WO2020059340A1 - Microphone array device and sound analysis system - Google Patents

Microphone array device and sound analysis system Download PDF

Info

Publication number
WO2020059340A1
WO2020059340A1 PCT/JP2019/030879 JP2019030879W WO2020059340A1 WO 2020059340 A1 WO2020059340 A1 WO 2020059340A1 JP 2019030879 W JP2019030879 W JP 2019030879W WO 2020059340 A1 WO2020059340 A1 WO 2020059340A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
microphones
microphone array
array device
support
Prior art date
Application number
PCT/JP2019/030879
Other languages
French (fr)
Japanese (ja)
Inventor
恵 野崎
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980055488.9A priority Critical patent/CN112601941A/en
Publication of WO2020059340A1 publication Critical patent/WO2020059340A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Definitions

  • the present invention relates to a microphone array device and an acoustic analysis system.
  • Japanese Patent Application Laid-Open Publication No. 2005-91272 discloses a sound pressure distribution analysis system using a microphone array in which a plurality of microphones are arranged in a grid and sound is detected at a plurality of positions.
  • This sound pressure distribution analysis system includes an amplifier capable of amplifying a multi-channel signal, and the amplifier amplifies each sound signal of a microphone and outputs the amplified signal to an analysis terminal.
  • the analysis terminal performs A / D conversion on the sound signal input from the amplifier and records the time signal as a time waveform.
  • a condenser microphone or a dynamic microphone is used.
  • the measurement surface of the microphone array has a dense structure, and the influence of the reflected sound from the microphone array. This makes it difficult to analyze acoustic holography. Therefore, a microphone array using a small MEMS (Micro-Electrical-Mechanical Systems) microphone that can be surface-mounted on a substrate is known.
  • MEMS Micro-Electrical-Mechanical Systems
  • a method is known in which a plurality of MEMS microphones are surface-mounted on a lattice-like substrate, and a microphone array device is constituted by the substrate itself.
  • an object of the present invention is to provide a microphone array device and an acoustic analysis system that can easily exchange a plurality of microphones.
  • a microphone array device includes a plurality of microphones, a microphone board on which the plurality of microphones are mounted, and a housing that detachably supports the microphone board.
  • a first cable connected to the microphone board and outputting sound information acquired by the microphone to a control board that controls the microphone board, wherein the first cable includes the control board A first connector detachable from the first connector.
  • an acoustic analysis system includes the microphone array device and an acoustic analysis device having the control board, wherein the acoustic analysis device is configured to transmit the sound information via the first cable. Is input, and the sound information is analyzed to detect a physical quantity representing a feature of the sound.
  • a plurality of microphones are mounted on a microphone substrate that is detachable from the housing, so that the plurality of microphones can be easily replaced.
  • FIG. 1 is an overall view of a microphone array according to the present embodiment.
  • FIG. 2 is a diagram illustrating a first cable for connecting the microphone board and the control board.
  • FIG. 3 is a diagram illustrating the configuration of the first support.
  • FIG. 4 is a diagram showing the configuration of the second support.
  • FIG. 5 is a diagram illustrating a connection example between the microphone board and the control board.
  • FIG. 6 is a configuration example of a microphone array device.
  • FIG. 7 is a diagram illustrating an example of the acoustic analysis system.
  • FIG. 1 is an overall view of a microphone array 1 included in the microphone array device according to the present embodiment.
  • the microphone array 1 in the present embodiment can be used, for example, in an acoustic analysis system that analyzes a measured sound from a measured object (sound source) using a near-field acoustic holography method.
  • a near-field acoustic holography method it is necessary to measure a sound pressure distribution on a measurement surface close to and parallel to a sound source surface, and a microphone array in which a plurality of microphones are arranged in a lattice shape is used.
  • the microphone array 1 includes a plurality of microphones mc, a plurality of first supports 10, a plurality of second supports 20, and a plurality of microphone substrates 31.
  • a plurality of microphones mc are mounted on the microphone substrate 31, respectively, and the first support 10 and the second support 20 detachably support the microphone substrate 31.
  • Each of the plurality of microphones mc can be, for example, a MEMS (Micro-Electrical-Mechanical Systems) microphone.
  • MEMS Micro-Electrical-Mechanical Systems
  • the first support members 10 are members each having a first direction (x direction) as a longitudinal direction.
  • the microphone array 1 includes N (eight in FIG. 1) first supports 10.
  • the second support 20 is a member whose longitudinal direction is a second direction (z direction) orthogonal to the first direction (x direction).
  • the microphone array 1 includes two second supports 20. The two second supports 20 detachably support both ends of the N first supports 10 respectively.
  • the first support 10 detachably supports one microphone substrate 31 each.
  • the microphone substrate 31 is detachably attached to the first support 10 via an attachment hole 31a formed in the microphone substrate 31.
  • the microphone substrate 31 supports M (eight in FIG. 1) microphones mc arranged at regular intervals d in the x direction.
  • the first supports 10 are arranged in parallel at a constant interval d in the z direction.
  • the position of the microphone mc in the x direction is the same. That is, the M first microphones mc are arranged in a grid in the xz direction by the N first supports 10. In the present embodiment, a case will be described in which the first support 10 supports one microphone substrate 31.
  • the first support 10 includes a plurality of microphone substrates 31 on each of which a plurality of microphones mc are mounted. May be supported.
  • the microphone substrate 31 may be fixed to the first support 10.
  • the xz plane is a plane parallel to the measurement surface on which the microphones mc of the microphone array 1 are arranged in a lattice, and is a plane parallel to the sound source surface of the device under test.
  • the microphone array 1 is arranged with the measurement surface separated from the sound source surface of the device under test by a predetermined distance in the y direction.
  • the microphone array 1 is arranged such that the distance between the measurement surface and the sound source surface in the y direction is within 1 cm.
  • the first support 10 and the second support 20 can form a housing that supports the microphone substrate 31.
  • M ⁇ N microphones mc are mounted on one microphone substrate 31 for each of M microphones, and the housing detachably supports each of the N microphone substrates 31.
  • the housing is not limited to the configuration illustrated in FIG.
  • the housing may have any configuration as long as it supports the microphone substrate 31 in a detachable manner.
  • the second support 20 may support only one end of the first support 10 or may support a position other than the end of the first support 10.
  • the housing may include members other than the first support 10 and the second support 20.
  • the microphone mc can be, for example, an omnidirectional MEMS microphone that can collect sound from all directions. In the present embodiment, the case where the microphone mc is a non-directional microphone will be described, but the microphone mc may be a directional microphone.
  • the microphone mc incorporates an acoustic transducer (MEMS chip) using MEMS technology and an amplifier, and is mounted on the surface of the microphone substrate 31.
  • the microphone mc converts sound (sound pressure) into an electric signal by an acoustic transducer, amplifies the converted electric signal by an amplifier, and outputs the amplified electric signal.
  • the microphone mc is a digital microphone
  • the microphone mc further includes a built-in A / D converter, and can convert an analog signal amplified by an amplifier into a digital signal and output the digital signal.
  • the microphone substrate 31 is an M-channel microphone substrate on which M microphones mc are mounted.
  • the microphone substrate 31 has a power supply line and a ground line common to the plurality of microphones mc mounted on the surface.
  • the microphone substrate 31 has a clock line common to a plurality of microphones mc mounted on the surface.
  • the number of pins of the connector can be reduced.
  • the number of pins of the connector can be reduced by sharing a clock line among a plurality of microphones mc.
  • a connector section 32 is provided on the microphone substrate 31. As shown in FIG. 2, the connector section 32 is connected to a connector section 34 of a first cable 33 for connecting the microphone board 31 and a control board 40 (see FIG. 5) for controlling the microphone board 31. be able to.
  • the first cable 33 includes a connector portion (first connector) 35 detachable from the control board 40 at an end opposite to the connector section 34, and connects the microphone board 31 and the control board 40. In this state, the sound information acquired by the microphone mc can be output to the control board 40.
  • the microphone board 31 is detachably connected to the control board 40 by the first cable 33.
  • FIG. 3 is a configuration diagram showing a part of the first support 10 in the present embodiment.
  • the first support 10 has a plurality of mounting holes (not shown) to which the microphone substrate 31 can be mounted.
  • the plurality of mounting holes formed in the first support 10 correspond to the plurality of mounting holes 31a formed in the microphone substrate 31, respectively, and have a shape in which the microphone substrate 31 can be mounted.
  • the mounting holes formed in the first support 10 may be formed at regular intervals (for example, intervals of about 3 mm) in the x direction. In this case, it is possible to finely adjust the mounting position of the microphone substrate 31 in the x direction.
  • the first support 10 has a plate-like shape whose length in the z direction is shorter than the length in the y direction orthogonal to the measurement surface. That is, the first support 10 extends perpendicular to the measurement surface. Further, the microphone substrate 31 is attached in parallel to a plane perpendicular to the measurement plane of the first support 10. Thus, the mounting surface of the microphone mc is perpendicular to the measurement surface. In a state where the microphone substrate 31 is attached to the first support 10, the microphone mc is mounted on the microphone substrate 31 at a position close to the measured object, that is, at a position close to the sound source surface 2a.
  • the microphone mc is arranged so as to protrude from the end surface of the first support 10 on the object side (sound source surface 2a side) of the first support 10 toward the object side (sound source surface 2a side) in the y direction.
  • the first support 10 and the second support 20 are arranged on the side opposite to the sound source surface 2a with respect to the measurement surface so as not to block the sound to be measured from the sound source.
  • the connector portion 34 of the first cable 33 is connected to the connector portion 32 of the microphone substrate 31, the first cable 33 is far from the DUT (sound source surface 2a) on the microphone substrate 31 in the y direction. Extends from the side to the control board 40.
  • FIG. 4 is a diagram illustrating a configuration of the second support 20 in the present embodiment.
  • the second support 20 includes a plurality of mounting grooves (recesses) 21 into which the first support 10 can be inserted at an arbitrary interval in the z direction.
  • the plurality of mounting grooves 21 have a shape in which the first support 10 can be inserted, and are formed at equal intervals in the z direction.
  • the N first supports 10 are fixed by inserting their ends into the mounting grooves 21 of the second support 20 so as to be arranged at a constant interval d in the z direction.
  • the first support 10 is detachable from the second support 20, and the distance d in the z direction of the first support 10 can be arbitrarily changed.
  • the mounting grooves 21 are formed at intervals of, for example, about 3 mm in the z direction, and the interval d in the z direction can be changed, for example, from about 3 mm to about 20 mm.
  • FIG. 5 is a diagram illustrating a connection example between the microphone board 31 and the control board 40.
  • One end of a second cable 41 is connected to the control board 40, and the second cable 41 includes a connector (second connector) 42 at the other end.
  • the connector section 35 of the first cable 33 is detachable from the connector section 42 of the second cable 41. That is, in the present embodiment, the microphone board 31 and the control board 40 are connected via the first cable 33 and the second cable 41.
  • the control board 40 controls the M-channel microphone board 31 and can control the recording of the M microphones mc. Specifically, the control board 40 outputs a recording command to the microphone board 31, and is output from the microphone board 31 via the first cable 33 and the second cable 41 in response to the recording command. Recorded data (sound information acquired by the microphone mc) is input.
  • one microphone board 31 is connected to one control board 40. That is, the M ⁇ N microphones mc included in the microphone array 1 are connected to different control boards 40 for each of the M microphones mc. Each control board 40 controls the recording of the M microphones mc. In this case, a control unit for controlling the N control boards 40 may be further provided. Note that the number of microphones mc (microphone boards 31) connected to one control board 40 is not limited to the above. M ⁇ N microphones mc included in the microphone array 1 may be connected to one control board 40.
  • FIG. 6 is a configuration example of the microphone array device 50 in the present embodiment.
  • the microphone array device 50 includes the microphone array 1 and the first cable 33.
  • the microphone array 1 includes a plurality of microphones mc, a plurality of microphone boards 31 on which the plurality of microphones mc are respectively mounted, and a housing that detachably supports each of the plurality of microphone boards 31.
  • a first support 10 and a second support 20 FIG. 6 shows a case where the second support 20 is a rectangular frame.
  • the first cable 33 is connected to the microphone board 31 by connecting the connector section 34 to the connector section 32 mounted on the microphone board 31.
  • the first cable 33 is connected to the control board 40 by connecting the connector section 35 to a connector section 42 provided in a second cable 41 (not shown in FIG. 6) connected to the control board 40. You. Then, the first cable 33 outputs to the control board 40 sound information acquired by the plurality of microphones mc mounted on the microphone board 31 connected via the connector 34.
  • the microphone substrate 31 can be easily removed from the first support 10 by removing the screw fixing to the first support 10.
  • the microphone substrate 31 can be easily removed from the second support 20 together with the first support 10 by removing the first support 10 from the second support 20.
