WO2014192088A1 - Active vibration damping device and active vibration damping method - Google Patents

Active vibration damping device and active vibration damping method Download PDF

Info

Publication number
WO2014192088A1
WO2014192088A1 PCT/JP2013/064832 JP2013064832W WO2014192088A1 WO 2014192088 A1 WO2014192088 A1 WO 2014192088A1 JP 2013064832 W JP2013064832 W JP 2013064832W WO 2014192088 A1 WO2014192088 A1 WO 2014192088A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
target
active
generating means
control
Prior art date
Application number
PCT/JP2013/064832
Other languages
French (fr)
Japanese (ja)
Inventor
有坂 寿洋
高志 三枝
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to JP2015519534A priority Critical patent/JPWO2014192088A1/en
Priority to PCT/JP2013/064832 priority patent/WO2014192088A1/en
Publication of WO2014192088A1 publication Critical patent/WO2014192088A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Definitions

  • the present invention relates to an active vibration damping device and an active vibration damping method.
  • a vibration detecting means for detecting the vibration, and processing the detection signal indicating the vibration detected by the vibration detecting means to drive the vibration generating means so as to suppress the vibration. It has been known.
  • vibration detection means is attached to one side of a panel to be subjected to vibration suppression, and vibration generation means is provided on the other side (back side) of the panel.
  • the vibration generating means is composed of a flat element that generates distortion and is affixed to one side of the panel, and the vibration detecting means is provided on the other side of the panel when there is a step-like variation.
  • the panel On the (back side), the panel is disposed in an area on the panel where the initial displacement direction and the steady displacement direction coincide.
  • the vibration suppression will be described with a specific example.
  • the vibration is caused by the vibration.
  • a description will be given using a storage device equipped with an HDD (Hard Disk Drive) as a commonly used recording device.
  • the HDD itself generates vibrations by operating the internal actuator and the spindle of the disk. This vibration is transmitted through the housing of the storage device to another HDD that is attached to the storage device that is not performing input / output, and the HDD that is not performing input / output also vibrates.
  • the vibrations from the HDDs that are not performing input / output overlap multiple times and are transmitted as external vibrations to the HDDs that are performing input / output, thereby affecting the operation of the HDDs that are performing input / output, and the amount of input / output It will adversely affect.
  • a fan for forcibly circulating air to dissipate heat is often mounted. In this case, there is a case where the vibration generated by the operation of the fan is transmitted as external vibration to the HDD performing input / output via the housing of the storage device.
  • vibration such as measuring equipment such as electron microscopes, manufacturing equipment that performs ultra-fine processing, and the like, which require high-accuracy imaging of extremely small areas, reduces the performance of the device.
  • suppressing vibration is an important issue.
  • the vibration of the structure can be a source of noise, which can reduce the added value of the device.
  • an active vibration control device that detects the vibration of the object, generates a control signal that suppresses the vibration, drives the vibration generating means, and reduces the vibration.
  • this device is referred to as an active vibration control device.
  • the active vibration control device since the active vibration control device is difficult to design, it is necessary to design it specially for the application target. Unless the target is to be produced in large quantities, the cost as a vibration control device is high. Furthermore, it is not suitable for mass-produced products, which have high vibration damping effects, but are also greatly affected by changes in the frequency of vibrations of interest.
  • the vibration suppression means when the vibration detection means and the vibration generation means are arranged in the same place as in the above-described prior art, for example, when the target structure is a substantially box-shaped housing or the like, In suppressing vibration, there is a problem that the vibration generating means for suppressing vibration cannot be arranged efficiently.
  • the vibration mode presents an overall complex aspect, so a position where the amplitude of the target vibration can be detected effectively and a driving force applied to suppress the vibration are applied. This is because the position suitable for this is not always the same. That is, in the above prior art, for example, when the target structure is a substantially box-shaped housing or the like, the vibration generating means for suppressing the vibration cannot be disposed at an efficient position in order to suppress the vibration.
  • the vibration detection means when an acceleration sensor is used as the vibration detection means, when the vibration source is inside the target as in the example of the information storage device described above, the vibration to be reduced by the active vibration control device is this vibration. .
  • the acceleration sensor picks up external vibrations, the stability and vibration control performance of the control system cannot be obtained.
  • the present invention is to reduce the influence of vibration, and to realize a vibration damping device having high vibration damping performance at low cost in a case where a casing is vibrated by an internal vibration source.
  • An object of the present invention is to provide an active vibration damping device and an active vibration damping method.
  • a vibration detecting means provided in a part of a structure for detecting vibration, a vibration generating means for generating strain in a part different from the part of the structure, and vibration detection Control means for generating a control signal for determining the driving force of the vibration generating means in response to a signal from the means, and with respect to changes in the frequency and magnitude of the vibration of the object detected by the vibration detecting means.
  • the mode of the control signal that determines the driving force of the vibration generating means is changed.
  • One example is a vibration damping device that is attached to a target structure whose vibration is to be reduced, and includes a plurality of identical vibration detection means for detecting distortion of a part of the target, and parts of the target that are different locations.
  • the aspect of the control signal that determines the driving force of the vibration generating means is changed with respect to the change in the frequency and magnitude of the detected vibration of the object.
  • the arrangement of the vibration generating means is determined according to the characteristics of the target, it is possible to generate a driving force that can efficiently reduce the vibration of the target.
  • FIG. 6 is a diagram illustrating an operation of the first embodiment.
  • 1 is a block diagram of Embodiment 1.
  • FIG. 3 is an enlarged view of the vicinity of the piezoelectric sensor 3 of Example 1.
  • FIG. 3 is an enlarged view of the vicinity of the piezoelectric actuator 4 according to the first embodiment.
  • FIG. 6 is a diagram illustrating a method for adjusting control characteristics according to the first embodiment.
  • FIG. 6 is a diagram showing Example 2. 6 is an enlarged view of the vicinity of a piezoelectric sensor 3 of Example 3.
  • the object whose vibration is to be reduced will be described as an information storage device using, for example, a RAID device.
  • FIG. 1 is a diagram showing the first embodiment.
  • FIG. 1 shows an example in which an active vibration damping device 1 of the present invention is mounted on a target storage device 2.
  • Piezoelectric sensors 3 a and 3 b are attached to the structural plate 6 on the side surface of the housing of the storage device 2.
  • plate-like piezoelectric actuators 4 a, 4 b, 4 c are attached to the other parts of the structural plate 6, and the piezoelectric sensors 3 a, 3 b and the piezoelectric actuators 4 a, 4 b, 4 c are connected to the controller 5.
  • FIG. 2 is a simplified illustration of the case where the structural plate 6 is subjected to bending vibration.
  • the dotted line in this figure represents the original shape of the storage device 2.
  • the controller 5 the feedback circuit shown in FIG.
  • the piezoelectric actuators 4 a, 4 b, 4 c. In response to the control output 8, the piezoelectric actuators 4a to 4c generate distortion and deform the structural plate 6 so as to suppress vibration. Thereby, the vibration generated in the structural plate 6 is reduced.
  • two sensors are used like the piezoelectric sensors 3a and 3b.
  • the number of target vibrations is large, that is, when the number of vibration modes to be dealt with in the storage device 2 is large.
  • a plurality of vibrations can be detected by increasing the number of piezoelectric sensors 3. This is because which part vibrates greatly depending on the vibration mode, and even if one sensor detects this, there is a vibration mode that is difficult to detect depending on the position of the sensor.
  • the vibration mode has a complicated aspect (FIG. 2 is simplified for the sake of explanation). Therefore, it is desirable to affix the piezoelectric sensor 3 not only to the structural plate 6 which is one component but also to other components.
  • the number of piezoelectric sensors 3 is larger.
  • the number of piezoelectric sensors 3 is small in terms of cost and man-hours to be attached. Accordingly, the necessary and sufficient number of piezoelectric sensors 3 is sufficient based on the number of vibration modes to be controlled.
  • the piezoelectric sensor 3 used in the present embodiment has the same shape and properties according to the same standard, and this enables better measurement of the vibration state of the target, while the same standard improves the productivity of the sensor. Thus, the part cost can be reduced.
  • the plate-like piezoelectric actuator 4 has the same shape and performance according to the same standard, and by using a plurality of these, the driving force as a whole is ensured and vibration is generated according to the characteristics of the target.
  • the number and arrangement of means in advance it is possible to generate a driving force that can efficiently reduce the vibration of the object. Furthermore, component costs can be reduced for the same reason as described above.
  • the vibration damping device can reduce the cost as a vibration damping device additionally used by using only the standardized sensor and actuator.
  • the piezoelectric sensor 3 and the piezoelectric actuator 4 are installed at different locations on the structural plate 6. There is also a method of arranging the sensor and actuator in the same place.
