WO2020255488A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2020255488A1
WO2020255488A1 PCT/JP2020/007336 JP2020007336W WO2020255488A1 WO 2020255488 A1 WO2020255488 A1 WO 2020255488A1 JP 2020007336 W JP2020007336 W JP 2020007336W WO 2020255488 A1 WO2020255488 A1 WO 2020255488A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
automatic analyzer
pipe
wall
cold storage
Prior art date
Application number
PCT/JP2020/007336
Other languages
English (en)
French (fr)
Inventor
将也 福田
和広 野田
敬道 坂下
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to US17/596,247 priority Critical patent/US20220317140A1/en
Priority to EP20825127.2A priority patent/EP3985399A4/en
Priority to CN202080038528.1A priority patent/CN113892033A/zh
Priority to JP2021527350A priority patent/JP7297893B2/ja
Publication of WO2020255488A1 publication Critical patent/WO2020255488A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • B01L2300/048Function or devices integrated in the closure enabling gas exchange, e.g. vents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/14Means for pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1894Cooling means; Cryo cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00435Refrigerated reagent storage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00445Other cooling arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00455Controlling humidity in analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0443Rotary sample carriers, i.e. carousels for reagents

Definitions

  • the present invention relates to an automatic analyzer.
  • an automatic analyzer that mixes various reagents and a sample for analysis is provided with a reagent cold storage that holds these various reagents.
  • This reagent cold storage has a hole for sucking the reagent in a part of the lid member so that the reagent to be held can be easily sucked, and the hole for sucking the reagent is always open.
  • Patent Document 1 discloses a technique for preventing the inflow of outside air and preventing dew condensation by sending cooled air from the outside of the reagent cold storage.
  • An object of the present invention is to solve the above-mentioned problems and to provide an automatic analyzer capable of preventing dew condensation in a reagent cold storage and making the temperature uniform with a low power consumption and a simple configuration.
  • an automatic analyzer that mixes and analyzes a reagent and a sample, and is installed inside a reagent cold storage that stores a reagent container and an outer wall of the reagent cold storage.
  • a refrigerant pipe that circulates refrigerant inside the outer wall, a blower pipe that is installed inside the outer wall and guides the outside air that exists outside the reagent cooler to the inside of the reagent cooler, and a blower pipe that is installed in the blower pipe and passes through the blower pipe.
  • an automatic analyzer provided with a blowing means for diffusing the reagent into a reagent cold storage.
  • the outside air is taken into the reagent cold storage, cooled by the cold air of the reagent cold storage itself in the process, and blown into the reagent cold storage to positively pressure the inside of the cold storage and the outside air from the suction holes. It is possible to realize a reagent cooler with low power consumption and a simple structure, which can prevent the occurrence of dew condensation by preventing the inflow and can make the temperature inside the cooler uniform by blowing outside air.
  • the plan view which shows the outline of the automatic analyzer.
  • the block diagram which shows the AA cross section of an automatic analyzer.
  • the first embodiment is an automatic analyzer that mixes a reagent and a sample for analysis, and is installed inside a reagent cold storage that stores a reagent container and an outer wall of the reagent cold storage, and distributes a refrigerant inside the outer wall.
  • a refrigerant pipe to be used a blower pipe installed inside the outer wall to guide the outside air existing outside the reagent cooler to the inside of the reagent cooler, and a blower pipe installed in the blower pipe to let the outside air into the reagent cooler through the blower pipe.
  • It is an embodiment of an automatic analyzer provided with a blowing means for diffusing.
  • FIG. 1 is a plan view showing an outline of the automatic analyzer 101.
  • the automatic analyzer 101 mixes the sample and the reagent, and automatically analyzes the mixed measurement sample.
  • the automatic analyzer 101 includes a transfer line 1, a sample probe 2 for sucking a sample, a reaction vessel supply chamber 3, a reaction vessel supply mechanism 4, and a reaction vessel table 5 (incubator).
  • the reaction measuring device 6, the reagent stirring rod 7, the reagent disk 8, the reagent probe 102, the reagent cold storage 103, the intake port 112, the filter 113, and the air blowing means 114 are provided.
  • the reaction vessel supply chamber 3 holds a plurality of reaction vessels 9.