  • the microphone board 31 can be easily removed from the control board 40 disposed on the housing side by removing the connector 35 of the first cable 33 from the connector 42 of the second cable 41.
  • the microphone substrate 31 on which the plurality of microphones mc are mounted is detachably supported by the housing.
  • the first cable 33 connected to the microphone board 31 includes a connector section 35 that is detachable from the control board 40. Therefore, the microphone board 31 can be removed from the housing and the control board 40, and the plurality of microphones mc can be easily replaced.
  • the microphone array When multiple microphones are mounted on a grid-like substrate, and the microphone array is composed of the substrate itself, if the substrate that constitutes the microphone array is fixed to the housing of the microphone array device, it depends on the size of the DUT. If it is desired to change the grid-like interval (microphone interval), it is necessary to replace the entire microphone array device. That is, it is necessary to prepare a microphone array device for each device under test, which increases costs.
  • a plurality of microphones mc are mounted on the microphone substrate 31 as described above, and the microphone substrate 31 is configured to be detachable from the housing. Therefore, the microphone array device 50 corresponding to the DUT of various sizes can be obtained simply by replacing the microphone substrate 31. Therefore, it is not necessary to prepare a microphone array device for each device under test as in the above-described conventional case, and the cost can be reduced.
  • the microphone substrates of the M ⁇ N microphone array are compared with the case where the plurality of microphones mc are mounted on independent microphone substrates. The total number and the number of connectors can be reduced.
  • the microphone array device 50 includes a plurality of microphone substrates 31, and M microphones mc are mounted on each microphone substrate 31. Therefore, M ⁇ N microphones mc can be exchanged in units of M blocks. Therefore, if any one of the M ⁇ N microphones mc has a malfunction, only the microphone substrate 31 on which the M microphones mc including the microphone mc having the malfunction are mounted must be repaired or replaced. I just need.
  • a second cable 41 extends from the control board 40, and the connector section 35 provided in the first cable 33 may be configured to be detachable from the connector section 42 provided in the second cable 41. it can.
  • the microphone substrate 31 can be replaced more easily.
  • the first cable 33 includes a connector section 34 that is detachable from the connector section 32 mounted on the microphone board 31. Therefore, the microphone substrate 31 and the first cable 33 are disconnected, and only the microphone substrate 31 can be replaced. That is, it is not necessary to replace the first cable 33 together with the microphone board 31 each time the microphone board 31 is replaced.
  • the microphone array device 50 in the present embodiment may include an identification information holding unit that holds identification information for identifying the plurality of microphone substrates 31.
  • the microphone array device 50 determines which microphone board 30 is connected to each of the plurality of control boards 40 based on the identification information held by the identification information holding unit, that is, the microphone array 30 is attached to each of the plurality of control boards 40. Can be specified where the sound information of the microphone mc arranged is input.
  • the microphone array device 50 can accurately measure the sound to be measured from the object to be measured and use it for acoustic analysis.
  • the identification information holding unit may have a function capable of changing the held identification information.
  • the identification information can be updated each time the microphone substrate 31 is replaced. Therefore, even when the arrangement of the microphone boards 31 is unintentionally changed when the plurality of microphone boards 31 are simultaneously replaced, which microphone board 31 is located at any position on the microphone array. Can be appropriately determined, and the measured sound from the measured object can be accurately measured.
  • the identification information holding unit may be, for example, a storage unit such as a memory.
  • the storage unit may be configured to be readable only, or may be configured to be writable.
  • a dip switch may be used as the identification information holding unit. In this case, the identification information can be easily changed.
  • the housing supporting the microphone substrate 31 includes a plurality of first supports 10 that detachably support the plurality of microphone substrates 31, and at least one support that detachably supports the plurality of first supports 10. And two second supports 20.
  • a plurality of microphones mc are mounted on the microphone substrate 31 at regular intervals in the first direction (x direction), and the first support 10 is disposed at arbitrary regular intervals in the second direction (z direction). Can be arranged in parallel.
  • the second support 20 has a plurality of mounting grooves into which the first support 10 can be inserted at an arbitrary interval, and the plurality of first supports 10 are arranged at an arbitrary constant interval in the z direction. It can be arranged in parallel.
  • a plurality of microphones mc can be easily and appropriately arranged in an array. Further, by replacing the microphone substrate 31 with a microphone substrate 31 having a different distance in the x direction between the plurality of microphones mc, and changing the distance in the z direction of the first support 10, the lattice spacing d of the plurality of microphones mc is changed. Can be easily changed to a desired interval. Further, by adopting a configuration in which the first support 10 is inserted into the mounting groove of the second support 20, the distance d in the z direction of the microphone mc can be easily adjusted.
  • the grid spacing of the microphones is desired to be, for example, 1 cm or less.
  • the microphone array is regarded as a wall and the sound is reflected, and the sound is reflected between the measured object and the microphone array. Resonates.
  • the reverberant sound is superimposed on the sound to be measured, which hinders accurate measurement. As a result, it becomes difficult to analyze sound using the microphone array.
  • the plurality of microphones mc are supported by a ladder-shaped housing (the first support 10 and the second support 20). Therefore, compared to a configuration in which a plurality of microphones are supported on a lattice-shaped casing, for example, when the microphone array 1 is arranged close to the device under test, it is possible to suppress the sound from being reflected by the casing. can do. As a result, it is possible to suppress the adverse effect of the reflected sound from the microphone array 1 on the acoustic analysis result. Further, in the present embodiment, the microphone substrate 31 on which the microphone mc is mounted is arranged perpendicular to the measurement surface.
  • the microphone mc is a non-directional microphone, sound collection by the microphone mc can be appropriately performed regardless of the attitude of the microphone substrate 31. Further, if the microphone mc is a MEMS microphone, it is possible to provide a microphone array capable of realizing near-field acoustic holography for a small object to be analyzed.
  • the microphone mc may be a directional microphone.
  • the plurality of microphone substrates 31 are arranged such that the sensor surface having the highest sensitivity in the microphone of the directivity faces the sound source surface 2a, that is, is parallel or substantially parallel to the sound source surface 2a. Is preferred.
  • the microphone array 1 is arranged close to the device under test such that the measurement surface is parallel to the sound source surface 2a of the device under test. That is, the measurement surface of the microphone array 1 is parallel to the sound source surface 2a.
  • the microphone mc is a directional microphone
  • the microphone mc is mounted on the microphone substrate 31 such that the sensor surface of the microphone mc is parallel or substantially parallel to the measurement surface and the sound source surface 2a, respectively. Is preferred. Thereby, sound collection by the directional microphone can be appropriately performed.
  • the first support 10 By forming the first support 10 to have a shape extending perpendicular to the measurement surface, it is possible to suppress the first support 10 from becoming a wall and to suppress the generation of reflected sound. Further, by attaching the microphone substrate 31 to a surface of the first support 10 perpendicular to the measurement surface, the microphone substrate 31 can be easily and appropriately arranged perpendicular to the measurement surface. Further, the postures of the plurality of microphone substrates 31 can be easily aligned vertically.
  • the microphone mc is mounted on the microphone board 31 at a position close to the device under test. Thereby, sound can be appropriately collected by the microphone mc. Further, at this time, by arranging the microphone mc so as to protrude from the end surface of the first support body 10 on the side of the object to be measured, it is possible to more appropriately collect sound. Further, since the first cable 33 extends from the far side of the microphone substrate 31 from the object to be measured to the control substrate 40, the first cable 33 does not hinder sound collection.
  • the plurality of microphones mc are mounted on the microphone substrate 31 which is detachable from the housing, the plurality of microphones mc can be easily replaced. Can be. Therefore, the number and interval of the microphones mc can be easily changed according to the size of the device under test, and the sound under test from the device under test can be appropriately measured. Further, even when the object to be measured is small and the grid interval between the microphones mc is narrow, a configuration can be adopted in which the sound to be measured from the object to be measured is not blocked. Therefore, it is possible to accurately measure the sound to be measured from various small objects to be measured.
  • FIG. 7 is a configuration example of an acoustic analysis system 1000 including the microphone array device 50 according to the present embodiment.
  • the acoustic analysis system 1000 includes the above-described microphone array device 50, the acoustic analysis device 100, and the display device 200.
  • the sound analysis device 100 inputs sound information acquired by each of the plurality of microphones mc via the above-described first cable 33, analyzes the input sound information, and detects a physical quantity representing a feature of the sound. .
  • the microphone array 1 is arranged close to the device under test 2 such that the measurement surface is parallel to the sound source surface 2a of the device under test 2.
  • the acoustic analysis device 100 includes a signal processing unit 101, an analysis processing unit 102, and a storage unit 103.
  • the signal processing unit 101 performs predetermined signal processing on a signal from each microphone mc of the microphone array 1 to obtain a signal used for acoustic analysis.
  • the signal processing may include processing for synchronizing the signals of the M ⁇ N microphones mc included in the microphone array 1 and the like.
  • the analysis processing unit 102 analyzes the signal processed by the signal processing unit 101 and detects a physical quantity representing a feature of the sound.
  • the physical quantities representing the characteristics of the sound include a sound pressure distribution, a particle velocity distribution, and the like. Then, the analysis processing unit 102 generates an image corresponding to the physical quantity representing the characteristic of the sound, and performs display control for displaying the image on the display device 200.
  • the storage unit 103 stores an analysis result and the like by the analysis processing unit 102.
  • the display device 200 includes a monitor such as a liquid crystal display, and displays the image as an analysis result of the acoustic analysis device 100.
  • the acoustic analysis system 1000 includes the microphone array device 50 that can easily change the grid spacing of the microphones mc. Therefore, accurate measurement and acoustic analysis of DUTs having different sizes can be performed. Become.
  • the acoustic analysis system 1000 including the M ⁇ N microphone array includes, for example, N microphone array modules that perform control related to recording of the M microphones mc, and a control unit that controls the N microphone array modules. May be provided.
  • the microphone array module includes M microphones mc, one microphone board 31 on which the M microphones mc are mounted, and one control board 40 that controls the microphone board 31.
  • the sound information acquired by the microphone mc is transmitted to the control unit.
  • the control unit receives the signals of the microphones mc from the N microphone array modules and processes the signals as signals to be used for acoustic analysis.
  • the control unit may perform a process of aligning the phases of the signals of the microphones mc received from the respective microphone array modules.
  • the M microphones mc included in one microphone array module are electrically synchronized.
  • one microphone array module can use, for example, a smart speaker (AI speaker).
  • AI speaker smart speaker
  • the microphone array device 500 includes the plurality of microphone substrates 31 has been described, but the number of the microphone substrates 31 may be one. That is, M ⁇ N microphones mc may be mounted on one microphone substrate 31. Also in this case, the microphone substrate 31 is configured to be detachable from the housing, so that when a problem occurs in the microphone mc or when it is desired to change the grid interval according to the size of the measured object. By removing the microphone substrate 31 from the housing, the plurality of microphones mc can be easily replaced. That is, there is no need to repair or replace the entire microphone array device 50. Therefore, the cost can be reduced accordingly.
  • the connector (first connector) 35 of the first cable 33 is connected to the connector (second connector) 42 of the second cable 41 connected to the control board 40.
  • the connector section (first connector) 35 may be detachable from a connector section mounted on the control board 40. That is, the microphone board 31 and the control board 40 may be connected via only the first cable 33.
  • the microphone substrate 31 is arranged perpendicular to the measurement surface on which the plurality of microphones mc are arranged has been described, but the microphone substrate 31 is perpendicular or substantially perpendicular to the measurement surface. It is sufficient if they are arranged. That is, the microphone substrate 31 may be arranged to be inclined with respect to the measurement surface. Also in this case, the effect of suppressing the influence of the reflected sound by the microphone array 1 can be obtained. Further, a plurality of M ⁇ N microphone arrays 1 in the above embodiment may be connected to form a larger microphone array.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

A microphone array device 50 comprises a plurality of microphones, mic boards to which the plurality of microphones are respectively mounted, a housing which detachably supports the mic boards, and a first cable which is connected to the mic boards and outputs sound information acquired from the microphones to a control board which controls the mic boards. The first cable comprises a first connector which can be detachably attached to the control board.