  • the target structure is a roughly box-shaped housing, etc.
  • the vibration mode has an overall complex aspect, so the amplitude of the target vibration is effective.
  • the position that can be detected automatically and the position that is suitable for applying the driving force so as to suppress the vibration are not necessarily the same. Therefore, in the present invention, the piezoelectric sensor 3 and the piezoelectric actuator 4 can be arranged at positions where vibrations are detected or suppressed more effectively.
  • FIG. 4 shows an enlarged view of the piezoelectric sensor 3 used in the first embodiment.
  • the piezoelectric sensor 3 is formed by forming a piezoelectric element such as PZT into a thin plate shape, and affixing the structure plate 6 with an adhesive 9.
  • a highly rigid adhesive 9 In order to detect the strain state of the structural plate 6 with high accuracy, it is desirable to use a highly rigid adhesive 9.
  • the type having the electrodes 13 on both sides is used and the signal line 14 is taken out by soldering, but other types can be used. It is effective to attach the piezoelectric sensor 3 to a portion having a large strain in the target vibration mode.
  • FIG. 5 shows an enlarged view of the piezoelectric actuator 4 used in the first embodiment.
  • the structure of the piezoelectric actuator 4 is similar to that of the piezoelectric sensor 3, and a plate-shaped piezoelectric element is attached to the structure plate 6 using an adhesive 9.
  • the piezoelectric actuator 4 is likely to cause distortion of the structural plate 6 and is highly effective in reducing vibration.
  • While active vibration control devices have higher vibration control capability than passive vibration control devices, they are also subject to large variations due to changes in the frequency of vibrations targeted for vibration control. There is also a problem that it is not suitable.
  • the controller 5 that generates a control signal 8 for determining the driving force generated in the piezoelectric actuator 4 by the signal from the piezoelectric sensor 3, the internal parameters are adjusted in accordance with the vibration characteristics of the target structural plate 6. Take a way to change. That is, the controller 5 changes the center frequency and gain of the digital filter of the feedback circuit in the controller 5 in response to changes in the frequency and magnitude of the target vibration detected by the piezoelectric sensor 3 to change the mode of the control signal 8.
  • the control signal 8 from which the influence of the variation is automatically removed can be created.
  • an optimum vibration damping performance can be obtained following the change.
  • the cost when introducing the active vibration control device can be reduced.
  • FIG. 6 shows a method of changing the control characteristic of the controller 5 in response to the change of the vibration characteristic of the object.
  • step 601 the response is measured by the sweep input sensor by the plate-like piezoelectric actuators 4a to 4c.
  • step 602 it is determined whether frequency / gain ⁇ specified value. If the frequency / gain is less than the specified value, in step 603, the filter is changed according to the difference. On the other hand, it is determined whether frequency / gain ⁇ specified value. If the frequency / gain is smaller than the specified value, this flow is finished as it is. That is, in this flow, a sinusoidal wave input is applied to the plate-like piezoelectric actuator 4 to perform vibration, sweeping around the target frequency, and the peak frequency and gain of the target vibration are within a predetermined range. For example, the digital filter inside the controller 5 is not changed.
  • the center frequency and gain of the digital filter are changed so as to reduce the difference according to the difference from a preset value.
  • This embodiment solves the problem that the cost of conventional active vibration control devices is high by reducing the cost of parts for sensors and actuators, while adjusting the controller characteristics with respect to the target vibration characteristics. In this way, it is possible to reduce the introduction cost and to solve the design difficulties that must be specially designed for the target. Compared to widely used passive vibration control devices, active vibration control devices that are difficult to introduce from the viewpoint of cost and design man-hours despite their high vibration control performance can be applied to a wide variety of devices. It will become apparent with reference to this embodiment that this is possible.
  • the RAID device which is an information storage device has been described as an example, but it goes without saying that it can be applied to other types of devices.
  • FIG. 7 shows a second embodiment of the present invention.
  • the acceleration sensor 10 is used as vibration detection means.
  • the high-pass filter 11 is set before the controller 5, and other vibration components that become noise from the acceleration sensor 10 are passed through the filter. To reduce the influence of external vibration.
  • the reason why the high-pass filter is used is that the vibration component from the outside generally has a lower frequency than the vibration mode of the target storage device 2.
  • the advantage of using the acceleration sensor 10 is that it is not easily affected by temperature or the like. Moreover, vibration can be detected effectively by installing the acceleration sensor 10 where the vibration amplitude of the structural plate 6 is large. Since the location where the vibration amplitude is large can be measured relatively easily by using various displacement meters, speedometers, and accelerometers, the active vibration damping device of the present invention is used to reduce vibrations after confirming the vibration state of the actual machine. There is also an advantage that workability is high when applying. Further, as in the first embodiment, as the vibration generating means, by using the plate-like piezoelectric actuator 4, it directly acts on the deformation state of the vibration mode and reduces the vibration amplitude.
  • FIG. 8 shows an enlarged view of the piezoelectric sensor 3 in the third embodiment of the present invention.
  • vibration detection for detecting strain it is conceivable that the output is affected by changes in environmental temperature.
  • the temperature sensor 12 is provided, and thereby the output of the piezoelectric sensor 3 is compensated, whereby the influence of temperature can be suppressed.
  • Other configurations are the same as those of the first embodiment.
  • a change in the target vibration characteristic due to a temperature change is regarded as a variation and compensated by a characteristic change in the feedback circuit of the controller 5.
  • a change in the characteristics of the piezoelectric sensor 3 itself due to a temperature change it is not possible to distinguish between a change in the output signal due to this and a change in the output signal due to a change in the target temperature characteristic. Therefore, this problem can be solved by arranging the temperature sensor 12 in the vicinity of the piezoelectric sensor 3 and correcting the output of the piezoelectric sensor 3 with respect to the temperature at this portion according to the temperature correction map defined in advance. it can.
  • the first to third embodiments are summarized as follows.
  • the cost as the vibration damping device is high unless the application target is mass-produced, and further, the frequency change of the target vibration is increased.
  • the vibration state of the target can be determined by providing multiple vibration detection means that have the same shape and properties according to the same standard. While better measurements can be made, productivity can be improved and costs can be reduced.
  • the driving force that can efficiently reduce the vibration of the target is determined by predetermining the number and arrangement of the vibration generating means according to the characteristics of the target by aligning the shape and performance of the vibration generating means according to the same standard. Can be generated. Furthermore, the cost can be reduced for the same reason as described above.
  • the vibration generating means for suppressing the vibration is more improved than the case where the vibration detecting means and the vibration generating means are disposed at the same place. It can be placed in an efficient position.
  • the vibration mode presents an overall complex aspect, so a position where the amplitude of the target vibration can be detected effectively and a driving force applied to suppress the vibration are applied. This is because the position suitable for this is not always the same.
  • vibration detection means when an acceleration sensor is used as the vibration detection means, noise from the outside is also picked up because it picks up vibrations from the outside.
  • the strain at the position installed on the vibration detection means is detected.
  • the vibration generating means also directly affects the deformation state of the vibration mode by using means such as a plate-like piezoelectric element that generates strain at the target position, and reduces the vibration amplitude.
  • the output may be affected by changes in environmental temperature.
  • the temperature detection means is provided, and thereby the output of the vibration detection means is compensated, whereby the influence can be suppressed.
  • a more preferable method is that the control means for generating a control signal for determining the driving force to be generated by the vibration generating means based on the signal from the vibration detecting means, the frequency and magnitude of the vibration of the object detected by the vibration detecting means.
  • the present invention is not limited to the first to third embodiments described above, and includes various modifications.
  • the first to third embodiments described above are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

Provided is a low-cost active vibration damping device with which vibration can be reduced in a device for which the influence of vibration must be eliminated. This vibration damping device, which is attached to a structure for which vibration must be reduced, is characterized by being equipped with multiple identical vibration detection means that detect distortion at a portion of the subject structure, multiple identical vibration generation means that generate distortion at a different portion of the subject structure, and a control means that, on the basis of signals from the vibration detection means, generates a control signal that sets the driving force of the vibration generation means, with the condition of the control signal for setting the driving force of the vibration generation means being changed with respect to changes in the frequency and magnitude of the vibration of the subject as detected by the vibration detection means.

