含むビーコンの組を含み、
 前記ビーコンの組に含まれる一方のビーコンである第1ビーコンは、
 第1方向に指向性を有する第1指向性アンテナと、
 前記第1指向性アンテナにより、前記空間のいずれかの領域に存在する前記端末から前記端末を識別する端末識別情報を含む信号を受信し、前記信号の受信強度を測定し、前記端末識別情報と前記ビーコンを識別するビーコン識別情報と前記受信強度とを前記情報処理装置に向けて送信する第1通信部を備え、
 前記ビーコンの組に含まれる他方のビーコンである第2ビーコンは、
 前記第1方向と異なる第2方向に指向性を有する第2指向性アンテナと、
 前記第2指向性アンテナにより、前記空間のいずれかの領域に存在する前記端末から前記端末を識別する端末識別情報を含む信号を受信し、前記信号の受信強度を測定し、前記端末識別情報と前記ビーコンを識別するビーコン識別情報と前記受信強度とを前記情報処理装置に向けて送信する第2通信部を備え、
 前記情報処理装置は、
 前記ビーコンのビーコン識別情報と、当該ビーコンの通信可能領域の情報とを格納する記憶部と、
 前記端末識別情報、前記ビーコン識別情報、前記受信強度を受信する第3通信部と、
 前記第3通信部で受信した、前記端末識別情報、前記ビーコン識別情報、前記受信強度と、前記記憶部に格納される前記通信可能領域の情報に基づいて、前記端末識別情報で識別される前記端末を伴う前記移動体が存在する前記領域を判定する演算部を備える、
領域判定システムとする。
 開示の態様は、プログラムが情報処理装置によって実行されることによって実現されてもよい。即ち、開示の構成は、上記した態様における各手段が実行する処理を、情報処理装置に対して実行させるためのプログラム、或いは当該プログラムを記録したコンピュータ読み取り可能な記録媒体として特定することができる。また、開示の構成は、上記した各手段が実行する処理を情報処理装置が実行する方法をもって特定されてもよい。開示の構成は、上記した各手段が実行する処理を行う情報処理装置を含むシステムとして特定されてもよい。
 本発明によれば、空間における存在領域判定性能を向上させることができる。
図1は、実施形態に係るシステムの構成例を示す図である。 図2は、ビーコン10の機能ブロックの例を示す図である。 図3は、指向性アンテナの放射パターンの例を示す図である。 図4は、制御装置20の機能ブロックの例を示す図である。 図5は、端末30の機能ブロックの例を示す図である。 図6は、サーバ40の機能ブロックの例を示す図である 図7は、情報処理装置のハードウェア構成例を示す図である。 図8は、空間と当該空間に設置されるビーコンの例を示す図である。 図9は、空間内のいずれかのビーコンの近傍に存在する端末からの信号の受信強度を、サーバで取得する際の動作シーケンスの例を示す図である。 図10は、サーバによる端末の存在領域の判定の動作フローの例を示す図である。 図11は、空間と当該空間に設置されるビーコンの例を示す図である。 図12は、空間と当該空間に設置されるビーコンの例を示す図である。 図13は、変形例2における、空間内のビーコンから信号の受信強度を、サーバで取得する際の動作シーケンスの例を示す図である。
 以下、図面を参照して本発明の実施形態について説明する。実施形態の構成は例示であり、発明の構成は、開示の実施形態の具体的構成に限定されない。発明の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。
 〔実施形態〕
 〈システム構成〉
 図1は、本実施形態に係るシステムの構成例を示す図である。なお、本実施形態では、測位等のために送受信される無線標識のほか、当該無線標識の送受信装置をビーコンと呼ぶ。本実施形態に係るシステムは、ビーコン10A、10B、10C、10D(各ビーコンを区別しない場合には、単に、ビーコン10という)、制御装置20、端末30、サーバ40を含む。各ビーコンは、同様の構成を有する。設置されるビーコン10の数は、図1の例に限定されるものではなく、空間や空間内の領域に応じて、決定される。端末30は、いずれかのビーコン10との間で信号を送受信できる位置に存在する。端末30は、例えば、利用者に携帯されていたり、所定の物体に添付されていたりする。制御装置20、サーバ40は、インターネット等のネットワーク100を介して、通信可能に、接続されている。制御装置20、サーバ40は、直接、通信可能に接続されてもよい。端末30は、ネットワーク100に接続されてもよい。ビーコン10Aからビーコン10Dは、マルチホップ無線ネットワークを形成している。ビーコン10は、工場やオフィスなどの空間等の天井、梁、壁、柱等に設置される。設置されるビーコン10の数は、図1の例に限定されるものではなく、空間や空間内の領域に応じて、決定される。当該空間等は、あらかじめ、複数の領域に分割されている。空間等は、物理的に複数の領域に分割されていなくても、仮想的に複数の領域に分割されていればよい。本実施形態のシステムは、端末30がいずれの領域に存在するかを判定する。本実施形態のシステムは、端末30を携帯する(伴う)利用者(人)が存在する領域を算出(判定)しているが、利用者(人)の代わりに、工場等の空間内を移動する機械や動物等であってもよい。これらの機械や動物は、端末30を伴っているものとする。利用者、機械、動物は、移動体の例である。端末30を伴う利用者、機械、動物は、ビーコン10が設置される工場やオフィスなどの空間に存在するとする。端末30を伴う複数の利用者等が、当該空間内に存在してもよい。各端末30は、それぞれ、固有の識別情報を有する。
 ビーコン10は、当該ビーコン10を識別する識別情報及び送信日時を含む無線標識を送信する。また、本実施形態に係るビーコン10は、電波の到達距離内に設置された他のビーコン10と相互に通信を行う機能を有し、全体としてマルチホップ無線ネットワークを形成する。また、複数のビーコンの各々は少なくとも1つの他のビーコンの電波到達距離内に配置されるものとする。ビーコン10は、端末30から、当該端末30の識別情報を含む信号を受信する。ビーコン10は、当該端末30からの信号の受信強度を測定する。ビーコン10は、端末30から、ビーコン10からの信号の当該端末30における受信強度を受信してもよい。ビーコン10は、端末30からの識別情報等とともに、ビーコン10自身の識別情報等を、他のビーコン10に向けて送信する。なお、相互に通信可能とした複数のビーコンを総称してビーコンメッシュとも呼ぶ。
 図1では4個のビーコン10を例示したが、ビーコン10の数は4個に限定されるものではない。また、ビーコン10は、例えば、マイクロコントローラとアンテナとを有し、これらが協働することにより各種の機能を実現する。当該アンテナは、所定の方向に指向性を有する指向性アンテナである。ビーコン10は、内部センサとして、各種センサを含み得る。各種センサは、例えば、マイク、温度計、湿度計、光センサ、赤外線センサ、電気メータ、ガスメータ、水道メータ、計測器等である。各種センサによって、音、空気環境、値等が検出される。また、ビーコン10には、外部センサとして、各種センサが接続されてもよい。ビーコン10は、自身に内蔵される電池の残量を計測しうる。外部センサは、Bluetooth等による無線通信機能を有してもよい。このとき、外部センサは、Bluetoothのパケットに載せて検出結果等を送信しうる。
 制御装置20は、複数のビーコン10の動作を一元的に制御する装置である。制御装置20は、例えば、複数のビーコン10のいずれかを特定する識別情報と所定の情報とを含む特定情報を、周辺のビーコン10に送信する。一方、ビーコン10は、受信した特定情報を周辺のビーコン10へ中継するとともに、自身を示す識別情報を含む特定情報を受信した場合、当該特定情報に基づいて、所定の処理を行う。特定情報は、例えば、ビーコン10の動作を制御する情報を含み得る。制御装置20は、ビーコンメッシュとネットワーク100とを接続するゲートウェイとして動作する。
 端末30は、ビーコン10に対して、端末30自身を識別する識別情報を送信する。端末30は、ビーコン10から無線標識を受信してもよい。また、図1には1つの端末30を示しているが、端末30の数は、1つに限定されるものではない。端末30は、ビーコン10としての機能を有してもよい。例えば、端末30は、ビーコンメッシュ内の1つのビーコン10として機能してもよい。端末30は、ビーコン10と同様に、内部センサを含んだり、外部センサに接続されたりしてもよい。端末30は、利用者に携帯されていたり、移動し得る機械等に添付されていたりする。
 サーバ40は、例えば、端末30の識別情報、端末30からの信号を受信したビーコン10の識別情報及び受信日時等を、ビーコンメッシュ、制御装置20、ネットワーク100等を介して取得する。サーバ40は、ビーコン10の状態等を示す情報を取得しうる。また、サーバ40は、取得した情報に基づいて、空間内に存在する端末30が存在する領域を判定する。
 〈ビーコンの機能構成〉
 図2は、実施形態に係るビーコン10の機能ブロックの例を示す図である。なお、ビーコン10は、工場、オフィス等の空間に、少なくとも1つの他のビーコン10と相互に通信可能な所定の電波到達距離以下の間隔で設置される。当該空間内には、複数のビーコン10が設置される。ビーコン10は、通信部11と、指向性アンテナ12と、記憶部13とを備える。ビーコン10は、ビーコン10の指向性アンテナ12の方向を、空間を分割する領域に応じた所定の方向に向けて設置されるものとする。