Description

マイクロホンアレイ装置および音響解析システムMicrophone array device and acoustic analysis system
 本発明は、マイクロホンアレイ装置および音響解析システムに関する。 The present invention relates to a microphone array device and an acoustic analysis system.
 近年、製品の低騒音化の要求の高まりから、音場の空間的分布を測定し解析することが要求されている。
 日本国公開公報特開2005-91272号公報には、複数のマイクロホンを格子状に配列し、複数の位置で音を検知するマイクロホンアレイを用いた音圧分布解析システムが開示されている。この音圧分布解析システムは、多チャンネル信号の増幅が可能なアンプを備え、当該アンプがマイクロホンのそれぞれの音信号を増幅し、解析端末に対して出力する。解析端末は、アンプから入力された音信号をA/D変換し、時間波形として記録する。
 しかしながら、上記従来のマイクロホンアレイにおいては、コンデンサーマイク、あるいはダイナミックマイクを用いており、マイクロホンを例えば1cm以下の間隔で配置するとマイクロホンアレイの測定面が密な構造となり、マイクロホンアレイからの反射音の影響により音響ホログラフィの解析を行うことが困難となる。
 そこで、基板上に表面実装可能な小型のMEMS(Micro-Electrical-Mechanical Systems)マイクロホンを用いたマイクロホンアレイが知られている。このようなMEMSマイクロホンアレイとして、格子状の基板に複数のMEMSマイクロホンを表面実装し、基板そのものでマイクロホンアレイ装置を構成する方法が知られている。
2. Description of the Related Art In recent years, there has been a demand for measuring and analyzing a spatial distribution of a sound field due to a growing demand for lowering noise of products.
Japanese Patent Application Laid-Open Publication No. 2005-91272 discloses a sound pressure distribution analysis system using a microphone array in which a plurality of microphones are arranged in a grid and sound is detected at a plurality of positions. This sound pressure distribution analysis system includes an amplifier capable of amplifying a multi-channel signal, and the amplifier amplifies each sound signal of a microphone and outputs the amplified signal to an analysis terminal. The analysis terminal performs A / D conversion on the sound signal input from the amplifier and records the time signal as a time waveform.
However, in the above-mentioned conventional microphone array, a condenser microphone or a dynamic microphone is used. When microphones are arranged at intervals of, for example, 1 cm or less, the measurement surface of the microphone array has a dense structure, and the influence of the reflected sound from the microphone array. This makes it difficult to analyze acoustic holography.
Therefore, a microphone array using a small MEMS (Micro-Electrical-Mechanical Systems) microphone that can be surface-mounted on a substrate is known. As such a MEMS microphone array, a method is known in which a plurality of MEMS microphones are surface-mounted on a lattice-like substrate, and a microphone array device is constituted by the substrate itself.
日本国公開公報:特開2005-91272号公報Published Japanese Patent Application: JP-A-2005-91272
 基板そのものでマイクロホンアレイが構成され、当該マイクロホンアレイがマイクロホンアレイ装置の筐体に固定されている場合において、複数のマイクロホンのうちの1つに何らかの不具合が生じた場合や、被測定物のサイズに応じて格子間隔を変更したい場合には、マイクロホンアレイ装置ごと修理、交換する必要があり、コストが嵩む。
 そこで、本発明は、複数のマイクロホンを容易に交換することができるマイクロホンアレイ装置および音響解析システムを提供することを目的とする。
When the microphone array is composed of the substrate itself and the microphone array is fixed to the housing of the microphone array device, if any one of the plurality of microphones has a problem or the size of the object to be measured If it is desired to change the grid spacing accordingly, it is necessary to repair and replace the entire microphone array device, which increases costs.
Therefore, an object of the present invention is to provide a microphone array device and an acoustic analysis system that can easily exchange a plurality of microphones.
 上記課題を解決するために、本発明の一つの態様のマイクロホンアレイ装置は、複数のマイクロホンと、前記複数のマイクロホンがそれぞれ実装されたマイク基板と、前記マイク基板を着脱可能に支持する筐体と、前記マイク基板に接続され、前記マイクロホンにより取得された音情報を、前記マイク基板を制御する制御基板に対して出力する第一のケーブルと、を備え、前記第一のケーブルは、前記制御基板に対して着脱可能な第一のコネクタを備える。 In order to solve the above problems, a microphone array device according to one embodiment of the present invention includes a plurality of microphones, a microphone board on which the plurality of microphones are mounted, and a housing that detachably supports the microphone board. A first cable connected to the microphone board and outputting sound information acquired by the microphone to a control board that controls the microphone board, wherein the first cable includes the control board A first connector detachable from the first connector.
 また、本発明の一つの態様の音響解析システムは、前記マイクロホンアレイ装置と、前記制御基板を有する音響解析装置と、を備え、前記音響解析装置は、前記第一のケーブルを介して前記音情報を入力し、当該音情報を解析して音の特徴を表す物理量を検出する。 Further, an acoustic analysis system according to one aspect of the present invention includes the microphone array device and an acoustic analysis device having the control board, wherein the acoustic analysis device is configured to transmit the sound information via the first cable. Is input, and the sound information is analyzed to detect a physical quantity representing a feature of the sound.
 本発明の一つの態様によれば、複数のマイクロホンがそれぞれ筐体に対して着脱可能なマイク基板に実装されているため、複数のマイクロホンを容易に交換することができる。 According to one aspect of the present invention, a plurality of microphones are mounted on a microphone substrate that is detachable from the housing, so that the plurality of microphones can be easily replaced.
図1は、本実施形態におけるマイクロホンアレイの全体図である。FIG. 1 is an overall view of a microphone array according to the present embodiment. 図2は、マイク基板と制御基板とを接続する第一のケーブルを示す図である。FIG. 2 is a diagram illustrating a first cable for connecting the microphone board and the control board. 図3は、第一の支持体の構成を示す図である。FIG. 3 is a diagram illustrating the configuration of the first support. 図4は、第二の支持体の構成を示す図である。FIG. 4 is a diagram showing the configuration of the second support. 図5は、マイク基板と制御基板との接続例を示す図である。FIG. 5 is a diagram illustrating a connection example between the microphone board and the control board. 図6は、マイクロホンアレイ装置の構成例である。FIG. 6 is a configuration example of a microphone array device. 図7は、音響解析システムの一例を示す図である。FIG. 7 is a diagram illustrating an example of the acoustic analysis system.
  以下、図面を用いて本発明の実施の形態について説明する。
  なお、本発明の範囲は、以下の実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で任意に変更可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In addition, the scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention.
 図1は、本実施形態におけるマイクロホンアレイ装置が備えるマイクロホンアレイ1の全体図である。
 本実施形態におけるマイクロホンアレイ1は、例えば、近接場音響ホログラフィ法を使用して被測定物(音源)からの被測定音を解析する音響解析システムに用いることができる。近接場音響ホログラフィ法では、音源面に近接し且つ平行な測定面の音圧分布を測定する必要があり、複数のマイクロホンを格子状に配置したマイクロホンアレイが用いられる。
FIG. 1 is an overall view of a microphone array 1 included in the microphone array device according to the present embodiment.
The microphone array 1 in the present embodiment can be used, for example, in an acoustic analysis system that analyzes a measured sound from a measured object (sound source) using a near-field acoustic holography method. In the near-field acoustic holography method, it is necessary to measure a sound pressure distribution on a measurement surface close to and parallel to a sound source surface, and a microphone array in which a plurality of microphones are arranged in a lattice shape is used.
 図1に示すように、マイクロホンアレイ1は、複数のマイクロホンmcと、複数の第一の支持体10と、複数の第二の支持体20と、複数のマイク基板31と、を備える。マイク基板31には、複数のマイクロホンmcがそれぞれ実装されており、第一の支持体10および第二の支持体20は、マイク基板31を着脱可能に支持する。複数のマイクロホンmcの各々は、例えば、MEMS(Micro-Electrical-Mechanical Systems)マイクロホンとすることができる。なお、本実施形態では、マイクロホンmcがMEMSマイクロホンである場合について説明するが、マイクロホンmcはMEMSマイクロホンに限定されるものではない。
 第一の支持体10は、それぞれ第一の方向(x方向)を長手方向とする部材である。本実施形態では、マイクロホンアレイ1は、N本(図1では8本)の第一の支持体10を備える。
 第二の支持体20は、それぞれ第一の方向(x方向)に対して直交する第二の方向(z方向)を長手方向とする部材である。本実施形態では、マイクロホンアレイ1は、2本の第二の支持体20を備える。2本の第二の支持体20は、N本の第一の支持体10の両端をそれぞれ着脱可能に支持する。
As illustrated in FIG. 1, the microphone array 1 includes a plurality of microphones mc, a plurality of first supports 10, a plurality of second supports 20, and a plurality of microphone substrates 31. A plurality of microphones mc are mounted on the microphone substrate 31, respectively, and the first support 10 and the second support 20 detachably support the microphone substrate 31. Each of the plurality of microphones mc can be, for example, a MEMS (Micro-Electrical-Mechanical Systems) microphone. In the present embodiment, the case where the microphone mc is a MEMS microphone will be described, but the microphone mc is not limited to the MEMS microphone.
The first support members 10 are members each having a first direction (x direction) as a longitudinal direction. In the present embodiment, the microphone array 1 includes N (eight in FIG. 1) first supports 10.
The second support 20 is a member whose longitudinal direction is a second direction (z direction) orthogonal to the first direction (x direction). In the present embodiment, the microphone array 1 includes two second supports 20. The two second supports 20 detachably support both ends of the N first supports 10 respectively.
 第一の支持体10は、それぞれマイク基板31を1つずつ着脱可能に支持している。例えばマイク基板31は、当該マイク基板31に形成された取付穴31aを介して第一の支持体10に着脱可能に取り付けられる。また、マイク基板31は、それぞれM個(図1では8個)のマイクロホンmcをx方向において一定間隔dに配置した状態で支持している。さらに、第一の支持体10は、z方向において一定間隔dで並列配列されている。ここで、各第一の支持体10において、マイクロホンmcのx方向における位置は同一である。つまり、N本の第一の支持体10によって、M×N個のマイクロホンmcがxz方向に格子状に配置される。
 なお、本実施形態では、第一の支持体10が1つのマイク基板31を支持する場合について説明するが、第一の支持体10は、複数のマイクロホンmcがそれぞれ実装された複数のマイク基板31を支持してもよい。また、第一の支持体10が第二の支持体20に対して着脱可能である場合、マイク基板31は、第一の支持体10に対して固定されていてもよい。
The first support 10 detachably supports one microphone substrate 31 each. For example, the microphone substrate 31 is detachably attached to the first support 10 via an attachment hole 31a formed in the microphone substrate 31. Further, the microphone substrate 31 supports M (eight in FIG. 1) microphones mc arranged at regular intervals d in the x direction. Further, the first supports 10 are arranged in parallel at a constant interval d in the z direction. Here, in each of the first supports 10, the position of the microphone mc in the x direction is the same. That is, the M first microphones mc are arranged in a grid in the xz direction by the N first supports 10.
In the present embodiment, a case will be described in which the first support 10 supports one microphone substrate 31. However, the first support 10 includes a plurality of microphone substrates 31 on each of which a plurality of microphones mc are mounted. May be supported. When the first support 10 is detachable from the second support 20, the microphone substrate 31 may be fixed to the first support 10.
 図1において、xz平面は、マイクロホンアレイ1のマイクロホンmcが格子状に配置された測定面に平行な面であり、被測定物の音源面に平行な面となる。マイクロホンアレイ1は、測定面を被測定物の音源面に対してy方向に所定距離離間した状態で配置される。例えば、マイクロホンアレイ1は、測定面と音源面とのy方向における距離を1cm以内として配置される。 In FIG. 1, the xz plane is a plane parallel to the measurement surface on which the microphones mc of the microphone array 1 are arranged in a lattice, and is a plane parallel to the sound source surface of the device under test. The microphone array 1 is arranged with the measurement surface separated from the sound source surface of the device under test by a predetermined distance in the y direction. For example, the microphone array 1 is arranged such that the distance between the measurement surface and the sound source surface in the y direction is within 1 cm.
 第一の支持体10および第二の支持体20は、マイク基板31を支持する筐体を構成することができる。本実施形態では、M×N個のマイクロホンmcは、M個ずつ1つのマイク基板31に実装されており、上記筐体は、N個のマイク基板31の各々を着脱可能に支持する。
 なお、当該筐体は、図1に示す構成に限定されるものではない。筐体は、マイク基板31を着脱可能に支持する構成であればよい。例えば、第二の支持体20は、第一の支持体10の一端のみを支持してもよいし、第一の支持体10の端部以外の位置を支持してもよい。また、筐体は、第一の支持体10および第二の支持体20以外の部材を含んでいてもよい。
The first support 10 and the second support 20 can form a housing that supports the microphone substrate 31. In the present embodiment, M × N microphones mc are mounted on one microphone substrate 31 for each of M microphones, and the housing detachably supports each of the N microphone substrates 31.
Note that the housing is not limited to the configuration illustrated in FIG. The housing may have any configuration as long as it supports the microphone substrate 31 in a detachable manner. For example, the second support 20 may support only one end of the first support 10 or may support a position other than the end of the first support 10. Further, the housing may include members other than the first support 10 and the second support 20.
 マイクロホンmcは、例えば、全方向から収音可能な無指向性のMEMSマイクロホンとすることができる。なお、本実施形態では、マイクロホンmcが無指向性のマイクロホンである場合について説明するが、マイクロホンmcは指向性のマイクロホンであってもよい。
 マイクロホンmcは、MEMS技術を用いた音響トランスデューサ(MEMSチップ)とアンプとを内蔵し、マイク基板31の表面に実装されている。マイクロホンmcは、音響トランスデューサによって音(音圧)を電気信号に変換し、変換した電気信号をアンプによって増幅して出力する。なお、マイクロホンmcがデジタルマイクロホンである場合、マイクロホンmcは、さらにA/Dコンバータを内蔵し、アンプによって増幅されたアナログ信号をデジタル信号に変換して出力することができる。
The microphone mc can be, for example, an omnidirectional MEMS microphone that can collect sound from all directions. In the present embodiment, the case where the microphone mc is a non-directional microphone will be described, but the microphone mc may be a directional microphone.
