WO2020255762A1 - Microphone array device and sound analysis system - Google Patents

Microphone array device and sound analysis system Download PDF

Info

Publication number
WO2020255762A1
WO2020255762A1 PCT/JP2020/022429 JP2020022429W WO2020255762A1 WO 2020255762 A1 WO2020255762 A1 WO 2020255762A1 JP 2020022429 W JP2020022429 W JP 2020022429W WO 2020255762 A1 WO2020255762 A1 WO 2020255762A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
microphone array
microphone
array device
connection portion
Prior art date
Application number
PCT/JP2020/022429
Other languages
French (fr)
Japanese (ja)
Inventor
恵 野▲崎▼
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202080044382.1A priority Critical patent/CN113994713B/en
Priority to JP2020571889A priority patent/JPWO2020255762A1/ja
Publication of WO2020255762A1 publication Critical patent/WO2020255762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups

Definitions

  • the present invention relates to a microphone array device and an acoustic analysis system.
  • Patent Document 1 discloses a sound pressure distribution analysis system using a microphone array in which a plurality of microphones are arranged in a grid pattern and sound is detected at a plurality of positions.
  • This sound pressure distribution analysis system includes an amplifier capable of amplifying a multi-channel signal, and the amplifier amplifies each sound signal of the microphone and outputs it to an analysis terminal.
  • a condenser microphone or a dynamic microphone is used, and when the microphones are arranged at intervals of, for example, 10 mm or less, the measurement surface of the microphone array becomes a dense structure, and the influence of the reflected sound from the microphone array This makes it difficult to analyze acoustic holography. Therefore, a microphone array using a small MEMS (Micro-Electrical-Mechanical Systems) microphone that can be surface-mounted on a substrate is known. As such a MEMS microphone array, there is known a method in which a plurality of MEMS microphones are surface-mounted on a grid-like substrate and the substrate itself constitutes a microphone array device.
  • MEMS Micro-Electrical-Mechanical Systems
  • an object of the present invention is to provide a microphone array device and an acoustic analysis system capable of changing the arrangement interval of a plurality of microphones.
  • the microphone array device includes a plurality of microphones, at least one first substrate on which at least one of the plurality of microphones is mounted, and the first substrate.
  • the first substrate includes a second substrate that is electrically connected to the first substrate and outputs sound information acquired by the microphone to a control substrate that controls the first substrate.
  • the second substrate includes a first connection portion and a second connection portion having different connection forms, and the second substrate includes a third connection portion that can be electrically connected to the first connection portion, and the second connection portion and electricity. It is provided with a fourth connection portion that can be connected.
  • the acoustic analysis system includes the microphone array device and the acoustic analysis device having the control substrate, and the acoustic analysis device includes the sound information output by the second substrate. Is input, the sound information is analyzed, and a physical quantity representing the characteristics of the sound is detected.
  • the first substrate and the second substrate each have two types of connecting portions, and the first substrate and the second substrate can be connected in different forms. Therefore, it is possible to change the arrangement interval of a plurality of microphones widely.
  • FIG. 1 is an overall view of the first embodiment of the microphone array of the present embodiment.
  • FIG. 2 is a diagram showing a configuration example of the first substrate.
  • FIG. 3 is a diagram showing a configuration example of the second substrate.
  • FIG. 4 is an example of connection between the first substrate and the second substrate.
  • FIG. 5 is a diagram showing a configuration example of the first support member.
  • FIG. 6 is a diagram illustrating another example of the first support member.
  • FIG. 7 is a configuration example of the first form of the microphone array device.
  • FIG. 8 is a configuration example of the second form of the microphone array device.
  • FIG. 9 is an overall view of the second embodiment of the microphone array of the present embodiment.
  • FIG. 10 is a diagram showing a configuration example of the mounting member.
  • FIG. 11 is a diagram showing a configuration example of the second support member.
  • FIG. 12 is a diagram showing an example of an acoustic analysis system.
  • FIG. 1 is an overall view of a first embodiment of the microphone array 1 included in the microphone array device according to the present embodiment.
  • the microphone array 1 in the present embodiment can be used, for example, in an acoustic analysis system that analyzes a sound to be measured from an object to be measured (sound source) by using a near-field acoustic holography method.
  • a near-field acoustic holography method it is necessary to measure the sound pressure distribution of the measurement surface close to and parallel to the sound source surface, and a microphone array in which a plurality of microphones are arranged in a grid pattern is used.
  • the microphone array 1 includes a plurality of microphones mc, a plurality of first substrates 31, and a plurality of second substrates 10a.
  • the first substrate 31 is a microphone substrate on which at least one of the plurality of microphone mcs included in the microphone array 1 is mounted.
  • the second substrate 10a is electrically connected to the first substrate 31, and outputs the sound information acquired by the microphone mc to the control substrate 40 (see FIG. 7) that controls the first substrate 31. It is a connection board.
  • a connection board In the present embodiment, a case where a plurality of first substrates 31 are connected to one second substrate 31 will be described, but one in which a plurality of microphones mc are mounted on one second substrate 31.
  • the first substrate 31 may be connected.
  • the microphone array 1 further includes a first support member 20a.
  • the first support member 20a supports a plurality of second substrates 10a to which the first substrate 31 is connected by arranging them in parallel at arbitrary intervals.
  • the second substrate 10a can detachably support the first substrate 31.
  • the first support member 20a can detachably support the first substrate 31 by supporting the second substrate 10a in a detachable manner.
  • Each of the plurality of microphones mc can be, for example, a MEMS (Micro-Electrical-Mechanical Systems) microphone. In this embodiment, the case where the microphone mc is a MEMS microphone will be described, but the microphone mc is not limited to the MEMS microphone.
  • the second substrate 10a is arranged with the first direction (x direction) as the longitudinal direction.
  • the microphone array 1 includes N (8 in FIG. 1) second substrates 10a.
  • the first support member 20a is a member whose longitudinal direction is a second direction (z direction) orthogonal to the first direction (x direction).
  • the microphone array 1 includes two first support members 20a. The two first support members 20a detachably support both ends of the N second substrates 10a.
  • the first substrates 31 are connected to the second substrate 10a, respectively.
  • the first substrates 31 are arranged at regular intervals d in the x direction, respectively.
  • the first substrate 31 and the second substrate 10a are directly connected by a substrate-to-board connector described later, and the first substrate 31 is connected to the second substrate 10a via the above-mentioned substrate-to-board connector. It is removable.
  • the second substrate 10a is removable from the first support member 20a, the first substrate 31 may be fixed to the second substrate 10a.
  • the second substrate 10a is arranged in parallel at regular intervals d in the z direction.
  • the positions of the first substrates 31 in the x direction are the same. That is, N ⁇ N microphones mc are arranged in a grid pattern in the xz direction by the N second substrates 10a.
  • the xz plane is a plane parallel to the measurement plane in which the microphone mc of the microphone array 1 is arranged in a grid pattern, and is a plane parallel to the sound source plane of the object to be measured.
  • the microphone array 1 is arranged with the measurement surface separated from the sound source surface of the object to be measured by a predetermined distance in the y direction.
  • the microphone array 1 is arranged so that the distance between the measurement surface and the sound source surface in the y direction is within 10 mm.
  • the microphone mc can be, for example, an omnidirectional MEMS microphone capable of collecting sound from all directions. In this embodiment, the case where the microphone mc is an omnidirectional microphone will be described, but the microphone mc may be a directional microphone.
  • the microphone mc incorporates an acoustic transducer (MEMS chip) using MEMS technology and an amplifier, and is mounted on the surface of the first substrate 31.
  • the microphone mc converts sound (sound pressure) into an electric signal by an acoustic transducer, and amplifies and outputs the converted electric signal by an amplifier.
  • the microphone mc is a digital microphone
  • the microphone mc also has a built-in A / D converter and can convert an analog signal amplified by an amplifier into a digital signal and output it.
  • FIG. 2 is a diagram showing a configuration example of the first substrate 31.
  • a microphone mc is mounted on the first substrate 31.
  • the first substrate 31 includes one first connection portion 32a and one second connection portion 32b having different connection forms.
  • the first substrate 31 may include an LED 33 for confirming energization. By confirming that the LED 33 is lit, it is possible to easily confirm that the first substrate 31 is not defective in energization due to connector misalignment or the like.
  • FIG. 3 is a diagram showing a configuration example of the second substrate 10a.
  • the second substrate 10a includes a plurality of third connection portions 12a and a plurality of fourth connection portions 12b having different connection forms.
  • the third connecting portion 12a and the fourth connecting portion 12b are mounted at regular intervals in the x direction, for example.
  • the third connection portion 12a can be electrically connected to the first connection portion 32a of the first substrate 31, and the fourth connection portion 12b is electrically connected to the second connection portion 32b of the first substrate 31.
  • the second substrate 10a includes one fifth connection portion 13.
  • the fifth connection portion 13 is a connector portion to which a cable 41 (see FIG. 7) for connecting the second board 10a and the control board 40 (see FIG. 7) for controlling the first board 31 is connected. be able to.
  • the fifth connection portion 13 can be mounted on, for example, one end of the second substrate 10a.
  • the first connection portion 32a of the first substrate 31 and the third connection portion 12a of the second substrate 10a can be a substrate-to-board connector that directly connects the first substrate 31 and the second substrate 10a. ..
  • the first connection portion 32a and the third connection portion 12a can be directly connected, and in a state where the first connection portion 32a and the third connection portion 12a are connected, as shown in FIG. 4, the first substrate The 31 and the second substrate 10a are parallel to each other.
  • the first connection portion 32a and the third connection portion 12a are small connectors such that the distance between the first substrate 31 and the second substrate 10a is, for example, 1 mm or less.
  • the first substrate 31 can be attached to and detached from the second substrate 10a via the first connection portion 32a and the third connection portion 12a.
  • the M first substrates 31 are arranged at regular intervals d in the x direction via the first connection portion 32a and the third connection portion 12a so that the second substrate 10a is arranged. Connected to.
  • the first substrate 31 and the second substrate 10a are connected in parallel as described above, and are arranged in the microphone array 1 in a state of extending perpendicularly to the measurement surface. That is, the mounting surface of the microphone mc on the first substrate 31 is perpendicular to the measurement surface. Further, in a state where the first substrate 31 is attached to the second substrate 10a, the microphone mc is located at a position close to the object to be measured on the first substrate 31, that is, close to the sound source surface 2a, as shown in FIG. Implemented in position.
  • the microphone mc is arranged so as to project from the end surface of the second substrate 10a on the object to be measured side (sound source surface 2a side) to the object to be measured side (sound source surface 2a side) in the y direction.
  • the second substrate 10a is arranged on the side opposite to the sound source surface 2a with respect to the measurement surface so as not to block the sound to be measured from the sound source.
  • FIG. 5 is a diagram showing a configuration example of the first support member 20a in the present embodiment.
  • the first support member 20a includes a plurality of substrate insertion portions 21a capable of inserting the plurality of second substrates 10a at arbitrary intervals in the z direction.
  • the plurality of substrate insertion portions 21a are grooves (recesses) having a shape into which the second substrate 10a can be inserted, and are formed at equal intervals, for example, in the z direction.
  • the ends of the N second substrates 10a are inserted into the substrate insertion portions 21a of the first support member 20a so as to be arranged at regular intervals d in the z direction.
  • the second substrate 10a is removable from the first support member 20a, and the distance d of the second substrate 10a in the z direction can be arbitrarily changed.
  • the substrate insertion portions 21a are formed at intervals of, for example, about 3 mm in the z direction, and the interval d in the z direction can be changed, for example, from about 3 mm to about 20 mm.
  • the first support member 20a has only one end of the second substrate 10a. It may be supported, or it may be supported at a position other than the end portion of the second substrate 10a. Further, the first support member 20a is not limited to the configuration shown in FIG.
  • the first support member 20a may have a configuration capable of supporting a plurality of second substrates 10a to which the first substrate 31 is connected by arranging them in parallel at arbitrary intervals.
  • a bolt-shaped fixing member inserted into a hole formed in the second substrate 10a can be used as in the first support member 20a'shown in FIG. .
  • the plurality of second substrates 10a may be supported by a frame-shaped frame member.
  • first substrate 31 and the second substrate 10a can be electrically connected to each other via the second connecting portion 32b and the fourth connecting portion 12b.
  • the second connecting portion 32b and the fourth connecting portion 12b are electrically connected via a connecting member.
  • the connecting member may be a cable having a detachable connector with at least one of the second connecting portion 32b and the fourth connecting portion 12b. That is, in the microphone array 1 of the present embodiment, as shown in FIG. 1, the first substrate 31 and the second substrate 10a are directly connected via the first connection portion 32a and the third connection portion 12a. It has a form and a second form in which the first substrate 31 and the second substrate 10a are indirectly connected via the second connecting portion 32b, the fourth connecting portion 12b, and the connecting member.
  • FIG. 7 is a configuration example of the first form of the microphone array device 50 according to the present embodiment.
  • the microphone array device 50 of the first embodiment includes the microphone array 1 shown in FIG. 1 described above.
  • the number of the first substrate 31 and the second substrate 10a included in the microphone array 1 is reduced in order to simplify the illustration. Further, the illustration of the first support member 20a included in the microphone array 1 is omitted.
  • the first substrate 31 includes one microphone mc, and the first substrate 31 is directly connected to the second substrate 10a via the first connection portion 32a and the third connection portion 12a as shown in FIG. Will be done. Further, the plurality of second substrates 10a to which the plurality of first substrates 31 are directly connected are electrically connected to the control substrate 40 via the cable 41.
  • the second substrate 10a acquires the sound information acquired by the microphone mc from the first substrate 31 in a state of being connected to the plurality of first substrates 31 and the control substrate 40, respectively, and obtains the acquired sound information. Output to the control board 40.
  • the cable 41 is connected to the control board 40, and the other end of the cable 41 is connected to the fifth connection portion (connector portion) 13 of the second board 10a.
  • the cable 41 may be detachable from at least one of the control board 40 and the second board 10a.
  • the control board 40 can control the M ⁇ N first boards 31 and control the recording of the M ⁇ N microphones mc. Specifically, the control board 40 outputs a recording command to the first board 31, and is output from the first board 31 via the second board 10a and the cable 41 in response to the recording command. Input the recorded data (sound information acquired by the microphone mc).
  • M ⁇ N microphones mc included in the microphone array 1 are connected to one control board 40.
  • the number of microphones mc connected to one control board 40 is not limited to the above.
  • one second board 10a may be connected to one control board 40. That is, each of the M microphones mc may be connected to a different control board 40.
  • a control unit for controlling N control boards 40 may be further provided.
  • the first substrate 31 and the second substrate 10a are the third substrate 31a included in the first substrate 31 and the third substrate 10a included in the first substrate 31. It is directly connected to the connection unit 12a. That is, the first substrate 31 and the second substrate 10a can be connected without using a cable. Therefore, for example, even when the object to be measured is small and the arrangement interval of the first substrate 31 is narrowed in order to form a microphone array in which the arrangement interval of the microphone mc is narrow, each of them extends from the first substrate 31. It is possible to prevent the cable from forming a wall and adversely affecting the sound measurement. In addition, it is possible to prevent the dense cable from interfering with the object to be measured.
  • the microphone array 1 of the first form is suitable for arranging the microphones mc at a narrow interval of about 10 mm.
  • the first substrate 31 can be attached to and detached from the second substrate 10a via the first connection portion 32a and the third connection portion 12a. Therefore, the first substrate 31 can be easily replaced. For example, if one of the plurality of microphones mc has a problem, only the first board 31 on which the defective microphone mc is mounted can be repaired or replaced. Further, by replacing the first substrate 31 on which one microphone mc is mounted with the first substrate 31 on which a plurality of microphone mcs are mounted, the number of microphone mcs included in the microphone array 1 can be easily increased. At the same time, the arrangement interval of the microphone mc can be easily changed.
  • the second substrate 10a can include a plurality of third connection portions 12a.
  • a plurality of first substrates 31 can be detachably connected to the second substrate 10a. Therefore, the arrangement interval of the first substrate 31 can be easily changed by changing the connection position of the first substrate 31 with respect to the second substrate 10a. For example, by connecting the first substrate 31 every other time to the plurality of third connection portions 12a included in the second substrate 10a, or by connecting the first substrate 31 every other two. , The arrangement interval of the microphone mc can be easily changed.
  • the microphone array device 50 in the present embodiment further includes a first support member 20a that supports a plurality of second substrates 10a to which the first substrate 31 is connected by arranging them in parallel at arbitrary intervals. .. Therefore, a plurality of microphones mc can be easily and appropriately arranged in an array.
  • the first support member 20a can include a plurality of substrate insertion portions 21a capable of inserting the plurality of second substrates 10a at arbitrary intervals, the arrangement interval of the second substrate 10a in the z direction can be set. , Can be easily set to the desired interval.
  • the microphone array 1 can be provided with microphones mc arranged in an array at desired intervals in the x-direction and the z-direction.