Description

アクティブ制振装置及びアクティブ制振方法Active damping device and active damping method
 本発明は、アクティブ制振装置及びアクティブ制振方法に関する。 The present invention relates to an active vibration damping device and an active vibration damping method.
 一般に、モータ等の振動源を有するものでは、この振動が、装置の目的とする対象を制御する際に悪影響を及ぼすことが多い。この振動を抑制するために、振動を検出する振動検出手段を有して、この振動検出手段が検出した振動を示す検出信号を処理して、振動を抑制するように振動発生手段を駆動する装置が知られている。 Generally, in a device having a vibration source such as a motor, this vibration often has an adverse effect on controlling a target object of the apparatus. In order to suppress this vibration, there is provided a vibration detecting means for detecting the vibration, and processing the detection signal indicating the vibration detected by the vibration detecting means to drive the vibration generating means so as to suppress the vibration. It has been known.
 従来では、このような装置として、振動抑制の対象となるパネルの一方側に振動検出手段を貼付し、パネルの他方側(裏側)に振動発生手段を設ける技術が知られている。 Conventionally, as such an apparatus, a technique is known in which vibration detection means is attached to one side of a panel to be subjected to vibration suppression, and vibration generation means is provided on the other side (back side) of the panel.
 この技術では、振動発生手段は、歪みを発生する平面状に成型された素子からなってパネルの一方側に貼付され、振動検出手段は、ステップ状の変動があった場合に、パネルの他方側(裏側)で、パネルの初期変位の方向と定常変位の方向が一致するようなパネル上の領域に配置されている。このような技術は、例えば、特開2006-215993号公報に記載されている。 In this technique, the vibration generating means is composed of a flat element that generates distortion and is affixed to one side of the panel, and the vibration detecting means is provided on the other side of the panel when there is a step-like variation. On the (back side), the panel is disposed in an area on the panel where the initial displacement direction and the steady displacement direction coincide. Such a technique is described in, for example, Japanese Patent Application Laid-Open No. 2006-215993.
特開2006-215993号公報JP 2006-215993 A
 ここで、振動抑制について、具体的な例を挙げて説明すると、振動による影響を排除すべき装置の振動を抑えるためには、例えば、複数の記録装置を搭載する情報記憶装置では、振動によって生じる情報記憶装置の性能低下につながる。ここでは一般的に用いられる記録装置としてHDD(ハードディスクドライブ)を搭載した記憶装置を用いて説明する。HDDは、内部のアクチュエータやディスクのスピンドルが稼働することによって、それ自体が振動を発生させる。この振動は、記憶装置の筺体を介して、記憶装置に取り付けられた、別の入出力をしていないHDDに伝わり、入出力をしていないHDDも振動する。この入出力をしていないHDDからの振動が多重に重なり合って、入出力をしているHDDに外部振動として伝わることにより、入出力をしているHDDの動作に影響を与え、入出力の量に悪影響を及ぼしてしまう。また、装置を冷却するために、空気を強制的に循環させて放熱するためのファンを搭載していることが多い。この場合、ファンの動作によって生じる振動が記憶装置の筺体を介して、入出力をしているHDDに外部振動として伝わるケースもある。 Here, the vibration suppression will be described with a specific example. In order to suppress the vibration of the apparatus whose influence should be eliminated, for example, in an information storage device equipped with a plurality of recording devices, the vibration is caused by the vibration. This leads to performance degradation of the information storage device. Here, a description will be given using a storage device equipped with an HDD (Hard Disk Drive) as a commonly used recording device. The HDD itself generates vibrations by operating the internal actuator and the spindle of the disk. This vibration is transmitted through the housing of the storage device to another HDD that is attached to the storage device that is not performing input / output, and the HDD that is not performing input / output also vibrates. The vibrations from the HDDs that are not performing input / output overlap multiple times and are transmitted as external vibrations to the HDDs that are performing input / output, thereby affecting the operation of the HDDs that are performing input / output, and the amount of input / output It will adversely affect. Moreover, in order to cool the apparatus, a fan for forcibly circulating air to dissipate heat is often mounted. In this case, there is a case where the vibration generated by the operation of the fan is transmitted as external vibration to the HDD performing input / output via the housing of the storage device.
 この他にも、極微小領域の画像を高精度に撮像する必要がある、電子顕微鏡などの計測機器や、超微細加工を行う製造機器など、振動によって装置の性能が低下するために、振動を排除すべき装置においては、振動を抑えることは重要な課題となる。この他にも構造体の振動は騒音の発生源となり、装置の付加価値を下げることがある。 In addition, vibration such as measuring equipment such as electron microscopes, manufacturing equipment that performs ultra-fine processing, and the like, which require high-accuracy imaging of extremely small areas, reduces the performance of the device. In an apparatus that should be eliminated, suppressing vibration is an important issue. In addition, the vibration of the structure can be a source of noise, which can reduce the added value of the device.
 振動を低減するために、対象の振動を検出し、その振動を抑制するような制御信号を発生させて、振動発生手段を駆動させて、振動を低減するような能動的(アクティブ)振動制御装置を適用する方法があるが(以下、この装置をアクティブ制振装置と呼ぶ。)、一方で、アクティブ制振装置は設計が難しいため、適用対象に対して特別に設計する必要があり、したがって適用対象が大量に生産するものでないかぎり、制振装置としてのコストは高くなる。さらには高い制振効果を持つ一方で対象とする振動の周波数変化などによる影響も大きい点が、ばらつきを含みやすい大量生産品に向かない。 In order to reduce the vibration, an active vibration control device that detects the vibration of the object, generates a control signal that suppresses the vibration, drives the vibration generating means, and reduces the vibration. (Hereinafter, this device is referred to as an active vibration control device.) On the other hand, since the active vibration control device is difficult to design, it is necessary to design it specially for the application target. Unless the target is to be produced in large quantities, the cost as a vibration control device is high. Furthermore, it is not suitable for mass-produced products, which have high vibration damping effects, but are also greatly affected by changes in the frequency of vibrations of interest.
 このような振動抑制において、上記従来技術のように、振動検出手段と振動発生手段を同じ場所に配置すると、例えば対象の構造体が概略箱型の筺体等である場合に顕著であるが、その振動を抑える上で、振動を抑える振動発生手段を効率的な配置とすることができないという問題が発生する。例えば概略箱型の構造体であれば、振動モードは全体的な複雑な様相を呈するため、対象とする振動の振幅を効果的に検出できる位置と、その振動を抑制するように駆動力を加えるのに適した位置とは同一とは限らないからである。すなわち、上記従来技術では、例えば対象の構造体が概略箱型の筺体等である場合、その振動を抑える上で、振動を抑える振動発生手段を効率的な位置に配置することができない。 In such vibration suppression, when the vibration detection means and the vibration generation means are arranged in the same place as in the above-described prior art, for example, when the target structure is a substantially box-shaped housing or the like, In suppressing vibration, there is a problem that the vibration generating means for suppressing vibration cannot be arranged efficiently. For example, in the case of a roughly box-shaped structure, the vibration mode presents an overall complex aspect, so a position where the amplitude of the target vibration can be detected effectively and a driving force applied to suppress the vibration are applied. This is because the position suitable for this is not always the same. That is, in the above prior art, for example, when the target structure is a substantially box-shaped housing or the like, the vibration generating means for suppressing the vibration cannot be disposed at an efficient position in order to suppress the vibration.
 特に、振動検出手段として加速度センサを用いた場合に、先に示した情報記憶装置の例のように、振動源が対象内部にある場合、アクティブ制振装置によって低減したい振動は、この振動となる。しかし加速度センサでは外部からの振動も拾ってしまうため、制御系の安定性や制振性能を得ることができない。 In particular, when an acceleration sensor is used as the vibration detection means, when the vibration source is inside the target as in the example of the information storage device described above, the vibration to be reduced by the active vibration control device is this vibration. . However, since the acceleration sensor picks up external vibrations, the stability and vibration control performance of the control system cannot be obtained.
 そこで、本発明は、振動による影響を低減するものであって、内部の振動源によって筺体が加振されるようなものにおいて、低コストで高い制振性能を有する制振装置を実現することが可能なアクティブ制振装置及びアクティブ制振方法を提供することを目的とする。 Therefore, the present invention is to reduce the influence of vibration, and to realize a vibration damping device having high vibration damping performance at low cost in a case where a casing is vibrated by an internal vibration source. An object of the present invention is to provide an active vibration damping device and an active vibration damping method.
 上記目的を達成するために、本発明では、構造体の一部分に設けられて振動を検出する振動検出手段と、構造体における前記一部分とは異なる一部分にひずみを生じさせる振動発生手段と、振動検出手段からの信号に応じて、振動発生手段の駆動力を決定する制御信号を発生する制御手段を有し、上記振動検出手段によって、検出された対象の振動の周波数及び大きさの変化に対して、上記振動発生手段の駆動力を決定する制御信号の態様を変化するように構成した。 In order to achieve the above object, according to the present invention, a vibration detecting means provided in a part of a structure for detecting vibration, a vibration generating means for generating strain in a part different from the part of the structure, and vibration detection Control means for generating a control signal for determining the driving force of the vibration generating means in response to a signal from the means, and with respect to changes in the frequency and magnitude of the vibration of the object detected by the vibration detecting means. The mode of the control signal that determines the driving force of the vibration generating means is changed.