The microphone mc incorporates an acoustic transducer (MEMS chip) using MEMS technology and an amplifier, and is mounted on the surface of the microphone substrate 31. The microphone mc converts sound (sound pressure) into an electric signal by an acoustic transducer, amplifies the converted electric signal by an amplifier, and outputs the amplified electric signal. When the microphone mc is a digital microphone, the microphone mc further includes a built-in A / D converter, and can convert an analog signal amplified by an amplifier into a digital signal and output the digital signal.
 本実施形態において、マイク基板31は、M個のマイクロホンmcが実装されたMチャンネルマイク基板である。マイク基板31は、表面に実装された複数のマイクロホンmcに共通な電源線およびグランド線を有する。また、マイクロホンmcがデジタルマイクロホンである場合、マイク基板31は、表面に実装された複数のマイクロホンmcに共通なクロック線を有する。
 このように、複数のマイクロホンmcで信号線を共通化することで、コネクタのピン数を削減することができる。また、マイクロホンmcがデジタルマイクロホンである場合、複数のマイクロホンmcでクロック線を共通化することでも、コネクタのピン数を削減することができる。
In the present embodiment, the microphone substrate 31 is an M-channel microphone substrate on which M microphones mc are mounted. The microphone substrate 31 has a power supply line and a ground line common to the plurality of microphones mc mounted on the surface. When the microphone mc is a digital microphone, the microphone substrate 31 has a clock line common to a plurality of microphones mc mounted on the surface.
As described above, by sharing the signal line between the plurality of microphones mc, the number of pins of the connector can be reduced. Further, when the microphone mc is a digital microphone, the number of pins of the connector can be reduced by sharing a clock line among a plurality of microphones mc.
 また、マイク基板31には、コネクタ部32が設けられている。図2に示すように、コネクタ部32には、マイク基板31と当該マイク基板31を制御する制御基板40(図5参照)とを接続するための第一のケーブル33のコネクタ部34を接続することができる。第一のケーブル33は、コネクタ部34とは反対側の端部に、制御基板40に対して着脱可能なコネクタ部(第一のコネクタ)35を備え、マイク基板31と制御基板40とを接続した状態で、マイクロホンmcにより取得された音情報を制御基板40に対して出力することができる。
 このように、マイク基板31は、第一のケーブル33によって制御基板40に対して着脱可能に接続される。
Further, a connector section 32 is provided on the microphone substrate 31. As shown in FIG. 2, the connector section 32 is connected to a connector section 34 of a first cable 33 for connecting the microphone board 31 and a control board 40 (see FIG. 5) for controlling the microphone board 31. be able to. The first cable 33 includes a connector portion (first connector) 35 detachable from the control board 40 at an end opposite to the connector section 34, and connects the microphone board 31 and the control board 40. In this state, the sound information acquired by the microphone mc can be output to the control board 40.
As described above, the microphone board 31 is detachably connected to the control board 40 by the first cable 33.
 図3は、本実施形態における第一の支持体10の一部を示す構成図である。
 第一の支持体10は、マイク基板31を取付可能な複数の取付穴(不図示)を備える。第一の支持体10に形成された複数の取付穴は、マイク基板31に形成された複数の取付穴31aにそれぞれ対応し、マイク基板31を取付可能な形状を有する。
 ここで、第一の支持体10に形成された取付穴は、x方向に一定間隔(例えば3mm程度の間隔)で形成されていてもよい。この場合、マイク基板31のx方向における取付位置の微調整が可能となる。
FIG. 3 is a configuration diagram showing a part of the first support 10 in the present embodiment.
The first support 10 has a plurality of mounting holes (not shown) to which the microphone substrate 31 can be mounted. The plurality of mounting holes formed in the first support 10 correspond to the plurality of mounting holes 31a formed in the microphone substrate 31, respectively, and have a shape in which the microphone substrate 31 can be mounted.
Here, the mounting holes formed in the first support 10 may be formed at regular intervals (for example, intervals of about 3 mm) in the x direction. In this case, it is possible to finely adjust the mounting position of the microphone substrate 31 in the x direction.
 第一の支持体10は、z方向の長さが、測定面に対して直交するy方向の長さよりも短い板状の形状を有する。つまり、第一の支持体10は、測定面に対して垂直に伸びる。また、マイク基板31は、第一の支持体10における測定面に対して垂直な面に平行に取り付けられる。これにより、マイクロホンmcの実装面は、測定面に対して垂直となる。
 また、マイク基板31が第一の支持体10に取り付けられた状態において、マイクロホンmcは、マイク基板31における被測定物に近い位置、すなわち音源面2aに近い位置に実装されている。より具体的には、マイクロホンmcは、y方向において、第一の支持体10の被測定物側(音源面2a側)の端面から、当該被測定物側(音源面2a側)に突出して配置されている。つまり、第一の支持体10および第二の支持体20は、音源からの被測定音を遮らないよう、測定面に対し音源面2aとは反対側に配置されている。
 このマイク基板31のコネクタ部32に第一のケーブル33のコネクタ部34が接続された状態では、第一のケーブル33は、y方向において、マイク基板31における被測定物(音源面2a)から遠い側から制御基板40へ伸びる。
The first support 10 has a plate-like shape whose length in the z direction is shorter than the length in the y direction orthogonal to the measurement surface. That is, the first support 10 extends perpendicular to the measurement surface. Further, the microphone substrate 31 is attached in parallel to a plane perpendicular to the measurement plane of the first support 10. Thus, the mounting surface of the microphone mc is perpendicular to the measurement surface.
In a state where the microphone substrate 31 is attached to the first support 10, the microphone mc is mounted on the microphone substrate 31 at a position close to the measured object, that is, at a position close to the sound source surface 2a. More specifically, the microphone mc is arranged so as to protrude from the end surface of the first support 10 on the object side (sound source surface 2a side) of the first support 10 toward the object side (sound source surface 2a side) in the y direction. Have been. That is, the first support 10 and the second support 20 are arranged on the side opposite to the sound source surface 2a with respect to the measurement surface so as not to block the sound to be measured from the sound source.
In a state where the connector portion 34 of the first cable 33 is connected to the connector portion 32 of the microphone substrate 31, the first cable 33 is far from the DUT (sound source surface 2a) on the microphone substrate 31 in the y direction. Extends from the side to the control board 40.
 図4は、本実施形態における第二の支持体20の構成を示す図である。
 この図4に示すように、第二の支持体20は、第一の支持体10をz方向に任意の間隔で挿入可能な複数の取付溝(凹部)21を備える。複数の取付溝21は、第一の支持体10を挿入可能な形状を有し、z方向に等間隔に形成されている。N個の第一の支持体10は、z方向に一定間隔dで配置するように、端部が第二の支持体20の取付溝21に挿入されることで、固定される。第一の支持体10は、第二の支持体20に対して着脱可能であり、第一の支持体10のz方向における間隔dは、任意に変更することが可能となっている。ここで、取付溝21は、z方向に例えば3mm程度の間隔で形成されており、z方向における間隔dは、例えば3mm程度から20mm程度までの間で変更可能である。
FIG. 4 is a diagram illustrating a configuration of the second support 20 in the present embodiment.
As shown in FIG. 4, the second support 20 includes a plurality of mounting grooves (recesses) 21 into which the first support 10 can be inserted at an arbitrary interval in the z direction. The plurality of mounting grooves 21 have a shape in which the first support 10 can be inserted, and are formed at equal intervals in the z direction. The N first supports 10 are fixed by inserting their ends into the mounting grooves 21 of the second support 20 so as to be arranged at a constant interval d in the z direction. The first support 10 is detachable from the second support 20, and the distance d in the z direction of the first support 10 can be arbitrarily changed. Here, the mounting grooves 21 are formed at intervals of, for example, about 3 mm in the z direction, and the interval d in the z direction can be changed, for example, from about 3 mm to about 20 mm.
 図5は、マイク基板31と制御基板40との接続例を示す図である。
 制御基板40には、第二のケーブル41の一端が接続されており、第二のケーブル41は、その他端にコネクタ部(第二のコネクタ)42を備える。第一のケーブル33が備えるコネクタ部35は、第二のケーブル41が備えるコネクタ部42に対して着脱可能である。つまり、本実施形態において、マイク基板31と制御基板40とは、第一のケーブル33および第二のケーブル41を介して接続される。
 制御基板40は、Mチャンネルのマイク基板31を制御し、M個のマイクロホンmcの録音に関する制御を行うことができる。具体的には、制御基板40は、マイク基板31に対して録音指令を出力し、当該録音指令に応答してマイク基板31から第一のケーブル33および第二のケーブル41を介して出力された録音データ(マイクロホンmcで取得した音情報)を入力する。
FIG. 5 is a diagram illustrating a connection example between the microphone board 31 and the control board 40.
One end of a second cable 41 is connected to the control board 40, and the second cable 41 includes a connector (second connector) 42 at the other end. The connector section 35 of the first cable 33 is detachable from the connector section 42 of the second cable 41. That is, in the present embodiment, the microphone board 31 and the control board 40 are connected via the first cable 33 and the second cable 41.
The control board 40 controls the M-channel microphone board 31 and can control the recording of the M microphones mc. Specifically, the control board 40 outputs a recording command to the microphone board 31, and is output from the microphone board 31 via the first cable 33 and the second cable 41 in response to the recording command. Recorded data (sound information acquired by the microphone mc) is input.
 本実施形態では、1つのマイク基板31が1つの制御基板40に接続される。つまり、マイクロホンアレイ1が有するM×N個のマイクロホンmcは、M個のマイクロホンmcごとに異なる制御基板40に接続される。各制御基板40は、それぞれM個のマイクロホンmcの録音に関する制御を行う。この場合、N個の制御基板40を制御する制御部をさらに備えるようにしてもよい。
 なお、1つの制御基板40に接続されるマイクロホンmc(マイク基板31)の数は、上記に限定されるものではない。マイクロホンアレイ1が有するM×N個のマイクロホンmcが1つの制御基板40に接続されてもよい。
In the present embodiment, one microphone board 31 is connected to one control board 40. That is, the M × N microphones mc included in the microphone array 1 are connected to different control boards 40 for each of the M microphones mc. Each control board 40 controls the recording of the M microphones mc. In this case, a control unit for controlling the N control boards 40 may be further provided.
Note that the number of microphones mc (microphone boards 31) connected to one control board 40 is not limited to the above. M × N microphones mc included in the microphone array 1 may be connected to one control board 40.
 図6は、本実施形態におけるマイクロホンアレイ装置50の構成例である。
 マイクロホンアレイ装置50は、マイクロホンアレイ1と、第一のケーブル33と、を備える。ここで、マイクロホンアレイ1は、上述したように、複数のマイクロホンmcと、複数のマイクロホンmcがそれぞれ実装された複数のマイク基板31と、複数のマイク基板31の各々を着脱可能に支持する筐体(第一の支持体10、第二の支持体20)と、を備える。なお、図6は、第二の支持体20が矩形の枠体である場合を示している。
FIG. 6 is a configuration example of the microphone array device 50 in the present embodiment.
The microphone array device 50 includes the microphone array 1 and the first cable 33. Here, as described above, the microphone array 1 includes a plurality of microphones mc, a plurality of microphone boards 31 on which the plurality of microphones mc are respectively mounted, and a housing that detachably supports each of the plurality of microphone boards 31. (A first support 10 and a second support 20). FIG. 6 shows a case where the second support 20 is a rectangular frame.
 第一のケーブル33は、コネクタ部34をマイク基板31に実装されたコネクタ部32に接続することで、マイク基板31に接続される。また、第一のケーブル33は、コネクタ部35を、制御基板40に接続された第二のケーブル41(図6では不図示)が備えるコネクタ部42に接続することで、制御基板40に接続される。そして、第一のケーブル33は、コネクタ34を介して接続されたマイク基板31に実装された複数のマイクロホンmcにより取得された音情報を、制御基板40に対して出力する。
 マイク基板31は、第一の支持体10に対するねじ止めを外すことで、容易に第一の支持体10から取り外すことができる。また、マイク基板31は、第一の支持体10を第二の支持体20から取り外すことで、容易に第一の支持体10ごと第二の支持体20から取り外すことができる。さらに、マイク基板31は、第一のケーブル33のコネクタ部35を、第二のケーブル41のコネクタ部42から取り外すことで、容易に筐体側に配置された制御基板40から取り外すことができる。
 このように、複数のマイクロホンmcがそれぞれ実装されたマイク基板31は、筐体に対して着脱可能に支持されている。また、マイク基板31に接続された第一のケーブル33は、制御基板40に対して着脱可能なコネクタ部35を備える。そのため、マイク基板31を筐体および制御基板40から取り外し、複数のマイクロホンmcを容易に交換することができる。
The first cable 33 is connected to the microphone board 31 by connecting the connector section 34 to the connector section 32 mounted on the microphone board 31. The first cable 33 is connected to the control board 40 by connecting the connector section 35 to a connector section 42 provided in a second cable 41 (not shown in FIG. 6) connected to the control board 40. You. Then, the first cable 33 outputs to the control board 40 sound information acquired by the plurality of microphones mc mounted on the microphone board 31 connected via the connector 34.
The microphone substrate 31 can be easily removed from the first support 10 by removing the screw fixing to the first support 10. In addition, the microphone substrate 31 can be easily removed from the second support 20 together with the first support 10 by removing the first support 10 from the second support 20. Further, the microphone board 31 can be easily removed from the control board 40 disposed on the housing side by removing the connector 35 of the first cable 33 from the connector 42 of the second cable 41.
As described above, the microphone substrate 31 on which the plurality of microphones mc are mounted is detachably supported by the housing. Further, the first cable 33 connected to the microphone board 31 includes a connector section 35 that is detachable from the control board 40. Therefore, the microphone board 31 can be removed from the housing and the control board 40, and the plurality of microphones mc can be easily replaced.
 格子状の基板に複数のマイクロホンを実装し、基板そのものでマイクロホンアレイを構成した場合、マイクロホンアレイを構成する基板がマイクロホンアレイ装置の筐体に固定されていると、被測定物の大きさに応じて格子状の間隔(マイクロホンの間隔)を変更したい場合には、マイクロホンアレイ装置ごと交換する必要がある。つまり、被測定物ごとにマイクロホンアレイ装置を用意する必要があり、コストが嵩む。
 これに対して、本実施形態では、上述したように複数のマイクロホンmcをそれぞれマイク基板31に実装し、当該マイク基板31を筐体に対して着脱可能な構成としている。したがって、マイク基板31を交換するだけで、様々な大きさの被測定物に対応したマイクロホンアレイ装置50とすることができる。そのため、上記従来のように被測定物ごとにマイクロホンアレイ装置を用意する必要がなく、コストを削減することができる。