  • FIG. 8 is a configuration example of the second embodiment of the microphone array device 50 in the present embodiment.
  • the microphone array device 50 of the second form includes a microphone array 1 and a connecting member 14.
  • the number of the first substrate 31, the second substrate 10a, and the mounting member 10b included in the microphone array 1 is reduced in order to simplify the illustration. Further, the illustration of the second support member 20b included in the microphone array 1 is omitted.
  • the first substrate 31 includes one microphone mc, and the plurality of first substrates 31 are indirectly connected to one second substrate 10a via a connecting member 14. Further, the plurality of second substrates 10a to which the plurality of first substrates 31 are indirectly connected are electrically connected to the control substrate 40 via the cable 41.
  • the second substrate 10a acquires the sound information acquired by the microphone mc from the first substrate 31 in a state of being connected to the plurality of first substrates 31 and the control substrate 40, respectively, and obtains the acquired sound information. Output to the control board 40.
  • the method of connecting the second substrate 10a and the control substrate 40 is the same as that of the microphone array 1 of the first embodiment described above.
  • the connecting member 14 is a cable that connects the second connecting portion 32b mounted on the first board 31 and the fourth connecting portion 12b mounted on the second board 10a.
  • the connecting member 14 is provided with a first connector 14a that is detachably connected to the second connecting portion 32b at one end thereof, and is detachably connected to the fourth connecting portion 12b at the other end. It includes two connectors 14b. That is, the first substrate 31 is removable from the second substrate 10a.
  • the connecting member 14 may be a cable having a connector that can be attached to and detached from at least one of the second connecting portion 32b and the fourth connecting portion 12b.
  • FIG. 9 is an overall view of the second form of the microphone array 1.
  • the microphone array 1 includes a plurality of microphones mc, a plurality of first substrates 31, and a plurality of mounting members 10b.
  • the attachment member 10b detachably attaches the first substrate 31 connected to the second substrate 10a via the connecting member 14.
  • the microphone array 1 further includes a second support member 20b.
  • the second support member 20b supports a plurality of attachment members 10b to which the first substrate 31 is attached by arranging them in parallel at arbitrary intervals.
  • Each of the mounting members 10b is a member whose longitudinal direction is the first direction (x direction).
  • the microphone array 1 includes N (8 in FIG. 9) mounting members 10b.
  • the second support member 20b is a member whose longitudinal direction is a second direction (z direction) orthogonal to the first direction (x direction).
  • the microphone array 1 includes two second support members 20b. The two second support members 20b detachably support both ends of the N attachment members 10b, respectively.
  • first substrates 31 are detachably attached to the attachment members 10b, respectively.
  • the first substrates 31 are arranged at regular intervals d in the x direction, respectively.
  • the mounting members 10b are arranged in parallel at regular intervals d in the z direction.
  • the position of the first substrate 31 in the x direction is the same. That is, M ⁇ N microphones mc are arranged in a grid pattern in the xz direction by the N attachment members 10b.
  • FIG. 10 is a diagram showing a configuration example of the mounting member 10b.
  • the mounting member 10b includes a plurality of board mounting portions 11 capable of mounting the plurality of first boards 31 at arbitrary intervals in the x direction.
  • the plurality of board mounting portions 11 are mounting holes on which the first board 31 can be mounted, and the first board 31 is screwed through the plurality of mounting holes 31a formed in the first board 31 shown in FIG. It has a stoptable shape.
  • the mounting holes formed in the mounting member 10b may be formed at regular intervals (for example, an interval of about 3 mm) in the x direction. In this case, the mounting position of the first substrate 31 in the x direction can be finely adjusted.
  • the mounting member 10b has a plate-like shape in which the length in the z direction is shorter than the length in the y direction orthogonal to the measurement surface. That is, the mounting member 10b extends perpendicular to the measurement surface. Further, the first substrate 31 is mounted parallel to the plane perpendicular to the measurement plane of the mounting member 10b. As a result, the mounting surface of the microphone mc becomes perpendicular to the measurement surface. Further, in a state where the first substrate 31 is attached to the attachment member 10b, the microphone mc is mounted at a position close to the object to be measured on the first substrate 31, that is, a position close to the sound source surface 2a.
  • the microphone mc is arranged so as to project from the end surface of the mounting member 10b on the object to be measured side (sound source surface 2a side) to the object to be measured side (sound source surface 2a side) in the y direction. That is, the mounting member 10b is arranged on the side opposite to the sound source surface 2a with respect to the measurement surface so as not to block the sound to be measured from the sound source.
  • the connecting member 14 In a state where the connector portion 14a of the connecting member 14 is connected to the second connecting portion 32b of the first substrate 31, the connecting member 14 is the object to be measured (sound source surface 2a) on the first substrate 31 in the y direction. It extends from the side far from the surface to the second substrate 10a.
  • FIG. 11 is a diagram showing a configuration example of the second support member 20b.
  • the second support member 20b includes a plurality of member insertion portions 21b capable of inserting the plurality of attachment members 10b at arbitrary intervals in the z direction.
  • the plurality of member insertion portions 21b are grooves (recesses) having a shape into which the attachment member 10b can be inserted, and are formed at equal intervals, for example, in the z direction.
  • the ends of the N attachment members 10b are inserted into the member insertion portions 21b of the second support member 20b so as to be arranged at regular intervals d in the z direction.
  • the attachment member 10b is removable from the second support member 20b, and the distance d of the attachment member 10b in the z direction can be arbitrarily changed.
  • the member insertion portions 21b are formed at intervals of, for example, about 3 mm in the z direction, and the interval d in the z direction can be changed, for example, from about 30 mm to about 50 mm.
  • the second supporting member 20b may support only one end of the mounting member 10b. Alternatively, a position other than the end portion of the mounting member 10b may be supported. Further, the second support member 20b is not limited to the configuration shown in FIG.
  • the second support member 20b may have a configuration capable of supporting a plurality of mounting members 10b to which the first substrate 31 is mounted by arranging them in parallel at arbitrary intervals.
  • the microphone array device 50 of the second form is connected to the connecting member 14 that connects the second connecting portion 32b included in the first substrate 31 and the fourth connecting portion 12b included in the second substrate 10a.
  • a mounting member 10b for detachably attaching the first board 31 connected to the second board 10a via the member 14 is provided.
  • the arrangement interval of the first substrate 31 can be widened, and a large measurement object can be measured. It is possible to configure the microphone array 1 having a wide arrangement interval corresponding to the above. Further, since the first substrate 31 can be attached to and detached from the attachment member 10b, the arrangement interval of the microphone mc can be easily changed.
  • the microphone array 1 of the second form is suitable for arranging the microphones mc at intervals wider than 10 mm.
  • the connecting member 14 has a length such that the microphone mc can be arranged at a length of about 30 mm to 50 mm.
  • the connecting member 14 can be a cable having a connector detachable from at least one of the second connecting portion 32b and the fourth connecting portion 12b.
  • the first substrate 31 can be attached to and detached from the second substrate 10a. Therefore, the first substrate 31 can be easily replaced. For example, if one of the plurality of microphones mc has a problem, only the first board 31 on which the defective microphone mc is mounted can be repaired or replaced. Further, by replacing the first substrate 31 on which one microphone mc is mounted with the first substrate 31 on which a plurality of microphone mcs are mounted, the number of microphone mcs included in the microphone array 1 can be easily increased. At the same time, the arrangement interval of the microphone mc can be easily changed.
  • the mounting member 10b can include a plurality of board mounting portions 11 to which the first board 31 can be mounted at arbitrary intervals.
  • the first substrate 31 can be attached to an arbitrary position of the attachment member 10b, and the arrangement interval of the microphone mc can be easily changed.
  • the microphone array device 50 in the present embodiment further includes a second support member 20b that supports a plurality of mounting members 10b to which the first substrate 31 is connected by arranging them in parallel at arbitrary intervals. Therefore, a plurality of microphones mc can be easily and appropriately arranged in an array.
  • the second support member 20b can include a plurality of member insertion portions 21b into which the plurality of attachment members 10b can be inserted at arbitrary intervals, the arrangement interval of the attachment members 10b in the z direction can be easily desired. Can be an interval of.
  • the microphone in the x direction can be easily obtained.
  • the arrangement interval of mc can be changed. Further, by changing the mounting position of the first substrate 31 with respect to the mounting member 10b, the arrangement interval of the microphone mc in the x direction can be easily changed. Further, by changing the mounting position of the mounting member 10b with respect to the second support member 20b, the arrangement interval of the microphone mc in the z direction can be easily changed. Therefore, the microphone array 1 can be provided with microphones mc arranged in an array at desired intervals in the x-direction and the z-direction.
  • the microphone array device 50 in the present embodiment can easily change the array-like spacing (spacing in the x-direction and z-direction) of the microphone mc.
  • the substrate constituting the microphone array is fixed to the housing of the microphone array device, it depends on the size of the object to be measured. If you want to change the grid-like spacing (microphone spacing), you need to replace the entire microphone array device. That is, it is necessary to prepare a microphone array device for each object to be measured, which increases the cost.
  • the microphone mc is mounted on the first substrate 31, and the first substrate 31 can be replaced or the arrangement position can be changed. Therefore, the arrangement interval of the microphone mc can be easily changed, and the microphone array device 50 corresponding to the object to be measured of various sizes can be obtained. Therefore, it is not necessary to prepare a microphone array device for each object to be measured as in the conventional case, and the cost can be reduced.
  • the object to be measured is small, there are cases where it is desired to reduce the grid spacing of the microphone to, for example, 10 mm or less.
  • the microphone array is regarded as a wall and sound is reflected, and the sound is reflected between the object to be measured and the microphone array. Reverberates.
  • the echoed sound is superimposed on the sound to be measured, which hinders accurate measurement. As a result, it becomes difficult to analyze the sound using this microphone array.
  • the microphone array 1 can be configured by the first embodiment in which the first substrate 31 on which the microphone mc is mounted is directly connected to the second substrate 10a. At this time, the first substrate 31 and the second substrate 10a can be connected in parallel, and the first substrate 31 and the second substrate 10a can be arranged perpendicular to the measurement surface. Therefore, even if the lattice spacing of the microphone mc is narrow, it is possible to prevent the measurement surface of the microphone array from becoming a dense structure. As a result, it is possible to suppress the adverse effect of the reflected sound from the microphone array on the acoustic analysis result.
  • the microphone mc is an omnidirectional microphone, sound collection by the microphone mc can be appropriately performed regardless of the posture of the first substrate 31. Further, if the microphone mc is a MEMS microphone, it can be a microphone array capable of realizing near-field acoustic holography for a small object to be analyzed.
  • the microphone mc may be a directional microphone.
  • the first substrate 31 is arranged so that the sensor surface having the highest sensitivity in the directional microphone faces the sound source surface 2a, that is, is parallel to or substantially parallel to the sound source surface 2a. Is preferable.
  • the microphone array 1 is arranged close to the object to be measured so that the measurement surface is parallel to the sound source surface 2a of the object to be measured. That is, the measurement surface of the microphone array 1 is parallel to the sound source surface 2a.
  • the microphone mc is a directional microphone
  • the microphone mc is placed on the first substrate 31 so that the sensor surface of the microphone mc is parallel or substantially parallel to the measurement surface and the sound source surface 2a, respectively. It is preferable that it is implemented. As a result, sound collection by the directional microphone can be appropriately performed.
  • the mounting member 10b is attached to the measurement surface.
  • the first substrate 31 is arranged in a posture that extends perpendicularly to the measurement surface. be able to. Therefore, it is possible to prevent the first substrate 31 and the mounting member 10b from forming a wall, and to suppress the generation of the reflected sound described above.
  • the microphone mc can be mounted on the first substrate 31 at a position close to the object to be measured. As a result, the sound can be appropriately picked up by the microphone mc. Further, at this time, by arranging the microphone mc so as to project from the end surface of the second substrate 10a or the mounting member 10b on the object to be measured side toward the object to be measured, it is possible to collect sound more appropriately. .. Further, in the microphone array device 50 of the second form, the connecting member 14 can be made to extend from the side far from the object to be measured on the first substrate 31 to the second substrate 10a. In this case, it is possible to prevent the connecting member 14 from hindering sound collection.
  • the microphone array device 50 includes a plurality of microphone mcs, at least one first substrate 31 on which at least one of the plurality of microphones mcs is mounted, and a first substrate. It includes a second substrate 10a that is electrically connected to the substrate 31 and outputs sound information acquired by the microphone mc to a control substrate 40 that controls the first substrate 31.
  • the first substrate 31 includes a first connection portion 32a and a second connection portion 32b having different connection forms, and the second substrate 10a has a third connection that can be electrically connected to the first connection portion 32a.
  • a portion 12a and a fourth connection portion 12b that can be electrically connected to the second connection portion 32b are provided.
  • the first substrate 31 and the second substrate 10a each have two types of connecting portions, and the first substrate 31 and the second substrate 10a can be connected in different forms.
  • the microphone array device 50 in the present embodiment indirectly connects the first substrate 31 and the second substrate 10a with the first embodiment directly connecting the first substrate 31 and the second substrate 10a. It can be transformed into a second form to be connected. Therefore, it is possible to change the arrangement interval of the microphone mc widely. Therefore, the interval of the microphone mc can be easily changed according to the size of the object to be measured, and the sound to be measured from the object to be measured can be appropriately measured.
  • the structure can be configured so as not to block the sound to be measured from the object to be measured. Therefore, it is possible to accurately measure the sound to be measured from various small objects to be measured.
  • FIG. 12 is a configuration example of the acoustic analysis system 1000 including the microphone array device 50 in the present embodiment.
  • the acoustic analysis system 1000 includes the microphone array device 50 described above, an acoustic analysis device 100, and a display device 200.
  • the acoustic analysis device 100 inputs the sound information output by the second substrate 10a, analyzes the input sound information, and detects a physical quantity representing a characteristic of the sound.
  • the microphone array 1 is arranged close to the object to be measured 2 so that the measurement surface is parallel to the sound source surface 2a of the object to be measured 2.
  • the acoustic analysis device 100 includes a signal processing unit 101, an analysis processing unit 102, and a storage unit 103.
  • the signal processing unit 101 performs predetermined signal processing on the signal from each microphone mc of the microphone array 1 to obtain a signal to be used for acoustic analysis.
  • the signal processing may include a process of synchronizing the signals of M ⁇ N microphones included in the microphone array 1.
  • the analysis processing unit 102 analyzes the signal processed by the signal processing unit 101 and detects a physical quantity representing the characteristics of the sound.
  • the physical quantity representing the characteristic of sound includes a sound pressure distribution, a particle velocity distribution, and the like. Then, the analysis processing unit 102 generates an image corresponding to a physical quantity representing the characteristics of the sound, and performs display control for displaying the image on the display device 200.
  • the storage unit 103 stores the analysis result and the like by the analysis processing unit 102.
  • the display device 200 includes a monitor such as a liquid crystal display, and displays the above image which is the analysis result of the acoustic analysis device 100.
  • the acoustic analysis system 1000 in the present embodiment includes the microphone array device 50 in which the grid spacing of the microphone mc can be easily changed, accurate measurement and acoustic analysis of objects of different sizes are possible. Become.
  • the acoustic analysis system 1000 including the M ⁇ N microphone array includes, for example, an N microphone array module that controls recording of M microphones mc, and a control unit that controls N microphone array modules. , And may be configured.
  • the microphone array module includes M microphones mc, at least one first substrate 31 on which M microphones mc are mounted, and one control substrate 40 that controls the first substrate 31.
  • the sound information acquired by the M microphones mc is transmitted to the control unit.
  • the control unit receives the microphone mc signal from each of the N microphone array modules and processes it as a signal to be used for acoustic analysis.
  • the control unit may perform a process of aligning the phases of the microphone mc signals received from each microphone array module. It is assumed that the synchronization of the M microphones mc included in one microphone array module is electrically performed.
  • one microphone array module can utilize, for example, a smart speaker (AI speaker).
  • AI speaker smart speaker
  • the number of microphones mc constituting the microphone array 1 can be easily increased by adding the microphone array module. Therefore, it becomes easy to increase the size of the microphone array 1 and improve the spatial resolution in accordance with the size of the object to be measured.
  • the first substrate 31 is arranged perpendicular to the measurement surface on which a plurality of microphones mc are arranged has been described, but the first substrate 31 is relative to the measurement surface. It suffices if it is arranged vertically or substantially vertically. That is, the first substrate 31 may be arranged so as to be inclined with respect to the measurement surface. Also in this case, the effect of suppressing the influence of the reflected sound by the microphone array 1 can be obtained. Further, a plurality of M ⁇ N microphone arrays 1 in the above embodiment may be connected to form a larger microphone array.