 通信部11は、端末30から、当該端末30を識別する識別情報を含む信号(無線標識)を受信する。また、通信部11は、他のビーコン10から当該ビーコン10を識別する識別情報を含む信号を受信する。通信部11は、所定の方向に指向性を有する指向性アンテナ12に接続される。通信部11は、指向性アンテナ12を介して信号を受信する。通信部11は、端末30から受信した信号の受信強度を測定する。通信部11は、端末30等から当該端末30等の識別情報を含む信号を受信する。通信部11は、受信した信号に含まれる情報と当該信号の受信強度を対応付けて、記憶部13に格納する。
 また、通信部11は、記憶部13に保持されている情報に基づいて、当該ビーコン10を識別するための識別情報を含む無線標識を送信する。無線標識は、送信時刻を示す日時情報等を含んでもよい。具体的には、BLE(Bluetooth Low Energy)等の技術を利用することができ、無線標識のブロードキャスト通信を行うようにしてもよい。
 また、通信部11は、他のビーコン10、制御装置20との間で双方向に情報の送受信を行う。例えば、BLEにおけるGATT(Generic Attribute Profile)のようなプロファイルに基づいて相互通信を行うようにしてもよい。通信部11は、コネクション型の通信を行ってもよい。
 また、通信部11は、制御装置20からの要求に応じて、記憶部13に保持されている情報を、ビーコンメッシュのネットワークを介して制御装置20に送信するようにしてもよい。記憶部13に保持されている情報には、端末30から受信した端末30の識別情報、受信強度等が含まれ得る。また、ビーコン10間を送受信される情報には、あらかじめ、固有の識別情報が割り当てられてもよい。このとき、通信部11は、一度、転送した情報の識別情報を記憶部13に格納し、情報を転送する際に、当該情報の識別情報が記憶部13に過去に転送した情報の識別情報と一致するか否かを確認し、過去に転送した情報である場合には、当該情報を転送しなくてもよい。これにより、同じ情報がビーコンメッシュ内を転送され続けることを回避することができる。
 指向性アンテナ12は、特定の方向に他の方向に比べて大きな感度を有するアンテナである。指向性アンテナ12は、通信部11に接続され、端末30等からの信号を受信する。指向性アンテナ12は、感度の高い方向を、空間を分割する領域に応じた所定の方向に向けられる。
 図3は、ビーコンの指向性アンテナの放射パターンの例を示す図である。指向性アンテナ12の放射パターンは、指向性アンテナ12からの各方向の受信感度の大きさを示す。図3の指向性アンテナ12の放射パターンは、0度から180度の方向に、180度から360度の方向に比べて、大きな感度を有する。図3の指向性アンテナ12の放射パターンは、90度の方向に感度のピークを有する。ここでは、図3の指向性アンテナ12の放射パターンは、水平方向の放射パターンであるとする。端末30がビーコン10の指向性アンテナ12に対して0度から180度の方向にあるときに、ビーコン10は、端末30からの信号を受信しやすい。指向性アンテナ12の放射パターンは、ここに挙げたものに限定されるものではない。指向性アンテナ12の放射パターンは、180度から360度の方向に比べて、0度から180度の方向に大きな感度を有するものであればよい。ここでは、指向性アンテナ12の放射パターンの感度が最大となる方向(図3では90度の方向)を、指向性アンテナ12の向きであるとする。指向性アンテナ12の向きは、指向性アンテナ12の指向性の方向である。
 記憶部13は、不揮発性メモリであり、例えばマイクロプロセッサが有するフラッシュメモリのようなEEPROM(Electrically Erasable Programmable Read-Only Memory)等によって実現される。また、記憶部13は、予め定められた当該ビーコン10の固有の識別情報(ビーコンID)や、通信部11が無線標識を送信する際の電波強度の設定値等を記憶する。記憶部13は、受信した信号に含まれる情報や当該信号の受信強度などを格納する。
 〈制御装置の機能構成〉
 図4は、実施形態に係る制御装置20の機能ブロックの例を示す図である。制御装置20は、例えば一般的なコンピュータであり、ビーコン通信部21、通信部22、記憶部23を備える。
 ビーコン通信部21は、ビーコン10と双方向の通信を行う。すなわち、ビーコン通信部21は、上記した特定情報を送信したり、ビーコン10から死活情報、ビーコン10が保持する情報を受信したりする。制御装置20は、1つのビーコン10と通信可能に有線等で接続されていてもよい。ビーコン通信部21は、ビーコン10等から取得した情報を、記憶部23に格納する。また、ビーコン通信部21は、制御装置20を操作するユーザからの入力等に基づいて、特定情報を送信し、ビーコン10の設定を変更させてもよい。ビーコン通信部21は、特定情報にすべてのビーコン10に対応する識別情報を含むようにして、ビーコン10は同一の特定情報を1回のみブロードキャスト通信するようにしてもよい。また、特定情報がビーコンメッシュのネットワーク上を転送される回数を示すホップ数を含むようにして、ビーコン10は設定変更情報を転送するたびにホップ数をインクリメントし、所定の回数だけビーコン10間を転送された特定情報がビーコンメッシュ上から削除されるようにしてもよい。ビーコン通信部21は、ビーコンとして動作する端末30と双方向の通信をしてもよい。
 通信部22は、例えば、インターネットや専用回線等のネットワーク100を介して、サーバ40、端末30等と通信する。通信部22は、記憶部23に格納されるビーコン10等から取得した情報をサーバ40に送信する。
 記憶部23は、例えば、HDD(Hard-disk Drive)やSSD(Solid State Drive)、フラッシュメモリ等によって実現される。記憶部23は、各ビーコンの識別情報(ビーコンID)に対応付けて、複数のビーコン10の設置場所を示す位置情報、動作設定等を記憶する。
 〈端末の機能構成〉
 図5は、実施形態に係る端末30の機能ブロックの例を示す図である。端末30は、例えばスマートフォンやタブレット端末等のコンピュータであり、ビーコン通信部31と、通信部32、記憶部33と、表示部34とを備える。なお、ビーコン通信部31、通信部32は、例えば端末30にインストールされたアプリケーションソフトウェア(プログラムとも呼ぶ)が、端末30の通信機能を利用して実現する。
 ビーコン通信部31は、記憶部33に保持されている情報に基づいて、ビーコンとしての端末30を識別するための識別情報を含む無線標識を送信し、受信側の装置に対して近接通知を行う。無線標識は、送信時刻を示す日時情報等を含んでもよい。具体的には、BLE等の技術を利用することができ、無線標識のブロードキャスト通信を行うようにしてもよい。端末30が送信する端末30の識別情報を含む無線標識(情報)は、複数のビーコンによって受信され得る。また、ビーコン通信部31は、ビーコン10が送信する無線標識を受信し、記憶部33に格納する。
 また、ビーコン通信部31は、ビーコン10等との間で双方向に情報の送受信を行う。例えば、BLEにおけるGATTのようなプロファイルに基づいて相互通信を行うようにしてもよい。ビーコン通信部31は、コネクション型の通信を行ってもよい。また、ビーコン通信部31は、ビーコン10の識別情報を含む特定情報を受信した場合、当該特定情報を周辺のビーコン10へ中継する。一方、自身を示す識別情報を含む特定情報を受信した場合、当該特定情報を記憶部33に格納すると共に、当該特定情報に基づいて、所定の処理を行う。また、ビーコン通信部31は、制御装置20からの要求に応じて、記憶部33に保持されている情報を、ビーコンメッシュのネットワークを介して制御装置20に応答するようにしてもよい。また、ビーコン通信部31は、制御装置20との間で双方向に情報の送受信を行ってもよい。
 通信部32は、例えば、インターネットや専用回線等のネットワーク100を介して、制御装置20、サーバ40、端末30等と通信する。通信部32は、記憶部33に格納されるビーコン10等から取得した識別情報などの情報を制御装置20、サーバ40等に送信しうる。
 記憶部33は、例えば、HDD(Hard-disk Drive)やSSD(Solid State Drive)、フラッシュメモリのようなEEPROM等によって実現される。記憶部33は、端末30を識別するための固有の端末識別情報(端末ID)を格納する。なお、端末30を特定するための識別情報は、スマートフォン等のOS(Operating System)が提供するIDを利用するようにしてもよいし、サーバ40が端末30のアプリケーションソフトウェアに対して独自の識別情報を発行するようにしてもよい。記憶部33は、ビーコン10等から受信したビーコン10の識別情報等を格納する。
 表示部34は、記憶部33に記憶された情報等を端末30が備えるモニタに表示させる。端末30は、表示部34を含まなくてもよい。
 〈サーバの機能構成〉