When multiple microphones are mounted on a grid-like substrate, and the microphone array is composed of the substrate itself, if the substrate that constitutes the microphone array is fixed to the housing of the microphone array device, it depends on the size of the DUT. If it is desired to change the grid-like interval (microphone interval), it is necessary to replace the entire microphone array device. That is, it is necessary to prepare a microphone array device for each device under test, which increases costs.
On the other hand, in the present embodiment, a plurality of microphones mc are mounted on the microphone substrate 31 as described above, and the microphone substrate 31 is configured to be detachable from the housing. Therefore, the microphone array device 50 corresponding to the DUT of various sizes can be obtained simply by replacing the microphone substrate 31. Therefore, it is not necessary to prepare a microphone array device for each device under test as in the above-described conventional case, and the cost can be reduced.
 なお、マイクロホンの間隔調整を可能とするために、複数のマイクロホンをそれぞれ独立したマイク基板に実装し、これらマイク基板をそれぞれ筐体に対して着脱可能な構成とすることも考えられる。しかしながら、この場合、マイクロホンの間隔を変更する場合には、複数のマイクロホンにそれぞれ対応する複数のマイク基板を1つずつ筐体から取り外し、筐体へ装着するといった作業が必要であり、手間がかかる。
 これに対して、本実施形態では、複数のマイクロホンmcが1つのマイク基板31に実装されているため、複数のマイクロホンmcを同時に交換することができる。したがって、被測定物に対応させてマイクロホンmcの間隔を変更する場合に、上記のようにマイクロホンmcを個々の単位で交換する必要がなく、マイクロホンmcの間隔を容易に所望の間隔に変更することができる。また、複数のマイクロホンmcが1つのマイク基板31に実装されているため、複数のマイクロホンmcがそれぞれ独立したマイク基板に実装されている場合と比較して、M×Nマイクロホンアレイが備えるマイク基板の総数およびコネクタの数を少なくすることができる。
Note that, in order to enable the adjustment of the interval between the microphones, it is conceivable that a plurality of microphones are mounted on independent microphone substrates, and these microphone substrates are configured to be detachable from the housing. However, in this case, when changing the interval between the microphones, it is necessary to remove the plurality of microphone substrates respectively corresponding to the plurality of microphones from the housing one by one and attach them to the housing, which is troublesome. .
On the other hand, in the present embodiment, since the plurality of microphones mc are mounted on one microphone board 31, the plurality of microphones mc can be exchanged at the same time. Therefore, when changing the interval between the microphones mc corresponding to the device under test, it is not necessary to replace the microphones mc in individual units as described above, and the interval between the microphones mc can be easily changed to a desired interval. Can be. Further, since the plurality of microphones mc are mounted on one microphone substrate 31, the microphone substrates of the M × N microphone array are compared with the case where the plurality of microphones mc are mounted on independent microphone substrates. The total number and the number of connectors can be reduced.
 また、本実施形態におけるマイクロホンアレイ装置50は、複数のマイク基板31を備え、マイクロホンmcがM個ずつ各マイク基板31に実装されている。そのため、M×N個のマイクロホンmcを、M個ずつのブロック単位で交換することができる。したがって、M×N個のマイクロホンmcのうちの1つに何らかの不具合が生じた場合、当該不具合が生じているマイクロホンmcを含むM個のマイクロホンmcが実装されたマイク基板31のみを修理もしくは交換すればよい。
 さらに、制御基板40からは第二のケーブル41が伸びており、第一のケーブル33が備えるコネクタ部35は、第二のケーブル41が備えるコネクタ部42に対して着脱可能な構成とすることができる。この場合、コネクタ部35とコネクタ部42との接続作業を行う場所に自由度を持たせることができるため、より容易にマイク基板31の交換が可能となる。
 また、第一のケーブル33は、マイク基板31に実装されたコネクタ部32に対して着脱可能なコネクタ部34を備える。したがって、マイク基板31と第一のケーブル33とを切り離し、マイク基板31のみの交換が可能である。つまり、マイク基板31を交換するたびに、マイク基板31とともに第一のケーブル33を交換する必要がない。
In addition, the microphone array device 50 according to the present embodiment includes a plurality of microphone substrates 31, and M microphones mc are mounted on each microphone substrate 31. Therefore, M × N microphones mc can be exchanged in units of M blocks. Therefore, if any one of the M × N microphones mc has a malfunction, only the microphone substrate 31 on which the M microphones mc including the microphone mc having the malfunction are mounted must be repaired or replaced. I just need.
Further, a second cable 41 extends from the control board 40, and the connector section 35 provided in the first cable 33 may be configured to be detachable from the connector section 42 provided in the second cable 41. it can. In this case, since the degree of freedom can be given to the place where the connection work between the connector portion 35 and the connector portion 42 is performed, the microphone substrate 31 can be replaced more easily.
Further, the first cable 33 includes a connector section 34 that is detachable from the connector section 32 mounted on the microphone board 31. Therefore, the microphone substrate 31 and the first cable 33 are disconnected, and only the microphone substrate 31 can be replaced. That is, it is not necessary to replace the first cable 33 together with the microphone board 31 each time the microphone board 31 is replaced.
 さらに、本実施形態におけるマイクロホンアレイ装置50は、複数のマイク基板31を識別する識別情報を保持する識別情報保持部を備えていてもよい。マイクロホンアレイ装置50は、識別情報保持部が保持する識別情報をもとに、複数の制御基板40の各々にどのマイク基板30が接続されているか、すなわち、複数の制御基板40の各々にマイクロホンアレイのどこに配置されているマイクロホンmcの音情報が入力されているかを特定することができる。これにより、マイクロホンアレイ装置50は、被測定物からの被測定音を精確に測定し、音響解析に用いることができる。 Further, the microphone array device 50 in the present embodiment may include an identification information holding unit that holds identification information for identifying the plurality of microphone substrates 31. The microphone array device 50 determines which microphone board 30 is connected to each of the plurality of control boards 40 based on the identification information held by the identification information holding unit, that is, the microphone array 30 is attached to each of the plurality of control boards 40. Can be specified where the sound information of the microphone mc arranged is input. Thus, the microphone array device 50 can accurately measure the sound to be measured from the object to be measured and use it for acoustic analysis.
 識別情報保持部は、保持した識別情報を変更可能な機能を有していてもよい。この場合、マイク基板31が交換されるたびに識別情報を更新することができる。したがって、複数のマイク基板31が同時に交換された場合に、マイク基板31の並びが意図せず変更されてしまった場合であっても、マイクロホンアレイ上のどの位置にどのマイク基板31が配置されているかを適切に判断することができ、被測定物からの被測定音を精確に測定することができる。
 ここで、識別情報保持部は、例えばメモリ等の記憶部であってよい。この場合、当該記憶部は、読込のみ可能な構成であってもよいし、書込可能な構成であってもよい。また、識別情報保持部として、ディップスイッチを利用してもよい。この場合、簡易に識別情報を変更することができる。
The identification information holding unit may have a function capable of changing the held identification information. In this case, the identification information can be updated each time the microphone substrate 31 is replaced. Therefore, even when the arrangement of the microphone boards 31 is unintentionally changed when the plurality of microphone boards 31 are simultaneously replaced, which microphone board 31 is located at any position on the microphone array. Can be appropriately determined, and the measured sound from the measured object can be accurately measured.
Here, the identification information holding unit may be, for example, a storage unit such as a memory. In this case, the storage unit may be configured to be readable only, or may be configured to be writable. Further, a dip switch may be used as the identification information holding unit. In this case, the identification information can be easily changed.
 また、マイク基板31を支持する筐体は、複数のマイク基板31をそれぞれ着脱可能に支持する複数の第一の支持体10と、複数の第一の支持体10を着脱可能に支持する少なくとも1つの第二の支持体20と、を備える。マイク基板31には、複数のマイクロホンmcが第一の方向(x方向)において一定間隔で実装されており、第一の支持体10は、第二の方向(z方向)において、任意の一定間隔で並列配置可能である。また、第二の支持体20は、第一の支持体10を任意の間隔で挿入可能な複数の取付溝を有し、複数の第一の支持体10は、z方向において任意の一定間隔で並列配置可能である。
 このような構成により、複数のマイクロホンmcを容易かつ適切にアレイ状に配置することができる。また、マイク基板31を、複数のマイクロホンmcのx方向における間隔が異なるマイク基板31に交換し、第一の支持体10のz方向における間隔を変更することで、複数のマイクロホンmcの格子間隔dを容易に所望の間隔に変更することができる。さらに、第一の支持体10を第二の支持体20が有する取付溝に挿入する構成とすることで、容易にマイクロホンmcのz方向における間隔dを調整することができる。
The housing supporting the microphone substrate 31 includes a plurality of first supports 10 that detachably support the plurality of microphone substrates 31, and at least one support that detachably supports the plurality of first supports 10. And two second supports 20. A plurality of microphones mc are mounted on the microphone substrate 31 at regular intervals in the first direction (x direction), and the first support 10 is disposed at arbitrary regular intervals in the second direction (z direction). Can be arranged in parallel. In addition, the second support 20 has a plurality of mounting grooves into which the first support 10 can be inserted at an arbitrary interval, and the plurality of first supports 10 are arranged at an arbitrary constant interval in the z direction. It can be arranged in parallel.
With such a configuration, a plurality of microphones mc can be easily and appropriately arranged in an array. Further, by replacing the microphone substrate 31 with a microphone substrate 31 having a different distance in the x direction between the plurality of microphones mc, and changing the distance in the z direction of the first support 10, the lattice spacing d of the plurality of microphones mc is changed. Can be easily changed to a desired interval. Further, by adopting a configuration in which the first support 10 is inserted into the mounting groove of the second support 20, the distance d in the z direction of the microphone mc can be easily adjusted.
 ところで、被測定物が小さい場合、マイクロホンの格子間隔を、例えば1cm以下にしたいといった場合がある。このような小型マイクロホンアレイを構成した場合、マイクロホンアレイの測定面が密な構造となっていると、マイクロホンアレイが壁とみなされて音が反射し、被測定物とマイクロホンアレイとの間で音が反響してしまう。定常状態での音を測定したい場合、反響した音が、測定したい音に重畳されるため、精確な測定の妨げとなる。その結果、このマイクロホンアレイを使用した音響の解析が困難となる。 By the way, when the object to be measured is small, there is a case where the grid spacing of the microphones is desired to be, for example, 1 cm or less. When such a small microphone array is configured, if the measurement surface of the microphone array has a dense structure, the microphone array is regarded as a wall and the sound is reflected, and the sound is reflected between the measured object and the microphone array. Resonates. When it is desired to measure the sound in a steady state, the reverberant sound is superimposed on the sound to be measured, which hinders accurate measurement. As a result, it becomes difficult to analyze sound using the microphone array.
 本実施形態では、複数のマイクロホンmcは、梯子状の筐体(第一の支持体10、第二の支持体20)によって支持されている。そのため、例えば格子状の筐体に複数のマイクロホンが支持された構成と比較して、マイクロホンアレイ1を被測定物に近接させて配置した場合に、筐体により音声が反射してしまうことを抑制することができる。その結果、マイクロホンアレイ1からの反射音が音響解析結果へ及ぼす悪影響を抑制することができる。
 さらに、本実施形態では、マイクロホンmcを実装したマイク基板31を測定面に対して垂直に配置する。したがって、マイクロホンmcの格子間隔dが狭くても、マイクロホンアレイ1の測定面が密な構造になることを抑制し、上述した反射音の発生を抑制することができる。また、マイクロホンmcを無指向性のマイクロホンとすれば、マイク基板31の姿勢にかかわらず、マイクロホンmcによる収音を適切に行うことができる。また、マイクロホンmcを、MEMSマイクロホンとすれば、小型の被解析対象向けの近接場音響ホログラフィを実現可能なマイクロホンアレイとすることができる。
In the present embodiment, the plurality of microphones mc are supported by a ladder-shaped housing (the first support 10 and the second support 20). Therefore, compared to a configuration in which a plurality of microphones are supported on a lattice-shaped casing, for example, when the microphone array 1 is arranged close to the device under test, it is possible to suppress the sound from being reflected by the casing. can do. As a result, it is possible to suppress the adverse effect of the reflected sound from the microphone array 1 on the acoustic analysis result.
Further, in the present embodiment, the microphone substrate 31 on which the microphone mc is mounted is arranged perpendicular to the measurement surface. Therefore, even if the grid interval d of the microphone mc is small, it is possible to suppress the measurement surface of the microphone array 1 from having a dense structure, and to suppress the above-described generation of the reflected sound. In addition, if the microphone mc is a non-directional microphone, sound collection by the microphone mc can be appropriately performed regardless of the attitude of the microphone substrate 31. Further, if the microphone mc is a MEMS microphone, it is possible to provide a microphone array capable of realizing near-field acoustic holography for a small object to be analyzed.
 なお、上述したように、マイクロホンmcは指向性のマイクロホンであってもよい。この場合、当該指向性のマイクロホンにおいて最も感度が高くなるセンサ面が、音源面2aを向くように、すなわち音源面2aに対して平行または略平行となるように、複数のマイク基板31が配置されていることが好ましい。
 本実施形態における音響解析システムでは、マイクロホンアレイ1は、被測定物の音源面2aに対して測定面が平行となるように、被測定物に近接して配置される。つまり、マイクロホンアレイ1の測定面は、音源面2aに対して平行である。したがって、マイクロホンmcが指向性のマイクロホンである場合には、マイクロホンmcのセンサ面が測定面と音源面2aとに対してそれぞれ平行または略平行となるように、マイクロホンmcがマイク基板31に実装されていることが好ましい。これにより、指向性のマイクロホンによる収音を適切に行うことができる。