Abstract

A microphone array device 50 is provided with: a plurality of microphones; at least one first substrate on which at least one of the plurality of microphones is mounted; and a second substrate which is electrically connected to the first substrate and outputs sound information acquired by the microphones to a control substrate for controlling the first substrate. The first substrate is provided with a first connecting portion and a second connecting portion that have different modes of connection. The second substrate is provided with a third connecting portion that can be electrically connected to the first connecting portion, and a fourth connecting portion that can be electrically connected to the second connecting portion.

Description

マイクロホンアレイ装置および音響解析システムMicrophone array device and acoustic analysis system
 本発明は、マイクロホンアレイ装置および音響解析システムに関する。 The present invention relates to a microphone array device and an acoustic analysis system.
 近年、製品の低騒音化の要求の高まりから、音場の空間的分布を測定し解析することが要求されている。
 特許文献1には、複数のマイクロホンを格子状に配列し、複数の位置で音を検知するマイクロホンアレイを用いた音圧分布解析システムが開示されている。この音圧分布解析システムは、多チャンネル信号の増幅が可能なアンプを備え、当該アンプがマイクロホンのそれぞれの音信号を増幅し、解析端末に対して出力する。解析端末は、アンプから入力された音信号をA/D変換し、時間波形として記録する。
 しかしながら、上記従来のマイクロホンアレイにおいては、コンデンサーマイク、あるいはダイナミックマイクを用いており、マイクロホンを例えば10mm以下の間隔で配置するとマイクロホンアレイの測定面が密な構造となり、マイクロホンアレイからの反射音の影響により音響ホログラフィの解析を行うことが困難となる。
 そこで、基板上に表面実装可能な小型のMEMS(Micro-Electrical-Mechanical Systems)マイクロホンを用いたマイクロホンアレイが知られている。このようなMEMSマイクロホンアレイとして、格子状の基板に複数のMEMSマイクロホンを表面実装し、基板そのものでマイクロホンアレイ装置を構成する方法が知られている。
In recent years, due to the increasing demand for noise reduction of products, it is required to measure and analyze the spatial distribution of the sound field.
Patent Document 1 discloses a sound pressure distribution analysis system using a microphone array in which a plurality of microphones are arranged in a grid pattern and sound is detected at a plurality of positions. This sound pressure distribution analysis system includes an amplifier capable of amplifying a multi-channel signal, and the amplifier amplifies each sound signal of the microphone and outputs it to an analysis terminal. The analysis terminal A / D-converts the sound signal input from the amplifier and records it as a time waveform.
However, in the above-mentioned conventional microphone array, a condenser microphone or a dynamic microphone is used, and when the microphones are arranged at intervals of, for example, 10 mm or less, the measurement surface of the microphone array becomes a dense structure, and the influence of the reflected sound from the microphone array This makes it difficult to analyze acoustic holography.
Therefore, a microphone array using a small MEMS (Micro-Electrical-Mechanical Systems) microphone that can be surface-mounted on a substrate is known. As such a MEMS microphone array, there is known a method in which a plurality of MEMS microphones are surface-mounted on a grid-like substrate and the substrate itself constitutes a microphone array device.
特開2005-91272号公報Japanese Unexamined Patent Publication No. 2005-91272
 基板そのものでマイクロホンアレイが構成されている場合、被測定物のサイズに応じてアレイ状の間隔を変更することができない。そのため、被測定物ごとにマイクロホンアレイを作製する必要があり、コストが嵩む。
 そこで、本発明は、複数のマイクロホンの配置間隔を変更することができるマイクロホンアレイ装置および音響解析システムを提供することを目的とする。
When the microphone array is composed of the substrate itself, the array-like spacing cannot be changed according to the size of the object to be measured. Therefore, it is necessary to manufacture a microphone array for each object to be measured, which increases the cost.
Therefore, an object of the present invention is to provide a microphone array device and an acoustic analysis system capable of changing the arrangement interval of a plurality of microphones.
 上記課題を解決するために、本発明の一つの態様のマイクロホンアレイ装置は、複数のマイクロホンと、前記複数のマイクロホンのうち少なくとも1つのマイクロホンが実装された少なくとも1つの第1の基板と、前記第1の基板と電気的に接続され、前記マイクロホンにより取得された音情報を、前記第1の基板を制御する制御基板に対して出力する第2の基板と、を備え、前記第1の基板は、接続形態の異なる第1接続部と第2接続部とを備え、前記第2の基板は、前記第1接続部と電気的に接続可能な第3接続部と、前記第2接続部と電気的に接続可能な第4接続部と、を備える。 In order to solve the above problems, the microphone array device according to one aspect of the present invention includes a plurality of microphones, at least one first substrate on which at least one of the plurality of microphones is mounted, and the first substrate. The first substrate includes a second substrate that is electrically connected to the first substrate and outputs sound information acquired by the microphone to a control substrate that controls the first substrate. The second substrate includes a first connection portion and a second connection portion having different connection forms, and the second substrate includes a third connection portion that can be electrically connected to the first connection portion, and the second connection portion and electricity. It is provided with a fourth connection portion that can be connected.
 また、本発明の一つの態様の音響解析システムは、前記マイクロホンアレイ装置と、前記制御基板を有する音響解析装置と、を備え、前記音響解析装置は、前記第2の基板が出力する前記音情報を入力し、当該音情報を解析して音の特徴を表す物理量を検出する。 Further, the acoustic analysis system according to one aspect of the present invention includes the microphone array device and the acoustic analysis device having the control substrate, and the acoustic analysis device includes the sound information output by the second substrate. Is input, the sound information is analyzed, and a physical quantity representing the characteristics of the sound is detected.
 本発明の一つの態様によれば、第1の基板および第2の基板がそれぞれ2種類の接続部を備え、第1の基板と第2の基板とを異なる形態で接続することが可能であるため、複数のマイクロホンの配置間隔を幅広く変更することが可能である。 According to one aspect of the present invention, the first substrate and the second substrate each have two types of connecting portions, and the first substrate and the second substrate can be connected in different forms. Therefore, it is possible to change the arrangement interval of a plurality of microphones widely.
図1は、本実施形態のマイクロホンアレイの第1形態の全体図である。FIG. 1 is an overall view of the first embodiment of the microphone array of the present embodiment. 図2は、第1の基板の構成例を示す図である。FIG. 2 is a diagram showing a configuration example of the first substrate. 図3は、第2の基板の構成例を示す図である。FIG. 3 is a diagram showing a configuration example of the second substrate. 図4は、第1の基板と第2の基板との接続例である。FIG. 4 is an example of connection between the first substrate and the second substrate. 図5は、第1の支持部材の構成例を示す図である。FIG. 5 is a diagram showing a configuration example of the first support member. 図6は、第1の支持部材の別の例を説明する図である。FIG. 6 is a diagram illustrating another example of the first support member. 図7は、マイクロホンアレイ装置の第1形態の構成例である。FIG. 7 is a configuration example of the first form of the microphone array device. 図8は、マイクロホンアレイ装置の第2形態の構成例である。FIG. 8 is a configuration example of the second form of the microphone array device. 図9は、本実施形態のマイクロホンアレイの第2形態の全体図である。FIG. 9 is an overall view of the second embodiment of the microphone array of the present embodiment. 図10は、取り付け部材の構成例を示す図である。FIG. 10 is a diagram showing a configuration example of the mounting member. 図11は、第2の支持部材の構成例を示す図である。FIG. 11 is a diagram showing a configuration example of the second support member. 図12は、音響解析システムの一例を示す図である。FIG. 12 is a diagram showing an example of an acoustic analysis system.
  以下、図面を用いて本発明の実施の形態について説明する。
  なお、本発明の範囲は、以下の実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で任意に変更可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention.
 図1は、本実施形態におけるマイクロホンアレイ装置が備えるマイクロホンアレイ1の第1形態の全体図である。
 本実施形態におけるマイクロホンアレイ1は、例えば、近接場音響ホログラフィ法を使用して被測定物(音源)からの被測定音を解析する音響解析システムに用いることができる。近接場音響ホログラフィ法では、音源面に近接し且つ平行な測定面の音圧分布を測定する必要があり、複数のマイクロホンを格子状に配置したマイクロホンアレイが用いられる。
FIG. 1 is an overall view of a first embodiment of the microphone array 1 included in the microphone array device according to the present embodiment.
The microphone array 1 in the present embodiment can be used, for example, in an acoustic analysis system that analyzes a sound to be measured from an object to be measured (sound source) by using a near-field acoustic holography method. In the near-field acoustic holography method, it is necessary to measure the sound pressure distribution of the measurement surface close to and parallel to the sound source surface, and a microphone array in which a plurality of microphones are arranged in a grid pattern is used.
 図1に示すように、マイクロホンアレイ1は、複数のマイクロホンmcと、複数の第1の基板31と、複数の第2の基板10aと、を備える。
 第1の基板31は、マイクロホンアレイ1が備える複数のマイクロホンmcのうち少なくとも1つのマイクロホンmcが実装されたマイク基板である。本実施形態では、1つの第1の基板31に1つのマイクロホンmcが実装されている場合について説明するが、1つの第1の基板31に複数のマイクロホンmcが実装されていてもよい。
 第2の基板10aは、第1の基板31と電気的に接続され、マイクロホンmcにより取得された音情報を、第1の基板31を制御する制御基板40(図7参照)に対して出力する接続基板である。本実施形態では、1つの第2の基板31に複数の第1の基板31が接続されている場合について説明するが、1つの第2の基板31に、複数のマイクロホンmcが実装された1つの第1の基板31が接続されていてもよい。
As shown in FIG. 1, the microphone array 1 includes a plurality of microphones mc, a plurality of first substrates 31, and a plurality of second substrates 10a.
The first substrate 31 is a microphone substrate on which at least one of the plurality of microphone mcs included in the microphone array 1 is mounted. In the present embodiment, the case where one microphone mc is mounted on one first substrate 31 will be described, but a plurality of microphone mcs may be mounted on one first substrate 31.
The second substrate 10a is electrically connected to the first substrate 31, and outputs the sound information acquired by the microphone mc to the control substrate 40 (see FIG. 7) that controls the first substrate 31. It is a connection board. In the present embodiment, a case where a plurality of first substrates 31 are connected to one second substrate 31 will be described, but one in which a plurality of microphones mc are mounted on one second substrate 31. The first substrate 31 may be connected.
 マイクロホンアレイ1は、第1の支持部材20aをさらに備える。第1の支持部材20aは、第1の基板31がそれぞれ接続された複数の第2の基板10aを、任意の間隔で並列配置させて支持する。
 第2の基板10aは、第1の基板31を着脱可能に支持することができる。また、第1の支持部材20aは、第2の基板10aを着脱可能に支持することで、第1の基板31を着脱可能に支持することができる。
 複数のマイクロホンmcの各々は、例えば、MEMS(Micro-Electrical-Mechanical Systems)マイクロホンとすることができる。なお、本実施形態では、マイクロホンmcがMEMSマイクロホンである場合について説明するが、マイクロホンmcはMEMSマイクロホンに限定されるものではない。
The microphone array 1 further includes a first support member 20a. The first support member 20a supports a plurality of second substrates 10a to which the first substrate 31 is connected by arranging them in parallel at arbitrary intervals.
The second substrate 10a can detachably support the first substrate 31. Further, the first support member 20a can detachably support the first substrate 31 by supporting the second substrate 10a in a detachable manner.
Each of the plurality of microphones mc can be, for example, a MEMS (Micro-Electrical-Mechanical Systems) microphone. In this embodiment, the case where the microphone mc is a MEMS microphone will be described, but the microphone mc is not limited to the MEMS microphone.
 第2の基板10aは、それぞれ第一の方向(x方向)を長手方向として配置される。本実施形態では、マイクロホンアレイ1は、N個(図1では8個)の第2の基板10aを備える。
 第1の支持部材20aは、それぞれ第一の方向(x方向)に対して直交する第二の方向(z方向)を長手方向とする部材である。本実施形態では、マイクロホンアレイ1は、2本の第1の支持部材20aを備える。2本の第1の支持部材20aは、N個の第2の基板10aの両端をそれぞれ着脱可能に支持する。
The second substrate 10a is arranged with the first direction (x direction) as the longitudinal direction. In this embodiment, the microphone array 1 includes N (8 in FIG. 1) second substrates 10a.
The first support member 20a is a member whose longitudinal direction is a second direction (z direction) orthogonal to the first direction (x direction). In this embodiment, the microphone array 1 includes two first support members 20a. The two first support members 20a detachably support both ends of the N second substrates 10a.
 第2の基板10aには、それぞれM個(図1では8個)の第1の基板31が接続されている。ここで、第1の基板31は、それぞれx方向において一定間隔dで配置されている。第1の基板31と第2の基板10aとは、後述する基板対基板コネクタによって直接接続されており、第1の基板31は、上記の基板対基板コネクタを介して第2の基板10aに対して着脱可能である。なお、第2の基板10aが第1の支持部材20aに対して着脱可能である場合、第1の基板31は、第2の基板10aに対して固定されていてもよい。
 また、第2の基板10aは、z方向において一定間隔dで並列配列されている。ここで、各第2の基板10aにおいて、第1の基板31のx方向における位置は同一である。つまり、N個の第2の基板10aによって、M×N個のマイクロホンmcがxz方向に格子状に配置される。
M (8 in FIG. 1) of the first substrates 31 are connected to the second substrate 10a, respectively. Here, the first substrates 31 are arranged at regular intervals d in the x direction, respectively. The first substrate 31 and the second substrate 10a are directly connected by a substrate-to-board connector described later, and the first substrate 31 is connected to the second substrate 10a via the above-mentioned substrate-to-board connector. It is removable. When the second substrate 10a is removable from the first support member 20a, the first substrate 31 may be fixed to the second substrate 10a.
Further, the second substrate 10a is arranged in parallel at regular intervals d in the z direction. Here, in each of the second substrates 10a, the positions of the first substrates 31 in the x direction are the same. That is, N × N microphones mc are arranged in a grid pattern in the xz direction by the N second substrates 10a.
 図1において、xz平面は、マイクロホンアレイ1のマイクロホンmcが格子状に配置された測定面に平行な面であり、被測定物の音源面に平行な面となる。マイクロホンアレイ1は、測定面を被測定物の音源面に対してy方向に所定距離離間した状態で配置される。例えば、マイクロホンアレイ1は、測定面と音源面とのy方向における距離を10mm以内として配置される。 In FIG. 1, the xz plane is a plane parallel to the measurement plane in which the microphone mc of the microphone array 1 is arranged in a grid pattern, and is a plane parallel to the sound source plane of the object to be measured. The microphone array 1 is arranged with the measurement surface separated from the sound source surface of the object to be measured by a predetermined distance in the y direction. For example, the microphone array 1 is arranged so that the distance between the measurement surface and the sound source surface in the y direction is within 10 mm.
 マイクロホンmcは、例えば、全方向から収音可能な無指向性のMEMSマイクロホンとすることができる。なお、本実施形態では、マイクロホンmcが無指向性のマイクロホンである場合について説明するが、マイクロホンmcは指向性のマイクロホンであってもよい。
 マイクロホンmcは、MEMS技術を用いた音響トランスデューサ(MEMSチップ)とアンプとを内蔵し、第1の基板31の表面に実装されている。マイクロホンmcは、音響トランスデューサによって音(音圧)を電気信号に変換し、変換した電気信号をアンプによって増幅して出力する。なお、マイクロホンmcがデジタルマイクロホンである場合、マイクロホンmcは、さらにA/Dコンバータを内蔵し、アンプによって増幅されたアナログ信号をデジタル信号に変換して出力することができる。
The microphone mc can be, for example, an omnidirectional MEMS microphone capable of collecting sound from all directions. In this embodiment, the case where the microphone mc is an omnidirectional microphone will be described, but the microphone mc may be a directional microphone.
The microphone mc incorporates an acoustic transducer (MEMS chip) using MEMS technology and an amplifier, and is mounted on the surface of the first substrate 31. The microphone mc converts sound (sound pressure) into an electric signal by an acoustic transducer, and amplifies and outputs the converted electric signal by an amplifier. When the microphone mc is a digital microphone, the microphone mc also has a built-in A / D converter and can convert an analog signal amplified by an amplifier into a digital signal and output it.
 図2は、第1の基板31の構成例を示す図である。この図2に示すように、第1の基板31には、マイクロホンmcが実装されている。また、第1の基板31は、接続形態の異なる第1接続部32aと第2接続部32bとを、それぞれ1つずつ備える。さらに、第1の基板31は、通電確認用のLED33を備えていてもよい。LED33が点灯していることを確認することで、コネクタずれなどによる第1の基板31への通電不良が発生していないことを容易に確認することができる。 FIG. 2 is a diagram showing a configuration example of the first substrate 31. As shown in FIG. 2, a microphone mc is mounted on the first substrate 31. Further, the first substrate 31 includes one first connection portion 32a and one second connection portion 32b having different connection forms. Further, the first substrate 31 may include an LED 33 for confirming energization. By confirming that the LED 33 is lit, it is possible to easily confirm that the first substrate 31 is not defective in energization due to connector misalignment or the like.
 図3は、第2の基板10aの構成例を示す図である。この図3に示すように、第2の基板10aは、接続形態の異なる第3接続部12aと第4接続部12bとを、それぞれ複数備える。第3接続部12aおよび第4接続部12bは、例えばx方向に一定間隔で実装されている。第3接続部12aは、第1の基板31の第1接続部32aと電気的に接続可能であり、第4接続部12bは、第1の基板31の第2接続部32bと電気的に接続可能である。
 さらに、第2の基板10aは、1つの第5接続部13を備える。第5接続部13は、第2の基板10aと第1の基板31を制御する制御基板40(図7参照)とを接続するためのケーブル41(図7参照)が接続されるコネクタ部とすることができる。第5接続部13は、例えば第2の基板10aの一方の端部に実装することができる。
FIG. 3 is a diagram showing a configuration example of the second substrate 10a. As shown in FIG. 3, the second substrate 10a includes a plurality of third connection portions 12a and a plurality of fourth connection portions 12b having different connection forms. The third connecting portion 12a and the fourth connecting portion 12b are mounted at regular intervals in the x direction, for example. The third connection portion 12a can be electrically connected to the first connection portion 32a of the first substrate 31, and the fourth connection portion 12b is electrically connected to the second connection portion 32b of the first substrate 31. It is possible.
Further, the second substrate 10a includes one fifth connection portion 13. The fifth connection portion 13 is a connector portion to which a cable 41 (see FIG. 7) for connecting the second board 10a and the control board 40 (see FIG. 7) for controlling the first board 31 is connected. be able to. The fifth connection portion 13 can be mounted on, for example, one end of the second substrate 10a.