 図6は、実施形態に係るサーバ40の機能ブロックの例を示す図である。サーバ40は、例えば、据え置き型のコンピュータであり、通信部41と、演算部42と、記憶部43とを備える。制御装置20とサーバ40とは一体化して、1つの情報処理装置として動作してもよい。
 通信部41は、インターネットや専用回線等のネットワーク100を介して制御装置20等との間で情報を送受信する。
 演算部42は、ビーコン10、端末30からの情報に基づいて、所定の演算を行う。演算部42は、端末30が存在する領域(端末30を携帯する利用者等が存在する領域)を算出する。演算部42は、ビーコン10から取得する端末30の端末IDと、当該端末IDを受信したビーコン10の位置情報などから、端末30が存在する領域を算出する。
 記憶部43は、例えばHDDやSSD、フラッシュメモリ等によって構成され、端末30から、ビーコンメッシュ、制御装置20を介して、受信した情報や、当該情報に基づいて算出した端末30が存在する領域を示す情報を記憶する。記憶部43は、ビーコンメッシュの各ビーコン10を識別するビーコン識別情報(ビーコンID)と、各ビーコン10の存在位置を示す位置情報とを対応付けて格納する。記憶部43は、各ビーコン10の識別情報と各ビーコン10の信号の通信可能領域(ペアの他のビーコンよりもより感度高く受信できる領域)と各ビーコン10の設置位置の情報とを対応付けて格納する。記憶部43は、ペアとなる2つのビーコン10のビーコンIDを対応付けて格納する。ペアとなる2つのビーコン10は、近傍に設置され、指向性アンテナ12の向きが互いに反対方向であるビーコン10の組である。
 〈装置構成〉
 ビーコン10、制御装置20、端末30は、スマートフォン、携帯電話、タブレット型端末、PDA(Personal Digital Assistant)、PC(Personal Computer)のような専用または汎用のコンピュータ、あるいは、コンピュータを搭載した電子機器を使用して実現可能である。サーバ40は、PC、ワークステーション(WS、Work Station)のような専用または汎用のコンピュータ、あるいは、コンピュータを搭載した電子機器を使用して実現可能である。
 図7は、情報処理装置のハードウェア構成例を示す図である。図7に示す情報処理装置90は、一般的なコンピュータの構成を有している。ビーコン10、制御装置20、端末30、サーバ40は、図7に示すような情報処理装置90によって実現され得る。情報処理装置90は、プロセッサ91、メモリ92、記憶部93、入力部94、出力部95、通信制御部96を有する。これらは、互いにバスによって接続される。メモリ92及び記憶部93は、コンピュータ読み取り可能な記録媒体である。情報処理装置のハードウェア構成は、図7に示される例に限らず、適宜構成要素の省略、置換、追加が行われてもよい。
 情報処理装置90は、プロセッサ91が記録媒体に記憶されたプログラムをメモリ92の作業領域にロードして実行し、プログラムの実行を通じて各構成部等が制御されることによって、所定の目的に合致した機能を実現することができる。
 プロセッサ91は、例えば、CPU(Central Processing Unit)やDSP(Digital Signal Processor)である。
 メモリ92は、例えば、RAM(Random Access Memory)やROM(Read Only Memory)を含む。メモリ92は、主記憶装置とも呼ばれる。
 記憶部93は、例えば、EPROM(Erasable Programmable ROM)、ハードディスクドライブ(HDD、Hard Disk Drive)、ソリッドステートドライブ(SSD、Solid State Drive)である。また、記憶部93は、リムーバブルメディア、即ち可搬記録媒体を含むことができる。リムーバブルメディアは、例えば、USB(Universal Serial Bus)メモリ、あるいは、CD(Compact Disc)やDVD(Digital Versatile Disc)のようなディスク記録媒体である。記憶部93は、二次記憶装置とも呼ばれる。
 記憶部93は、各種のプログラム、各種のデータ及び各種のテーブルを読み書き自在に記録媒体に格納する。記憶部93には、オペレーティングシステム(Operating System :OS)、各種プログラム、各種テーブル等が格納される。記憶部93に格納される情報は、メモリ92に格納されてもよい。また、メモリ92に格納される情報は、記憶部93に格納されてもよい。
 オペレーティングシステムは、ソフトウェアとハードウェアとの仲介、メモリ空間の管理、ファイル管理、プロセスやタスクの管理等を行うソフトウェアである。オペレーティングシステムは、通信インタフェースを含む。通信インタフェースは、通信制御部96を介して接続される他の外部装置等とデータのやり取りを行うプログラムである。外部装置等には、例えば、他の情報処理装置、外部記憶装置等が含まれる。
 入力部94は、キーボード、ポインティングデバイス、ワイヤレスリモコン、タッチパネル等を含む。また、入力部94は、カメラのような映像や画像の入力装置や、マイクロフォンのような音声の入力装置を含むことができる。
 出力部95は、CRT(Cathode Ray Tube)ディスプレイ、LCD(Liquid Crystal Display)、PDP(Plasma Display Panel)、EL(Electroluminescence)パネル等の表示装置、プリンタ等の出力装置を含む。また、出力部95は、スピーカのような音声の出力装置を含むことができる。
 通信制御部96は、他の装置と接続し、情報処理装置90と他の装置との間の通信を制御する。通信制御部96は、例えば、LAN(Local Area Network)インタフェースボード、Bluetooth(登録商標)などの無線通信のための無線通信回路、電話通信のための通信回路である。LANインタフェースボードや無線通信回路は、インターネット等のネットワークに接続される。
 ビーコン10、制御装置20、端末30、サーバ40を実現するコンピュータは、プロセッサが二次記憶装置に記憶されているプログラムを主記憶装置にロードして実行することによって、各機能を実現する。また、各装置の記憶部は、主記憶装置または二次記憶装置の記憶領域に設けられる。
 (動作例1)
 本実施形態のシステムの動作例1を説明する。本実施形態のシステムでは、工場、オフィスなどの空間の天井等に複数のビーコン10が設置される。各ビーコン10は、固有の識別情報(ビーコンID)を有する。各ビーコン10は、ビーコンメッシュを形成する。すべてのビーコン10は、いずれかの他のビーコン10と通信できる位置に設置される。また、少なくとも1つのビーコン10は、制御装置20と通信できる位置に設置される。制御装置20は、ネットワーク100等を介して、または、直接、サーバ40と通信可能に接続される。工場、オフィスなどの空間では、端末30を携帯する利用者等が移動しているとする。当該空間は、複数の領域に分割されているとする。端末30を携帯する利用者等は、当該領域間を自由に移動できるものとする。
 図8は、空間と当該空間に設置されるビーコンの例を示す図である。図8は、工場、オフィス等の空間を上から見た例(平面図の例)を示す。図8の空間は、四角形であり、左側半分の領域Aと右側半分の領域Bとに分けられている。ビーコン10A及びビーコン10Bは、空間の中央の天井に設置される。ビーコン10Aは領域A内に設置され、ビーコン10Bは領域B内に設置される。図8において、各ビーコン10から伸びる矢印の方向は、各指向性アンテナ12の向きを示す。ビーコン10Aの指向性アンテナ12の向きは図の左方向であり、ビーコン10Bの指向性アンテナ12の向きは図の右方向である。図8において、ビーコン10Bは、ビーコン10Aの図の右方向に設置される。ビーコン10Aの指向性アンテナ12は、領域A内の方向に対して、領域B内の方向に比べて大きな感度を有する。また、ビーコン10Bの指向性アンテナ12は、領域B内の方向に対して、領域A内の方向に比べて大きな感度を有する。ビーコン10Aの指向性アンテナ12が大きな感度を有する方向にビーコン10Bは、設置されない。また、ビーコン10Bの指向性アンテナ12が大きな感度を有する方向にビーコン10Aは、設置されない。さらに、ビーコン10Aの指向性アンテナ12の向きとビーコン10Bの指向性アンテナ12の向きとは、反対方向であるが、ビーコン10Aとビーコン10Bとは近傍に設置されるため、通信可能であるとする。また、端末30を携帯する利用者等は、当該空間内を自由に移動する。端末30を携帯する複数の利用者等が、当該空間内に存在してもよい。ここでは、ビーコン10Bが制御装置20と通信可能に接続されているとする。ここでは、指向性アンテナ12の向きは、空間の天井に平行である。