 その一例を挙げるならば、振動を低減すべき対象の構造体にとりつける制振装置であって、対象の一部分のひずみを検出する複数の同一の振動検出手段と、対象の、異なる場所である一部分にひずみを生じさせる複数の同一の振動発生手段と、上記振動検出手段からの信号により、上記振動発生手段の駆動力を決定する制御信号を発生する制御手段を有し、上記振動検出手段によって、検出された対象の振動の周波数、大きさの変化に対して、上記振動発生手段の駆動力を決定する制御信号の態様を変化するように構成した。 One example is a vibration damping device that is attached to a target structure whose vibration is to be reduced, and includes a plurality of identical vibration detection means for detecting distortion of a part of the target, and parts of the target that are different locations. A plurality of the same vibration generating means for generating a strain on the surface, and a control means for generating a control signal for determining the driving force of the vibration generating means based on a signal from the vibration detecting means, and the vibration detecting means The aspect of the control signal that determines the driving force of the vibration generating means is changed with respect to the change in the frequency and magnitude of the detected vibration of the object.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
 本発明によれば、対象の特性に応じて振動発生手段の配置が決められるので、効率的に対象の振動を低減できる駆動力を発生することができる。 According to the present invention, since the arrangement of the vibration generating means is determined according to the characteristics of the target, it is possible to generate a driving force that can efficiently reduce the vibration of the target.
本発明におけるアクティブ制振装置の実施例1を示す図である。It is a figure which shows Example 1 of the active damping device in this invention. 実施例1の動作を示す図である。FIG. 6 is a diagram illustrating an operation of the first embodiment. 実施例1のブロック線図である。1 is a block diagram of Embodiment 1. FIG. 実施例1の圧電センサ3付近の拡大図である。3 is an enlarged view of the vicinity of the piezoelectric sensor 3 of Example 1. FIG. 実施例1の圧電アクチュエータ4付近の拡大図である。FIG. 3 is an enlarged view of the vicinity of the piezoelectric actuator 4 according to the first embodiment. 実施例1の制御特性の調整方法を示す図である。FIG. 6 is a diagram illustrating a method for adjusting control characteristics according to the first embodiment. 実施例2を示す図である。FIG. 6 is a diagram showing Example 2. 実施例3の圧電センサ3付近の拡大図である。6 is an enlarged view of the vicinity of a piezoelectric sensor 3 of Example 3. FIG.
 以下実施例の説明では、振動を低減すべき対象を情報記憶装置として、例えばRAID装置を用いて説明する。 In the following description of the embodiments, the object whose vibration is to be reduced will be described as an information storage device using, for example, a RAID device.
 図1は、実施例1を示す図である。図1は、対象となる記憶装置2に本発明のアクティブ制振装置1を搭載した例である。記憶装置2の筺体側面の構造板6に圧電センサ3a、3bが貼り付けられている。また、構造板6の他の部分には板状圧電アクチュエータ4a、4b、4cが貼り付けられており、圧電センサ3a、3bおよび圧電アクチュエータ4a、4b、4cはコントローラ5と結線されている。 FIG. 1 is a diagram showing the first embodiment. FIG. 1 shows an example in which an active vibration damping device 1 of the present invention is mounted on a target storage device 2. Piezoelectric sensors 3 a and 3 b are attached to the structural plate 6 on the side surface of the housing of the storage device 2. Further, plate-like piezoelectric actuators 4 a, 4 b, 4 c are attached to the other parts of the structural plate 6, and the piezoelectric sensors 3 a, 3 b and the piezoelectric actuators 4 a, 4 b, 4 c are connected to the controller 5.
 記憶装置2の構造板6の振動を低減するしくみについて、図2を用いて説明する。図2は構造板6が曲げ振動を生じた場合を簡略化して描いたものである。この図の点線は記憶装置2の元の形状を表す。記憶装置2が振動することにより、実線で示す変形が生じ、構造板6が曲がることにより、圧電センサ3a、3bは構造板6の変形につれて変形し、ひずみ量に応じた電圧出力7を出力する。これがコントローラ5への入力となる。コントローラ5において、この対象となる振動数においてこの電圧出力7が零になるように、図3に示すフィードバック回路が形成されており、これによって圧電アクチュエータ4a、4b、4cに制御出力8が送られる。制御出力8に応じて圧電アクチュエータ4a~4cはひずみを発生させ、構造板6に対して振動を抑制するように変形する。これにより構造板6に生じる振動を低減させる。 A mechanism for reducing vibration of the structural plate 6 of the storage device 2 will be described with reference to FIG. FIG. 2 is a simplified illustration of the case where the structural plate 6 is subjected to bending vibration. The dotted line in this figure represents the original shape of the storage device 2. When the storage device 2 vibrates, deformation indicated by a solid line occurs, and the structural plate 6 bends, so that the piezoelectric sensors 3a and 3b are deformed as the structural plate 6 is deformed, and output a voltage output 7 corresponding to the amount of strain. . This is an input to the controller 5. In the controller 5, the feedback circuit shown in FIG. 3 is formed so that the voltage output 7 becomes zero at the target vibration frequency, whereby the control output 8 is sent to the piezoelectric actuators 4 a, 4 b, 4 c. . In response to the control output 8, the piezoelectric actuators 4a to 4c generate distortion and deform the structural plate 6 so as to suppress vibration. Thereby, the vibration generated in the structural plate 6 is reduced.
 圧電センサ3a、3bのように、この例では2つのセンサを用いているが、対象とする振動の数が多いほど、すなわち記憶装置2において対処しなくてはいけない振動モードの数が多い場合には、圧電センサ3の数を増やすことで複数の振動を検出することができるので好ましい。なぜなら振動モードによって、どの部位が大きく振動するかは異なるため、ひとつのセンサでこれを検出しようとしても、センサの位置によって検出しにくい振動モードが存在してしまうからである。さらに本例の記憶装置2のように概略箱型の筺体である場合には、振動モードは複雑な様相を呈する(図2は説明のため簡略化して描いている)。したがって、ひとつの構成部品である構造板6に限らず、他の構成部品にも圧電センサ3を貼り付けることが望ましい。 In this example, two sensors are used like the piezoelectric sensors 3a and 3b. However, when the number of target vibrations is large, that is, when the number of vibration modes to be dealt with in the storage device 2 is large. Is preferable because a plurality of vibrations can be detected by increasing the number of piezoelectric sensors 3. This is because which part vibrates greatly depending on the vibration mode, and even if one sensor detects this, there is a vibration mode that is difficult to detect depending on the position of the sensor. Further, in the case of a roughly box-shaped enclosure like the storage device 2 of this example, the vibration mode has a complicated aspect (FIG. 2 is simplified for the sake of explanation). Therefore, it is desirable to affix the piezoelectric sensor 3 not only to the structural plate 6 which is one component but also to other components.
 制振性能の観点では圧電センサ3の数はより多い方がよいことになるが、実際にはコストや貼り付ける工数の問題からは少ないことが望ましい。したがって、制振する振動モードの数から、必要十分な数の圧電センサ3があればよいことになる。本実施例で用いる圧電センサ3は、同一規格によって形状や性質を揃えており、これによって対象の振動状態をより良く計測することができる一方で、同一規格であることからセンサの生産性が向上して部品コストを低減できる。 From the viewpoint of damping performance, it is better that the number of piezoelectric sensors 3 is larger. However, in practice, it is desirable that the number of piezoelectric sensors 3 is small in terms of cost and man-hours to be attached. Accordingly, the necessary and sufficient number of piezoelectric sensors 3 is sufficient based on the number of vibration modes to be controlled. The piezoelectric sensor 3 used in the present embodiment has the same shape and properties according to the same standard, and this enables better measurement of the vibration state of the target, while the same standard improves the productivity of the sensor. Thus, the part cost can be reduced.
 同様に、振動を低減させるように構造板6を変形させる役目を持つ圧電アクチュエータ4に関しても、対象となる振動モードに対して構造板6に変形を生じさせるほど大きな駆動力を得るためには、より大きな面積の板状圧電素子を用いることが望ましい。しかし、 大面積の板状圧電素子を貼る場所を確保するのが難しい場合がある、という問題があり、また大面積の圧電素子は製造上の難度からコストが高くなる。そこで本発明の装置では、板状圧電アクチュエータ4を、同一規格によって形状や性能を揃えており、これを複数用いることで、全体としての駆動力を確保するとともに、対象の特性に応じて振動発生手段の数と配置を事前に決めることで、効率的に対象の振動を低減できる駆動力を発生することができる。さらには上記と同じ理由で部品コストを低減することができる。 Similarly, with respect to the piezoelectric actuator 4 having the role of deforming the structural plate 6 so as to reduce the vibration, in order to obtain a driving force large enough to cause the structural plate 6 to be deformed with respect to the target vibration mode, It is desirable to use a plate-like piezoelectric element having a larger area. However, there is a problem that it is sometimes difficult to secure a place where a large-area plate-like piezoelectric element is pasted, and a large-area piezoelectric element is expensive due to difficulty in manufacturing. Therefore, in the apparatus of the present invention, the plate-like piezoelectric actuator 4 has the same shape and performance according to the same standard, and by using a plurality of these, the driving force as a whole is ensured and vibration is generated according to the characteristics of the target. By determining the number and arrangement of means in advance, it is possible to generate a driving force that can efficiently reduce the vibration of the object. Furthermore, component costs can be reduced for the same reason as described above.
 アクティブ制振装置においては、個別の装置に合わせて特別に設計されるため、適用対象が大量に生産するものでないかぎり、制振装置としてのコストは高くなる傾向があるが、本実施例のアクティブ制振装置は、規格化されたセンサとアクチュエータのみを用いることで付加的に用いる制振装置としてのコストを低減することができる。 Since the active damping device is specially designed for each individual device, the cost of the damping device tends to be high unless the application target is mass-produced. The vibration damping device can reduce the cost as a vibration damping device additionally used by using only the standardized sensor and actuator.
 本実施例においては、圧電センサ3と圧電アクチュエータ4は構造板6の異なる場所に設置されている。センサとアクチュエータを同じ場所に配置する方法もあるが、対象の構造体が概略箱型の筺体等である場合、振動モードは全体的な複雑な様相を呈するため、対象とする振動の振幅を効果的に検出できる位置と、その振動を抑制するように駆動力を加えるのに適した位置とは同一とは限らない。このことから本発明においては、圧電センサ3と圧電アクチュエータ4は、より効果的に振動を検出または抑制する位置に配置することができる。 In this embodiment, the piezoelectric sensor 3 and the piezoelectric actuator 4 are installed at different locations on the structural plate 6. There is also a method of arranging the sensor and actuator in the same place. However, if the target structure is a roughly box-shaped housing, etc., the vibration mode has an overall complex aspect, so the amplitude of the target vibration is effective. The position that can be detected automatically and the position that is suitable for applying the driving force so as to suppress the vibration are not necessarily the same. Therefore, in the present invention, the piezoelectric sensor 3 and the piezoelectric actuator 4 can be arranged at positions where vibrations are detected or suppressed more effectively.
 図4に実施例1において使用する圧電センサ3の拡大図を示す。圧電センサ3はPZTなどの圧電素子を薄板状に形成し、構造板6に接着材9を用いて貼り付けたものである。構造板6のひずみ状態を精度よく検出できるために接着材9は剛性の高いものを使用することが望ましい。本実施例では両面に電極13を持つタイプを使用して、はんだ接合により信号線14をとりだしているが、他の形式も使用することができる。圧電センサ3は対象とする振動モードにおいてひずみの大きい部分にはりつけることが効果的である。 FIG. 4 shows an enlarged view of the piezoelectric sensor 3 used in the first embodiment. The piezoelectric sensor 3 is formed by forming a piezoelectric element such as PZT into a thin plate shape, and affixing the structure plate 6 with an adhesive 9. In order to detect the strain state of the structural plate 6 with high accuracy, it is desirable to use a highly rigid adhesive 9. In this embodiment, the type having the electrodes 13 on both sides is used and the signal line 14 is taken out by soldering, but other types can be used. It is effective to attach the piezoelectric sensor 3 to a portion having a large strain in the target vibration mode.
 ひずみを検出する方法の利点として、圧電センサ3を設置した位置のひずみを検出することで、対象の振動モードにおける変形だけを検出することができ、外部振動の影響を減少させることができる点があげられる。 As an advantage of the method of detecting strain, by detecting the strain at the position where the piezoelectric sensor 3 is installed, only deformation in the target vibration mode can be detected, and the influence of external vibration can be reduced. can give.
 図5に実施例1において使用する圧電アクチュエータ4の拡大図を示す。圧電アクチュエータ4も構造は圧電センサ3に類似しており、板状に成形された圧電素子を、接着材9を用いて構造板6に貼り付けたものである。圧電アクチュエータ4は対象とする振動モードにおいて、曲げ変形の曲率が大きくなるところに配置することで、圧電アクチュエータ4によって構造板6のひずみを生じさせやすくなり、振動低減に効果が高い。 FIG. 5 shows an enlarged view of the piezoelectric actuator 4 used in the first embodiment. The structure of the piezoelectric actuator 4 is similar to that of the piezoelectric sensor 3, and a plate-shaped piezoelectric element is attached to the structure plate 6 using an adhesive 9. By disposing the piezoelectric actuator 4 where the curvature of bending deformation increases in the target vibration mode, the piezoelectric actuator 4 is likely to cause distortion of the structural plate 6 and is highly effective in reducing vibration.
 アクティブ制振装置においては、パッシブ制振装置と比べて高い制振能力を持つ一方で、制振対象とする振動の周波数変化などによるばらつきの影響も大きい点が、ばらつきを含みやすい大量生産品に向かないという問題もある。これに対して本実施例では、圧電センサ3からの信号によって圧電アクチュエータ4に発生させる駆動力を決定する制御信号8を生成するコントローラ5において、対象の構造板6の振動特性に合わせて内部パラメータを変化させる方法をとる。すなわち、圧電センサ3によって検出された対象となる振動の周波数、大きさの変化に対して、コントローラ5においてフィードバック回路のデジタルフィルターの中心周波数およびゲインを変化させ、制御信号8の態様を変化させることで、自動的にばらつきの影響を除去した制御信号8を作り出すことができる。これによって対象である構造板6の振動特性が変化しても、それに追従して最適な制振性能を得ることができる。さらにはこの構成とすることにより、記憶装置2の製造ばらつきによって対象の振動特性が設計時と異なっていても補正をすることが可能になり、再設計や調整の手間が省けるために、本発明のアクティブ制振装置導入時のコストが低減できる。 While active vibration control devices have higher vibration control capability than passive vibration control devices, they are also subject to large variations due to changes in the frequency of vibrations targeted for vibration control. There is also a problem that it is not suitable. On the other hand, in this embodiment, in the controller 5 that generates a control signal 8 for determining the driving force generated in the piezoelectric actuator 4 by the signal from the piezoelectric sensor 3, the internal parameters are adjusted in accordance with the vibration characteristics of the target structural plate 6. Take a way to change. That is, the controller 5 changes the center frequency and gain of the digital filter of the feedback circuit in the controller 5 in response to changes in the frequency and magnitude of the target vibration detected by the piezoelectric sensor 3 to change the mode of the control signal 8. Thus, the control signal 8 from which the influence of the variation is automatically removed can be created. As a result, even if the vibration characteristics of the target structural plate 6 change, an optimum vibration damping performance can be obtained following the change. Further, by adopting this configuration, it becomes possible to correct even if the vibration characteristics of the object are different from those at the time of design due to manufacturing variations of the storage device 2, and it is possible to save time for redesign and adjustment. The cost when introducing the active vibration control device can be reduced.
 図6はこの対象の振動特性変化に対応してコントローラ5の制御特性を変化させる方法を示したものである。 FIG. 6 shows a method of changing the control characteristic of the controller 5 in response to the change of the vibration characteristic of the object.
 ステップ601で、板状圧電アクチュエータ4a~4cにより掃引入力・センサで応答を計測する。ステップ602で、周波数・ゲイン<規定値かを判断する。周波数・ゲイン<規定値でなければ、ステップ603で、差分に応じてフィルタを変更する。一方、周波数・ゲイン<規定値かを判断する。周波数・ゲイン<規定値であれば、そのままこのフローを終了する。すなわち、このフローでは、板状圧電アクチュエータ4に正弦波入力を入れて加振し、対象とする振動数付近で掃引し、対象の振動のピーク周波数およびゲインが事前に規定された範囲内であれば、コントローラ5内部のデジタルフィルターの変更を行わない。また規定された範囲を超えた場合には、事前に設定された値との差分に応じて、この差を小さくするようにデジタルフィルターの中心周波数とゲインを変化させる。このようにすることで、アクティブ制振装置の持つ高い制振能力を、対象の振動特性がずれていても効果的に発揮することができる。 In step 601, the response is measured by the sweep input sensor by the plate-like piezoelectric actuators 4a to 4c. In step 602, it is determined whether frequency / gain <specified value. If the frequency / gain is less than the specified value, in step 603, the filter is changed according to the difference. On the other hand, it is determined whether frequency / gain <specified value. If the frequency / gain is smaller than the specified value, this flow is finished as it is. That is, in this flow, a sinusoidal wave input is applied to the plate-like piezoelectric actuator 4 to perform vibration, sweeping around the target frequency, and the peak frequency and gain of the target vibration are within a predetermined range. For example, the digital filter inside the controller 5 is not changed. When the specified range is exceeded, the center frequency and gain of the digital filter are changed so as to reduce the difference according to the difference from a preset value. By doing in this way, the high damping capability which an active damping device has can be exhibited effectively, even if the vibration characteristic of object shifts.
 本実施例により、センサやアクチュエータの部品コストを抑えることで、従来のアクティブ制振装置が持つコストが高いという問題を解決し、一方で対象の振動特性に対してコントローラの特性を変化させる調整機能を持つことで、導入コストをも低減し、さらに対象に対して特別に設計しなくてはいけないという設計上の難しさを解決することができる。広く用いられているパッシブ制振装置に比べて、高い制振性能を有しているにも関わらず、コストや設計工数の観点で導入が難しいアクティブ制振装置を、広く様々な機器に適用が可能となることは、本実施例を参考に明らかとなるであろう。 This embodiment solves the problem that the cost of conventional active vibration control devices is high by reducing the cost of parts for sensors and actuators, while adjusting the controller characteristics with respect to the target vibration characteristics. In this way, it is possible to reduce the introduction cost and to solve the design difficulties that must be specially designed for the target. Compared to widely used passive vibration control devices, active vibration control devices that are difficult to introduce from the viewpoint of cost and design man-hours despite their high vibration control performance can be applied to a wide variety of devices. It will become apparent with reference to this embodiment that this is possible.
 本実施例では、情報記憶装置であるRAID装置を例として説明したが、他の類の装置に適応できることはもちろんのことである。 In the present embodiment, the RAID device which is an information storage device has been described as an example, but it goes without saying that it can be applied to other types of devices.
 実施例2を説明する。実施例1と異なる部分を中心に説明する。すなわち、実施例1と同様な部分は説明を省略する。図7は本発明の第2の実施例である。振動検出手段として加速度センサ10を用いている。この場合には外部からの振動も拾ってしまうためノイズの処理が必要となる。そこで本実施例では、制御系の安定性や制振性能を補償するために、コントローラ5の前段にハイパスフィルター11を設定し、加速度センサ10からノイズとなる他の振動成分を、フィルターを介するなどして除去することで外部振動の影響を減少させる。ハイパスフィルターとしたのは、一般に外部からの振動成分は対象となる記憶装置2の振動モードよりも周波数が低いからである。 Example 2 will be described. A description will be given centering on differences from the first embodiment. That is, description of the same parts as those in the first embodiment is omitted. FIG. 7 shows a second embodiment of the present invention. The acceleration sensor 10 is used as vibration detection means. In this case, since external vibration is picked up, noise processing is required. Therefore, in this embodiment, in order to compensate for the stability and damping performance of the control system, the high-pass filter 11 is set before the controller 5, and other vibration components that become noise from the acceleration sensor 10 are passed through the filter. To reduce the influence of external vibration. The reason why the high-pass filter is used is that the vibration component from the outside generally has a lower frequency than the vibration mode of the target storage device 2.
 加速度センサ10を用いる利点は、温度等の影響を受けにくいことである。また、構造板6の振動振幅が大きいところに加速度センサ10を設置することで、効果的に振動を検出できる。振動振幅が大きい箇所は各種の変位計、速度計、加速度計を利用することで比較的簡単に計測できるので、実機の振動状態を確認した上で振動低減のために本発明のアクティブ制振装置を適用する際に、作業性が高いという利点もある。また振動発生手段としては実施例1と同様に、板状圧電アクチュエータ4を用いることで、直接振動モードの変形状態に作用し、その振動振幅を低減する。 The advantage of using the acceleration sensor 10 is that it is not easily affected by temperature or the like. Moreover, vibration can be detected effectively by installing the acceleration sensor 10 where the vibration amplitude of the structural plate 6 is large. Since the location where the vibration amplitude is large can be measured relatively easily by using various displacement meters, speedometers, and accelerometers, the active vibration damping device of the present invention is used to reduce vibrations after confirming the vibration state of the actual machine. There is also an advantage that workability is high when applying. Further, as in the first embodiment, as the vibration generating means, by using the plate-like piezoelectric actuator 4, it directly acts on the deformation state of the vibration mode and reduces the vibration amplitude.
 図8に本発明の第3の実施例における圧電センサ3の拡大図を示す。ひずみを検出する振動検出においては、環境温度の変化によって出力が影響を受けることが考えられる。これを補償するために温度センサ12を備えて、これによって圧電センサ3の出力を補償することで、温度の影響を抑えることができる。その他の構成は実施例1と同様である。 FIG. 8 shows an enlarged view of the piezoelectric sensor 3 in the third embodiment of the present invention. In vibration detection for detecting strain, it is conceivable that the output is affected by changes in environmental temperature. In order to compensate for this, the temperature sensor 12 is provided, and thereby the output of the piezoelectric sensor 3 is compensated, whereby the influence of temperature can be suppressed. Other configurations are the same as those of the first embodiment.
 実施例1では、温度変化による対象の振動特性の変化を、ばらつきととらえてコントローラ5のフィードバック回路の特性変化によって補償している。一方で、温度変化によって圧電センサ3自体の特性変化がある場合には、これによる出力信号の変化と対象の温度特性変化による出力信号の変化との判別がつかない。そこで、圧電センサ3近傍に温度センサ12を配置して、この部分での温度に対する圧電センサ3の出力を、事前に規定された温度補正マップにしたがって補正することで、この問題を解決することができる。 In the first embodiment, a change in the target vibration characteristic due to a temperature change is regarded as a variation and compensated by a characteristic change in the feedback circuit of the controller 5. On the other hand, when there is a change in the characteristics of the piezoelectric sensor 3 itself due to a temperature change, it is not possible to distinguish between a change in the output signal due to this and a change in the output signal due to a change in the target temperature characteristic. Therefore, this problem can be solved by arranging the temperature sensor 12 in the vicinity of the piezoelectric sensor 3 and correcting the output of the piezoelectric sensor 3 with respect to the temperature at this portion according to the temperature correction map defined in advance. it can.
 ここで、実施例1~3を纏めると、アクティブ制振装置においては、適用対象が大量に生産するものでないかぎり、制振装置としてのコストは高くなり、さらには、対象とする振動の周波数変化などによるばらつきの影響も大きい点が、ばらつきを含みやすい大量生産品に向かないところ、本実施例では、同一規格によって形状や性質を揃えた振動検出手段を複数備えることで、対象の振動状態をより良く計測することができる一方で、生産性が向上してコストを低減できる。またやはり振動発生手段を同一規格によって、形状や性能を揃えることにより、対象の特性に応じて振動発生手段の数と配置を事前に決めることで、効率的に対象の振動を低減できる駆動力を発生することができる。さらには上記と同じ理由でコストを低減することができる。 Here, the first to third embodiments are summarized as follows. In the active vibration damping device, the cost as the vibration damping device is high unless the application target is mass-produced, and further, the frequency change of the target vibration is increased. However, in this example, the vibration state of the target can be determined by providing multiple vibration detection means that have the same shape and properties according to the same standard. While better measurements can be made, productivity can be improved and costs can be reduced. Also, the driving force that can efficiently reduce the vibration of the target is determined by predetermining the number and arrangement of the vibration generating means according to the characteristics of the target by aligning the shape and performance of the vibration generating means according to the same standard. Can be generated. Furthermore, the cost can be reduced for the same reason as described above.
 また、振動検出手段と振動発生手段を同じ場所に配置するものに比べて、対象の構造体が概略箱型の筺体等である場合、その振動を抑える上で、振動を抑える振動発生手段をもっと効率的な位置に配置することができる。一般に概略箱型の構造体であれば、振動モードは全体的な複雑な様相を呈するため、対象とする振動の振幅を効果的に検出できる位置と、その振動を抑制するように駆動力を加えるのに適した位置とは同一とは限らないからである。 In addition, in the case where the target structure is a substantially box-shaped housing or the like, the vibration generating means for suppressing the vibration is more improved than the case where the vibration detecting means and the vibration generating means are disposed at the same place. It can be placed in an efficient position. In general, in the case of a roughly box-shaped structure, the vibration mode presents an overall complex aspect, so a position where the amplitude of the target vibration can be detected effectively and a driving force applied to suppress the vibration are applied. This is because the position suitable for this is not always the same.
 さらに、振動検出手段として加速度センサを用いた場合には外部からの振動も拾ってしまうためノイズの処理が必要となるが、本実施例では、振動検出手段に設置した位置のひずみを検出することで、対象の振動モードにおける変形だけを検出することができ、外部振動の影響を減少させることができる。また振動発生手段も対象の当該位置においてひずみを発生させるような手段、例えば板状圧電素子を用いることで、直接振動モードの変形状態に作用し、その振動振幅を低減する。 Furthermore, when an acceleration sensor is used as the vibration detection means, noise from the outside is also picked up because it picks up vibrations from the outside. In this embodiment, the strain at the position installed on the vibration detection means is detected. Thus, only the deformation in the target vibration mode can be detected, and the influence of external vibration can be reduced. Further, the vibration generating means also directly affects the deformation state of the vibration mode by using means such as a plate-like piezoelectric element that generates strain at the target position, and reduces the vibration amplitude.
 ひずみを検出する振動検出手段においては、環境温度の変化によって出力が影響を受けることが考えられる。これを補償するために温度検出手段を備えて、これによって振動検出手段の出力を補償することで、影響を抑えることができる。 In the vibration detection means for detecting strain, the output may be affected by changes in environmental temperature. In order to compensate for this, the temperature detection means is provided, and thereby the output of the vibration detection means is compensated, whereby the influence can be suppressed.
 さらに好適な方法は、振動検出手段からの信号によって振動発生手段に発生させる駆動力を決定する制御信号を生成する制御手段において、上記振動検出手段によって、検出された対象の振動の周波数、大きさの変化に対して、上記振動発生手段の駆動力を決定する制御信号の態様を変化させることで、自動的に影響を除去した制御信号を作り出すことができる。さらにはこの構成とすることにより、ばらつきによって対象の振動特性が設計時と異なっていても、補正をすることが可能になり、導入時のコストが低減できる。 A more preferable method is that the control means for generating a control signal for determining the driving force to be generated by the vibration generating means based on the signal from the vibration detecting means, the frequency and magnitude of the vibration of the object detected by the vibration detecting means. By changing the mode of the control signal that determines the driving force of the vibration generating means in response to the change in the control signal, it is possible to automatically create a control signal from which the influence has been removed. Furthermore, by adopting this configuration, even if the target vibration characteristics are different from those at the time of design due to variations, correction can be performed, and costs at the time of introduction can be reduced.
 なお、本発明は上記した実施例1~3に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例1~3は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Note that the present invention is not limited to the first to third embodiments described above, and includes various modifications. For example, the first to third embodiments described above are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 1 アクティブ制振装置
 2 記憶装置
 3a、3b 圧電センサ
 4a、4b、4c 板状圧電アクチュエータ
 5 コントローラ
 6 構造板
 7 電圧出力
 8 制御信号
 9 接着材
 10 加速度センサ
 11 ハイパスフィルター
 12 温度センサ
 13 電極
 14 信号線
DESCRIPTION OF SYMBOLS 1 Active damping device 2 Memory | storage device 3a, 3b Piezoelectric sensor 4a, 4b, 4c Plate-shaped piezoelectric actuator 5 Controller 6 Structure board 7 Voltage output 8 Control signal 9 Adhesive material 10 Acceleration sensor 11 High pass filter 12 Temperature sensor 13 Electrode 14 Signal line