 第1の基板31の第1接続部32aおよび第2の基板10aの第3接続部12aは、第1の基板31と第2の基板10aとを直接接続する基板対基板コネクタとすることができる。第1接続部32aと第3接続部12aとは、直接接続可能であり、第1接続部32aと第3接続部12aとが接続された状態において、図4に示すように、第1の基板31と第2の基板10aとは互いに平行となる。ここで、第1接続部32aおよび第3接続部12aは、第1の基板31と第2の基板10aとの基板間の距離が例えば1mm以内となるような小型コネクタとする。第1の基板31は、第1接続部32aおよび第3接続部12aを介して第2の基板10aに対して着脱可能とすることができる。
 図1に示すマイクロホンアレイ1では、M個の第1の基板31は、x方向に一定間隔dで配置するように、第1接続部32aおよび第3接続部12aを介して第2の基板10aに接続される。
The first connection portion 32a of the first substrate 31 and the third connection portion 12a of the second substrate 10a can be a substrate-to-board connector that directly connects the first substrate 31 and the second substrate 10a. .. The first connection portion 32a and the third connection portion 12a can be directly connected, and in a state where the first connection portion 32a and the third connection portion 12a are connected, as shown in FIG. 4, the first substrate The 31 and the second substrate 10a are parallel to each other. Here, the first connection portion 32a and the third connection portion 12a are small connectors such that the distance between the first substrate 31 and the second substrate 10a is, for example, 1 mm or less. The first substrate 31 can be attached to and detached from the second substrate 10a via the first connection portion 32a and the third connection portion 12a.
In the microphone array 1 shown in FIG. 1, the M first substrates 31 are arranged at regular intervals d in the x direction via the first connection portion 32a and the third connection portion 12a so that the second substrate 10a is arranged. Connected to.
 第1の基板31および第2の基板10aは、上述したように平行接続されて、マイクロホンアレイ1において測定面に対して垂直に伸びた状態で配置される。つまり、第1の基板31におけるマイクロホンmcの実装面は、測定面に対して垂直となる。
 また、第1の基板31が第2の基板10aに取り付けられた状態において、マイクロホンmcは、図3に示すように、第1の基板31における被測定物に近い位置、すなわち音源面2aに近い位置に実装される。より具体的には、マイクロホンmcは、y方向において、第2の基板10aの被測定物側(音源面2a側)の端面から、当該被測定物側(音源面2a側)に突出して配置される。つまり、第2の基板10aは、音源からの被測定音を遮らないよう、測定面に対し音源面2aとは反対側に配置される。
The first substrate 31 and the second substrate 10a are connected in parallel as described above, and are arranged in the microphone array 1 in a state of extending perpendicularly to the measurement surface. That is, the mounting surface of the microphone mc on the first substrate 31 is perpendicular to the measurement surface.
Further, in a state where the first substrate 31 is attached to the second substrate 10a, the microphone mc is located at a position close to the object to be measured on the first substrate 31, that is, close to the sound source surface 2a, as shown in FIG. Implemented in position. More specifically, the microphone mc is arranged so as to project from the end surface of the second substrate 10a on the object to be measured side (sound source surface 2a side) to the object to be measured side (sound source surface 2a side) in the y direction. To. That is, the second substrate 10a is arranged on the side opposite to the sound source surface 2a with respect to the measurement surface so as not to block the sound to be measured from the sound source.
 図5は、本実施形態における第1の支持部材20aの構成例を示す図である。
 この図5に示すように、第1の支持部材20aは、複数の第2の基板10aをz方向に任意の間隔で挿入可能な複数の基板挿入部21aを備える。複数の基板挿入部21aは、第2の基板10aを挿入可能な形状を有する溝(凹部)であり、z方向に例えば等間隔に形成されている。N個の第2の基板10aは、z方向に一定間隔dで配置するように、その端部が第1の支持部材20aの基板挿入部21aに挿入される。第2の基板10aは、第1の支持部材20aに対して着脱可能であり、第2の基板10aのz方向における間隔dは、任意に変更することが可能である。ここで、基板挿入部21aは、z方向に例えば3mm程度の間隔で形成されており、z方向における間隔dは、例えば3mm程度から20mm程度までの間で変更可能とすることができる。
FIG. 5 is a diagram showing a configuration example of the first support member 20a in the present embodiment.
As shown in FIG. 5, the first support member 20a includes a plurality of substrate insertion portions 21a capable of inserting the plurality of second substrates 10a at arbitrary intervals in the z direction. The plurality of substrate insertion portions 21a are grooves (recesses) having a shape into which the second substrate 10a can be inserted, and are formed at equal intervals, for example, in the z direction. The ends of the N second substrates 10a are inserted into the substrate insertion portions 21a of the first support member 20a so as to be arranged at regular intervals d in the z direction. The second substrate 10a is removable from the first support member 20a, and the distance d of the second substrate 10a in the z direction can be arbitrarily changed. Here, the substrate insertion portions 21a are formed at intervals of, for example, about 3 mm in the z direction, and the interval d in the z direction can be changed, for example, from about 3 mm to about 20 mm.
 なお、本実施形態では、2つの第1の支持部材20aによって第2の基板10aの両端部を支持する場合について説明するが、第1の支持部材20aは、第2の基板10aの一端のみを支持してもよいし、第2の基板10aの端部以外の位置を支持してもよい。また、第1の支持部材20aは、図5に示す構成に限定されるものではない。第1の支持部材20aは、第1の基板31がそれぞれ接続された複数の第2の基板10aを、任意の間隔で並列配置させて支持することが可能な構成であればよい。例えば第1の支持部材20aに替えて、図6に示す第1の支持部材20a´のように、第2の基板10aに形成された穴に挿入されるボルト状の固定部材を用いることもできる。また、複数の第2の基板10aは、枠型のフレーム部材によって支持されていてもよい。 In this embodiment, the case where both ends of the second substrate 10a are supported by the two first support members 20a will be described, but the first support member 20a has only one end of the second substrate 10a. It may be supported, or it may be supported at a position other than the end portion of the second substrate 10a. Further, the first support member 20a is not limited to the configuration shown in FIG. The first support member 20a may have a configuration capable of supporting a plurality of second substrates 10a to which the first substrate 31 is connected by arranging them in parallel at arbitrary intervals. For example, instead of the first support member 20a, a bolt-shaped fixing member inserted into a hole formed in the second substrate 10a can be used as in the first support member 20a'shown in FIG. .. Further, the plurality of second substrates 10a may be supported by a frame-shaped frame member.
 また、第1の基板31と第2の基板10aとは、第2接続部32bおよび第4接続部12bを介して電気的に接続することもできる。ここで、第2接続部32bと第4接続部12bとは、接続部材を介して電気的に接続される。当該接続部材は、第2接続部32bおよび第4接続部12bの少なくとも一方と着脱可能なコネクタを有するケーブルとすることができる。
 つまり、本実施形態におけるマイクロホンアレイ1は、図1に示すように第1接続部32aおよび第3接続部12aを介して第1の基板31と第2の基板10aとが直接接続される第1形態と、第2接続部32b、第4接続部12bおよび接続部材を介して第1の基板31と第2の基板10aとが間接接続される第2形態と、を有する。
Further, the first substrate 31 and the second substrate 10a can be electrically connected to each other via the second connecting portion 32b and the fourth connecting portion 12b. Here, the second connecting portion 32b and the fourth connecting portion 12b are electrically connected via a connecting member. The connecting member may be a cable having a detachable connector with at least one of the second connecting portion 32b and the fourth connecting portion 12b.
That is, in the microphone array 1 of the present embodiment, as shown in FIG. 1, the first substrate 31 and the second substrate 10a are directly connected via the first connection portion 32a and the third connection portion 12a. It has a form and a second form in which the first substrate 31 and the second substrate 10a are indirectly connected via the second connecting portion 32b, the fourth connecting portion 12b, and the connecting member.
 まず、マイクロホンアレイ装置50の第1形態の構成について説明する 図7は、本実施形態におけるマイクロホンアレイ装置50の第1形態の構成例である。
 第1形態のマイクロホンアレイ装置50は、上述した図1に示すマイクロホンアレイ1を備える。なお、図7では、図示を簡略化するために、マイクロホンアレイ1が備える第1の基板31および第2の基板10aの数を少なくして示している。また、マイクロホンアレイ1が備える第1の支持部材20aの図示は省略している。
First, the configuration of the first form of the microphone array device 50 will be described. FIG. 7 is a configuration example of the first form of the microphone array device 50 according to the present embodiment.
The microphone array device 50 of the first embodiment includes the microphone array 1 shown in FIG. 1 described above. In FIG. 7, the number of the first substrate 31 and the second substrate 10a included in the microphone array 1 is reduced in order to simplify the illustration. Further, the illustration of the first support member 20a included in the microphone array 1 is omitted.
 第1の基板31は、マイクロホンmcを1つずつ備え、第1の基板31は、図4に示すように第1接続部32aおよび第3接続部12aを介して第2の基板10aと直接接続される。また、複数の第1の基板31が直接接続された複数の第2の基板10aは、ケーブル41を介して制御基板40と電気的に接続される。第2の基板10aは、複数の第1の基板31と制御基板40とにそれぞれ接続された状態で、第1の基板31からマイクロホンmcにより取得された音情報を取得し、取得した音情報を制御基板40に対して出力する。 The first substrate 31 includes one microphone mc, and the first substrate 31 is directly connected to the second substrate 10a via the first connection portion 32a and the third connection portion 12a as shown in FIG. Will be done. Further, the plurality of second substrates 10a to which the plurality of first substrates 31 are directly connected are electrically connected to the control substrate 40 via the cable 41. The second substrate 10a acquires the sound information acquired by the microphone mc from the first substrate 31 in a state of being connected to the plurality of first substrates 31 and the control substrate 40, respectively, and obtains the acquired sound information. Output to the control board 40.
 ケーブル41の一端は制御基板40に接続され、ケーブル41の他端は第2の基板10aの第5接続部(コネクタ部)13に接続される。なお、ケーブル41は、制御基板40および第2の基板10aの少なくとも一方に対して着脱可能であってよい。
 制御基板40は、M×N個の第1の基板31を制御し、M×N個のマイクロホンmcの録音に関する制御を行うことができる。具体的には、制御基板40は、第1の基板31に対して録音指令を出力し、当該録音指令に応答して第1の基板31から第2の基板10aおよびケーブル41を介して出力された録音データ(マイクロホンmcで取得した音情報)を入力する。
One end of the cable 41 is connected to the control board 40, and the other end of the cable 41 is connected to the fifth connection portion (connector portion) 13 of the second board 10a. The cable 41 may be detachable from at least one of the control board 40 and the second board 10a.
The control board 40 can control the M × N first boards 31 and control the recording of the M × N microphones mc. Specifically, the control board 40 outputs a recording command to the first board 31, and is output from the first board 31 via the second board 10a and the cable 41 in response to the recording command. Input the recorded data (sound information acquired by the microphone mc).
 本実施形態では、マイクロホンアレイ1が有するM×N個のマイクロホンmcが、1つの制御基板40に接続される場合について説明する。しかしながら、1つの制御基板40に接続されるマイクロホンmcの数は、上記に限定されるものではない。例えば、1つの制御基板40に対して1つの第2の基板10aが接続されてもよい。つまり、M個のマイクロホンmcごとに異なる制御基板40に接続されてもよい。この場合、制御基板40はN個存在し、各制御基板40は、それぞれM個のマイクロホンmcの録音に関する制御を行う。また、この場合、N個の制御基板40を制御する制御部をさらに備えるようにしてもよい。 In the present embodiment, a case where M × N microphones mc included in the microphone array 1 are connected to one control board 40 will be described. However, the number of microphones mc connected to one control board 40 is not limited to the above. For example, one second board 10a may be connected to one control board 40. That is, each of the M microphones mc may be connected to a different control board 40. In this case, there are N control boards 40, and each control board 40 controls the recording of M microphones mc. Further, in this case, a control unit for controlling N control boards 40 may be further provided.
 このように、第1形態のマイクロホンアレイ1においては、第1の基板31と第2の基板10aとは、第1の基板31が備える第1接続部32aと第2の基板10aが備える第3接続部12aとを介して、直接接続される。つまり、第1の基板31と第2の基板10aとをケーブルを介さずに接続することができる。したがって、例えば被測定物が小型であり、マイクロホンmcの配置間隔が狭いマイクロホンアレイを構成するために第1の基板31の配置間隔を狭くした場合であっても、第1の基板31からそれぞれ伸びるケーブルが壁となって音測定に悪影響を及ぼすことを回避することができる。また、密となったケーブルが被測定物と干渉することも回避することができる。
 このように、マイクロホンmcの配置間隔が狭い場合であっても、マイクロホンアレイ1の測定面が密になることを抑制し、反射音等の影響を適切に低減することができる。この第1形態のマイクロホンアレイ1は、10mm程度の狭い間隔でマイクロホンmcを配置する際に好適である。
As described above, in the microphone array 1 of the first form, the first substrate 31 and the second substrate 10a are the third substrate 31a included in the first substrate 31 and the third substrate 10a included in the first substrate 31. It is directly connected to the connection unit 12a. That is, the first substrate 31 and the second substrate 10a can be connected without using a cable. Therefore, for example, even when the object to be measured is small and the arrangement interval of the first substrate 31 is narrowed in order to form a microphone array in which the arrangement interval of the microphone mc is narrow, each of them extends from the first substrate 31. It is possible to prevent the cable from forming a wall and adversely affecting the sound measurement. In addition, it is possible to prevent the dense cable from interfering with the object to be measured.
As described above, even when the arrangement interval of the microphones mc is narrow, it is possible to suppress the measurement surface of the microphone array 1 from becoming dense and appropriately reduce the influence of reflected sound and the like. The microphone array 1 of the first form is suitable for arranging the microphones mc at a narrow interval of about 10 mm.
 また、第1の基板31は、第1接続部32aおよび第3接続部12aを介して第2の基板10aに対して着脱可能である。したがって、第1の基板31を容易に交換することが可能である。例えば複数のマイクロホンmcのうちの1つに何らかの不具合が生じた場合には、不具合が生じたマイクロホンmcが実装された第1の基板31のみを修理、交換することができる。また、1つのマイクロホンmcが実装された第1の基板31から複数のマイクロホンmcが実装された第1の基板31に交換すれば、マイクロホンアレイ1が備えるマイクロホンmcの数を容易に増やすことができるとともに、マイクロホンmcの配置間隔も容易に変更することが可能である。 Further, the first substrate 31 can be attached to and detached from the second substrate 10a via the first connection portion 32a and the third connection portion 12a. Therefore, the first substrate 31 can be easily replaced. For example, if one of the plurality of microphones mc has a problem, only the first board 31 on which the defective microphone mc is mounted can be repaired or replaced. Further, by replacing the first substrate 31 on which one microphone mc is mounted with the first substrate 31 on which a plurality of microphone mcs are mounted, the number of microphone mcs included in the microphone array 1 can be easily increased. At the same time, the arrangement interval of the microphone mc can be easily changed.
 さらに、第2の基板10aは、図3に示すように、複数の第3接続部12aを備えることができる。これにより、第2の基板10aに複数の第1の基板31を着脱可能に接続することができる。したがって、第2の基板10aに対する第1の基板31の接続位置を変更することで、容易に第1の基板31の配置間隔を変更することができる。例えば、第2の基板10aが備える複数の第3接続部12aに対して、1つおきに第1の基板31を接続したり、2つおきに第1の基板31を接続したりすることで、容易にマイクロホンmcの配置間隔を変更することができる。 Further, as shown in FIG. 3, the second substrate 10a can include a plurality of third connection portions 12a. As a result, a plurality of first substrates 31 can be detachably connected to the second substrate 10a. Therefore, the arrangement interval of the first substrate 31 can be easily changed by changing the connection position of the first substrate 31 with respect to the second substrate 10a. For example, by connecting the first substrate 31 every other time to the plurality of third connection portions 12a included in the second substrate 10a, or by connecting the first substrate 31 every other two. , The arrangement interval of the microphone mc can be easily changed.
 さらに、本実施形態におけるマイクロホンアレイ装置50は、第1の基板31がそれぞれ接続された複数の第2の基板10aを、任意の間隔で並列配置させて支持する第1の支持部材20aをさらに備える。したがって、複数のマイクロホンmcを容易かつ適切にアレイ状に配置することができる。また、第1の支持部材20aは、複数の第2の基板10aを任意の間隔で挿入可能な複数の基板挿入部21aを備えることができるため、z方向における第2の基板10aの配置間隔を、容易に所望の間隔とすることができる。 Further, the microphone array device 50 in the present embodiment further includes a first support member 20a that supports a plurality of second substrates 10a to which the first substrate 31 is connected by arranging them in parallel at arbitrary intervals. .. Therefore, a plurality of microphones mc can be easily and appropriately arranged in an array. Further, since the first support member 20a can include a plurality of substrate insertion portions 21a capable of inserting the plurality of second substrates 10a at arbitrary intervals, the arrangement interval of the second substrate 10a in the z direction can be set. , Can be easily set to the desired interval.
 以上のように、マイクロホンmcの実装間隔が異なる複数種類の第1の基板31を用意しておき、第2の基板10aに接続する第1の基板31の種類を変更することで、容易にx方向におけるマイクロホンmcの配置間隔を変更することができる。また、第2の基板10aに対する第1の基板31の接続位置を変更することでも、容易にx方向におけるマイクロホンmcの配置間隔を変更することができる。
 また、第1の支持部材20aに対する第2の基板10aの取り付け位置を変更することで、容易にz方向におけるマイクロホンmcの配置間隔を変更することができる。
 したがって、x方向およびz方向に所望の間隔でアレイ状に配置されたマイクロホンmcを備えるマイクロホンアレイ1とすることができる。
As described above, by preparing a plurality of types of the first substrate 31 having different mounting intervals of the microphone mc and changing the type of the first substrate 31 connected to the second substrate 10a, x can be easily obtained. The placement interval of the microphone mc in the direction can be changed. Further, by changing the connection position of the first substrate 31 with respect to the second substrate 10a, the arrangement interval of the microphone mc in the x direction can be easily changed.
Further, by changing the mounting position of the second substrate 10a with respect to the first support member 20a, the arrangement interval of the microphone mc in the z direction can be easily changed.
Therefore, the microphone array 1 can be provided with microphones mc arranged in an array at desired intervals in the x-direction and the z-direction.
 次に、マイクロホンアレイ装置50の第2形態の構成について説明する。
 図8は、本実施形態におけるマイクロホンアレイ装置50の第2形態の構成例である。
 第2形態のマイクロホンアレイ装置50は、マイクロホンアレイ1と、接続部材14と、を備える。
 なお、図8では、図示を簡略化するために、マイクロホンアレイ1が備える第1の基板31、第2の基板10aおよび取り付け部材10bの数を少なくして示している。また、マイクロホンアレイ1が備える第2の支持部材20bの図示は省略している。
Next, the configuration of the second form of the microphone array device 50 will be described.
FIG. 8 is a configuration example of the second embodiment of the microphone array device 50 in the present embodiment.
The microphone array device 50 of the second form includes a microphone array 1 and a connecting member 14.
In FIG. 8, the number of the first substrate 31, the second substrate 10a, and the mounting member 10b included in the microphone array 1 is reduced in order to simplify the illustration. Further, the illustration of the second support member 20b included in the microphone array 1 is omitted.
 第1の基板31は、マイクロホンmcを1つずつ備え、複数の第1の基板31は、1つの第2の基板10aと接続部材14を介してそれぞれ間接接続される。また、複数の第1の基板31が間接接続された複数の第2の基板10aは、ケーブル41を介して制御基板40と電気的に接続される。第2の基板10aは、複数の第1の基板31と制御基板40とにそれぞれ接続された状態で、第1の基板31からマイクロホンmcにより取得された音情報を取得し、取得した音情報を制御基板40に対して出力する。
 なお、第2の基板10aと制御基板40との接続手法は、上述した第1形態のマイクロホンアレイ1と同様である。
The first substrate 31 includes one microphone mc, and the plurality of first substrates 31 are indirectly connected to one second substrate 10a via a connecting member 14. Further, the plurality of second substrates 10a to which the plurality of first substrates 31 are indirectly connected are electrically connected to the control substrate 40 via the cable 41. The second substrate 10a acquires the sound information acquired by the microphone mc from the first substrate 31 in a state of being connected to the plurality of first substrates 31 and the control substrate 40, respectively, and obtains the acquired sound information. Output to the control board 40.
The method of connecting the second substrate 10a and the control substrate 40 is the same as that of the microphone array 1 of the first embodiment described above.
 接続部材14は、第1の基板31に実装された第2接続部32bと、第2の基板10aに実装された第4接続部12bとを接続するケーブルである。具体的には、接続部材14は、その一端に、第2接続部32bと着脱可能に接続される第1コネクタ14aを備え、他端に、第4接続部12bと着脱可能に接続される第2コネクタ14bを備える。つまり、第1の基板31は、第2の基板10aに対して着脱可能である。なお、接続部材14は、第2接続部32bおよび第4接続部12bの少なくとも一方と着脱可能なコネクタを有するケーブルであればよい。 The connecting member 14 is a cable that connects the second connecting portion 32b mounted on the first board 31 and the fourth connecting portion 12b mounted on the second board 10a. Specifically, the connecting member 14 is provided with a first connector 14a that is detachably connected to the second connecting portion 32b at one end thereof, and is detachably connected to the fourth connecting portion 12b at the other end. It includes two connectors 14b. That is, the first substrate 31 is removable from the second substrate 10a. The connecting member 14 may be a cable having a connector that can be attached to and detached from at least one of the second connecting portion 32b and the fourth connecting portion 12b.
 図9は、マイクロホンアレイ1の第2形態の全体図である。
 第2形態においては、マイクロホンアレイ1は、複数のマイクロホンmcと、複数の第1の基板31と、複数の取り付け部材10bと、を備える。取り付け部材10bは、接続部材14を介して第2の基板10aに接続された第1の基板31を、着脱可能に取り付ける。また、マイクロホンアレイ1は、第2の支持部材20bをさらに備える。第2の支持部材20bは、第1の基板31がそれぞれ取り付けられた複数の取り付け部材10bを、任意の間隔で並列配置させて支持する。
FIG. 9 is an overall view of the second form of the microphone array 1.
In the second embodiment, the microphone array 1 includes a plurality of microphones mc, a plurality of first substrates 31, and a plurality of mounting members 10b. The attachment member 10b detachably attaches the first substrate 31 connected to the second substrate 10a via the connecting member 14. Further, the microphone array 1 further includes a second support member 20b. The second support member 20b supports a plurality of attachment members 10b to which the first substrate 31 is attached by arranging them in parallel at arbitrary intervals.
 取り付け部材10bは、それぞれ第一の方向(x方向)を長手方向とする部材である。本実施形態では、マイクロホンアレイ1は、N本(図9では8本)の取り付け部材10bを備える。
 第2の支持部材20bは、それぞれ第一の方向(x方向)に対して直交する第二の方向(z方向)を長手方向とする部材である。本実施形態では、マイクロホンアレイ1は、2本の第2の支持部材20bを備える。2本の第2の支持部材20bは、N本の取り付け部材10bの両端をそれぞれ着脱可能に支持する。
Each of the mounting members 10b is a member whose longitudinal direction is the first direction (x direction). In this embodiment, the microphone array 1 includes N (8 in FIG. 9) mounting members 10b.
The second support member 20b is a member whose longitudinal direction is a second direction (z direction) orthogonal to the first direction (x direction). In this embodiment, the microphone array 1 includes two second support members 20b. The two second support members 20b detachably support both ends of the N attachment members 10b, respectively.
 取り付け部材10bには、それぞれM個(図9では8個)の第1の基板31が着脱可能に取り付けられている。ここで、第1の基板31は、それぞれx方向において一定間隔dで配置されている。また、取り付け部材10bは、z方向において一定間隔dで並列配列されている。ここで、各取り付け部材10bにおいて、第1の基板31のx方向における位置は同一である。つまり、N本の取り付け部材10bによって、M×N個のマイクロホンmcがxz方向に格子状に配置される。 M (8 in FIG. 9) first substrates 31 are detachably attached to the attachment members 10b, respectively. Here, the first substrates 31 are arranged at regular intervals d in the x direction, respectively. Further, the mounting members 10b are arranged in parallel at regular intervals d in the z direction. Here, in each mounting member 10b, the position of the first substrate 31 in the x direction is the same. That is, M × N microphones mc are arranged in a grid pattern in the xz direction by the N attachment members 10b.
 図10は、取り付け部材10bの構成例を示す図である。
 この図10に示すように、取り付け部材10bは、複数の第1の基板31をx方向に任意の間隔で取付可能な複数の基板取付部11を備える。複数の基板取付部11は、第1の基板31を取付可能な取付穴であり、図2に示す第1の基板31に形成された複数の取付穴31aを介して第1の基板31をねじ止め可能な形状を有する。
 ここで、取り付け部材10bに形成された取付穴は、x方向に一定間隔(例えば3mm程度の間隔)で形成されていてもよい。この場合、第1の基板31のx方向における取付位置の微調整が可能となる。
FIG. 10 is a diagram showing a configuration example of the mounting member 10b.
As shown in FIG. 10, the mounting member 10b includes a plurality of board mounting portions 11 capable of mounting the plurality of first boards 31 at arbitrary intervals in the x direction. The plurality of board mounting portions 11 are mounting holes on which the first board 31 can be mounted, and the first board 31 is screwed through the plurality of mounting holes 31a formed in the first board 31 shown in FIG. It has a stoptable shape.
Here, the mounting holes formed in the mounting member 10b may be formed at regular intervals (for example, an interval of about 3 mm) in the x direction. In this case, the mounting position of the first substrate 31 in the x direction can be finely adjusted.
 取り付け部材10bは、z方向の長さが、測定面に対して直交するy方向の長さよりも短い板状の形状を有する。つまり、取り付け部材10bは、測定面に対して垂直に伸びる。また、第1の基板31は、取り付け部材10bにおける測定面に対して垂直な面に平行に取り付けられる。これにより、マイクロホンmcの実装面は、測定面に対して垂直となる。
 また、第1の基板31が取り付け部材10bに取り付けられた状態において、マイクロホンmcは、第1の基板31における被測定物に近い位置、すなわち音源面2aに近い位置に実装される。より具体的には、マイクロホンmcは、y方向において、取り付け部材10bの被測定物側(音源面2a側)の端面から、当該被測定物側(音源面2a側)に突出して配置される。つまり、取り付け部材10bは、音源からの被測定音を遮らないよう、測定面に対し音源面2aとは反対側に配置される。
 この第1の基板31の第2接続部32bに接続部材14のコネクタ部14aが接続された状態では、接続部材14は、y方向において、第1の基板31における被測定物(音源面2a)から遠い側から第2の基板10aへ伸びる。
The mounting member 10b has a plate-like shape in which the length in the z direction is shorter than the length in the y direction orthogonal to the measurement surface. That is, the mounting member 10b extends perpendicular to the measurement surface. Further, the first substrate 31 is mounted parallel to the plane perpendicular to the measurement plane of the mounting member 10b. As a result, the mounting surface of the microphone mc becomes perpendicular to the measurement surface.
Further, in a state where the first substrate 31 is attached to the attachment member 10b, the microphone mc is mounted at a position close to the object to be measured on the first substrate 31, that is, a position close to the sound source surface 2a. More specifically, the microphone mc is arranged so as to project from the end surface of the mounting member 10b on the object to be measured side (sound source surface 2a side) to the object to be measured side (sound source surface 2a side) in the y direction. That is, the mounting member 10b is arranged on the side opposite to the sound source surface 2a with respect to the measurement surface so as not to block the sound to be measured from the sound source.
In a state where the connector portion 14a of the connecting member 14 is connected to the second connecting portion 32b of the first substrate 31, the connecting member 14 is the object to be measured (sound source surface 2a) on the first substrate 31 in the y direction. It extends from the side far from the surface to the second substrate 10a.
 図11は、第2の支持部材20bの構成例を示す図である。
 この図11に示すように、第2の支持部材20bは、複数の取り付け部材10bをz方向に任意の間隔で挿入可能な複数の部材挿入部21bを備える。複数の部材挿入部21bは、取り付け部材10bを挿入可能な形状を有する溝(凹部)であり、z方向に例えば等間隔に形成されている。N本の取り付け部材10bは、z方向に一定間隔dで配置するように、その端部が第2の支持部材20bの部材挿入部21bに挿入される。取り付け部材10bは、第2の支持部材20bに対して着脱可能であり、取り付け部材10bのz方向における間隔dは、任意に変更することが可能である。ここで、部材挿入部21bは、z方向に例えば3mm程度の間隔で形成されており、z方向における間隔dは、例えば30mm程度から50mm程度までの間で変更可能とすることができる。
FIG. 11 is a diagram showing a configuration example of the second support member 20b.
As shown in FIG. 11, the second support member 20b includes a plurality of member insertion portions 21b capable of inserting the plurality of attachment members 10b at arbitrary intervals in the z direction. The plurality of member insertion portions 21b are grooves (recesses) having a shape into which the attachment member 10b can be inserted, and are formed at equal intervals, for example, in the z direction. The ends of the N attachment members 10b are inserted into the member insertion portions 21b of the second support member 20b so as to be arranged at regular intervals d in the z direction. The attachment member 10b is removable from the second support member 20b, and the distance d of the attachment member 10b in the z direction can be arbitrarily changed. Here, the member insertion portions 21b are formed at intervals of, for example, about 3 mm in the z direction, and the interval d in the z direction can be changed, for example, from about 30 mm to about 50 mm.
 なお、本実施形態では、2つの第2の支持部材20bによって取り付け部材10bの両端部を支持する場合について説明するが、第2の支持部材20bは、取り付け部材10bの一端のみを支持してもよいし、取り付け部材10bの端部以外の位置を支持してもよい。また、第2の支持部材20bは、図11に示す構成に限定されるものではない。第2の支持部材20bは、第1の基板31がそれぞれ取り付けられた複数の取り付け部材10bを、任意の間隔で並列配置させて支持することが可能な構成であればよい。 In this embodiment, the case where both ends of the mounting member 10b are supported by the two second supporting members 20b will be described, but the second supporting member 20b may support only one end of the mounting member 10b. Alternatively, a position other than the end portion of the mounting member 10b may be supported. Further, the second support member 20b is not limited to the configuration shown in FIG. The second support member 20b may have a configuration capable of supporting a plurality of mounting members 10b to which the first substrate 31 is mounted by arranging them in parallel at arbitrary intervals.
 上記のように、第2形態のマイクロホンアレイ装置50は、第1の基板31が備える第2接続部32bと第2の基板10aが備える第4接続部12bとを接続する接続部材14と、接続部材14を介して第2の基板10aに接続された第1の基板31を、着脱可能に取り付ける取り付け部材10bと、を備える。
 このように、第1の基板31と第2の基板10aとを接続部材14を介して接続することができるため、第1の基板31の配置間隔を広く取ることができ、大型の測定対象物に対応した配置間隔の広いマイクロホンアレイ1を構成することができる。また、第1の基板31を取り付け部材10bに対して着脱可能とするので、マイクロホンmcの配置間隔を容易に変更することが可能である。
 この第2形態のマイクロホンアレイ1は、10mmより広い間隔でマイクロホンmcを配置する際に好適である。例えば、接続部材14は、30mm~50mm程度にマイクロホンmcを配置可能な長さとする。
As described above, the microphone array device 50 of the second form is connected to the connecting member 14 that connects the second connecting portion 32b included in the first substrate 31 and the fourth connecting portion 12b included in the second substrate 10a. A mounting member 10b for detachably attaching the first board 31 connected to the second board 10a via the member 14 is provided.
In this way, since the first substrate 31 and the second substrate 10a can be connected via the connecting member 14, the arrangement interval of the first substrate 31 can be widened, and a large measurement object can be measured. It is possible to configure the microphone array 1 having a wide arrangement interval corresponding to the above. Further, since the first substrate 31 can be attached to and detached from the attachment member 10b, the arrangement interval of the microphone mc can be easily changed.
The microphone array 1 of the second form is suitable for arranging the microphones mc at intervals wider than 10 mm. For example, the connecting member 14 has a length such that the microphone mc can be arranged at a length of about 30 mm to 50 mm.
 さらに、接続部材14は、第2接続部32bおよび第4接続部12bの少なくとも一方と着脱可能なコネクタを有するケーブルとすることができる。これにより、第1の基板31を第2の基板10aに対して着脱可能な構成とすることができる。したがって、第1の基板31を容易に交換することが可能である。例えば複数のマイクロホンmcのうちの1つに何らかの不具合が生じた場合には、不具合が生じたマイクロホンmcが実装された第1の基板31のみを修理、交換することができる。また、1つのマイクロホンmcが実装された第1の基板31から複数のマイクロホンmcが実装された第1の基板31に交換すれば、マイクロホンアレイ1が備えるマイクロホンmcの数を容易に増やすことができるとともに、マイクロホンmcの配置間隔も容易に変更することが可能である。 Further, the connecting member 14 can be a cable having a connector detachable from at least one of the second connecting portion 32b and the fourth connecting portion 12b. As a result, the first substrate 31 can be attached to and detached from the second substrate 10a. Therefore, the first substrate 31 can be easily replaced. For example, if one of the plurality of microphones mc has a problem, only the first board 31 on which the defective microphone mc is mounted can be repaired or replaced. Further, by replacing the first substrate 31 on which one microphone mc is mounted with the first substrate 31 on which a plurality of microphone mcs are mounted, the number of microphone mcs included in the microphone array 1 can be easily increased. At the same time, the arrangement interval of the microphone mc can be easily changed.
 さらに、取り付け部材10bは、第1の基板31を任意の間隔で取付可能な複数の基板取付部11を備えることができる。これにより、取り付け部材10bの任意の位置に第1の基板31を取り付けることができ、マイクロホンmcの配置間隔を容易に変更することが可能となる。
 さらに、本実施形態におけるマイクロホンアレイ装置50は、第1の基板31がそれぞれ接続された複数の取り付け部材10bを、任意の間隔で並列配置させて支持する第2の支持部材20bをさらに備える。したがって、複数のマイクロホンmcを容易かつ適切にアレイ状に配置することができる。また、第2の支持部材20bは、複数の取り付け部材10bを任意の間隔で挿入可能な複数の部材挿入部21bを備えることができるため、z方向における取り付け部材10bの配置間隔を、容易に所望の間隔とすることができる。
Further, the mounting member 10b can include a plurality of board mounting portions 11 to which the first board 31 can be mounted at arbitrary intervals. As a result, the first substrate 31 can be attached to an arbitrary position of the attachment member 10b, and the arrangement interval of the microphone mc can be easily changed.
Further, the microphone array device 50 in the present embodiment further includes a second support member 20b that supports a plurality of mounting members 10b to which the first substrate 31 is connected by arranging them in parallel at arbitrary intervals. Therefore, a plurality of microphones mc can be easily and appropriately arranged in an array. Further, since the second support member 20b can include a plurality of member insertion portions 21b into which the plurality of attachment members 10b can be inserted at arbitrary intervals, the arrangement interval of the attachment members 10b in the z direction can be easily desired. Can be an interval of.
 以上のように、マイクロホンmcの実装間隔が異なる複数種類の第1の基板31を用意しておき、取り付け部材10bに取り付ける第1の基板31の種類を変更することで、容易にx方向におけるマイクロホンmcの配置間隔を変更することができる。また、取り付け部材10bに対する第1の基板31の取り付け位置を変更することでも、容易にx方向におけるマイクロホンmcの配置間隔を変更することができる。
 また、第2の支持部材20bに対する取り付け部材10bの取り付け位置を変更することで、容易にz方向におけるマイクロホンmcの配置間隔を変更することができる。
 したがって、x方向およびz方向に所望の間隔でアレイ状に配置されたマイクロホンmcを備えるマイクロホンアレイ1とすることができる。
As described above, by preparing a plurality of types of the first substrate 31 having different mounting intervals of the microphone mc and changing the type of the first substrate 31 to be attached to the attachment member 10b, the microphone in the x direction can be easily obtained. The arrangement interval of mc can be changed. Further, by changing the mounting position of the first substrate 31 with respect to the mounting member 10b, the arrangement interval of the microphone mc in the x direction can be easily changed.
Further, by changing the mounting position of the mounting member 10b with respect to the second support member 20b, the arrangement interval of the microphone mc in the z direction can be easily changed.
Therefore, the microphone array 1 can be provided with microphones mc arranged in an array at desired intervals in the x-direction and the z-direction.
 以上説明したように、本実施形態におけるマイクロホンアレイ装置50は、マイクロホンmcのアレイ状の間隔(x方向およびz方向の間隔)を容易に変更することが可能である。
 格子状の基板に複数のマイクロホンを実装し、基板そのものでマイクロホンアレイを構成した場合、マイクロホンアレイを構成する基板がマイクロホンアレイ装置の筐体に固定されていると、被測定物の大きさに応じて格子状の間隔(マイクロホンの間隔)を変更したい場合には、マイクロホンアレイ装置ごと交換する必要がある。つまり、被測定物ごとにマイクロホンアレイ装置を用意する必要があり、コストが嵩む。
 これに対して、本実施形態では、マイクロホンmcを第1の基板31に実装し、当該第1の基板31の交換や配置位置の変更を可能とする。したがって、マイクロホンmcの配置間隔を容易に変更することができ、様々な大きさの被測定物に対応したマイクロホンアレイ装置50とすることができる。そのため、上記従来のように被測定物ごとにマイクロホンアレイ装置を用意する必要がなく、コストを削減することができる。
As described above, the microphone array device 50 in the present embodiment can easily change the array-like spacing (spacing in the x-direction and z-direction) of the microphone mc.
When a plurality of microphones are mounted on a grid-like substrate and the microphone array is configured by the substrate itself, if the substrate constituting the microphone array is fixed to the housing of the microphone array device, it depends on the size of the object to be measured. If you want to change the grid-like spacing (microphone spacing), you need to replace the entire microphone array device. That is, it is necessary to prepare a microphone array device for each object to be measured, which increases the cost.
On the other hand, in the present embodiment, the microphone mc is mounted on the first substrate 31, and the first substrate 31 can be replaced or the arrangement position can be changed. Therefore, the arrangement interval of the microphone mc can be easily changed, and the microphone array device 50 corresponding to the object to be measured of various sizes can be obtained. Therefore, it is not necessary to prepare a microphone array device for each object to be measured as in the conventional case, and the cost can be reduced.
 ところで、被測定物が小さい場合、マイクロホンの格子間隔を、例えば10mm以下にしたいといった場合がある。このような小型マイクロホンアレイを構成した場合、マイクロホンアレイの測定面が密な構造となっていると、マイクロホンアレイが壁とみなされて音が反射し、被測定物とマイクロホンアレイとの間で音が反響してしまう。定常状態での音を測定したい場合、反響した音が、測定したい音に重畳されるため、精確な測定の妨げとなる。その結果、このマイクロホンアレイを使用した音響の解析が困難となる。 By the way, when the object to be measured is small, there are cases where it is desired to reduce the grid spacing of the microphone to, for example, 10 mm or less. When such a small microphone array is configured, if the measurement surface of the microphone array has a dense structure, the microphone array is regarded as a wall and sound is reflected, and the sound is reflected between the object to be measured and the microphone array. Reverberates. When it is desired to measure the sound in a steady state, the echoed sound is superimposed on the sound to be measured, which hinders accurate measurement. As a result, it becomes difficult to analyze the sound using this microphone array.
 これに対して、本実施形態では、マイクロホンmcを実装した第1の基板31を第2の基板10aに直接接続する第1形態によりマイクロホンアレイ1を構成することができる。また、このとき、第1の基板31と第2の基板10aとを平行接続し、第1の基板31および第2の基板10aを測定面に対して垂直に配置することができる。したがって、マイクロホンmcの格子間隔が狭くても、マイクロホンアレイの測定面が密な構造になることを抑制することができる。その結果、マイクロホンアレイからの反射音が音響解析結果へ及ぼす悪影響を抑制することができる。
 また、マイクロホンmcを無指向性のマイクロホンとすれば、第1の基板31の姿勢にかかわらず、マイクロホンmcによる収音を適切に行うことができる。また、マイクロホンmcを、MEMSマイクロホンとすれば、小型の被解析対象向けの近接場音響ホログラフィを実現可能なマイクロホンアレイとすることができる。
On the other hand, in the present embodiment, the microphone array 1 can be configured by the first embodiment in which the first substrate 31 on which the microphone mc is mounted is directly connected to the second substrate 10a. At this time, the first substrate 31 and the second substrate 10a can be connected in parallel, and the first substrate 31 and the second substrate 10a can be arranged perpendicular to the measurement surface. Therefore, even if the lattice spacing of the microphone mc is narrow, it is possible to prevent the measurement surface of the microphone array from becoming a dense structure. As a result, it is possible to suppress the adverse effect of the reflected sound from the microphone array on the acoustic analysis result.
Further, if the microphone mc is an omnidirectional microphone, sound collection by the microphone mc can be appropriately performed regardless of the posture of the first substrate 31. Further, if the microphone mc is a MEMS microphone, it can be a microphone array capable of realizing near-field acoustic holography for a small object to be analyzed.
 なお、上述したように、マイクロホンmcは指向性のマイクロホンであってもよい。この場合、当該指向性のマイクロホンにおいて最も感度が高くなるセンサ面が、音源面2aを向くように、すなわち音源面2aに対して平行または略平行となるように、第1の基板31が配置されていることが好ましい。
 本実施形態における音響解析システムでは、マイクロホンアレイ1は、被測定物の音源面2aに対して測定面が平行となるように、被測定物に近接して配置される。つまり、マイクロホンアレイ1の測定面は、音源面2aに対して平行である。したがって、マイクロホンmcが指向性のマイクロホンである場合には、マイクロホンmcのセンサ面が測定面と音源面2aとに対してそれぞれ平行または略平行となるように、マイクロホンmcが第1の基板31に実装されていることが好ましい。これにより、指向性のマイクロホンによる収音を適切に行うことができる。
As described above, the microphone mc may be a directional microphone. In this case, the first substrate 31 is arranged so that the sensor surface having the highest sensitivity in the directional microphone faces the sound source surface 2a, that is, is parallel to or substantially parallel to the sound source surface 2a. Is preferable.
In the acoustic analysis system of the present embodiment, the microphone array 1 is arranged close to the object to be measured so that the measurement surface is parallel to the sound source surface 2a of the object to be measured. That is, the measurement surface of the microphone array 1 is parallel to the sound source surface 2a. Therefore, when the microphone mc is a directional microphone, the microphone mc is placed on the first substrate 31 so that the sensor surface of the microphone mc is parallel or substantially parallel to the measurement surface and the sound source surface 2a, respectively. It is preferable that it is implemented. As a result, sound collection by the directional microphone can be appropriately performed.
 また、マイクロホンmcを実装した第1の基板31と第2の基板10aとを接続部材14を介して接続する第2形態のマイクロホンアレイ1を構成する場合にも、取り付け部材10bを、測定面に対して垂直に伸びる形状とし、第1の基板31を、取り付け部材10bにおける測定面に対して垂直な面に取り付けることで、第1の基板31を測定面に対して垂直に伸びる姿勢で配置することができる。したがって、第1の基板31および取り付け部材10bが壁となることを抑制し、上述した反射音の発生を抑制することができる。 Further, also when the microphone array 1 of the second form in which the first substrate 31 on which the microphone mc is mounted and the second substrate 10a are connected via the connecting member 14 is configured, the mounting member 10b is attached to the measurement surface. By mounting the first substrate 31 on a surface of the mounting member 10b that is perpendicular to the measurement surface, the first substrate 31 is arranged in a posture that extends perpendicularly to the measurement surface. be able to. Therefore, it is possible to prevent the first substrate 31 and the mounting member 10b from forming a wall, and to suppress the generation of the reflected sound described above.
 さらにまた、マイクロホンmcは、第1の基板31において、被測定物に近い位置に実装することができる。これにより、マイクロホンmcにより適切に音声を収音することができる。さらにこのとき、マイクロホンmcを、第2の基板10aや取り付け部材10bの被測定物側の端面から被測定物側に突出して配置することで、より適切に音声を収音することが可能となる。
 また、第2形態のマイクロホンアレイ装置50において、接続部材14は、第1の基板31における被測定物から遠い側から第2の基板10aへ伸びるようにすることができる。この場合、接続部材14が収音の妨げになることを抑制することができる。
Furthermore, the microphone mc can be mounted on the first substrate 31 at a position close to the object to be measured. As a result, the sound can be appropriately picked up by the microphone mc. Further, at this time, by arranging the microphone mc so as to project from the end surface of the second substrate 10a or the mounting member 10b on the object to be measured side toward the object to be measured, it is possible to collect sound more appropriately. ..
Further, in the microphone array device 50 of the second form, the connecting member 14 can be made to extend from the side far from the object to be measured on the first substrate 31 to the second substrate 10a. In this case, it is possible to prevent the connecting member 14 from hindering sound collection.
 以上説明したように、本実施形態におけるマイクロホンアレイ装置50は、複数のマイクロホンmcと、複数のマイクロホンmcのうち少なくとも1つのマイクロホンmcが実装された少なくとも1つの第1の基板31と、第1の基板31と電気的に接続され、マイクロホンmcにより取得された音情報を、第1の基板31を制御する制御基板40に対して出力する第2の基板10aと、を備える。そして、第1の基板31は、接続形態の異なる第1接続部32aと第2接続部32bとを備え、第2の基板10aは、第1接続部32aと電気的に接続可能な第3接続部12aと、第2接続部32bと電気的に接続可能な第4接続部12bと、を備える。 As described above, the microphone array device 50 according to the present embodiment includes a plurality of microphone mcs, at least one first substrate 31 on which at least one of the plurality of microphones mcs is mounted, and a first substrate. It includes a second substrate 10a that is electrically connected to the substrate 31 and outputs sound information acquired by the microphone mc to a control substrate 40 that controls the first substrate 31. The first substrate 31 includes a first connection portion 32a and a second connection portion 32b having different connection forms, and the second substrate 10a has a third connection that can be electrically connected to the first connection portion 32a. A portion 12a and a fourth connection portion 12b that can be electrically connected to the second connection portion 32b are provided.
 このように、第1の基板31および第2の基板10aがそれぞれ2種類の接続部を備え、第1の基板31と第2の基板10aとを異なる形態で接続することが可能である。具体的には、本実施形態におけるマイクロホンアレイ装置50は、第1の基板31と第2の基板10aとを直接接続する第1形態と、第1の基板31と第2の基板10aとを間接接続する第2形態とに変形可能である。そのため、マイクロホンmcの配置間隔を幅広く変更することが可能である。
 したがって、被測定物のサイズに応じてマイクロホンmcの間隔を容易に変更することができ、被測定物からの被測定音を適切に測定することができる。また、被測定物が小さく、マイクロホンmcの格子間隔が狭い場合であっても、被測定物からの被測定音を遮らない構成とすることができる。したがって、様々な小型の被測定物からの被測定音を精確に測定することができる。
In this way, the first substrate 31 and the second substrate 10a each have two types of connecting portions, and the first substrate 31 and the second substrate 10a can be connected in different forms. Specifically, the microphone array device 50 in the present embodiment indirectly connects the first substrate 31 and the second substrate 10a with the first embodiment directly connecting the first substrate 31 and the second substrate 10a. It can be transformed into a second form to be connected. Therefore, it is possible to change the arrangement interval of the microphone mc widely.
Therefore, the interval of the microphone mc can be easily changed according to the size of the object to be measured, and the sound to be measured from the object to be measured can be appropriately measured. Further, even when the object to be measured is small and the lattice spacing of the microphone mc is narrow, the structure can be configured so as not to block the sound to be measured from the object to be measured. Therefore, it is possible to accurately measure the sound to be measured from various small objects to be measured.
 図12は、本実施形態におけるマイクロホンアレイ装置50を備える音響解析システム1000の構成例である。なお、図12において、マイクロホンアレイ装置50は、マイクロホンアレイ1のみが簡略化して示されている。
 音響解析システム1000は、上述したマイクロホンアレイ装置50と、音響解析装置100と、表示装置200と、を備える。音響解析装置100は、第2の基板10aが出力する音情報を入力し、入力された音情報を解析して音の特徴を表す物理量を検出する。この音響解析システム1000において、マイクロホンアレイ1は、被測定物2の音源面2aに対して測定面が平行となるように、被測定物2に近接して配置される。
FIG. 12 is a configuration example of the acoustic analysis system 1000 including the microphone array device 50 in the present embodiment. In FIG. 12, only the microphone array 1 is simplified and shown in the microphone array device 50.
The acoustic analysis system 1000 includes the microphone array device 50 described above, an acoustic analysis device 100, and a display device 200. The acoustic analysis device 100 inputs the sound information output by the second substrate 10a, analyzes the input sound information, and detects a physical quantity representing a characteristic of the sound. In the acoustic analysis system 1000, the microphone array 1 is arranged close to the object to be measured 2 so that the measurement surface is parallel to the sound source surface 2a of the object to be measured 2.
 音響解析装置100は、信号処理部101と、解析処理部102と、記憶部103と、を備える。信号処理部101は、マイクロホンアレイ1の各マイクロホンmcからの信号に対して所定の信号処理を行い、音響解析に用いる信号を得る。なお、当該信号処理は、マイクロホンアレイ1が備えるM×N個のマイクロホンmcの信号の同期をとる処理等を含んでいてもよい。 The acoustic analysis device 100 includes a signal processing unit 101, an analysis processing unit 102, and a storage unit 103. The signal processing unit 101 performs predetermined signal processing on the signal from each microphone mc of the microphone array 1 to obtain a signal to be used for acoustic analysis. The signal processing may include a process of synchronizing the signals of M × N microphones included in the microphone array 1.
 解析処理部102は、信号処理部101により信号処理された信号を解析し、音の特徴を表す物理量を検出する。ここで、音の特徴を表す物理量は、音圧分布や粒子速度分布等を含む。そして、解析処理部102は、音の特徴を表す物理量に対応する画像を生成し、当該画像を表示装置200に表示させる表示制御を行う。
 記憶部103は、解析処理部102による解析結果等を記憶する。
 表示装置200は、液晶ディスプレイ等のモニタを備え、音響解析装置100の解析結果である上記画像を表示する。
 このように、本実施形態における音響解析システム1000は、マイクロホンmcの格子間隔を容易に変更可能なマイクロホンアレイ装置50を備えるので、サイズの異なる被測定物について、精確な測定および音響解析が可能となる。
The analysis processing unit 102 analyzes the signal processed by the signal processing unit 101 and detects a physical quantity representing the characteristics of the sound. Here, the physical quantity representing the characteristic of sound includes a sound pressure distribution, a particle velocity distribution, and the like. Then, the analysis processing unit 102 generates an image corresponding to a physical quantity representing the characteristics of the sound, and performs display control for displaying the image on the display device 200.
The storage unit 103 stores the analysis result and the like by the analysis processing unit 102.
The display device 200 includes a monitor such as a liquid crystal display, and displays the above image which is the analysis result of the acoustic analysis device 100.
As described above, since the acoustic analysis system 1000 in the present embodiment includes the microphone array device 50 in which the grid spacing of the microphone mc can be easily changed, accurate measurement and acoustic analysis of objects of different sizes are possible. Become.
 なお、M×Nマイクロホンアレイを備える上記の音響解析システム1000は、例えば、M個のマイクロホンmcの録音に関する制御を行うN個のマイクロホンアレイモジュールと、N個のマイクロホンアレイモジュールを制御する制御部と、を備える構成であってもよい。この場合、マイクロホンアレイモジュールは、M個のマイクロホンmcと、M個のマイクロホンmcが実装された少なくとも1つの第1の基板31と、当該第1の基板31を制御する1つの制御基板40とを備え、M個のマイクロホンmcにより取得された音情報を制御部に送信する。そして、制御部は、N個のマイクロホンアレイモジュールからそれぞれマイクロホンmcの信号を受信し、音響解析に用いるための信号として処理する。 The acoustic analysis system 1000 including the M × N microphone array includes, for example, an N microphone array module that controls recording of M microphones mc, and a control unit that controls N microphone array modules. , And may be configured. In this case, the microphone array module includes M microphones mc, at least one first substrate 31 on which M microphones mc are mounted, and one control substrate 40 that controls the first substrate 31. The sound information acquired by the M microphones mc is transmitted to the control unit. Then, the control unit receives the microphone mc signal from each of the N microphone array modules and processes it as a signal to be used for acoustic analysis.
 このとき、制御部は、各マイクロホンアレイモジュールから受信したマイクロホンmcの信号の位相を揃える処理を行ってもよい。なお、1つのマイクロホンアレイモジュールが備えるM個のマイクロホンmcの同期は、電気的にとれているものとする。ここで、1つのマイクロホンアレイモジュールは、例えばスマートスピーカー(AIスピーカー)を利用することができる。
 この場合、マイクロホンアレイモジュールを追加することで、マイクロホンアレイ1を構成するマイクロホンmcの数を容易に増加することができる。したがって、被測定物のサイズに対応させてマイクロホンアレイ1のサイズを大きくしたり、空間分解能を良好にしたりすることが容易となる。
At this time, the control unit may perform a process of aligning the phases of the microphone mc signals received from each microphone array module. It is assumed that the synchronization of the M microphones mc included in one microphone array module is electrically performed. Here, one microphone array module can utilize, for example, a smart speaker (AI speaker).
In this case, the number of microphones mc constituting the microphone array 1 can be easily increased by adding the microphone array module. Therefore, it becomes easy to increase the size of the microphone array 1 and improve the spatial resolution in accordance with the size of the object to be measured.
(変形例) 上記実施形態においては、第1の基板31を、複数のマイクロホンmcが配置された測定面に対して垂直に配置する場合について説明したが、第1の基板31は測定面に対して垂直または略垂直に配置されていればよい。つまり、第1の基板31は、測定面に対して傾斜して配置されていてもよい。この場合にも、マイクロホンアレイ1による反射音の影響を抑制する効果が得られる。
 また、上記実施形態におけるM×Nのマイクロホンアレイ1を複数連結し、さらに大きなマイクロホンアレイを構成してもよい。
(Modification Example) In the above embodiment, the case where the first substrate 31 is arranged perpendicular to the measurement surface on which a plurality of microphones mc are arranged has been described, but the first substrate 31 is relative to the measurement surface. It suffices if it is arranged vertically or substantially vertically. That is, the first substrate 31 may be arranged so as to be inclined with respect to the measurement surface. Also in this case, the effect of suppressing the influence of the reflected sound by the microphone array 1 can be obtained.
Further, a plurality of M × N microphone arrays 1 in the above embodiment may be connected to form a larger microphone array.
 1…マイクロホンアレイ、2…被測定物(音源)、2a…音源面、10a…第2の基板、10b…取り付け部材、11…基板取付部、12a…第3接続部、12b…第4接続部、13…第5接続部、14…接続部材、14a…第1のコネクタ部、14b…第2のコネクタ部、20a…第1の支持部材、20b…第2の支持部材、31…第1の基板、32a…第1接続部、32b…第2接続部、33…LED、40…制御基板、41…ケーブル、50…マイクロホンアレイ装置、100…音響解析装置、200…表示装置、1000…音響解析システム、mc…マイクロホン 1 ... Microphone array, 2 ... Object to be measured (sound source), 2a ... Sound source surface, 10a ... Second substrate, 10b ... Mounting member, 11 ... Board mounting part, 12a ... Third connection part, 12b ... Fourth connection part , 13 ... 5th connection part, 14 ... connection member, 14a ... first connector part, 14b ... second connector part, 20a ... first support member, 20b ... second support member, 31 ... first Board, 32a ... 1st connection, 32b ... 2nd connection, 33 ... LED, 40 ... Control board, 41 ... Cable, 50 ... Microphone array device, 100 ... Acoustic analysis device, 200 ... Display device, 1000 ... Acoustic analysis System, mc ... Microphone