 領域Aに端末30が存在している場合、各指向性アンテナ12の向きから、ビーコン10Aで受信される端末30からの信号の受信強度は、ビーコン10Bで受信される端末30からの信号の受信強度よりも大きい。領域Aに端末30が存在している場合、ビーコン10Bでは、端末30からの信号を受信しない可能性もある。領域Aは、ビーコン10Aがビーコン10Bよりも感度よく端末30からの信号を受信できる領域である。領域Aは、ビーコン10Aの通信可能領域ともいう。また、領域Bに端末30が存在している場合、ビーコン10Aで受信される端末30からの信号の受信強度は、ビーコン10Bで受信される端末30からの信号の受信強度よりも小さい。領域Bに端末30が存在している場合、ビーコン10Aでは、端末30からの信号を受信しない可能性もある。領域Bは、ビーコン10Bがビーコン10Aよりも感度よく端末30からの信号を受信できる領域である。領域Bは、ビーコン10Bの通信可能領域ともいう。よって、サーバ40が、受信強度を取得し、受信強度を比較することで、端末30がどの領域に存在するのかを判定することができる。指向性アンテナの向きが互いに反対であるビーコン10A及びビーコン10Bは、ペアとなり、判定の際、受信強度を比較される。ここでは、サーバ40の記憶部43には、ビーコン10AのビーコンIDと領域A(通信可能領域)とが対応付けられ、ビーコン10BのビーコンIDと領域B(通信可能領域)とが対応付けられて格納されている。
 〈端末からの信号の受信強度取得の動作例〉
 図9は、空間内のいずれかのビーコンの近傍に存在する端末からの信号の受信強度を、サーバで取得する際の動作シーケンスの例を示す図である。ここでは、ビーコン10Aで受信された端末30からの信号を、サーバ40で取得する例を示す。ここでは、図8のような空間において、端末30(を携帯する利用者)は、領域Aに存在するとする。
 SQ101では、端末30は、空間内のビーコン10に対して、自身を識別する情報である端末IDを含む信号を送信する。当該信号は、例えば、アドバタイズ信号である。端末30は、当該信号を、所定期間毎に(例えば、1秒に1回)、送信する。端末30から送信される端末IDを含む信号は、複数のビーコン10に受信されてもよい。ここでは、端末30からの端末IDを含む信号は、ビーコン10Aに受信されたとする。端末30は、ビーコンメッシュを形成するビーコン10からの無線標識を受信したことを契機として、端末IDを含む信号を送信してもよい。端末30は、端末IDを含む信号を、ビーコンの無線標識として送信してもよい。
 SQ102では、端末30からの端末IDを含む信号を受信したビーコン10Aは、当該信号の受信強度(RSSI:Received Signal Strength Indicator)を測定する。受信強度は、ビーコン10Aから端末30への方向が同じ場合、ビーコン10Aと端末30との距離が長くなるのにしたがって、小さくなる。また、受信強度は、ビーコン10からの距離が等しい場合、ビーコン10Aから端末30への方向が指向性アンテナ12の向きに近いほど、大きくなる。受信強度(エネルギー)は、例えば、距離の-2乗に比例する。ビーコン10Aは、端末IDと受信強度とを対応付けて記憶部13に格納する。ビーコン10Aは、端末IDと受信強度とに、受信時刻を対応付けて格納してもよい。
 SQ103では、ビーコン10Aは、他のビーコン10(ここでは、ビーコン10B)に対して、記憶部13に格納される端末IDと、受信強度と、ビーコン10Aを識別する識別情報であるビーコンIDとを含む信号を、送信する。ビーコンIDは、例えば、UUID(8Byte)、Major(2Byte)、Minor(2Byte)の各値を有する。UUIDは、組織、建物、プロジェクト等を識別するための識別子として用いられる。Majorは、組織等内のグループ、フロア、チーム等を識別するための識別子として用いられる。Minorは、グループ等内の個々のビーコンを識別するための識別子として用いられる。端末IDは、例えば、2Byteである。RSSIは、例えば、1Byteである。当該信号は、制御装置20に向けて送信されるものである。当該信号には、当該信号を識別する識別情報が含まれてもよい。当該信号には、端末ID等に対応付けられた受信時刻が含まれてもよい。当該受信時刻は、当該信号に含まれてサーバ40まで転送され得る。また、当該信号は、信号の宛先である制御装置20を識別する識別情報が含まれてもよい。ここでは、当該信号は、ビーコン10Bによって受信されるとする。
 SQ104では、ビーコン10Bは、ビーコン10Aから受信した信号を、ビーコン10Bの周囲の他のビーコン10等に向けて送信する。ここでは、ビーコン10Bから送信された信号が、制御装置20で受信されるとする。制御装置20は、受信したビーコン10Bからの信号に含まれる情報を、現在時刻と対応付けて、記憶部23に格納する。ビーコンメッシュにおける信号の転送は、端末30の移動速度に比べて非常に速い速度で行われると考えられるため、ここでの現在時刻は、ビーコン10Dが端末30から端末IDを受信した時刻(受信時刻)と同一とみなすことができる。よって、現在時刻は、当該受信時刻として格納される。また、制御装置20は、受信したビーコン10Bからの信号に含まれる情報に端末ID等に対応付けられた受信時刻が含まれる場合、現在時刻を記憶部23に格納しなくてもよい。制御装置20は、ビーコン10A以外のビーコン10が端末30から受信した端末IDを含む信号も受信し得る。端末30の周囲に他のビーコン10が存在しうるからである。この場合、制御装置20では、他のビーコン10から端末30の端末IDを含む信号が受信される。制御装置20は、所定期間に受信された同一の端末IDを含む信号は、同一の時刻に端末30から送信された端末IDを含む信号に基づくものであるとみなしてもよい。
 一方、ビーコン10Bでも、端末30からの端末IDを含む信号を受信していた場合、ビーコン10Bは、当該信号の受信強度(RSSI)を測定する。ビーコン10Bは、端末IDと受信強度とを対応付けて記憶部13に格納する。ビーコン10Bは、端末IDと受信強度とに、受信時刻を対応付けて格納してもよい。また、ビーコン10Bは、端末ID、受信強度、ビーコン10BのビーコンIDを含む信号を、制御装置20に向けて、周囲にビーコン10等に対して、送信する。
 SQ105では、制御装置20は、記憶部23に格納される端末30の端末ID等を含む信号を、サーバ40に送信する。制御装置20は、例えば、所定期間(例えば1分間)に受信した端末30の端末IDを含む信号を、所定期間毎に、サーバ40に送信する。サーバ40は、制御装置20から信号を受信する。
 ビーコン10は、受信強度を測定せず、端末IDとビーコンIDと含む信号を送信するようにしてもよい。
 SQ106では、サーバ40は、受信した信号に含まれる情報を、記憶部33に格納する。これにより、サーバ40は、端末30からの信号の受信強度を取得する。サーバ40は、各ビーコン10で受信された端末30からの信号の受信強度に基づいて、当該端末30を携帯する利用者が存在する領域を判定することができる。
 〈端末の存在領域の判定の動作例〉
 図10は、サーバによる端末の存在領域の判定の動作フローの例を示す図である。サーバ40は、ビーコンネットワーク等を介して、端末30の端末IDと、当該端末30からの信号の受信強度と、当該端末30からの信号を受信したビーコン10のビーコンIDとの組の情報とに基づいて、端末30(を携帯する利用者)の存在領域を判定する。ここで説明するサーバ40の動作は、制御装置20とサーバ40とが一体化した情報処理装置で行われてもよい。
 S101では、サーバ40の演算部42は、通信部41を介して、利用者が携帯する端末30の端末ID、当該端末30からの信号の受信強度、受信時刻、当該信号を受信したビーコン10のビーコンIDとを受信する。サーバ40は、受信した端末ID、受信強度及びビーコンIDを記憶部43に格納する。
 S102では、サーバ40の演算部42は、受信した情報に基づいて、S101で受信した端末IDによって識別される端末30を携帯する利用者の存在領域を判定する。演算部42は、端末30(利用者)がどの領域に存在するかを判定する。演算部42は、同時刻(もしくは所定の期間内)に各ビーコン10で受信された端末30からの信号の受信強度を比較する。演算部42は、比較した受信強度のうちより大きい受信強度の信号を受信したビーコン10のビーコンIDを取得する。演算部42は、記憶部43から当該ビーコンIDに対応付けられている領域(他のビーコンよりもより感度高く受信できる領域)を抽出する。例えば、演算部42は、ビーコン10Aにおける受信強度がより大きい場合、ビーコン10AのビーコンIDに対応付けられる領域Aを抽出する。端末30からの受信強度は、所定の期間内に受信された端末30からの信号の受信強度の平均値や最大値であってもよい。端末30からの信号の強度は安定しないことがあるため、所定の期間内の平均値や最大値を使用することでより適切に領域の判定を行うことができる。
 S103では、サーバ40の演算部42は、S102で抽出した領域Aと、端末30の端末IDと、端末30からの信号をビーコン10で受信した受信時刻とを対応付けて、記憶部43に格納する。
 これにより、端末IDによって識別される端末30の存在領域(端末IDによって識別される端末30を伴う移動体の存在領域)を判定することができる。サーバ40は、各端末30について、上記の動作フローにより存在領域を判定する。
 指向性アンテナ12を含む複数のビーコン10を使用することで、各ビーコン10における端末30からの信号の受信強度の差を大きくすることができる。受信強度の差が大きくなることで、サーバ40は、端末30(移動体)が存在する領域を容易に判定できる。
 (動作例2)