  • the reaction vessel supply mechanism 4 supplies the reaction vessel 9 held by the reaction vessel supply chamber 3 to the reaction vessel table 5.
  • the reaction vessel table 5 moves the supplied reaction vessel 9 to the sample discharge position where the sample is discharged from the sample probe 2 by rotating itself.
  • the reagent cold storage 103 houses the reagent container 107 containing the reagent.
  • the reagent cold storage 103 has a cylindrical shape in which the side wall has an outer wall and an inner wall, and the upper portion thereof forms a lid portion. In FIG. 1, a part of the lid portion was deleted to show the inside of the reagent cold storage 103. As shown in the figure, a suction hole 104 is formed in the upper lid portion of the reagent cold storage 103. As described above, the reagent cold storage 103 has an inner wall inside the outer wall.
  • the upper end of the reagent container 107 is open.
  • the reagent stirring rod 7 is moved to the reagent stirring position where the reagent contained in the reagent container 107 is stirred.
  • the reagent stirring rod 7 is inserted into the reagent container 107 via the suction hole 104 and the upper end of the reagent container 107.
  • the reagent stirring rod 7 is rotated in the inserted state to stir the reagent contained in the reagent container.
  • the reagent stirring rod 7 in which the reagent is agitated is withdrawn from the reagent container 107.
  • the reagent probe 102 is moved from the reagent container 107 to the reagent suction position for sucking the reagent. Then, the reagent probe 102 is inserted into the reagent container 107 via the suction hole 104 and the upper end of the reagent container 107. Then, the reagent probe 102 sucks the reagent from the reagent container 107 in the inserted state.
  • the reagent probe 102 that sucked the reagent is pulled out from the reagent container 107. After that, the reagent probe 102 is moved to the reagent discharge position, and the reagent is discharged into the reaction vessel 9. After the reagent is discharged, the reaction vessel table 5 rotates itself to move the reaction vessel 9 from the sample probe 2 to the sample discharge position where the sample is discharged.
  • the transport line 1 transports the sample container 11 held in the test tube rack 10 from the sample probe 2 to the sample suction position where the sample is sucked.
  • the sample container 11 contains a sample. Further, the upper end of the sample container 11 is open. After the sample container 11 is transported to the sample suction position, the sample probe 2 is inserted from the upper end of the sample container 11. Then, the sample probe 2 sucks the sample from the sample container 11 in the inserted state.
  • the sample probe 2 After sucking the sample, the sample probe 2 is pulled out from the sample container 11. After that, the sample probe 2 is moved to the sample discharge position. After being moved to the sample discharge position, the sample probe 2 discharges the sucked sample into the reaction vessel 9.
  • a stirring mechanism (not shown) stirs the reagent discharged into the reaction vessel 9 and the sample.
  • the stirred reagent and sample are left for a predetermined time.
  • the reaction vessel 9 is moved to the reaction measuring device 6. Then, the reaction measuring device 6 measures the reaction state between the reagent and the sample in the moved reaction vessel 9.
  • One or more, for example, four reagent containers 107 are installed on the reagent disk 8, and by rotating the reagent disk 8, the reagents to be agitated and sucked by the reagent stirring rod 7 and the reagent probe 102 can be replaced.
  • FIG. 2 shows an outline of the configuration of the AA cross section of the automatic analyzer.
  • a refrigerant pipe 105 is provided in contact with the inner wall of the reagent cold storage 103 between the inner wall and the outer wall of the side wall, the lid, and the bottom of the reagent cold storage 103.
  • the refrigerant pipe 105 is made of a material having high thermal conductivity.
  • the refrigerant pipe 105 is connected to the cooling device 110, and the refrigerant cooled by the cooling device 110 circulates in the refrigerant pipe 105.
  • the refrigerant pipe 105 is cooled by the circulation of the refrigerant, and the inner wall of the reagent cool box 103 in contact with the refrigerant pipe 105 is cooled.
  • the cold air on the inner wall is transmitted to the inside of the reagent cold storage 103, so that the inside of the reagent cold storage 103 is cooled to a constant temperature.
  • the cooling temperature here is assumed to be about 6.5 ° C.
  • a material having a low thermal conductivity is filled between the outer wall and the inner wall of the reagent cold storage 103 (the portion shaded in FIG. 2), and the shape is not affected by the outside air temperature.