Note that, as described above, the microphone mc may be a directional microphone. In this case, the plurality of microphone substrates 31 are arranged such that the sensor surface having the highest sensitivity in the microphone of the directivity faces the sound source surface 2a, that is, is parallel or substantially parallel to the sound source surface 2a. Is preferred.
In the acoustic analysis system according to the present embodiment, the microphone array 1 is arranged close to the device under test such that the measurement surface is parallel to the sound source surface 2a of the device under test. That is, the measurement surface of the microphone array 1 is parallel to the sound source surface 2a. Therefore, when the microphone mc is a directional microphone, the microphone mc is mounted on the microphone substrate 31 such that the sensor surface of the microphone mc is parallel or substantially parallel to the measurement surface and the sound source surface 2a, respectively. Is preferred. Thereby, sound collection by the directional microphone can be appropriately performed.
 また、第一の支持体10を、測定面に対して垂直に伸びる形状とすることで、第一の支持体10が壁となることを抑制し、反射音の発生を抑制することができる。さらに、マイク基板31を、第一の支持体10における測定面に対して垂直な面に取り付けることで、マイク基板31を測定面に対して容易かつ適切に垂直に配置することができる。また、複数のマイク基板31の姿勢を容易に垂直に揃えることができる。 {Circle around (1)} By forming the first support 10 to have a shape extending perpendicular to the measurement surface, it is possible to suppress the first support 10 from becoming a wall and to suppress the generation of reflected sound. Further, by attaching the microphone substrate 31 to a surface of the first support 10 perpendicular to the measurement surface, the microphone substrate 31 can be easily and appropriately arranged perpendicular to the measurement surface. Further, the postures of the plurality of microphone substrates 31 can be easily aligned vertically.
 また、マイクロホンmcは、マイク基板31において、被測定物に近い位置に実装する。これにより、マイクロホンmcにより適切に音声を収音することができる。さらにこのとき、マイクロホンmcを、第一の支持体10の被測定物側の端面から被測定物側に突出して配置することで、より適切に音声を収音することが可能となる。
 また、第一のケーブル33は、マイク基板31における被測定物から遠い側から制御基板40へ伸びる構成であるため、第一のケーブル33が収音の妨げになることもない。
The microphone mc is mounted on the microphone board 31 at a position close to the device under test. Thereby, sound can be appropriately collected by the microphone mc. Further, at this time, by arranging the microphone mc so as to protrude from the end surface of the first support body 10 on the side of the object to be measured, it is possible to more appropriately collect sound.
Further, since the first cable 33 extends from the far side of the microphone substrate 31 from the object to be measured to the control substrate 40, the first cable 33 does not hinder sound collection.
 以上説明したように、本実施形態におけるマイクロホンアレイ装置50は、複数のマイクロホンmcがそれぞれ筐体に対して着脱可能なマイク基板31に実装されているため、複数のマイクロホンmcを容易に交換することができる。したがって、被測定物のサイズに応じてマイクロホンmcの数や間隔を容易に変更することができ、被測定物からの被測定音を適切に測定することができる。また、被測定物が小さく、マイクロホンmcの格子間隔が狭い場合であっても、被測定物からの被測定音を遮らない構成とすることができる。したがって、様々な小型の被測定物からの被測定音を精確に測定することができる。 As described above, in the microphone array device 50 according to the present embodiment, since the plurality of microphones mc are mounted on the microphone substrate 31 which is detachable from the housing, the plurality of microphones mc can be easily replaced. Can be. Therefore, the number and interval of the microphones mc can be easily changed according to the size of the device under test, and the sound under test from the device under test can be appropriately measured. Further, even when the object to be measured is small and the grid interval between the microphones mc is narrow, a configuration can be adopted in which the sound to be measured from the object to be measured is not blocked. Therefore, it is possible to accurately measure the sound to be measured from various small objects to be measured.
 図7は、本実施形態におけるマイクロホンアレイ装置50を備える音響解析システム1000の構成例である。なお、図7において、マイクロホンアレイ装置50は、マイクロホンアレイ1のみが簡略化して示されている。
 音響解析システム1000は、上述したマイクロホンアレイ装置50と、音響解析装置100と、表示装置200と、を備える。音響解析装置100は、上述した第一のケーブル33を介して複数のマイクロホンmcの各々により取得された音情報を入力し、入力された音情報を解析して音の特徴を表す物理量を検出する。この音響解析システム100において、マイクロホンアレイ1は、被測定物2の音源面2aに対して測定面が平行となるように、被測定物2に近接して配置される。
FIG. 7 is a configuration example of an acoustic analysis system 1000 including the microphone array device 50 according to the present embodiment. In FIG. 7, only the microphone array 1 of the microphone array device 50 is simplified.
The acoustic analysis system 1000 includes the above-described microphone array device 50, the acoustic analysis device 100, and the display device 200. The sound analysis device 100 inputs sound information acquired by each of the plurality of microphones mc via the above-described first cable 33, analyzes the input sound information, and detects a physical quantity representing a feature of the sound. . In the acoustic analysis system 100, the microphone array 1 is arranged close to the device under test 2 such that the measurement surface is parallel to the sound source surface 2a of the device under test 2.
 音響解析装置100は、信号処理部101と、解析処理部102と、記憶部103と、を備える。信号処理部101は、マイクロホンアレイ1の各マイクロホンmcからの信号に対して所定の信号処理を行い、音響解析に用いる信号を得る。なお、当該信号処理は、マイクロホンアレイ1が備えるM×N個のマイクロホンmcの信号の同期をとる処理等を含んでいてもよい。 The acoustic analysis device 100 includes a signal processing unit 101, an analysis processing unit 102, and a storage unit 103. The signal processing unit 101 performs predetermined signal processing on a signal from each microphone mc of the microphone array 1 to obtain a signal used for acoustic analysis. The signal processing may include processing for synchronizing the signals of the M × N microphones mc included in the microphone array 1 and the like.
 解析処理部102は、信号処理部101により信号処理された信号を解析し、音の特徴を表す物理量を検出する。ここで、音の特徴を表す物理量は、音圧分布や粒子速度分布等を含む。そして、解析処理部102は、音の特徴を表す物理量に対応する画像を生成し、当該画像を表示装置200に表示させる表示制御を行う。
 記憶部103は、解析処理部102による解析結果等を記憶する。 表示装置200は、液晶ディスプレイ等のモニタを備え、音響解析装置100の解析結果である上記画像を表示する。
 このように、本実施形態における音響解析システム1000は、マイクロホンmcの格子間隔を容易に変更可能なマイクロホンアレイ装置50を備えるので、サイズの異なる被測定物について、精確な測定および音響解析が可能となる。
The analysis processing unit 102 analyzes the signal processed by the signal processing unit 101 and detects a physical quantity representing a feature of the sound. Here, the physical quantities representing the characteristics of the sound include a sound pressure distribution, a particle velocity distribution, and the like. Then, the analysis processing unit 102 generates an image corresponding to the physical quantity representing the characteristic of the sound, and performs display control for displaying the image on the display device 200.
The storage unit 103 stores an analysis result and the like by the analysis processing unit 102. The display device 200 includes a monitor such as a liquid crystal display, and displays the image as an analysis result of the acoustic analysis device 100.
As described above, the acoustic analysis system 1000 according to the present embodiment includes the microphone array device 50 that can easily change the grid spacing of the microphones mc. Therefore, accurate measurement and acoustic analysis of DUTs having different sizes can be performed. Become.
 なお、M×Nマイクロホンアレイを備える上記の音響解析システム1000は、例えば、M個のマイクロホンmcの録音に関する制御を行うN個のマイクロホンアレイモジュールと、N個のマイクロホンアレイモジュールを制御する制御部と、を備える構成であってもよい。この場合、マイクロホンアレイモジュールは、M個のマイクロホンmcと、M個のマイクロホンmcが実装された1つのマイク基板31と、当該マイク基板31を制御する1つの制御基板40とを備え、M個のマイクロホンmcにより取得された音情報を制御部に送信する。そして、制御部は、N個のマイクロホンアレイモジュールからそれぞれマイクロホンmcの信号を受信し、音響解析に用いるための信号として処理する。 The acoustic analysis system 1000 including the M × N microphone array includes, for example, N microphone array modules that perform control related to recording of the M microphones mc, and a control unit that controls the N microphone array modules. May be provided. In this case, the microphone array module includes M microphones mc, one microphone board 31 on which the M microphones mc are mounted, and one control board 40 that controls the microphone board 31. The sound information acquired by the microphone mc is transmitted to the control unit. The control unit receives the signals of the microphones mc from the N microphone array modules and processes the signals as signals to be used for acoustic analysis.
 このとき、制御部は、各マイクロホンアレイモジュールから受信したマイクロホンmcの信号の位相を揃える処理を行ってもよい。なお、1つのマイクロホンアレイモジュールが備えるM個のマイクロホンmcの同期は、電気的にとれているものとする。ここで、1つのマイクロホンアレイモジュールは、例えばスマートスピーカー(AIスピーカー)を利用することができる。
 この場合、マイクロホンアレイモジュールを追加することで、マイクロホンアレイ1を構成するマイクロホンmcの数を容易に増加することができる。したがって、被測定物のサイズに対応させてマイクロホンアレイ1のサイズを大きくしたり、空間分解能を良好にしたりすることが容易となる。
At this time, the control unit may perform a process of aligning the phases of the signals of the microphones mc received from the respective microphone array modules. Note that it is assumed that the M microphones mc included in one microphone array module are electrically synchronized. Here, one microphone array module can use, for example, a smart speaker (AI speaker).
In this case, by adding a microphone array module, the number of microphones mc constituting the microphone array 1 can be easily increased. Therefore, it is easy to increase the size of the microphone array 1 and improve the spatial resolution in accordance with the size of the device under test.
(変形例)
 上記実施形態においては、マイクロホンアレイ装置500が複数のマイク基板31を備える場合について説明したが、マイク基板31は1つでもよい。つまり、M×N個のマイクロホンmcが1つのマイク基板31に実装されていてもよい。この場合にも、マイク基板31が筐体に対して着脱可能な構成とすることで、マイクロホンmcに何らかの不具合が生じた場合や、被測定物のサイズに応じて格子間隔を変更したい場合には、マイク基板31を筐体から取り外すことで容易に複数のマイクロホンmcを交換することができる。つまり、マイクロホンアレイ装置50ごと修理、交換する必要がなくなる。したがって、その分のコストを削減することができる。
(Modification)
In the above embodiment, the case where the microphone array device 500 includes the plurality of microphone substrates 31 has been described, but the number of the microphone substrates 31 may be one. That is, M × N microphones mc may be mounted on one microphone substrate 31. Also in this case, the microphone substrate 31 is configured to be detachable from the housing, so that when a problem occurs in the microphone mc or when it is desired to change the grid interval according to the size of the measured object. By removing the microphone substrate 31 from the housing, the plurality of microphones mc can be easily replaced. That is, there is no need to repair or replace the entire microphone array device 50. Therefore, the cost can be reduced accordingly.
 また、上記実施形態においては、第一のケーブル33が備えるコネクタ部(第一のコネクタ)35は、制御基板40に接続された第二のケーブル41が備えるコネクタ部(第二のコネクタ)42に対して着脱可能である場合について説明した。しかしながら、コネクタ部(第一のコネクタ)35は、制御基板40に実装されたコネクタ部に対して着脱可能であってもよい。つまり、マイク基板31と制御基板40とは、第一のケーブル33のみを介して接続されていてもよい。 In the above embodiment, the connector (first connector) 35 of the first cable 33 is connected to the connector (second connector) 42 of the second cable 41 connected to the control board 40. The case where it is detachable is described above. However, the connector section (first connector) 35 may be detachable from a connector section mounted on the control board 40. That is, the microphone board 31 and the control board 40 may be connected via only the first cable 33.
 さらに、上記実施形態においては、マイク基板31を、複数のマイクロホンmcが配置された測定面に対して垂直に配置する場合について説明したが、マイク基板31は測定面に対して垂直または略垂直に配置されていればよい。つまり、マイク基板31は、測定面に対して傾斜して配置されていてもよい。この場合にも、マイクロホンアレイ1による反射音の影響を抑制する効果が得られる。
 また、上記実施形態におけるM×Nのマイクロホンアレイ1を複数連結し、さらに大きなマイクロホンアレイを構成してもよい。
Furthermore, in the above embodiment, the case where the microphone substrate 31 is arranged perpendicular to the measurement surface on which the plurality of microphones mc are arranged has been described, but the microphone substrate 31 is perpendicular or substantially perpendicular to the measurement surface. It is sufficient if they are arranged. That is, the microphone substrate 31 may be arranged to be inclined with respect to the measurement surface. Also in this case, the effect of suppressing the influence of the reflected sound by the microphone array 1 can be obtained.
Further, a plurality of M × N microphone arrays 1 in the above embodiment may be connected to form a larger microphone array.
 1…マイクロホンアレイ、2…被測定物(音源)、2a…音源面、10…第一の支持体、20…第二の支持体、31…マイク基板、32…コネクタ部、33…第一のケーブル、35…コネクタ部(第一のコネクタ)、40…制御基板、41…第二のケーブル、42…コネクタ部(第二のコネクタ)、50…マイクロホンアレイ装置、100…音響解析装置、200…表示装置、1000…音響解析システム、mc…マイクロホン DESCRIPTION OF SYMBOLS 1 ... Microphone array, 2 ... DUT (sound source), 2a ... Sound source surface, 10 ... First support, 20 ... Second support, 31 ... Microphone board, 32 ... Connector part, 33 ... First Cable, 35 connector part (first connector), 40 control board, 41 second cable, 42 connector part (second connector), 50 microphone array device, 100 acoustic analysis device, 200 Display device, 1000: acoustic analysis system, mc: microphone