Claims (6)

  1.  構造体の一部分に設けられて振動を検出する振動検出手段と、前記構造体における前記一部分とは異なる一部分にひずみを生じさせる振動発生手段と、前記振動検出手段からの信号に応じて、前記振動発生手段の駆動力を決定する制御信号を発生する制御手段を有し、上記振動検出手段によって、検出された対象の振動の周波数及び大きさの変化に対して、上記振動発生手段の駆動力を決定する制御信号の態様を変化することを特徴としたアクティブ制振装置。
    Vibration detecting means provided on a part of the structure for detecting vibration; vibration generating means for generating distortion in a part different from the part of the structure; and the vibration in accordance with a signal from the vibration detecting means Control means for generating a control signal for determining the driving force of the generating means, and the driving force of the vibration generating means is changed with respect to changes in the frequency and magnitude of the vibration of the object detected by the vibration detecting means. An active vibration damping device characterized by changing a mode of a control signal to be determined.
  2.  請求項1において、前記振動検出手段を前記構造体に複数備え、前記振動発生手段を複数備え、前記複数の振動検出手段からの信号が前記制御手段に送出され、前記制御手段からの制御信号が前記複数の振動発生手段に送出されることを特徴としたアクティブ制振装置。
    2. The structure according to claim 1, wherein the structure includes a plurality of vibration detection means, a plurality of vibration generation means, a signal from the plurality of vibration detection means is sent to the control means, and a control signal from the control means is transmitted. An active vibration damping device that is sent to the plurality of vibration generating means.
  3.  請求項1において、対象が概略箱型の構造体であって、対象の振動を検出する振動検出手段を対象の構造体の振動振幅が大きい部分に設置され、対象の一部分にひずみを生じさせる振動発生手段を対象の振動モードの曲率が最大となる場所付近に設置されたことを特徴としたアクティブ制振装置。
    2. The vibration according to claim 1, wherein the target is a substantially box-shaped structure, and vibration detecting means for detecting the vibration of the target is installed in a portion where the vibration amplitude of the target structure is large to cause distortion in a part of the target. An active vibration damping device characterized in that the generating means is installed near a place where the curvature of a target vibration mode is maximum.
  4.  請求項1において、上記振動検出手段が、対象の一部分のひずみを検出するものであって、さらに温度計測手段を備え、温度計測手段によって計測された対象の温度によって、上記制御手段において上記振動発生手段の駆動力を決定する制御信号の態様を変化することを特徴としたアクティブ制振装置。
    The vibration detection unit according to claim 1, wherein the vibration detection unit detects strain of a part of the target, further includes a temperature measurement unit, and the control unit generates the vibration according to the temperature of the target measured by the temperature measurement unit. An active vibration damping device characterized in that the mode of a control signal for determining the driving force of the means is changed.
  5.  請求項1において、前記振動検出手段は、対象の一部分のひずみを検出する複数の同一の検出手段として構成され、前記振動発生手段は、前記対象の、異なる場所である一部分にひずみを生じさせる複数の同一の発生手段として構成されることを特徴としたアクティブ制振装置。
    2. The vibration detection unit according to claim 1, wherein the vibration detection unit is configured as a plurality of identical detection units that detect a strain of a part of the target, and the vibration generation unit generates a plurality of strains at a part of the target that is a different location. An active vibration control device characterized by being configured as the same generating means.
  6.  構造体の一部分に設けられた振動検出手段で振動を検出し、前記振動検出手段によって検出された対象の振動の周波数及び大きさの変化に対して、前記構造体における前記一部分とは異なる一部分に振動発生手段がひずみを生じさせるように制御手段が前記振動発生手段に制御信号を供給するアクティブ制振方法。 Vibration is detected by a vibration detection means provided in a part of the structure, and the change in the frequency and magnitude of the target vibration detected by the vibration detection means is changed to a part different from the part in the structure. An active damping method in which the control means supplies a control signal to the vibration generating means so that the vibration generating means causes distortion.
PCT/JP2013/064832 2013-05-29 2013-05-29 Active vibration damping device and active vibration damping method WO2014192088A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015519534A JPWO2014192088A1 (en) 2013-05-29 2013-05-29 Active damping device and active damping method
PCT/JP2013/064832 WO2014192088A1 (en) 2013-05-29 2013-05-29 Active vibration damping device and active vibration damping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064832 WO2014192088A1 (en) 2013-05-29 2013-05-29 Active vibration damping device and active vibration damping method