  • the bottom of the reagent cold storage 103 is provided with a large drain pipe 111 which is a pipe, and when dew condensation occurs inside the reagent cold storage 103, it passes through the large drain pipe 111. Then, the dew condensation is discharged to the outside of the reagent cold storage 103 in the downward direction in the figure.
  • FIG. 3 is a diagram showing a BB cross section of the configuration outline of FIG.
  • the blower pipe 109 is a pipe that takes in the air outside the reagent cooler 103 from the intake port 112 into the inside of the reagent cooler 103, and the blower pipe 109 is between the inner wall and the outer wall of the reagent cooler 103 (diagonal lines in FIG. 3). It passes through the drawn portion) and is in contact with the refrigerant pipe 105 as shown in FIG. Further, the blower pipe 109 is made of a material having high thermal conductivity, and is cooled by being in contact with the refrigerant pipe 105. By this cooling, the gas passing through the inside of the blower pipe 109 is also cooled.
  • An intake port 112 and a blower port 108 are attached to the start and end of the blower pipe 109, respectively.
  • the air intake port 112 is arranged outside the outer wall of the reagent cold storage 103, and the air outlet 108 is arranged inside the inner wall of the reagent cold storage 103 and along the inner wall.
  • the blower pipe 109 is provided with a blower means 114 and a filter 113 on the intake side of the blower means 114 to prevent foreign matter from entering.
  • An example of the blowing means 114 is a fan.
  • the position of the blower means 114 is between the intake port 112 and the blower port 108.
  • the length of the blower pipe 109 is such that the temperature at which the outside air taken in from the intake port 112 is blown out from the blower port 108 is within 5 ° C. with respect to the temperature inside the reagent cooler 103.
  • the length is in the range of 11.5 ° to 1.5 °. That is, the length of the portion existing inside the outer wall of the side wall of the blower pipe 109 is such that the difference between the temperature of the outside air when the outside air is taken into the blower means 114 and the temperature inside the reagent cold storage 103 is within 5 degrees. Is set. In FIG.
  • the reagent cold storage 103 is arranged in the side wall of about half of the entire circumference 360 ° of the side wall of the reagent cold storage 103 is shown, but it is preferable to arrange it in the side wall of at least 45 °. That is, it is preferable that the portion existing inside the outer wall of the reagent cold storage 103 of the blower pipe 109 is arranged at 45 ° or more on the side wall of the cylindrical reagent cold storage 103.
  • the blower pipe 109 between the intake port 112 and the blower port 108 is provided with a small drain pipe 106 which is a small pipe.
  • the position where the small drain pipe 106 is provided is more preferably on the air outlet 108 side than half of the air pipe 109. That is, an intake port and an air outlet are attached to the start end and the end of the air pipe, respectively, and a small drain pipe having a small diameter is provided on the air outlet side of half of the air pipe.
  • the end of the small drain pipe 106 is connected to the large drain pipe 111.
  • the outside air taken in by the blower pipe 109 from the intake port 112 is cooled in the blower pipe 109, so that the condensed water generated in the blower pipe 109 passes from the small drain pipe 106 through the large drain pipe 111.
  • the reagent is discharged to the outside of the cold storage 103.
  • the blower pipe 109 is provided with a pipe having a terminal outside the reagent cold storage 103.
  • This pipe is a small drain pipe that is a small diameter pipe connected to the blower pipe 109, and a large drain that is provided at the bottom of the reagent cooler and is connected to a small diameter pipe and has a diameter larger than the small diameter. It consists of a pipe, and a large drain pipe, which is a pipe with a large diameter, has a configuration in which a terminal is provided outside the reagent cooler.
  • the outside air cooled through the blower pipe 109 is introduced into the reagent cold storage 103 of the automatic analyzer of this embodiment.
  • the reagent cold storage 103 is made positive pressure to prevent the inflow of outside air from the suction hole 104 of the lid portion, thereby preventing the occurrence of dew condensation.
  • the outside air cooled from the air outlet 108 is blown into the reagent cold storage 103 to agitate the air inside the reagent cold storage 103 and make the internal temperature uniform.
  • the present invention is not limited to the above-mentioned examples, but includes various modifications.
  • the above-described embodiment has been described in detail for a better understanding of the present invention, and is not necessarily limited to the one including all the configurations of the description.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

結露の発生を防止し、さらに保冷庫内の温度を均一化する試薬保冷庫を、低消費電力かつ簡易な構造で提供する。試薬保冷庫103の外壁の内部に設置され、該外壁の内部に冷媒を流通させる冷媒配管と、外壁の内部に設置され、試薬保冷庫の外部に存在する外気を試薬保冷庫の内部に導く送風管109と、送風管に設置され、送風管を通して外気を試薬保冷庫の内部に拡散させる送風手段114を有する。外壁で冷却され、試薬保冷庫の内部に取り込まれた外気により、試薬保冷庫を陽圧化し、かつ内部温度を均一化する。

Description

自動分析装置
 本発明は、自動分析装置に関する。
 従来、各種の試薬と検体を混合させて分析を行う自動分析装置は、これら各種の試薬を保持する試薬保冷庫を備える。この試薬保冷庫は、保持する試薬を容易に吸引できるように、蓋部材の一部に試薬吸引用の孔を有し、この試薬吸引用の孔は、常時開いている。
 試薬保冷庫内は、一般に室温より低めの温度に保たれているが、上述した試薬吸引用の孔は常時開いているため、この孔から外気が流入することにより試薬保冷庫内に結露が発生する。または、流入した外気によって、試薬吸引用の孔付近の温度が上昇し、保冷庫内の温度分布が不均一になる。そこで、特許文献1では、試薬保冷庫外から冷却した空気を送り込むことによって外気の流入を防ぎ、結露を防止する技術が開示されている。
特開2009-270857号公報
 従来技術においては、試薬保冷庫の冷却と、試薬保冷庫内に送り込む空気の冷却と、試薬保冷庫内の温度を均一化させるための空気攪拌手段が別々の機器を用いて行われていた。このように別々の機器を用いることは、自動分析装置の消費電力が大きい問題、さらにその構成が複雑になる問題があった。
 本発明の目的は、上記の課題を解決し、低消費電力かつ簡易な構成で、試薬保冷庫の結露防止と、温度の均一化を可能にする自動分析装置を提供することにある。
 上記目的を達成するため、本発明においては、試薬と検体を混合させて分析を行う自動分析装置であって、試薬容器を格納する試薬保冷庫と、試薬保冷庫の外壁の内部に設置され、外壁の内部に冷媒を流通させる冷媒配管と、外壁の内部に設置され、試薬保冷庫の外部に存在する外気を試薬保冷庫の内部に導く送風管と、送風管に設置され、送風管を通して外気を試薬保冷庫の内部に拡散させる送風手段と、を備える自動分析装置を提供する。
 本発明によれば、試薬保冷庫に外気を取り込み、その過程で試薬保冷庫自身の冷気によって冷却し、試薬保冷庫内に送風することで保冷庫内を陽圧化して吸引孔からの外気の流入を防ぐことで結露の発生を防止し、さらに外気の送風によって保冷庫内の温度を均一化できる試薬保冷庫を、低消費電力かつ簡易な構造で実現できる。
自動分析装置の概要を示す平面図。 自動分析装置のA-A断面を示す構成概要図。 構成概要のB-B断面を示す図。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一の符号を付し、その繰り返しの説明は省略する。
 実施例1は、試薬と検体を混合させて分析を行う自動分析装置であって、試薬容器を格納する試薬保冷庫と、試薬保冷庫の外壁の内部に設置され、外壁の内部に冷媒を流通させる冷媒配管と、外壁の内部に設置され、試薬保冷庫の外部に存在する外気を試薬保冷庫の内部に導く送風管と、送風管に設置され、送風管を通して外気を試薬保冷庫の内部に拡散させる送風手段と、を備える自動分析装置の実施例である。
 図1は、自動分析装置101の概略を示す平面図である。自動分析装置101は、試料と試薬とを混合し、混合した測定試料の分析を自動で行う。図1に示されるように、自動分析装置101は、搬送ライン1と、試料を吸引する試料プローブ2と、反応容器供給庫3と、反応容器供給機構4と、反応容器テーブル5(インキュベータ)と、反応測定装置6と、試薬撹拌棒7と、試薬ディスク8と、試薬プローブ102と、試薬保冷庫103と、更に吸気口112と、フィルター113と、送風手段114を有する。
 反応容器供給庫3は、複数の反応容器9を保持する。反応容器供給機構4は、反応容器供給庫3が保持する反応容器9を反応容器テーブル5へ供給する。反応容器テーブル5は、供給された反応容器9を、自らを回転させることで試料プローブ2から試料が吐出される試料吐出位置まで移動させる。
 試薬保冷庫103は試薬が入った試薬容器107を収容する。試薬保冷庫103は、側壁は外壁と内壁を有する円筒状の形状であり、その上部は蓋部を形成する。図1において、蓋部の一部を削除して、試薬保冷庫103の内部を示した。同図に示すように、試薬保冷庫103の上部の蓋部には、吸引孔104が形成されている。このように、試薬保冷庫103は、外壁の内部に内壁を有する。
 試薬容器107の上端は開放されている。試薬撹拌棒7は、試薬容器107に入った試薬を撹拌する試薬撹拌位置まで移動される。そして、試薬撹拌棒7は、吸引孔104と試薬容器107の上端とを介して試薬容器107へ挿入される。そして、試薬撹拌棒7は、挿入された状態で回転されることで、試薬容器に入った試薬を撹拌する。試薬を撹拌した試薬撹拌棒7は、試薬容器107から引き抜かれる。
 その後、試薬プローブ102は、試薬容器107から試薬を吸引する試薬吸引位置まで移動される。そして、試薬プローブ102は、吸引孔104と試薬容器107の上端とを介して試薬容器107へ挿入される。そして、試薬プローブ102は、挿入された状態で試薬容器107から試薬を吸引する。
 試薬を吸引した試薬プローブ102は、試薬容器107から引き抜かれる。その後、試薬プローブ102は、試薬吐出位置まで移動され、反応容器9内に試薬を吐出する。試薬が吐出された後、反応容器テーブル5は、自らを回転させることで、反応容器9を、試料プローブ2から試料が吐出される試料吐出位置まで移動させる。
 搬送ライン1は、試験管ラック10に保持された試料容器11を試料プローブ2から試料が吸引される試料吸引位置まで搬送する。試料容器11には、試料が入っている。また、試料容器11は、上端が開放されている。試料容器11が、試料吸引位置まで搬送された後、試料プローブ2は、試料容器11の上端から挿入される。そして、試料プローブ2は、挿入された状態で試料容器11から試料を吸引する。
 試料を吸引した後、試料プローブ2は、試料容器11から引き抜かれる。その後、試料プローブ2は、試料吐出位置まで移動される。試料吐出位置まで移動された後、試料プローブ2は、吸引した試料を反応容器9へ吐出する。
 図示しない撹拌機構は、反応容器9に吐出された試薬と試料とを撹拌する。撹拌された試薬と試料とは所定時間放置される。放置された後、反応容器9は、反応測定装置6まで移動される。そして、反応測定装置6は、移動された反応容器9に入った試薬と試料との反応状態を測定する。
 試薬容器107は試薬ディスク8上に1個以上、例えば4個設置されており試薬ディスク8が回転することによって、試薬攪拌棒7および試薬プローブ102で攪拌、吸引する試薬を入れ替えることが出来る。
 図2は、自動分析装置のA-A断面の構成概要を示す。同図に示すように、試薬保冷庫103の側壁、蓋部、底部の内壁と外壁の間に、冷媒配管105が試薬保冷庫103の内壁に接触して備わっている。この冷媒配管105は熱伝導率の高い素材で構成されている。この冷媒配管105は冷却装置110と接続しており、冷媒配管105の中には冷却装置110にて冷却された冷媒が循環している。この冷媒の循環によって冷媒配管105は冷却され、冷媒配管105と接触している試薬保冷庫103の内壁が冷却される。この内壁の冷気が試薬保冷庫103の内部へ伝わることで、試薬保冷庫103の内部は一定の温度に冷却される。
 一例として、ここでの冷却温度は6.5℃程度を想定している。また、試薬保冷庫103の外壁と内壁の間(図2で斜線が引かれた部分)には熱伝導率の低い材料が充填されており、外気温の影響を受けない形状としている。
 図2に示すように、試薬保冷庫103の底部には、配管である大ドレン管111が備えられており、試薬保冷庫103の内部に結露が発生した場合は、この大ドレン管111を通って、結露が同図の下方向の試薬保冷庫103外へ排出される。
 図3は、図2の構成概要のB-B断面を示す図である。送風管109は試薬保冷庫103の外側の空気を吸気口112から試薬保冷庫103の内部に取り入れる配管であり、この送風管109は試薬保冷庫103の内壁と外壁の間(図3で斜線が引かれた部分)を通り、かつ図2に示したように冷媒配管105に接触している。また、送風管109は熱伝導率の高い素材で構成されており、冷媒配管105と接触していることで冷却される。この冷却により、送風管109の内部を通過する気体も冷却される。
 送風管109の始端、終端にはそれぞれ吸気口112、送風口108が取り付けられている。吸気口112は試薬保冷庫103の外壁よりも外側に配置され、送風口108は試薬保冷庫103の内壁よりも内側で、内壁に沿って配置される。送風管109には送風手段114と、送風手段114の吸気側に異物侵入を防ぐフィルター113が備えられている。送風手段114の一例としてはファンが挙げられる。送風手段114の位置は吸気口112と送風口108の間である。なお、図3では実施例1の一具体例として吸気口112に隣接する形状としたが、送風口108に隣接する形状でもよい。なお、115は吸気口112への空気の流れを示している。
 送風管109の長さは、吸気口112から取り込んだ外気が送風口108から吹き出す際の温度が、試薬保冷庫103内の温度に対して5℃以内となるような長さである。一例をあげると、試薬保冷庫103内の温度が6.5℃であるならば、11.5°から1.5°の範囲になるような長さである。すなわち、送風管109の側壁の外壁の内部に存在する部位の長さは、外気が送風手段114に取り込まれる際の外気の温度と試薬保冷庫103内の温度との差が5度以内となるよう設定される。図3においては、試薬保冷庫103の側壁の全周360°中の約半分の側壁中に配置した場合を図示したが、最低45°の側壁中に配置すると良い。すなわち、送風管109の試薬保冷庫103の外壁の内部に存在する部位は、円筒状の試薬保冷庫103の側壁の45°以上に配置されると好適である。
 図2、図3に示すように、吸気口112と送風口108の間の送風管109には小配管である小ドレン管106が備わっている。小ドレン管106を設ける位置は、図3に示すように、送風管109の半分より送風口108側が好適である。すなわち、送風管の始端と終端にそれぞれ吸気口、送風口が取り付けられ、小さな径の小ドレン管は、送風管の半分よりも送風口側に設けられる。
 また、小ドレン管106の終端は、大ドレン管111へ接続されている。これにより、吸気口112から送風管109が取り込んだ外気が送風管109内で冷却されることにより送風管109内で発生する結露水は、この小ドレン管106から大ドレン管111を通って、図2に示すように試薬保冷庫103外へ排出される。言い換えるなら、送風管109に、試薬保冷庫103の外に終端を持つ配管が接続されている構成を備える。この配管は、送風管109に接続された小さな径の配管である小ドレン管と、試薬保冷庫の底部に設けられ、小さな径の配管と接続され、小さな径より大きな径の配管である大ドレン管とからなり、大きな径の配管である大ドレン管が試薬保冷庫の外に終端を持つ構成を備える。
 上述の通り本実施例の自動分析装置の試薬保冷庫103に、送風管109を通して冷却した外気を導入する。これにより試薬保冷庫103を陽圧化し、蓋部の吸引孔104からの外気の流入を防ぐことで結露の発生を防止する。さらに送風口108から冷却した外気を試薬保冷庫103の内部に吹き出すことにより、試薬保冷庫103内部の空気を攪拌し、内部温度を均一化する。この空気の撹拌の効率を上げるため、図3に示すように、送風管109の送風口108を、試薬保冷庫103の内壁より内側で、内壁に沿った位置に配置すると好適である。
 本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されるものではない。
1   搬送ライン
2   試料プローブ
3   反応容器供給庫
4   反応容器供給機構
5   反応容器テーブル
6   反応測定装置
7   試薬撹拌棒
8   試薬ディスク
9   反応容器
10  試験管ラック
11  試料容器
101 自動分析装置
102 試薬プローブ
103 試薬保冷庫
104 吸引孔
105 冷媒配管
106 小ドレン管
107 試薬容器
108 送風口
109 送風管
110 冷却装置
111 大ドレン管
112 吸気口
113 フィルター
114 送風手段
115 空気の流れ

Claims (12)

  1. 試薬と検体を混合させて分析を行う自動分析装置であって、
    試薬容器を格納する試薬保冷庫と、
    前記試薬保冷庫の外壁の内部に設置され、前記外壁の内部に冷媒を流通させる冷媒配管と、
    前記外壁の内部に設置され、前記試薬保冷庫の外部に存在する外気を前記試薬保冷庫の内部に導く送風管と、
    前記送風管に設置され、前記送風管を通して前記外気を前記試薬保冷庫の内部に拡散させる送風手段と、を備える、
    ことを特徴とする自動分析装置。
  2. 請求項1記載の自動分析装置であって、
    前記送風管の前記外壁の内部に存在する部位の長さは、前記外気が前記送風手段に取り込まれる際の前記外気の温度と前記試薬保冷庫内の温度との差が5度(5℃)以内となるよう設定される、
    ことを特徴とする自動分析装置。
  3. 請求項1記載の自動分析装置であって、
    前記試薬保冷庫の側壁は円筒状であり、
    前記送風管の前記外壁の内部に存在する部位は、円筒状の前記側壁の45°以上に配置される、
    ことを特徴とする自動分析装置。
  4. 請求項1記載の自動分析装置であって、
    前記送風管に、前記試薬保冷庫の外に終端を持つ配管が接続されている、
    ことを特徴とする自動分析装置。
  5. 請求項4記載の自動分析装置であって、
    前記配管は、前記送風管に接続された小さな径の配管と、前記試薬保冷庫の底部に設けられ、前記小さな径の配管と接続され、前記小さな径より大きな径の配管とからなり、
    前記大きな径の配管が前記試薬保冷庫の外に終端を持つ、
    ことを特徴とする自動分析装置。
  6. 請求項5記載の自動分析装置であって、
    前記送風管の始端と終端にそれぞれ吸気口、送風口が取り付けられ、
    前記小さな径の配管は、前記送風管の半分よりも前記送風口側に設けられる、ことを特徴とする自動分析装置。
  7. 請求項1記載の自動分析装置であって、
    前記送風手段の吸気側に、異物混入防止用のフィルターを備える、
    ことを特徴とする自動分析装置。
  8. 請求項1記載の自動分析装置であって、
    前記試薬保冷庫は、その一部に吸引孔を有する蓋部を備え、
    前記送風手段により前記試薬保冷庫を陽圧化し、前記吸引孔からの外気の流入を防ぐ、
    ことを特徴とする自動分析装置。
  9. 請求項1記載の自動分析装置であって、
    前記試薬保冷庫は、前記外壁の内部に内壁を有する、
    ことを特徴とする自動分析装置。
  10. 請求項9記載の自動分析装置であって、
    前記送風管の始端と終端にそれぞれ吸気口、送風口が取り付けられ、前記送風口は、前記試薬保冷庫の前記内壁よりも内側で、前記内壁に沿って配置される、
    ことを特徴とする自動分析装置。
  11. 請求項9記載の自動分析装置であって、
    前記冷媒配管と前記送風管は、前記外壁と前記内壁との間に配置される、
    ことを特徴とする自動分析装置。
  12. 請求項11記載の自動分析装置であって、
    前記冷媒配管は、前記内壁に接している、
    ことを特徴とする自動分析装置。
PCT/JP2020/007336 2019-06-17 2020-02-25 自動分析装置 WO2020255488A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/596,247 US20220317140A1 (en) 2019-06-17 2020-02-25 Automatic Analyzer
EP20825127.2A EP3985399A4 (en) 2019-06-17 2020-02-25 AUTOMATIC ANALYSIS DEVICE
CN202080038528.1A CN113892033A (zh) 2019-06-17 2020-02-25 自动分析装置
JP2021527350A JP7297893B2 (ja) 2019-06-17 2020-02-25 自動分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-111810 2019-06-17
JP2019111810 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020255488A1 true WO2020255488A1 (ja) 2020-12-24

Family

ID=74040004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007336 WO2020255488A1 (ja) 2019-06-17 2020-02-25 自動分析装置

Country Status (5)

Country Link
US (1) US20220317140A1 (ja)
EP (1) EP3985399A4 (ja)
JP (1) JP7297893B2 (ja)
CN (1) CN113892033A (ja)
WO (1) WO2020255488A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097346A1 (ja) * 2020-11-05 2022-05-12 株式会社日立ハイテク 自動分析装置
TWI807795B (zh) * 2021-05-31 2023-07-01 日商日立全球先端科技股份有限公司 試劑保冷庫及包含其之自動分析裝置
WO2024080011A1 (ja) * 2022-10-11 2024-04-18 株式会社日立ハイテク 自動分析装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714796A (en) * 1980-07-01 1982-01-26 Tokyo Shibaura Electric Co Atmosphere conditioning device in nuclear reactor container
JP2009092297A (ja) * 2007-10-05 2009-04-30 Olympus Corp 試薬庫
JP2009270857A (ja) 2008-05-01 2009-11-19 Olympus Corp 自動分析装置
JP2010237021A (ja) * 2009-03-31 2010-10-21 Sysmex Corp 分析装置
JP2013185980A (ja) * 2012-03-08 2013-09-19 Hitachi High-Technologies Corp 自動分析装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6496230B2 (ja) * 2015-10-15 2019-04-03 株式会社クボタケミックス 逆流防止装置および田んぼダムシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714796A (en) * 1980-07-01 1982-01-26 Tokyo Shibaura Electric Co Atmosphere conditioning device in nuclear reactor container
JP2009092297A (ja) * 2007-10-05 2009-04-30 Olympus Corp 試薬庫
JP2009270857A (ja) 2008-05-01 2009-11-19 Olympus Corp 自動分析装置
JP2010237021A (ja) * 2009-03-31 2010-10-21 Sysmex Corp 分析装置
JP2013185980A (ja) * 2012-03-08 2013-09-19 Hitachi High-Technologies Corp 自動分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3985399A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097346A1 (ja) * 2020-11-05 2022-05-12 株式会社日立ハイテク 自動分析装置
TWI807795B (zh) * 2021-05-31 2023-07-01 日商日立全球先端科技股份有限公司 試劑保冷庫及包含其之自動分析裝置
WO2024080011A1 (ja) * 2022-10-11 2024-04-18 株式会社日立ハイテク 自動分析装置

Also Published As

Publication number Publication date
JP7297893B2 (ja) 2023-06-26
CN113892033A (zh) 2022-01-04
EP3985399A1 (en) 2022-04-20
US20220317140A1 (en) 2022-10-06
JPWO2020255488A1 (ja) 2020-12-24
EP3985399A4 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
WO2020255488A1 (ja) 自動分析装置
JP6214301B2 (ja) 自動分析装置
JP2009270857A (ja) 自動分析装置
JP5836850B2 (ja) 自動分析装置
US4735776A (en) Chemical manipulator
JP2009139269A (ja) 自動分析装置
US11181434B2 (en) Leakage inspection device
JP2023181437A (ja) 自動分析装置
WO2023282130A1 (ja) 試薬保冷庫の乾燥方法
JP5986436B2 (ja) 自動分析装置
JP6416673B2 (ja) 自動分析装置
WO2022097346A1 (ja) 自動分析装置
JP3159759U (ja) 自動分析装置
WO2024080011A1 (ja) 自動分析装置
JP2005283529A (ja) 試薬保冷装置及びそれを用いた自動分析装置
TWI807795B (zh) 試劑保冷庫及包含其之自動分析裝置
CN1795389B (zh) 用于自动生物分析仪内的温控系统
EP3467408A1 (en) A low-temperature storage plant with a nitrogen withdrawal apparatus
JP2002014107A (ja) 生化学自動分析装置の保冷庫
US20240219411A1 (en) Reagent cooling box and automatic analysis device comprising same
JP2024010418A (ja) 自動分析装置
JP7286511B2 (ja) 自動分析装置
CN215953641U (zh) 试剂库以及自动分析装置
CN209028052U (zh) 一种多用途高负载高精滴定仪
JP2005189191A (ja) 低温フローnmr測定方法及び低温フローnmr

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527350

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020825127

Country of ref document: EP

Effective date: 20220117