 本実施形態のシステムの動作例2を説明する。動作例2は、動作例1と共通点を有する。ここでは、主として、動作例1との相違点について説明し、共通点については説明を省略する。
 図11は、空間と当該空間に設置されるビーコンの例を示す図である。図11は、工場、オフィス等の空間を上から見た例(平面図の例)を示す。図11の空間は、四角形であり、左上部分の領域Aと、右上部分の領域Bと、左下部分の領域Cと、右下部分の領域Dとに分けられている。ビーコン10A、ビーコン10B、ビーコン10C、ビーコン10Dは、空間の中央の天井に設置される。ビーコン10Aは領域Aと領域Bとの境界、ビーコン10Bは領域Bと領域Dとの境界、ビーコン10Cは領域Dと領域Cとの境界、ビーコン10Dは領域Cと領域Aとの境界に設置される。図11において、各ビーコン10から伸びる矢印の方向は、各指向性アンテナ12の向きを示す。図11において、ビーコン10Aの指向性アンテナ12の向きは図の上方向であり、ビーコン10Bの指向性アンテナ12の向きは図の右方向である。また、ビーコン10Cの指向性アンテナ12の向きは図の下方向であり、ビーコン10Dの指向性アンテナ12の向きは図の左方向である。ビーコン10Aの指向性アンテナ12の向きとビーコン10Bの指向性アンテナ12の向きとのなす角は、90度である。ビーコン10Aの指向性アンテナ12は、領域A、領域B内の方向に対して、他の領域内の方向に比べて大きな感度を有する。領域A、領域Bは、ビーコン10Aの通信可能領域ともいう。ビーコン10Bの指向性アンテナ12は、領域B、領域D内の方向に対して、他の領域内の方向に比べて大きな感度を有する。領域B、領域Dは、ビーコン10Bの通信可能領域ともいう。ビーコン10Cの指向性アンテナ12は、領域D、領域C内の方向に対して、他の領域内の方向に比べて大きな感度を有する。領域D、領域Cは、ビーコン10Cの通信可能領域ともいう。ビーコン10Dの指向性アンテナ12は、領域D、領域A内の方向に対して、他の領域内の方向に比べて大きな感度を有する。領域D、領域Aは、ビーコン10Dの通信可能領域ともいう。ビーコン10Aの指向性アンテナ12の向きとビーコン10Cの指向性アンテナ12の向きとは、反対方向である。ビーコン10Bの指向性アンテナ12の向きとビーコン10Dの指向性アンテナ12の向きとは、反対方向である。各ビーコン10は近傍に設置されるため、互いに通信可能であるとする。また、端末30を携帯する利用者等は、当該空間内を自由に移動する。端末30を携帯する複数の利用者等が、当該空間内に存在してもよい。ここでは、ビーコン10Bが制御装置20と通信可能に接続されているとする。
 領域Aに端末30が存在している場合、各指向性アンテナ12の向きから、ビーコン10Aで受信される端末30からの信号の受信強度は、ビーコン10Cで受信される端末30からの信号の受信強度よりも大きい。また、領域Aに端末30が存在している場合、ビーコン10Dで受信される端末30からの信号の受信強度は、ビーコン10Bで受信される端末30からの信号の受信強度よりも大きい。領域Aに端末30が存在している場合、ビーコン10B、ビーコン10Cでは、端末30からの信号を受信しない可能性もある。領域Aは、ビーコン10Aがビーコン10Cよりも感度よく端末30からの信号を受信できる領域である。領域Aは、ビーコン10Dがビーコン10Bよりも感度よく端末30からの信号を受信できる領域である。残りの領域についても、ビーコン10A、ビーコン10Cのうち一方が、他方よりも感度よく端末30からの信号を受信できる。また、ビーコン10D、ビーコン10Bのうち一方が、他方よりも感度よく端末30からの信号を受信できる。指向性アンテナの向きが互いに反対であるビーコン10A及びビーコン10Cは、組(ペア)となり、判定の際、受信強度を比較される。また、指向性アンテナの向きが互いに反対であるビーコン10D及びビーコン10Bは、ペアとなり、判定の際、受信強度を比較される。サーバ40の記憶部43には、各ビーコン10のビーコンIDとペアとなる他のビーコン10よりも感度よく端末30からの信号を受信できる領域(通信可能領域)とが対応付けられて格納されている。例えば、ビーコン10Aに対して、領域A及び領域Bが対応付けられて格納されている。ビーコン10Bに対して、領域B及び領域Dが対応付けられて格納されている。ビーコン10Cに対して、領域C及び領域Dが対応付けられて格納されている。ビーコン10Dに対して、領域D及び領域Aが対応付けられて格納されている。サーバ40が、各ビーコン10における受信強度を取得し、受信強度を比較することで、端末30がどの領域に存在するのかを判定することができる。
 図11のような空間において、空間内に存在する端末30は、ビーコン10にむけて端末IDを含む信号を送信する。端末30から端末IDを含む信号が送信されると、図9のような動作シーケンスにより、サーバ40で受信強度が取得される。
 また、サーバ40では、図10のような動作フローにより、端末30が存在する領域が判定される。具体的には、判定の処理において、演算部42は、端末30(利用者)がどの領域に存在するかを判定する。演算部42は、同時刻(もしくは所定の期間内)に各ビーコン10で受信された端末30からの信号の受信強度を比較する。演算部42は、組であるビーコン10A及び10Cにおける受信強度を比較する。演算部42は、比較した受信強度のうち大きい受信強度の信号を受信したビーコン10のビーコンIDを取得する。演算部42は、組であるビーコン10B及び10Dにおける受信強度を比較する。演算部42は、比較した受信強度のうち大きい受信強度の信号を受信したビーコン10のビーコンIDを取得する。演算部42は、記憶部43から取得した当該ビーコンIDに対応付けられている領域を抽出する。演算部42は、最も多く抽出された領域を端末30が存在する領域と判定する。例えば、演算部42は、取得したビーコンIDがビーコン10Aとビーコン10Dのものである場合、ビーコン10AのビーコンIDに対応付けられる領域A、領域B、ビーコン10DのビーコンIDに対応付けられる領域D、領域Aを抽出する。ここでは、演算部42は、領域Aを端末30が存在する領域と判定する。より多くのビーコン10を空間に設置することで、より細かい領域について、端末30の存在領域を判定することができる。
 (動作例3)
 本実施形態のシステムの動作例3を説明する。動作例3は、動作例1、動作例2と共通点を有する。ここでは、主として、動作例1、動作例2との相違点について説明し、共通点については説明を省略する。
 図12は、空間と当該空間に設置されるビーコンの例を示す図である。図12は、工場、オフィス等の空間を上から見た例(平面図の例)を示す。図12の空間は、四角形である。当該空間は、縦方向に3つ、横方向に3つに分割され、9つの四角形の領域を含む。図12の空間の各領域は、左上部分を領域A、上中央部分を領域B、右上部分を領域C、左中央部分を領域D、中央部分を領域E、右中央部分を領域F、左下部分を領域G、下中央部分を領域H、右下部分を領域Iとする。各領域の境界を示す線の格子点の近傍(天井)に、それぞれ、4つのビーコン10が設置される。左上の格子点の近傍には、ビーコン10A、ビーコン10B、ビーコン10C、ビーコン10Dが設置される。右上の格子点の近傍には、ビーコン10E、ビーコン10F、ビーコン10G、ビーコン10Hが設置される。左下の格子点の近傍には、ビーコン10I、ビーコン10J、ビーコン10K、ビーコン10Lが設置される。右上の格子点の近傍には、ビーコン10M、ビーコン10N、ビーコン10O、ビーコン10Pが設置される。ビーコン10Aは領域Aと領域Bとの境界、ビーコン10Bは領域Bと領域Eとの境界、ビーコン10Cは領域Eと領域Dとの境界、ビーコン10Dは領域Dと領域Aとの境界に設置される。他のビーコン10についても同様に設置される。図12において、各ビーコン10から伸びる矢印の方向は、各指向性アンテナ12の向きを示す。図12において、ビーコン10Aの指向性アンテナ12の向きは図の上方向であり、ビーコン10Bの指向性アンテナ12の向きは図の右方向である。また、ビーコン10Cの指向性アンテナ12の向きは図の下方向であり、ビーコン10Dの指向性アンテナ12の向きは図の左方向である。ビーコン10Aの指向性アンテナ12の向きとビーコン10Bの指向性アンテナ12の向きとのなす角は、90度である。ビーコン10Aの指向性アンテナ12は、領域A、領域B内の方向に対して、他の領域内の方向に比べて大きな感度を有する。領域A、領域Bは、ビーコン10Aの通信可能領域ともいう。ビーコン10Bの指向性アンテナ12は、領域B、領域C、領域E、領域F内の方向に対して、他の領域内の方向に比べて大きな感度を有する。領域B、領域C、領域E、領域Fは、ビーコン10Bの通信可能領域ともいう。ビーコン10Cの指向性アンテナ12は、領域D、領域E、領域G、領域H内の方向に対して、他の領域内の方向に比べて大きな感度を有する。領域D、領域E、領域G、領域Hは、ビーコン10Cの通信可能領域ともいう。ビーコン10Dの指向性アンテナ12は、領域A、領域D内の方向に対して、他の領域内の方向に比べて大きな感度を有する。領域A、領域Dは、ビーコン10Cの通信可能領域ともいう。他のビーコン10の指向性アンテナ12についても同様である。ビーコン10Aの指向性アンテナ12の向きとビーコン10Cの指向性アンテナ12の向きとは、反対方向である。ビーコン10Bの指向性アンテナ12の向きとビーコン10Dの指向性アンテナ12の向きとは、反対方向である。他のビーコン10の指向性アンテナ12についても同様である。