Publications (1)

Publication Number Publication Date
WO2014192088A1 true WO2014192088A1 (en) 2014-12-04

Family

ID=51988163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064832 WO2014192088A1 (en) 2013-05-29 2013-05-29 Active vibration damping device and active vibration damping method

Country Status (2)

Country Link
JP (1) JPWO2014192088A1 (en)
WO (1) WO2014192088A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173164A (en) * 2015-03-18 2016-09-29 株式会社日立製作所 Active vibration damping device and design method
US10107355B2 (en) 2014-04-25 2018-10-23 Hitachi Ltd. Active damping device and design method
CN111383625A (en) * 2018-12-27 2020-07-07 本田技研工业株式会社 Damping device for plate-like member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118694A (en) * 2004-09-21 2006-05-11 Nissan Motor Co Ltd Optimum location constitution of vibration suppressing device
JP2009114821A (en) * 2007-11-09 2009-05-28 Toyoda Gosei Co Ltd Damper for building
JP2009229090A (en) * 2008-03-19 2009-10-08 Fuji Electric Systems Co Ltd Acceleration sensor
JP2010184586A (en) * 2009-02-12 2010-08-26 Nissan Motor Co Ltd Device and method for reducing noise

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118694A (en) * 2004-09-21 2006-05-11 Nissan Motor Co Ltd Optimum location constitution of vibration suppressing device
JP2009114821A (en) * 2007-11-09 2009-05-28 Toyoda Gosei Co Ltd Damper for building
JP2009229090A (en) * 2008-03-19 2009-10-08 Fuji Electric Systems Co Ltd Acceleration sensor
JP2010184586A (en) * 2009-02-12 2010-08-26 Nissan Motor Co Ltd Device and method for reducing noise

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10107355B2 (en) 2014-04-25 2018-10-23 Hitachi Ltd. Active damping device and design method
JP2016173164A (en) * 2015-03-18 2016-09-29 株式会社日立製作所 Active vibration damping device and design method
US9947361B2 (en) 2015-03-18 2018-04-17 Hitachi, Ltd. Active vibration control device and design method therefor
CN111383625A (en) * 2018-12-27 2020-07-07 本田技研工业株式会社 Damping device for plate-like member

Also Published As

Publication number Publication date
JPWO2014192088A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP4990213B2 (en) Galvano scanner device and laser processing apparatus provided with galvano scanner device
JP6171475B2 (en) Manufacturing method of vibrating piece
WO2014192088A1 (en) Active vibration damping device and active vibration damping method
JP2007256235A (en) Inertia force sensor
CN110246522B (en) Magnetic disk device
US9791018B2 (en) Vibration isolation apparatus, method of isolating vibration, lithography apparatus, and method of producing device
US8542988B2 (en) Image stabilizing apparatus
US20200184999A1 (en) Actuator assembly having dual sensors for detecting the vibration on magnetic disk device
JP2006197206A (en) Speaker device
JP2009053141A (en) Acceleration sensor module
JP6408564B2 (en) Active vibration damping device and design method
KR100624601B1 (en) Magnetic head supporting mechanism and magnetic head positioning control mechanism
JP2008076264A (en) Compound sensor
JP5783955B2 (en) Active vibration isolator
JP2008039576A (en) Vibration gyro sensor
JP2017022224A (en) Electronic device including easy to remove circuit board having high vibration resistance
JP2007256234A (en) Inertia force sensor
JP2016121758A (en) Vibration control component and vibration control system
WO2018235719A1 (en) Vibration type angular velocity sensor
US20100007983A1 (en) Magnetic recording apparatus and method for positioning head
JP2008122262A (en) Angular velocity sensor
JP2003123460A (en) Magnetic disk device and method for mounting acceleration sensor
JP2016095176A (en) Angular velocity sensor and electronic apparatus using the angular velocity sensor
JPWO2005052601A1 (en) Acceleration detector
JP2011043399A (en) Method of manufacturing multi-axis angular velocity sensor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885912

Country of ref document: EP

Kind code of ref document: A1