Claims (16)

  1.  複数のマイクロホンと、
     前記複数のマイクロホンがそれぞれ実装されたマイク基板と、
     前記マイク基板を着脱可能に支持する筐体と、
     前記マイク基板に接続され、前記マイクロホンにより取得された音情報を、前記マイク基板を制御する制御基板に対して出力する第一のケーブルと、を備え、
     前記第一のケーブルは、前記制御基板に対して着脱可能な第一のコネクタを備えることを特徴とするマイクロホンアレイ装置。
    Multiple microphones,
    A microphone board on which the plurality of microphones are mounted,
    A housing that detachably supports the microphone substrate,
    A first cable connected to the microphone board and outputting sound information acquired by the microphone to a control board that controls the microphone board,
    The microphone array device according to claim 1, wherein the first cable includes a first connector detachable from the control board.
  2.  前記第一のコネクタは、前記制御基板に接続された第二のケーブルが備える第二のコネクタに対して着脱可能であることを特徴とする請求項1に記載のマイクロホンアレイ装置。 The microphone array device according to claim 1, wherein the first connector is detachable from a second connector included in a second cable connected to the control board.
  3.  複数の前記マイク基板を備え、
     前記筐体は、前記複数のマイク基板の各々を着脱可能に支持することを特徴とする請求項1または2に記載のマイクロホンアレイ装置。
    A plurality of microphone substrates,
    The microphone array device according to claim 1, wherein the housing detachably supports each of the plurality of microphone substrates.
  4.  前記複数のマイク基板を識別する識別情報を保持する識別情報保持部をさらに備えることを特徴とする請求項3に記載のマイクロホンアレイ装置。 4. The microphone array device according to claim 3, further comprising an identification information holding unit that holds identification information for identifying the plurality of microphone substrates.
  5.  前記複数のマイク基板は、前記複数のマイクロホンがアレイ状に配置された測定面に対して、それぞれ垂直または略垂直に配置されていることを特徴とする請求項3または4に記載のマイクロホンアレイ装置。 The microphone array device according to claim 3, wherein the plurality of microphone substrates are arranged perpendicularly or substantially perpendicularly to a measurement surface on which the plurality of microphones are arranged in an array. .
  6.  前記複数のマイクロホンが指向性のマイクロホンである場合、当該指向性のマイクロホンのセンサ面が、音源面に対して平行または略平行となるように、前記複数のマイク基板が配置されていることを特徴とする請求項3から5のいずれか1項に記載のマイクロホンアレイ装置。 When the plurality of microphones are directional microphones, the plurality of microphone substrates are arranged such that a sensor surface of the directional microphone is parallel or substantially parallel to a sound source surface. The microphone array device according to any one of claims 3 to 5, wherein
  7.  前記筐体は、
      前記複数のマイク基板をそれぞれ着脱可能に支持する複数の第一の支持体と、
      前記複数の第一の支持体を着脱可能に支持する少なくとも1つの第二の支持体と、を備え、
     前記マイク基板は、
      前記複数のマイクロホンが第一の方向において一定間隔で実装されており、
     前記第一の支持体は、
      前記第一の方向に直交する第二の方向において、任意の一定間隔で並列配置可能であることを特徴とする請求項3から6のいずれか1項に記載のマイクロホンアレイ装置。
    The housing is
    A plurality of first supports for detachably supporting the plurality of microphone substrates,
    And at least one second support that detachably supports the plurality of first supports,
    The microphone substrate,
    The plurality of microphones are mounted at regular intervals in a first direction,
    The first support,
    The microphone array device according to any one of claims 3 to 6, wherein the microphone array device can be arranged in parallel at an arbitrary fixed interval in a second direction orthogonal to the first direction.
  8.  前記第二の支持体は、前記第一の支持体を任意の間隔で挿入可能な複数の取付溝を有することを特徴とする請求項7に記載のマイクロホンアレイ装置。 The microphone array device according to claim 7, wherein the second support has a plurality of mounting grooves into which the first support can be inserted at an arbitrary interval.
  9.  前記第一の支持体は、前記第二の方向の長さが、前記複数のマイクロホンがアレイ状に配置された測定面に対して直交する方向の長さよりも短いことを特徴とする請求項7または8に記載のマイクロホンアレイ装置。 8. The first support according to claim 7, wherein a length in the second direction is shorter than a length in a direction orthogonal to a measurement surface on which the plurality of microphones are arranged in an array. Or the microphone array device according to 8.
  10.  前記マイク基板は、前記第一の支持体における前記測定面に対して垂直な面に取り付けられていることを特徴とする請求項9に記載のマイクロホンアレイ装置。 The microphone array device according to claim 9, wherein the microphone substrate is attached to a surface of the first support perpendicular to the measurement surface.
  11.  前記マイクロホンは、前記第一の支持体の被測定物側の端面から前記被測定物側に突出して配置されていることを特徴とする請求項7から10のいずれか1項に記載のマイクロホンアレイ装置。 The microphone array according to any one of claims 7 to 10, wherein the microphone is arranged so as to protrude from an end surface of the first support on a device to be measured side toward the device to be measured. apparatus.
  12.  前記マイク基板は、前記複数のマイクロホンに共通な電源線およびグランド線を有することを特徴とする請求項1から11のいずれか1項に記載のマイクロホンアレイ装置。 The microphone array device according to any one of claims 1 to 11, wherein the microphone substrate has a power line and a ground line common to the plurality of microphones.
  13.  前記マイクロホンは、デジタルマイクロホンであり、
     前記マイク基板は、前記複数のマイクロホンに共通なクロック線を有することを特徴とする請求項1から12のいずれか1項に記載のマイクロホンアレイ装置。
    The microphone is a digital microphone,
    The microphone array device according to claim 1, wherein the microphone substrate has a clock line common to the plurality of microphones.
  14.  前記マイクロホンは、前記マイク基板における被測定物に近い位置に実装されていることを特徴とする請求項1から13のいずれか1項に記載のマイクロホンアレイ装置。 The microphone array device according to any one of claims 1 to 13, wherein the microphone is mounted on the microphone substrate at a position close to an object to be measured.
  15.  前記第一のケーブルは、前記マイク基板における被測定物から遠い側から前記制御基板へ伸びていることを特徴とする請求項1から14のいずれか1項に記載のマイクロホンアレイ装置。 The microphone array device according to any one of claims 1 to 14, wherein the first cable extends from a side of the microphone substrate far from the device under test to the control substrate.
  16.  請求項1から15のいずれか1項に記載のマイクロホンアレイ装置と、
     前記制御基板を有する音響解析装置と、を備え、
     前記音響解析装置は、
      前記第一のケーブルを介して前記音情報を入力し、当該音情報を解析して音の特徴を表す物理量を検出することを特徴とする音響解析システム。
    A microphone array device according to any one of claims 1 to 15,
    An acoustic analysis device having the control board,
    The acoustic analyzer,
    An acoustic analysis system comprising: inputting the sound information via the first cable; analyzing the sound information; and detecting a physical quantity representing a feature of the sound.
PCT/JP2019/030879 2018-09-21 2019-08-06 Microphone array device and sound analysis system WO2020059340A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980055488.9A CN112601941A (en) 2018-09-21 2019-08-06 Microphone array device and acoustic analysis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018176998 2018-09-21
JP2018-176998 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020059340A1 true WO2020059340A1 (en) 2020-03-26