 それぞれの格子点近傍に設置される4つのビーコン10は、近傍に設置されるため、互いに通信可能であるとする。また、ビーコン10Bとビーコン10Hのように、指向性アンテナ12の向きが向かい合うように設置されるとき、ビーコン10Bとビーコン10Hとは互いに通信可能である。よって、格子点の近傍に設置される4つのビーコン10のうち少なくとも1つのビーコン10は、隣接する格子点の近傍に設置される4つのビーコン10のうち少なくとも1つのビーコン10と互いに通信可能である。したがって、空間内の各ビーコン10は、1つのビーコンメッシュを構成しうる。また、端末30を携帯する利用者等は、当該空間内を自由に移動する。端末30を携帯する複数の利用者等が、当該空間内に存在してもよい。ここでは、ビーコン10Bが制御装置20と通信可能に接続されているとする。
 領域Aに端末30が存在している場合、各指向性アンテナ12の向きから、ビーコン10Aで受信される端末30からの信号の受信強度は、ビーコン10Cで受信される端末30からの信号の受信強度よりも大きい。また、領域Aに端末30が存在している場合、ビーコン10Dで受信される端末30からの信号の受信強度は、ビーコン10Bで受信される端末30からの信号の受信強度よりも大きい。領域Aに端末30が存在している場合、ビーコン10B、ビーコン10Cでは、端末30からの信号を受信しない可能性もある。領域Aは、ビーコン10Aがビーコン10Cよりも感度よく端末30からの信号を受信できる領域である。領域Aは、ビーコン10Dがビーコン10Bよりも感度よく端末30からの信号を受信できる領域である。同一の格子点の近傍に配置され指向性アンテナ12の向きが互いに反対であるビーコン10A及びビーコン10Cは、ペア(組)となり、判定の際、受信強度を比較される。また、同一の格子点の近傍に配置され指向性アンテナの向きが互いに反対であるビーコン10D及びビーコン10Bは、ペアとなり、判定の際、受信強度を比較される。同様に、ビーコン10E及びビーコン10G、ビーコン10F及びビーコン10H、ビーコン10I及びビーコン10K、ビーコン10J及びビーコン10L、ビーコン10M及びビーコン10O、ビーコン10N及びビーコン10Pが、それぞれ、ペアとなり、判定の際、受信強度を比較される。サーバ40の記憶部43には、各ビーコン10のビーコンIDとペアとなる他のビーコン10よりも感度よく端末30からの信号を受信できる領域(ペアとなる他のビーコン10よりも端末30からの信号の受信強度が大きい領域、通信可能領域)とが対応付けられて格納されている。ビーコン10において、端末30からの信号を受信しにくい領域(例えば、端末30からの信号の受信強度が所定値未満となる領域)は、ペアとなる他のビーコン10よりも感度よく受信できても、当該ビーコン10のビーコンIDと対応付けられて格納されなくてもよい。即ち、ビーコン10において、端末30からの信号を受信しにくい領域(例えば、端末30からの信号の受信強度が所定値未満となる領域)は、通信可能領域に含まなくてもよい。例えば、ビーコン10Aに対して、領域A、領域Bが対応付けられて格納されている。ここで、領域Cに存在する端末30からの信号の受信強度は、ビーコン10Aの方がペアとなるビーコン10Cよりも大きい。しかし、ビーコン10Aは、領域Cに存在する端末30からの信号を受信しにくいため、領域Cをビーコン10A(及び10C)の通信可能領域に含まないとする。ビーコン10Bに対して、領域B、領域C、領域E、領域Fが対応付けられて格納されている。ビーコン10Cに対して、領域D、領域E、領域G、領域Hが対応付けられて格納されている。ビーコン10Dに対して、領域A、領域Dが対応付けられて格納されている。他のビーコン10についても指向性アンテナ12の向きに応じた領域が対応付けられて格納されている。サーバ40が、各ビーコン10における受信強度を取得し、ペア毎に受信強度を比較することで、端末30がどの領域に存在するのかを判定することができる。
 図12のような空間において、空間内に存在する端末30は、ビーコン10にむけて端末IDを含む信号を送信する。端末30から端末IDを含む信号が送信されると、図9のような動作シーケンスにより、サーバ40で受信強度が取得される。
 また、サーバ40では、図10のような動作フローにより、端末30が存在する領域が判定される。具体的には、動作例2と同様にして、演算部42は、判定の処理を行うことができる。演算部42は、各組の受信強度を比較し、比較した受信強度のうち大きい受信強度の信号を受信したビーコン10のビーコンIDを取得する。演算部42は、1つの組においていずれのビーコン10からも受信強度を取得していない場合、当該組においては、端末30からの信号を受信していないとして、受信強度の比較を行わず、当該組においてはビーコンIDを取得しない。演算部42は、記憶部43から取得した当該ビーコンIDに対応付けられている領域を抽出する。演算部42は、最も多く抽出された領域を端末30が存在する領域と判定する。例えば、演算部42は、取得したビーコンIDがビーコン10A、ビーコン10D、ビーコン10H、ビーコン10I、のものである場合、それぞれのビーコンIDに対応付けられる領域を抽出する。ビーコン10AのビーコンIDに対応付けられる領域は、領域A、領域Bである。ビーコン10DのビーコンIDに対応付けられる領域は、領域A、領域Dである。ビーコン10HのビーコンIDに対応付けられる領域は、領域A、領域B、領域D、領域Eである。ビーコン10IのビーコンIDに対応付けられる領域は、領域A、領域B、領域D、領域Eである。演算部42は、最も多く抽出された領域を端末30が存在する領域と判定する。ここでは、演算部42は、領域Aを端末30が存在する領域と判定する。
 ここでは、空間を、縦方向に3分割、横方向に3分割の、9つの領域に分割したが、分割の方法は、これに限定されるものではなく、他の数に分割された場合であっても同様である。また、1つの領域の大きさは、他の領域の大きさと異なってもよい。また、ここでは、すべての格子点の近傍にビーコン10を設置したが、ビーコン10を設置する格子点を千鳥状にしてもよい。即ち、例えば、図12の例において、ビーコン10E、10F、10G、10H、10I、10J、10K、10Lを省略してもよい。千鳥状の配置は、ビーコン10のセット(ビーコン10A-10D等)が設置される格子点に隣接する格子点にビーコン10のセットを設置せず、ビーコン10のセットが設置されない格子点に隣接する格子点にビーコン10のセットを設置することで実現できる。また、ここでは、すべての格子点の近傍に2組4つのビーコン10を設置しているが、格子点に設置するビーコン10を1組2つのビーコン10としてもよい。このとき、隣接する格子点同士では、設置されるビーコン10の指向性アンテナ12の向きが異なるようにする。これにより、判定対象の領域の数(9領域)を変更することなく、設置するビーコン10の数を減らすことができる。
 1組2つのビーコン10は、各領域の境界を示す境界線(境界面)を挟んで1つずつ設置される。即ち、1つの境界線(境界面)に対して、少なくとも1組2つのビーコン10が設置される。図12の例では、4つの境界線(境界面)が存在するので、少なくとも4組のビーコン10の組(8つのビーコン10)が設置されればよい。1組2つのビーコン10の一方のビーコン10と他方のビーコン10との間には、いずれかの境界線(境界面)が存在する。
 ここでは、ビーコン10は、空間の天井に設置され、指向性アンテナ12の向きは、水平方向であり、1つの格子点(1箇所)につき、4つのビーコン10のセットを設置している。ここで、空間の床に平行な面(境界面)で領域を分割してもよい。このとき、床に平行な面(境界面)を挟んで下側の領域内であって、境界面近傍に、下向き(床方向)に指向性を有する指向性アンテナ12を有するビーコン10を設置し、上側の領域内であって境界面の近傍に、上向き(天井方向)に指向性を有する指向性アンテナ12を有するビーコン10を設置することで、端末30が境界面より上側の領域に存在するのか、境界面より下側の領域に存在するのかを判定することができる。また、上記のような水平方向に指向性を有する指向性アンテナ12を有するビーコン10と組み合わせることで、判定する空間の領域をより細かく設定することができる。
 (実施形態の作用、効果)
 本実施形態のビーコンメッシュにおけるビーコン10は、端末30から当該端末30の端末IDを含む信号を受信する。ビーコン10は、端末ID及び端末IDを受信したビーコン10のビーコンIDを含む信号を、制御装置20に向けて、送信する。制御装置20は、端末ID及びビーコンIDの組とをビーコンメッシュから取得する。制御装置20は、端末ID及びビーコンIDの組の情報をサーバ40に送信する。サーバ40は、端末ID及びビーコンIDの組の情報に基づいて、個々の端末IDで識別される端末30の利用者が存在する領域を判定する。本実施形態のシステムでは、指向性アンテナ12を使用することで、ペアのビーコン10間で受信強度の差が大きくなり、無指向性アンテナを使用するのに比べて、より正確に端末30(移動体)が存在する領域を判定することができる。
 (変形例1)
 上記の例では、指向性アンテナ12の向きは、床面に平行の方向である。また、ビーコン10は、空間の天井に設置されているのに対し、利用者が携帯する端末30は、天井と床面との中間付近に存在することが多いと考えられる。そこで、変形例1では、各ビーコン10の指向性アンテナ12の向きを床面と平行の方向から斜め下向きに45度以下の角度に向ける。指向性アンテナ12の向きを斜め下向きにすることで、天井と床面との中間付近に存在する端末30からの信号の受信強度をより高くすることができる。このとき、床面に平行な平面(特定の平面の一例)に、1つのビーコン10の指向性アンテナ12の指向性の方向である第1方向を投影した第2方向と、当該ビーコン10とペアになるビーコン10の指向性アンテナ12の指向性の方向である第3方向を投影した第4方向とが、互いに反対方向である。
 (変形例2)
 上記の例では、端末30が端末IDを含む信号を送信し、ビーコン10が端末30からの信号を受信して受信強度を測定している。変形例2では、各ビーコン10がビーコンIDを含む信号を送信し、端末30がビーコン10からの信号を受信して受信強度を測定する。
 図13は、変形例2における、空間内のビーコンから信号の受信強度を、サーバで取得する際の動作シーケンスの例を示す図である。ここでは、端末30で受信されたビーコン10Aからの信号を、サーバ40で取得する例を示す。ここでは、図8のような空間において、端末30(を携帯する利用者)は、領域Aに存在するとする。他のビーコン10についても同様である。
 SQ201では、ビーコン10Aは、空間内の端末30に対して、自身を識別する情報である端末IDを含む信号を送信する。ビーコン10Aからの信号は、指向性アンテナ12の向きにより領域Aに効率よく送信される。当該信号は、例えば、アドバタイズ信号である。ビーコン10Aは、当該信号を、所定期間毎に(例えば、1秒に1回)、送信する。ビーコン10Aから送信されるビーコンIDを含む信号は、複数の端末30に受信されてもよい。ここでは、ビーコン10AからのビーコンIDを含む信号は、端末30に受信されたとする。ビーコン10Aは、端末30からの信号を受信したことを契機として、ビーコンIDを含む信号を送信してもよい。ビーコン10は、ビーコンIDを含む信号を、ビーコンの無線標識として送信してもよい。
 SQ202では、ビーコン10AからのビーコンIDを含む信号を受信した端末30のビーコン通信部31は、当該信号の受信強度(RSSI:Received Signal Strength Indicator)を測定する。受信強度は、ビーコン10Aから見た端末30への方向が同じ場合、ビーコン10Aと端末30との距離が長くなるのにしたがって、小さくなる。また、受信強度は、ビーコン10Aからの距離が等しい場合、ビーコン10Aから端末30への方向が指向性アンテナ12の向きに近いほど、大きくなる。受信強度(エネルギー)は、例えば、距離の-2乗に比例する。端末30は、ビーコンIDと受信強度とを対応付けて記憶部33に格納する。端末30は、ビーコンIDと受信強度とに、受信時刻を対応付けて格納してもよい。
 SQ203では、端末30の通信部32は、記憶部33に格納されるビーコン10AのビーコンID等を含む信号を、ネットワーク100を介してサーバ40に送信する。サーバ40は、端末30から信号を受信する。端末30は、ビーコン10を含むビーコンメッシュ、制御装置20等を介して、サーバに、当該信号を送信してもよい。
 SQ204では、サーバ40は、受信した信号に含まれる情報を、記憶部33に格納する。これにより、サーバ40は、ビーコン10からの信号の受信強度を取得する。サーバ40は、端末30で受信された各ビーコン10からの信号の受信強度に基づいて、当該端末30を携帯する利用者が存在する領域を判定することができる。
 また、サーバ40では、図10のような動作フローにより、端末30が存在する領域が判定される。ただし、判定の処理において、端末30からの信号の受信強度は、ビーコン10からの信号の受信強度に置き換えられる。これにより、ビーコン10からの信号を端末30において受信した際の受信強度を使用して、端末30の存在領域を判定することができる。
 本発明は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において変更したり組み合わせたりすることができる。
 〈コンピュータ読み取り可能な記録媒体〉
 コンピュータその他の機械、装置(以下、コンピュータ等)に上記いずれかの機能を実現させるプログラムをコンピュータ等が読み取り可能な記録媒体に記録することができる。そして、コンピュータ等に、この記録媒体のプログラムを読み込ませて実行させることにより、その機能を提供させることができる。
 ここで、コンピュータ等が読み取り可能な記録媒体とは、データやプログラム等の情報を電気的、磁気的、光学的、機械的、または化学的作用によって蓄積し、コンピュータ等から読み取ることができる記録媒体をいう。このような記録媒体内には、CPU、メモリ等のコンピュータを構成する要素を設け、そのCPUにプログラムを実行させてもよい。
 また、このような記録媒体のうちコンピュータ等から取り外し可能なものとしては、例えばフレキシブルディスク、光磁気ディスク、CD-ROM、CD-R/W、DVD、DAT、8mmテープ、メモリカード等がある。
 また、コンピュータ等に固定された記録媒体としてハードディスクやROM等がある。
10    :ビーコン
11    :通信部
12    :指向性アンテナ
13    :記憶部
20    :制御装置
21    :ビーコン通信部
22    :通信部
23    :記憶部
30    :端末
31    :ビーコン通信部
32    :通信部
33    :記憶部
34    :表示部
40    :サーバ
41    :通信部
42    :演算部
43    :記憶部
90    :情報処理装置
91    :プロセッサ
92    :メモリ
93    :記憶部
94    :入力部
95    :出力部
96    :通信制御部
100   :ネットワーク

Claims (5)

  1.  所定の電波到達距離内において相互に通信可能であり、所定の信号を送受信する複数のビーコンであって、端末を伴う移動体が移動する複数の領域を含む空間において、少なくとも1つの他のビーコンの前記電波到達距離内に配置される複数のビーコンと、前記複数のビーコンのうちの少なくとも1つのビーコンと通信可能である情報処理装置とを含む領域判定システムであって、
     複数の前記ビーコンは、2つの前記ビーコンを含むビーコンの組を含み、
     前記ビーコンの組に含まれる一方のビーコンである第1ビーコンは、
     第1方向に指向性を有する第1指向性アンテナと、
     前記第1指向性アンテナにより、前記空間のいずれかの領域に存在する前記端末から前記端末を識別する端末識別情報を含む信号を受信し、前記信号の受信強度を測定し、前記端末識別情報と前記ビーコンを識別するビーコン識別情報と前記受信強度とを前記情報処理装置に向けて送信する第1通信部を備え、
     前記ビーコンの組に含まれる他方のビーコンである第2ビーコンは、
     前記第1方向と異なる第2方向に指向性を有する第2指向性アンテナと、
     前記第2指向性アンテナにより、前記空間のいずれかの領域に存在する前記端末から前記端末を識別する端末識別情報を含む信号を受信し、前記信号の受信強度を測定し、前記端末識別情報と前記ビーコンを識別するビーコン識別情報と前記受信強度とを前記情報処理装置に向けて送信する第2通信部を備え、
     前記情報処理装置は、
     前記ビーコンのビーコン識別情報と、当該ビーコンの通信可能領域の情報とを格納する記憶部と、
     前記端末識別情報、前記ビーコン識別情報、前記受信強度を受信する第3通信部と、
     前記第3通信部で受信した、前記端末識別情報、前記ビーコン識別情報、前記受信強度と、前記記憶部に格納される前記通信可能領域の情報に基づいて、前記端末識別情報で識別される前記端末を伴う前記移動体が存在する前記領域を判定する演算部とを備える、
    領域判定システム。
  2.  前記ビーコンの組の前記第2ビーコンは、前記ビーコンの組の前記第1ビーコンが設置される位置から見て前記第1指向性アンテナの指向性の方向と反対方向に設置される、
    請求項1に記載の領域判定システム。
  3.  前記第1方向と、前記第2方向とが、互いに反対方向である、請求項1または2に記載の領域判定システム。
  4.  特定の平面に、前記第1方向を投影した第3方向と、前記第2方向を投影した第4方向とが、互いに反対方向である、請求項1に記載の領域判定システム。
  5.  所定の電波到達距離内において相互に通信可能であり、所定の信号を送受信する複数のビーコンであって、端末を伴う移動体が移動する複数の領域を含む空間において、少なくとも1つの他のビーコンの前記電波到達距離内に配置される複数のビーコンと、前記端末と通信可能である情報処理装置とを含む領域判定システムであって、
     複数の前記ビーコンは、2つの前記ビーコンを含むビーコンの組を含み、
     前記ビーコンの組に含まれる一方のビーコンである第1ビーコンは、
     第1方向に指向性を有する第1指向性アンテナと、
     前記第1指向性アンテナにより、前記第1ビーコンを識別するビーコン識別情報を含む信号を送信する第1通信部を備え、
     前記ビーコンの組に含まれる他方のビーコンである第2ビーコンは、
     前記第1方向と異なる第2方向に指向性を有する第2指向性アンテナと、
     前記第2指向性アンテナにより、前記第2ビーコンを識別するビーコン識別情報を含む信号を送信する第2通信部を備え、
     前記端末は、
     いずれかの前記ビーコンから前記ビーコン識別情報を含む信号を受信し、前記信号の受信強度を測定するビーコン通信部と、
     前記端末を識別する端末識別情報と受信した前記ビーコン識別情報と前記受信強度とを前記情報処理装置に向けて送信する第3通信部とを備え、
     前記情報処理装置は、
     前記ビーコンのビーコン識別情報と、当該ビーコンの通信可能領域の情報とを格納する記憶部と、
     前記端末識別情報、前記ビーコン識別情報、前記受信強度を受信する第4通信部と、
     前記第4通信部で受信した、前記端末識別情報、前記ビーコン識別情報、前記受信強度と、前記記憶部に格納される前記通信可能領域の情報に基づいて、前記端末識別情報で識別される前記端末を伴う前記移動体が存在する前記領域を判定する演算部とを備える、
    領域判定システム。
PCT/JP2020/024032 2019-06-21 2020-06-18 領域判定システム WO2020256081A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019115649A JP2021001805A (ja) 2019-06-21 2019-06-21 領域判定システム
JP2019-115649 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020256081A1 true WO2020256081A1 (ja) 2020-12-24

Family

ID=73994007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024032 WO2020256081A1 (ja) 2019-06-21 2020-06-18 領域判定システム

Country Status (2)

Country Link
JP (1) JP2021001805A (ja)
WO (1) WO2020256081A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023004268A (ja) * 2021-06-25 2023-01-17 株式会社Where 位置検出システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281322A (ja) * 1992-03-31 1993-10-29 Sony Corp 指向性アンテナ制御装置
JPH0868841A (ja) * 1994-08-30 1996-03-12 Nec Corp 電波到来方位探知装置
JPH095416A (ja) * 1995-06-23 1997-01-10 Mitsubishi Electric Corp 方位探知装置
EP1841256A1 (en) * 2006-03-28 2007-10-03 Research In Motion Limited Estimating a location of a mobile device
JP2011089947A (ja) * 2009-10-26 2011-05-06 Yamatake Corp 位置検知システムおよび方法
WO2018046958A1 (en) * 2016-09-09 2018-03-15 Cellxion Limited System and method for restricting access to a mobile communications network
JP2018128293A (ja) * 2017-02-07 2018-08-16 日本電信電話株式会社 ビーコントラッキングシステムおよび方法
JP2019016917A (ja) * 2017-07-06 2019-01-31 株式会社Where 制御装置、制御方法、制御プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132139A (ja) * 2005-11-11 2007-05-31 Fujitsu Ten Ltd 無線装置
JP5449231B2 (ja) * 2011-02-18 2014-03-19 三菱電機株式会社 車両無線装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281322A (ja) * 1992-03-31 1993-10-29 Sony Corp 指向性アンテナ制御装置
JPH0868841A (ja) * 1994-08-30 1996-03-12 Nec Corp 電波到来方位探知装置
JPH095416A (ja) * 1995-06-23 1997-01-10 Mitsubishi Electric Corp 方位探知装置
EP1841256A1 (en) * 2006-03-28 2007-10-03 Research In Motion Limited Estimating a location of a mobile device
JP2011089947A (ja) * 2009-10-26 2011-05-06 Yamatake Corp 位置検知システムおよび方法
WO2018046958A1 (en) * 2016-09-09 2018-03-15 Cellxion Limited System and method for restricting access to a mobile communications network
JP2018128293A (ja) * 2017-02-07 2018-08-16 日本電信電話株式会社 ビーコントラッキングシステムおよび方法
JP2019016917A (ja) * 2017-07-06 2019-01-31 株式会社Where 制御装置、制御方法、制御プログラム

Also Published As

Publication number Publication date
JP2021001805A (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
KR102607104B1 (ko) 무선 전력 송신기 및 그 제어 방법
TWI739909B (zh) 位置算出方法、距離算出方法、及信標
JP6197372B2 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
JP6852856B2 (ja) 制御装置、制御方法、制御プログラム
JP6252720B2 (ja) 配信システム、配信方法、及びプログラム
JP6816860B2 (ja) 斜面崩壊検出方法
KR102478031B1 (ko) 외부 장치와의 연결을 위한 전자 장치 및 방법
JP7461483B2 (ja) 測位方法及び通信機器
JP2014077777A (ja) 通信端末、通信方法、及びプログラム
CN105850158B (zh) 信息处理装置、信息处理方法、目标终端、通信方法、和程序
JP2014095685A (ja) 配信装置、配信方法及び配信プログラム
WO2020256081A1 (ja) 領域判定システム
JPWO2018123970A1 (ja) 位置推定システム及び位置推定方法
JP2013213804A (ja) 通信端末、通信方法、及びプログラム
JP5906763B2 (ja) 基地局および移動検出方法
JP6273878B2 (ja) 制御システム、および制御方法
WO2016207983A1 (ja) 位置測定装置、位置測定方法および位置測定プログラム
US11852710B2 (en) Face-to-face state determination system
JP2018092242A (ja) ビーコン、及び、サーバ
JP6098102B2 (ja) 通信端末、通信方法及び通信プログラム
JP7114223B2 (ja) 機器制御システム、通信方法、無線端末及び制御装置
JP2014064199A (ja) 通信端末、通信方法、及びプログラム
JP2023004268A (ja) 位置検出システム
JP2016151493A (ja) 位置推定システム
JP2014052208A (ja) 位置推定装置、位置推定システム、および、位置推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825782

Country of ref document: EP

Kind code of ref document: A1