Claims (14)

  1.  複数のマイクロホンと、
     前記複数のマイクロホンのうち少なくとも1つのマイクロホンが実装された少なくとも1つの第1の基板と、
     前記第1の基板と電気的に接続され、前記マイクロホンにより取得された音情報を、前記第1の基板を制御する制御基板に対して出力する第2の基板と、を備え、
     前記第1の基板は、
      接続形態の異なる第1接続部と第2接続部とを備え、
     前記第2の基板は、
      前記第1接続部と電気的に接続可能な第3接続部と、
      前記第2接続部と電気的に接続可能な第4接続部と、を備えることを特徴とするマイクロホンアレイ装置。
    With multiple microphones
    With at least one first substrate on which at least one of the plurality of microphones is mounted,
    A second board that is electrically connected to the first board and outputs sound information acquired by the microphone to a control board that controls the first board is provided.
    The first substrate is
    A first connection part and a second connection part having different connection forms are provided.
    The second substrate is
    A third connection portion that can be electrically connected to the first connection portion,
    A microphone array device including a fourth connection portion that can be electrically connected to the second connection portion.
  2.  前記第1接続部と前記第3接続部とは、直接接続可能であり、
     前記第1の基板は、前記第1接続部および前記第3接続部を介して前記第2の基板に対して着脱可能であることを特徴とする請求項1に記載のマイクロホンアレイ装置。
    The first connection portion and the third connection portion can be directly connected to each other.
    The microphone array device according to claim 1, wherein the first substrate can be attached to and detached from the second substrate via the first connection portion and the third connection portion.
  3.  前記第1接続部および前記第3接続部は、
     前記第1の基板と前記第2の基板とを接続する基板対基板コネクタであることを特徴とする請求項2に記載のマイクロホンアレイ装置。
    The first connection portion and the third connection portion are
    The microphone array device according to claim 2, wherein the microphone array device is a substrate-to-board connector for connecting the first substrate and the second substrate.
  4.  前記第2の基板は、複数の前記第3接続部を備えることを特徴とする請求項2または3に記載のマイクロホンアレイ装置。 The microphone array device according to claim 2 or 3, wherein the second substrate includes a plurality of the third connection portions.
  5.  複数の前記第2の基板を備え、
     前記第1の基板がそれぞれ接続された前記複数の第2の基板を、任意の間隔で並列配置させて支持する第1の支持部材をさらに備えることを特徴とする請求項2から4のいずれか1項に記載のマイクロホンアレイ装置。
    With a plurality of the second substrates
    Any of claims 2 to 4, further comprising a first support member for supporting the plurality of second substrates to which the first substrates are connected by arranging them in parallel at arbitrary intervals. The microphone array device according to item 1.
  6.  前記第1の支持部材は、
     前記複数の第2の基板を任意の間隔で挿入可能な複数の基板挿入部を備えることを特徴とする請求項5に記載のマイクロホンアレイ装置。
    The first support member is
    The microphone array device according to claim 5, further comprising a plurality of substrate insertion portions capable of inserting the plurality of second substrates at arbitrary intervals.
  7.  前記第2接続部と前記第4接続部とを接続する接続部材と、
     前記接続部材を介して前記第2の基板に接続された前記第1の基板を、着脱可能に取り付ける取り付け部材と、をさらに備えることを特徴とする請求項1から6のいずれか1項に記載のマイクロホンアレイ装置。
    A connecting member that connects the second connecting portion and the fourth connecting portion,
    The invention according to any one of claims 1 to 6, further comprising a mounting member for detachably attaching the first substrate connected to the second substrate via the connecting member. Microphone array device.
  8.  前記接続部材は、
     前記第2接続部および前記第4接続部の少なくとも一方と着脱可能なコネクタを有するケーブルであることを特徴とする請求項7に記載のマイクロホンアレイ装置。
    The connecting member
    The microphone array device according to claim 7, wherein the cable has a connector detachable from at least one of the second connection portion and the fourth connection portion.
  9.  前記取り付け部材は、
     前記第1の基板を任意の間隔で取付可能な複数の基板取付部を備えることを特徴とする請求項7または8に記載のマイクロホンアレイ装置。
    The mounting member
    The microphone array device according to claim 7 or 8, wherein the first substrate is provided with a plurality of substrate mounting portions capable of mounting the first substrate at arbitrary intervals.
  10.  複数の前記取り付け部材を備え、
     前記第1の基板がそれぞれ取り付けられた複数の前記取り付け部材を、任意の間隔で並列配置させて支持する第2の支持部材をさらに備えることを特徴とする請求項7から9のいずれか1項に記載のマイクロホンアレイ装置。
    With a plurality of the mounting members
    Any one of claims 7 to 9, further comprising a second support member that supports the plurality of mounting members to which the first substrate is mounted by arranging them in parallel at arbitrary intervals. The microphone array device according to.
  11.  前記第2の支持部材は、
     前記複数の取り付け部材を任意の間隔で挿入可能な複数の部材挿入部を備えることを特徴とする請求項10に記載のマイクロホンアレイ装置。
    The second support member is
    The microphone array device according to claim 10, further comprising a plurality of member insertion portions capable of inserting the plurality of mounting members at arbitrary intervals.
  12.  前記第1の基板は、前記複数のマイクロホンがアレイ状に配置された測定面に対して、それぞれ垂直または略垂直に配置されていることを特徴とする請求項1から11のいずれか1項に記載のマイクロホンアレイ装置。 The first substrate according to any one of claims 1 to 11, wherein the plurality of microphones are arranged vertically or substantially perpendicular to the measurement surfaces arranged in an array. The microphone array device described.
  13.  前記複数のマイクロホンの各々は、無指向性のマイクロホンであることを特徴とする請求項1から12のいずれか1項に記載のマイクロホンアレイ装置。 The microphone array device according to any one of claims 1 to 12, wherein each of the plurality of microphones is an omnidirectional microphone.
  14.  請求項1から13のいずれか1項に記載のマイクロホンアレイ装置と、
     前記制御基板を有する音響解析装置と、を備え、
     前記音響解析装置は、
      前記第2の基板が出力する前記音情報を入力し、当該音情報を解析して音の特徴を表す物理量を検出することを特徴とする音響解析システム。
    The microphone array device according to any one of claims 1 to 13.
    An acoustic analysis device having the control board, and
    The acoustic analyzer is
    An acoustic analysis system characterized in that the sound information output by the second substrate is input, the sound information is analyzed, and a physical quantity representing a characteristic of the sound is detected.
PCT/JP2020/022429 2019-06-18 2020-06-05 Microphone array device and sound analysis system WO2020255762A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080044382.1A CN113994713B (en) 2019-06-18 2020-06-05 Microphone array device and sound analysis system
JP2020571889A JPWO2020255762A1 (en) 2019-06-18 2020-06-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019112898 2019-06-18
JP2019-112898 2019-06-18

Publications (1)

Publication Number Publication Date
WO2020255762A1 true WO2020255762A1 (en) 2020-12-24

Family

ID=74040049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022429 WO2020255762A1 (en) 2019-06-18 2020-06-05 Microphone array device and sound analysis system

Country Status (2)

Country Link
JP (1) JPWO2020255762A1 (en)
WO (1) WO2020255762A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032314A (en) * 2002-06-25 2004-01-29 Fuji Xerox Co Ltd Microphone array
US20050189847A1 (en) * 2004-02-27 2005-09-01 Tuss Joel R. Methods and systems for supporting acoustical transducers
US20180227666A1 (en) * 2017-01-27 2018-08-09 Shure Acquisition Holdings, Inc. Array microphone module and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032314A (en) * 2002-06-25 2004-01-29 Fuji Xerox Co Ltd Microphone array
US20050189847A1 (en) * 2004-02-27 2005-09-01 Tuss Joel R. Methods and systems for supporting acoustical transducers
US20180227666A1 (en) * 2017-01-27 2018-08-09 Shure Acquisition Holdings, Inc. Array microphone module and system

Also Published As

Publication number Publication date
JPWO2020255762A1 (en) 2020-12-24
CN113994713A (en) 2022-01-28

Similar Documents

Publication Publication Date Title
CN109076300B (en) Earphone test
US9755604B2 (en) Audio systems and methods employing an array of transducers optimized for particular sound frequencies
US8061213B2 (en) High temperature, high bandwidth pressure acquisition system
US20130121505A1 (en) Microphone array configuration and method for operating the same
EP3471439A1 (en) Gradient micro-electro-mechanical systems (mems) microphone with varying height assemblies
JP7100119B2 (en) Compact measurement device configuration for complex circuit integration
US9510120B2 (en) Apparatus and method for testing sound transducers
EP2510404A1 (en) Acoustic transducer assembly
CN111829646B (en) Particle vibration velocity sensor with wide response frequency band
CN212115678U (en) Microphone test board and microphone test system
WO2020255762A1 (en) Microphone array device and sound analysis system
WO2020059340A1 (en) Microphone array device and sound analysis system
KR20060127776A (en) Recording device and adjustment method of recording device
Zhang et al. A MEMS microphone inspired by Ormia for spatial sound detection
CN113994713B (en) Microphone array device and sound analysis system
JP6283307B2 (en) Physical quantity measuring device
CN111919454B (en) Microphone array and acoustic analysis system
WO2014192088A1 (en) Active vibration damping device and active vibration damping method
JP2023534575A (en) torque and force transducer
KR102144805B1 (en) A compact omnidirectional acoustic camera using an array of small acoustic sensors configured in a tetrahedron
JP2005064796A (en) Mounting structure of speaker and array speaker device
JP2021516411A (en) Data acquisition device for instrumentation of structures
Chan et al. Bulk calibration method of micro-electromechanical system (MEMS) microphones
CN214281590U (en) Flat electrostatic sound box
KR20090017385A (en) Apparatus for inspecting electric condition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020571889

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827409

Country of ref document: EP

Kind code of ref document: A1