Family

ID=69886943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030879 WO2020059340A1 (en) 2018-09-21 2019-08-06 Microphone array device and sound analysis system

Country Status (2)

Country Link
CN (1) CN112601941A (en)
WO (1) WO2020059340A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117232643B (en) * 2023-11-10 2024-03-22 万帮数字能源股份有限公司 Method and device for testing sound power level of charging pile

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521283A (en) * 2002-03-15 2005-07-14 ブリュエル アンド ケアー サウンド アンド ヴァイブレーション メジャーメント エー/エス Transducer beamforming array
JP2005223850A (en) * 2004-02-09 2005-08-18 Fuji Xerox Co Ltd Microphone and microphone array
US20050189847A1 (en) * 2004-02-27 2005-09-01 Tuss Joel R. Methods and systems for supporting acoustical transducers
JP2006311202A (en) * 2005-04-28 2006-11-09 Kenwood Corp Acoustic measuring apparatus
US20130094678A1 (en) * 2009-12-11 2013-04-18 Rick Scholte Acoustic transducer assembly
CN106792300A (en) * 2017-01-05 2017-05-31 青岛理工大学 Adjustable microphone array arrangement device
US20180227666A1 (en) * 2017-01-27 2018-08-09 Shure Acquisition Holdings, Inc. Array microphone module and system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5025011B2 (en) * 2008-05-15 2012-09-12 株式会社オーディオテクニカ Microphone array
US10028051B2 (en) * 2015-08-31 2018-07-17 Panasonic Intellectual Property Management Co., Ltd. Sound source localization apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521283A (en) * 2002-03-15 2005-07-14 ブリュエル アンド ケアー サウンド アンド ヴァイブレーション メジャーメント エー/エス Transducer beamforming array
JP2005223850A (en) * 2004-02-09 2005-08-18 Fuji Xerox Co Ltd Microphone and microphone array
US20050189847A1 (en) * 2004-02-27 2005-09-01 Tuss Joel R. Methods and systems for supporting acoustical transducers
JP2006311202A (en) * 2005-04-28 2006-11-09 Kenwood Corp Acoustic measuring apparatus
US20130094678A1 (en) * 2009-12-11 2013-04-18 Rick Scholte Acoustic transducer assembly
CN106792300A (en) * 2017-01-05 2017-05-31 青岛理工大学 Adjustable microphone array arrangement device
US20180227666A1 (en) * 2017-01-27 2018-08-09 Shure Acquisition Holdings, Inc. Array microphone module and system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAGATOMO, HIROSHI,: "Noise source identification system.", THE JOURNAL OF THE ACOUSTICAL SOCIETY OF JAPAN, vol. 72, no. 7, pages 416 - 41 7 *
SATOH, TOSHIKAZU: "Latest near-field acousticalholograghy and its related technology for finding noise source mechanism.", THE JOURNAL OF THE ACOUSTICAL SOCIETY OF JAPAN, vol. 64, no. 7, 2008, pages 405 - 41 1 *

Also Published As

Publication number Publication date
CN112601941A (en) 2021-04-02

Similar Documents

Publication Publication Date Title
KR101064976B1 (en) System for identifying the acoustic source position in real time and robot which reacts to or communicates with the acoustic source properly and has the system
EP2746737B1 (en) Acoustic sensor apparatus and acoustic camera using a mems microphone array
EP2352309B1 (en) Sound Source Tracking Device
EP2510404B1 (en) Acoustic transducer assembly
US9326064B2 (en) Microphone array configuration and method for operating the same
US8061213B2 (en) High temperature, high bandwidth pressure acquisition system
JP7100119B2 (en) Compact measurement device configuration for complex circuit integration
CN109076300B (en) Earphone test
US9510120B2 (en) Apparatus and method for testing sound transducers
KR101213539B1 (en) Acoustic senseing device and acoustic camera using mems microphone array
CN111829646B (en) Particle vibration velocity sensor with wide response frequency band
WO2020059340A1 (en) Microphone array device and sound analysis system
Zhang et al. A MEMS microphone inspired by Ormia for spatial sound detection
WO2020255762A1 (en) Microphone array device and sound analysis system
CN111919454B (en) Microphone array and acoustic analysis system
CN108415004B (en) The measurement method of Scale Fiber-Optic Hydrophone Array full frequency band phase equalization
JP2000147034A (en) Tightly fixed near-magnetic field probe
US10107676B2 (en) Adaptive acoustic intensity analyzer
JP2008283564A (en) Inspecting method for headphone unit
JP2021056046A (en) Evaluation system and evaluation device
KR101678204B1 (en) Acoustic Camera
JP4901280B2 (en) Sound acquisition device, sound calibration device, sound measurement device, and program.
JPH07113815A (en) Fixing device for vibration sensor
JP3606491B2 (en) Engine measuring instrument
KR20130029670A (en) Sound visualization device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP