WO2020255356A1 - 室外機および冷凍サイクル装置 - Google Patents

室外機および冷凍サイクル装置 Download PDF

Info

Publication number
WO2020255356A1
WO2020255356A1 PCT/JP2019/024587 JP2019024587W WO2020255356A1 WO 2020255356 A1 WO2020255356 A1 WO 2020255356A1 JP 2019024587 W JP2019024587 W JP 2019024587W WO 2020255356 A1 WO2020255356 A1 WO 2020255356A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
header
outdoor fan
outdoor
viewed
Prior art date
Application number
PCT/JP2019/024587
Other languages
English (en)
French (fr)
Inventor
アバスタリ
七種 哲二
佐多 裕士
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/024587 priority Critical patent/WO2020255356A1/ja
Priority to GB2115224.4A priority patent/GB2596994B/en
Priority to JP2021528582A priority patent/JPWO2020255356A1/ja
Priority to CN201980097074.2A priority patent/CN113939694A/zh
Publication of WO2020255356A1 publication Critical patent/WO2020255356A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/30Refrigerant piping for use inside the separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • F24F1/50Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow with outlet air in upward direction

Definitions

  • the present invention relates to an outdoor unit and a refrigeration cycle device.
  • each outdoor heat exchanger in order to improve the heat exchange area and the ventilation performance of the heat exchanger, the shape of each outdoor heat exchanger is U-shaped. Harmonizers are known (see, for example, JP-A-2008-138951).
  • the heat exchanger having the above shape is formed by connecting the heat transfer tube and the fin (for example, a corrugated fin) and then bending the heat transfer tube and the fin.
  • the flat aluminum tube is considered to be an effective means for achieving high heat exchange efficiency.
  • each heat transfer tube is configured as a copper circular tube from the viewpoint of bending workability and space saving.
  • a main object of the present invention is to improve the heat exchange efficiency as compared with a conventional outdoor unit and a refrigeration cycle apparatus having a heat transfer tube configured as a copper circular tube and bent in a U shape. It is an object of the present invention to provide an outdoor unit and a refrigerating cycle device whose size is suppressed.
  • the outdoor unit according to the present invention has a first outdoor fan that rotates about a first rotation axis extending along a first direction and a first outdoor unit that rotates about a second rotation axis extending along a first direction.
  • a second outdoor fan arranged at a distance from the first outdoor fan in the second direction intersecting the direction, and a first heat exchange unit arranged on a gas flow path formed by the first outdoor fan. It is provided on a gas flow path formed by a second outdoor fan, and includes a first heat exchange section and a second heat exchange section arranged at intervals in a second direction.
  • the first heat exchange section extends on a plane intersecting the first direction, and is arranged at a distance from each other in the first direction.
  • a plurality of first flat tubes and one end of each of the plurality of first flat tubes A first header connected to the first header, a second header connected to each other end of the plurality of first flat pipes, and first and second inflow / outflow pipes connected to the first header are included.
  • the second heat exchange section extends on a plane intersecting the first direction, and is arranged at a distance from each other in the first direction.
  • a third header connected to the third header, a fourth header connected to each other end of the plurality of second flat tubes, and third and fourth inflow / outflow pipes connected to the third header are included.
  • the material constituting the plurality of first flat tubes and the plurality of second flat tubes includes aluminum.
  • the first heat exchange unit includes a first curved portion, a first curved portion, and a first header whose curvature centers are arranged on the first rotation axis side with respect to a plurality of first flat tubes when viewed from the first direction. It has a first extending portion connecting between the first extending portion and a second extending portion connecting between the first curved portion and the second header.
  • the second heat exchange section includes a second curved section, a second curved section, and a third header whose curvature centers are arranged on the second rotation axis side with respect to a plurality of second flat tubes when viewed from the first direction. It has a third extending portion connecting between the two, and a fourth extending portion connecting between the second curved portion and the fourth header.
  • the first header and the third header are arranged so as to face each other in the second direction.
  • the first and second inflow and outflow pipes extend in a direction intersecting the extending direction of the first extending portion when viewed from the first direction.
  • the third and fourth inflow and outflow pipes extend in a direction intersecting the extending direction of the third extending portion when viewed from the first direction.
  • the heat exchange efficiency is improved and the size is large. It is possible to provide an outdoor unit and a refrigeration cycle device in which the formation is suppressed.
  • FIG. 5 is a partial plan view of the outdoor unit according to the first embodiment as viewed from the first direction.
  • FIG. 5 is a partial front view of the outdoor unit according to the first embodiment as viewed from a third direction. It is a graph which compared the performance of the 1st heat exchange part which concerns on Embodiment 1 and the performance of the conventional U-shaped heat exchanger.
  • FIG. 5 is a partial plan view of the outdoor unit according to the second embodiment as viewed from the first direction.
  • FIG. 5 is a partial plan view of a modified example of the outdoor unit according to the second embodiment as viewed from the first direction. It is a perspective view of the outdoor unit which concerns on Embodiment 3.
  • FIG. 5 is a partial plan view of the outdoor unit according to the third embodiment as viewed from the first direction. It is a partial plan view seen from the arrow IX in FIG.
  • FIG. 5 is a partial plan view of a modified example of the outdoor unit according to the third embodiment as viewed from the first direction.
  • FIG. 5 is a partial plan view of the outdoor unit according to the fourth embodiment as viewed from the first direction.
  • FIG. 5 is a partial plan view of a modified example of the outdoor unit according to the fourth embodiment as viewed from the first direction.
  • Embodiment 1 ⁇ Composition of air conditioner>
  • the air conditioner 100 according to the first embodiment is configured as a commercial air conditioner or a refrigerator. As shown in FIG. 1, the air conditioner 100 according to the first embodiment includes a refrigerant circuit in which a refrigerant circulates.
  • the refrigerant circuit includes a compressor 1, an oil separator 2, a first heat exchange section 3A and a second heat exchange section 3B, an accumulator 4, an expansion valve 5, an indoor heat exchanger 6, and extension pipes 7 and 8.
  • the refrigerant is at least one selected from the group consisting of, for example, a single refrigerant such as R22 and R134a, a pseudo-azeotropic mixed refrigerant such as R410A and R404A, and a non-azeotropic mixed refrigerant such as R407C.
  • the refrigerant may be a refrigerant containing a double bond in the chemical formula and having a relatively small global warming potential.
  • a natural refrigerant containing CO 2 or propane may be used.
  • the air conditioner 100 further includes a first outdoor fan 9A, a second outdoor fan 9B, and an indoor fan 10.
  • the first outdoor fan 9A forms an air flow passing through the first heat exchange section 3A.
  • the second outdoor fan 9B forms an air flow that passes through the second heat exchange section 3B.
  • the indoor fan 10 forms an air flow through the indoor heat exchanger 6.
  • the compressor 1, the oil separator 2, the first heat exchange unit 3A and the second heat exchange unit 3B, the accumulator 4, the first outdoor fan 9A, and the second outdoor fan 9B are arranged inside the outdoor unit 200. ..
  • the expansion valve 5, the indoor heat exchanger 6, and the indoor fan 10 are arranged inside the indoor unit 300.
  • the air conditioner 100 includes a compressor 1, an oil separator 2, a first heat exchange unit 3A and a second heat exchange unit 3B, an accumulator 4, and a first outdoor fan 9A and a second outdoor fan 9B.
  • the outdoor unit 200 that houses the outdoor unit 200
  • the indoor unit 300 that houses the expansion valve 5, the indoor heat exchanger 6, and the indoor fan 10 inside
  • the extension pipe 7 that connects the outdoor unit 200 and the indoor unit 300. , 8 and so on.
  • Each configuration of the indoor unit 300 and the extension pipes 7 and 8 may be arbitrarily set and is not particularly limited.
  • the configurations of the compressor 1, the oil separator 2, and the accumulator 4 may be arbitrarily set and are not particularly limited.
  • the configurations of the first heat exchange unit 3A, the second heat exchange unit 3B, the first outdoor fan 9A, and the second outdoor fan 9B in the outdoor unit 200 will be described later.
  • the first heat exchange unit 3A and the second heat exchange unit 3B are connected in parallel with each other, for example, in the above-mentioned refrigerant circuit.
  • the first heat exchange unit 3A and the second heat exchange unit 3B may be connected in series with each other in, for example, the refrigerant circuit.
  • FIG. 2 is a partial plan view of the outdoor unit 200 of the air conditioner 100 shown in FIG. 1 as viewed from the first direction Z.
  • FIG. 3 is a partial front view of the outdoor unit 200 of the air conditioner 100 shown in FIG. 1 as viewed from the third direction Y.
  • the outdoor unit 200 includes a compressor 1, an oil separator 2, a first heat exchange unit 3A, a second heat exchange unit 3B, an accumulator 4, a first outdoor fan 9A, and a second. Includes an outdoor fan 9B, a wall portion 11, and a plurality of pillar portions 12.
  • the first direction Z is, for example, along the vertical direction.
  • FIG. 2 among the members constituting the outdoor unit 200, other than the first heat exchange unit 3A, the second heat exchange unit 3B, the first outdoor fan 9A, the second outdoor fan 9B, and the plurality of pillar portions 12. Illustration of other members is omitted.
  • FIG. 3 among the members constituting the outdoor unit 200, the compressor 1, the oil separator 2, the first heat exchange unit 3A, the second heat exchange unit 3B, the accumulator 4, the first outdoor fan 9A, and the second outdoor unit. Illustration of members other than the fan 9B is omitted.
  • the first heat exchange unit 3A and the second heat exchange unit 3B are configured as, for example, a so-called parallel flow type (PFC) heat exchanger. As shown in FIG. 2, the first heat exchange unit 3A and the second heat exchange unit 3B pass through the midpoint between the first rotation axis O1 and the second rotation axis O2 when viewed from the first direction Z, and are the third. It is formed line-symmetrically with respect to a virtual line segment extending along the direction Y. Similarly, the first outdoor fan 9A and the second outdoor fan 9B are virtual extending along the third direction Y through the midpoint between the first rotation axis O1 and the second rotation axis O2 when viewed from the first direction Z. It is formed line-symmetrically with respect to the line segment.
  • PFC parallel flow type
  • the first heat exchange section 3A extends on a plane intersecting the first direction Z, and a plurality of first flat tubes arranged at intervals in the first direction Z.
  • 30A see FIG. 3
  • a first header 31A connected to each end of the plurality of first flat tubes 30A
  • a second header 32A connected to each other end of the plurality of first flat tubes 30A
  • the first and second inflow / outflow pipes 33A connected to the header 31A are included.
  • each longitudinal direction of the plurality of first flat tubes 30A is along a plane perpendicular to the first direction Z.
  • the refrigerant flows into the inside of the first heat exchange unit 3A from the first inflow / outflow pipe, and from the second inflow / outflow pipe to the outside of the first heat exchange unit 3A. It is formed to flow out to.
  • the first inflow / outflow pipe is arranged above the second inflow / outflow pipe in the first direction Z, for example.
  • the inside of the first header 31A is divided into an upper portion and a lower portion in the first direction Z. The upper part is connected to the first inflow / outflow pipe, and the lower part is connected to the second inflow / outflow pipe.
  • the inside of the second header 32A is not partitioned in the first direction Z.
  • the plurality of first flat tubes 30A include a first group of first flat tubes 30A connecting between the upper portion of the first header 31A and the second header 32A, and the lower portions and the second of the first header 31A. It has a second group of first flat tubes 30A that connect to and from the header 32A.
  • the first heat exchange section 3A acts as a condenser
  • the refrigerant passes through the inside of the first heat exchange section 3A to the first inflow / outflow pipe 33A, the upper part of the first header 31A, and the first flat of the first group.
  • the pipe 30A, the second header 32A, the first flat pipe 30A of the second group, the lower part of the first header 31A, and the second inflow / outflow pipe 33A flow in this order.
  • the first outdoor fan 9A rotates about the first rotation axis O1 extending along the first direction Z.
  • the first heat exchange unit 3A is arranged on the gas flow path formed by the first outdoor fan 9A.
  • the first outdoor fan 9A is formed so as to blow out gas toward, for example, the first heat exchange section 3A.
  • the first heat exchange unit 3A is arranged on the outer peripheral side of the first outdoor fan in the radial direction with respect to the first rotation axis O1 when viewed from the first direction Z.
  • the material constituting the plurality of first flat tubes 30A includes aluminum (Al).
  • the maximum width of the plurality of first flat tubes 30A in the direction perpendicular to the extending direction is, for example, 9 mm or more.
  • the first heat exchange unit 3A has a first extending portion 34A, a first curved portion 35A, and a second extending portion 36A when viewed from the first direction Z.
  • the first extending portion 34A forms the above-mentioned one end of the first flat tube 30A and is connected to the first header 31A at the first end 341 and on the side opposite to the first end 341 in the second direction X. It has a second end 342 arranged.
  • the first curved portion 35A has a third end 351 connected to the second end 342 of the first extending portion 34A and a fourth end 352 arranged on the side opposite to the third end 351. There is.
  • the second extending portion 36A forms the fifth end 361 connected to the fourth end 352 of the first curved portion 35A and the other end of the first flat pipe 30A and is connected to the second header 32A. It has a sixth end 362 and a header.
  • the boundary between the first extending portion 34A and the first curved portion 35A and the boundary between the first curved portion 35A and the second extending portion 36A are within the first flat tube 30A viewed from the first direction Z. It is defined by a virtual line connecting points whose curvature changes on each of the peripheral and outer peripheral surfaces.
  • the center of curvature of the first curved portion 35A is arranged on the first rotation axis O1 side with respect to the first curved portion 35A.
  • the center of curvature of the first curved portion 35A is arranged, for example, on the first rotation axis O1 side of the outermost end portion of the first outdoor fan 9A.
  • the radius of curvature RA (see FIG. 2) of the first curved portion 35A can be arbitrarily set according to the width of the first flat tube 30A in the longitudinal direction, and is, for example, 120 mm or more and 200 mm or less.
  • the first curved portion 35A is formed by bending a plurality of first flat tubes extending linearly and a plurality of fins connected thereto.
  • Such a first curved portion 35A can be formed by a known bending method.
  • the first heat exchange portion 3A has only the first curved portion 35A as a curved portion formed by bending. Seen from the first direction Z, the length of the first curved portion 35A is less than the length of the second extending portion 36A.
  • the length of the first curved portion 35A viewed from the first direction Z is defined as the creepage distance of the outer peripheral surface of the first curved portion 35A viewed from the first direction Z.
  • the first extending portion 34A linearly connects the third end 351 of the first curved portion 35A and the first header 31A along the second direction X.
  • the second extending portion 36A linearly connects the fourth end 352 of the first curved portion 35A and the second header 32A along the third direction Y.
  • the first extending portion 34A has an L shape when viewed from the first direction Z.
  • the angle ⁇ (see FIG. 2) formed by the first extending portion 35A and the second extending portion 36A is an obtuse angle.
  • the first extending portion 35A and the second extending portion 36A may be formed in a curved shape. In this case, the curvatures of the first extending portion 35A and the second extending portion 36A may be smaller than the curvature of the first curved portion 34A.
  • the refrigerant flowing through the first curved portion 35A exchanges heat with the gas flowing along the radial direction with respect to the first rotating shaft O1.
  • the refrigerant flowing through the first extending portion 34A exchanges heat with the gas flowing along the third direction Y intersecting the first direction Z and the second direction X.
  • the refrigerant flowing through the second extending portion 36A exchanges heat with the gas flowing along the second direction X.
  • the second heat exchange section 3B includes a plurality of second flat tubes 30B extending on a plane intersecting the first direction Z and arranged at intervals in the first direction Z, and a plurality of second flat tubes.
  • a third header 31B connected to each end of the tube 30B, a fourth header 32B connected to each other end of the plurality of second flat tubes 30B, and a third and fourth header connected to the third header 31B.
  • each longitudinal direction of the plurality of second flat tubes 30B is along a plane perpendicular to the first direction Z.
  • the refrigerant flows into the inside of the second heat exchange unit 3B from the third inflow / outflow pipe, and from the fourth inflow / outflow pipe to the outside of the second heat exchange unit 3B. It is formed to flow out to.
  • the third inflow / outflow pipe is arranged above the fourth inflow / outflow pipe in the first direction Z, for example.
  • the inside of the third header 31B is divided into an upper portion and a lower portion in the first direction Z. The upper part is connected to the third inflow / outflow pipe, and the lower part is connected to the fourth inflow / outflow pipe.
  • the inside of the fourth header 32B is not partitioned in the first direction Z.
  • the plurality of second flat tubes 30B include a first group of second flat tubes 30B connecting between the upper portion of the third header 31B and the fourth header 32B, and the lower portions and the fourth of the third header 31B. It has a second group of second flat tubes 30B that connect to and from the header 32B.
  • the second heat exchange section 3B acts as a condenser
  • the refrigerant passes through the inside of the second heat exchange section 3B to the third inflow / outflow pipe 33B, the upper portion of the third header 31B, and the second flat of the first group.
  • the pipe 30B, the fourth header 32B, the second flat pipe 30B of the second group, the lower part of the third header 31B, and the fourth inflow / outflow pipe 33B flow in this order.
  • the second outdoor fan 9B is arranged at a distance from the first outdoor fan 9A in the second direction X which rotates around the second rotation axis O2 extending along the first direction Z and intersects the first direction. ing.
  • the second outdoor fan 9B is formed so as to blow out gas toward, for example, the second heat exchange section 3B.
  • the second heat exchange unit 3B is arranged on the gas flow path formed by the second outdoor fan 9B, and is arranged at a distance from the first heat exchange unit 3A in the second direction X.
  • the second heat exchange unit 3B is arranged on the outer peripheral side of the second outdoor fan 9B in the radial direction with respect to the second rotation axis O2 when viewed from the first direction Z.
  • the material constituting the plurality of second flat tubes 30B contains aluminum (Al).
  • the maximum width of the plurality of second flat tubes 30B in the direction perpendicular to the extending direction is, for example, 9 mm or more.
  • the second heat exchange section 3B has a third extending section 34B, a second bending section 35B, and a fourth extending section 36B when viewed from the first direction Z.
  • the third extending portion 34B forms the above-mentioned one end of the second flat tube 30B and is connected to the third header 31B at the seventh end 343 and on the side opposite to the seventh end 343 in the second direction X. It has an arranged eighth end 344.
  • the second curved portion 35B has a ninth end 353 connected to the eighth end 344 of the third extending portion 34B and a tenth end 354 arranged on the opposite side of the ninth end 353. ..
  • the fourth extending portion 36B forms the eleventh end 363 connected to the tenth end 354 of the second curved portion 35B and the other end of the second flat pipe 30B and is connected to the fourth header 32B. It has a 12th end 364 and a header.
  • the center of curvature of the second curved portion 35B is arranged on the second rotation axis O2 side with respect to the second curved portion 35B.
  • the center of curvature of the second curved portion 35B is arranged, for example, on the second rotation axis O2 side of the outermost end portion of the second outdoor fan 9B.
  • the second curved portion 35B is formed by bending a plurality of second flat tubes extending linearly and a plurality of fins connected to the second flat tube. Such a second curved portion 35B can be formed by a known bending method.
  • the second heat exchange portion 3B has only the second curved portion 35B as a curved portion formed by bending.
  • the length of the second curved portion 35B is less than the length of the fourth extending portion 36B.
  • the length of the second curved portion 35B viewed from the first direction Z is defined as the creepage distance of the outer peripheral surface of the second curved portion 35B viewed from the first direction Z.
  • the third extending portion 34B linearly connects the ninth end 353 of the second curved portion 35B and the third header 31B along the second direction X.
  • the fourth extending portion 36B linearly connects the tenth end 354 of the second curved portion 35B and the fourth header 32B along the third direction Y.
  • the second heat exchange unit 3B has an L shape when viewed from the first direction Z.
  • the angle formed by the third extending portion 35B and the fourth extending portion 36B is an obtuse angle.
  • the third extending portion 35B and the fourth extending portion 36B may be formed in a curved shape. In this case, the curvatures of the third extending portion 35B and the fourth extending portion 36B may be smaller than the curvature of the second curved portion 34B.
  • the refrigerant flowing through the second curved portion 35B exchanges heat with the gas flowing along the radial direction with respect to the second rotating shaft O2.
  • the refrigerant flowing through the third extending portion 34B exchanges heat with the gas flowing along the third direction Y.
  • the refrigerant flowing through the fourth extending portion 36B exchanges heat with the gas flowing along the second direction X.
  • the first header 31A and the third header 31B are arranged so as to face each other in the second direction X.
  • the first extending portion 34A and the third extending portion 34B are arranged so as to be continuous along the second direction X.
  • the second extending portion 36A and the fourth extending portion 36B are arranged so as to face each other with the first outdoor fan 9A and the second outdoor fan 9B in the second direction X.
  • the first header 31A, the first and second inflow / outflow pipes 33A, and the first end 341 of the first extending portion 34A are located on the second outdoor fan 9B side in the second direction X, the first outdoor fan 9A. It is arranged on the second heat exchange portion 3B side from the outermost end portion of the above. From a different point of view, as shown in FIG. 2, the first end 341 of the first extending portion 34A passes through the outermost end portion of the first outdoor fan 9A located on the second outdoor fan 9B side. It is arranged on the second heat exchange portion 3B side with respect to the virtual line segment VL1 extending along the three directions Y.
  • the second end 342 of the first extending portion 34A and the third end 351 of the first curved portion 35A are of the first outdoor fan 9A located on the opposite side of the second outdoor fan 9B in the second direction X. It is arranged on the second heat exchange portion 3B side of the virtual line segment VL2 that passes through the outermost end portion and extends along the third direction Y.
  • the fourth end 352 of the first curved portion 35A and the fifth end 361 of the second extending portion 36A are located on the opposite side of the virtual line segment VL2 from the second heat exchange portion 3B in the second direction X. Have been placed.
  • the third header 31B, the third and fourth inflow / outflow pipes 33B, and the seventh end 343 of the third extending portion 34B are located on the first outdoor fan 9A side in the second direction X, and the second outdoor fan 9B. It is arranged on the first heat exchange portion 3A side from the outermost end portion of the above. From a different point of view, the seventh end 343 of the third extending portion 34B passes through the outermost end portion of the second outdoor fan 9B located on the first outdoor fan 9A side and extends along the third direction Y. It is arranged on the first heat exchange section 3A side of the line segment VL3.
  • the eighth end 344 of the third extending portion 34B and the ninth end 353 of the second curved portion 35B are of the second outdoor fan 9B located on the opposite side of the first outdoor fan 9A in the second direction X. It is arranged on the first heat exchange portion 3A side of the virtual line segment VL4 that passes through the outermost end portion and extends along the third direction Y.
  • the tenth end 354 of the second curved portion 35B and the eleventh end 363 of the fourth extending portion 36B are located on the opposite side of the virtual line segment VL4 from the first heat exchange portion 3A in the second direction X. Have been placed.
  • the first and second inflow / outflow pipes 33A extend in a direction intersecting the extending direction of the first extending portion 34A when viewed from the first direction Z, that is, along the third direction Y.
  • the first and second inflow / outflow pipes 33A are arranged inside the outdoor unit 200 with respect to the first header 31A.
  • the third and fourth inflow / outflow pipes 33B extend in a direction intersecting the extending direction of the third extending portion when viewed from the first direction, that is, along the third direction Y.
  • the third and fourth inflow / outflow pipes 33B are arranged inside the outdoor unit 200 with respect to the third header 31B.
  • the distance L3 between the first header 31A and the third header 31B is the distance L6 between the first outdoor fan 9A and the second outdoor fan 9B (see FIG. 2).
  • the distance between the first and second inflow / outflow pipes 33A and the third and fourth inflow / outflow pipes 33B is the above-mentioned distance L6 between the first outdoor fan 9A and the second outdoor fan 9B.
  • the distance between the first end 341 of the first extending portion 34A and the seventh end 343 of the third extending portion 34B is the distance between the first outdoor fan 9A and the second outdoor fan 9B. It is shorter than the above distance L6 between.
  • the wall portion 11 and the plurality of pillar portions 12 constitute the housing of the outdoor unit 200.
  • the wall portion 11 is an outer shell member that partitions the inside and outside of the outdoor unit 200.
  • the plurality of pillar portions 12 are frames for imparting strength to the housing.
  • the wall portion 11 has a back portion 111 facing the first extending portion 34A of the first heat exchange portion 3A and the third extending portion 34B of the second heat exchange portion 3B, and a back portion.
  • a front portion 112 arranged on the opposite side of the 111, a first side surface portion 113 facing the second extending portion 36A of the first heat exchange portion 3A, and a fourth extending portion of the second heat exchange portion 3B. It has a second side surface portion 114 facing the 36B.
  • the back surface portion 111 forms a first wall portion arranged on the outer peripheral side of the first extending portion 34A in the radial direction with respect to the first rotation axis O1 when viewed from the first direction Z.
  • the intake ports of the first heat exchange section 3A and the second heat exchange section 3B are formed on the back surface portion 111, the first side surface portion 113, and the second side surface portion 114.
  • the plurality of pillar portions 12 are arranged at the four corners of the outdoor unit 200, for example, when viewed from the first direction Z.
  • the plurality of pillar portions 12 include a first pillar portion 121 arranged at a distance from the first curved portion 35A, a second pillar portion 122 arranged at a distance from the second curved portion 35B, and a second pillar portion 12.
  • the third pillar portion 123 arranged at a distance from the two headers 32A and the fourth pillar portion 124 arranged at a distance from the fourth header 32B are included.
  • the first pillar portion 121 is arranged on the outer peripheral side of the first curved portion 35A in the radial direction with respect to the first rotation axis O1 when viewed from the first direction Z.
  • the distance L1 (see FIG. 2) between the first pillar portion 121 and the first curved portion 35A becomes longer as the radius of curvature of the first curved portion 35A increases.
  • Each of the interval L1 and the interval L2 is larger than the interval L4 between the back surface portion 111 and the first extending portion 34A (see FIG. 2) and the interval L5 between the side surface portion 113 and the second extending portion 36A (see FIG. 2). long.
  • Each of the interval L1 and the interval L2 is longer than the distance L3 between the first header 31A and the third header 31B.
  • the distance L1 (see FIG. 2) between the first pillar portion 121 and the first curved portion 35A is longer than the width in the longitudinal direction of the first flat pipe 30A in the cross section perpendicular to the extending direction of the first flat pipe 30A.
  • the distance L2 (see FIG. 2) between the second pillar portion 122 and the second curved portion 35B is longer than the width in the longitudinal direction of the second flat pipe 30B in the cross section perpendicular to the extending direction of the second flat pipe 30B.
  • buckling may occur in the first curved portion 35A and the second curved portion 35B as long as the performance required for the air conditioner 100 is not affected.
  • the heat transfer tubes of each heat exchange section are circular tubes.
  • the heat exchange efficiency is high as compared with the case where it is configured as.
  • each heat transfer tube is configured as a copper circular tube. It has been raised.
  • the first heat exchange section 3A of the outdoor unit 200 has a first extending section 34A, a first bending section 35A, and a second extending section 36A, and the first extending section 34A has the first song.
  • the portion 35A and the first header 31A are linearly connected, and the second extending portion 36A linearly connects the first curved portion 35A and the second header 32A.
  • the radius of curvature RA of the first curved portion 35A of the first heat exchange portion 3A bent in this way is longer than the radius of curvature of each of the two curved portions of the conventional heat exchange portion bent into a U shape. Can be done.
  • the radius of curvature RA of the first curved portion 35A can be 120 mm or more and 200 mm or less as described above.
  • the radius of curvature of the curved portion of the circular tube is about 69 mm. Therefore, in the outdoor unit 200, although the materials constituting the first flat pipe 30A and the second flat pipe 30B contain aluminum, an increase in the pressure loss of the refrigerant due to buckling is suppressed.
  • first heat exchange section 3A and the second heat exchange section 3B are simply configured as described above, the heat exchange areas of the first heat exchange section 3A and the second heat exchange section 3B are bent into a U shape. It may be smaller than the heat exchange area of the processed conventional heat exchange section.
  • the first header 31A and the third header 31B are arranged so as to face each other in the second direction X, and the first and second inflow / outflow pipes 33A and the third and fourth inflow / outflow pipes 33B are second.
  • the distance L3 between the first header 31A and the third header 31B in the second direction X becomes relatively long, and the heat exchange area becomes small.
  • the first header 31A and the third header 31B are arranged so as to face each other in the second direction X, and the first and second inflow / outflow pipes 33A and the third and fourth Inflow / outflow pipe 33B extends along the third direction Y.
  • the distance L3 between the first header 31A and the third header 31B in the second direction X is such that the first and second inflow / outflow pipes 33A and the third and fourth outflow / inflow pipes 33B are the first. It is shorter than that when it extends along the two directions X. As a result, the heat exchange area of the outdoor unit 200 is larger than that when the first and second inflow / outflow pipes 33A and the third and fourth inflow / outflow pipes 33B extend along the second direction X. ..
  • the increase in the pressure loss of the refrigerant due to buckling is suppressed while the heat exchange efficiency is improved as compared with the outdoor unit of the conventional air conditioner equipped with a copper circular tube.
  • the heat exchange area is maximized in the above configuration that can suppress the increase in the pressure loss of the refrigerant due to buckling.
  • FIG. 4 compares the heat exchange performance of the first heat exchange unit 3A according to the first embodiment with the heat exchange performance of the U-shaped heat exchanger B formed by bending a conventional copper circular tube and fins. It is a graph.
  • the heat exchange performance shown in FIG. 4 is actually measured when each heat exchanger is operated as a condenser under the same conditions.
  • the vertical axis of FIG. 4 is a parameter GaCpa ⁇ (unit: kW) indicating the condensation performance measured from each heat exchanger under the same conditions such as temperature, fan rotation speed, and refrigerant circulation amount. / K) is shown.
  • the lengths of the heat transfer tubes of the first heat exchanger 3A and the heat exchanger B compared in the extending direction were the same.
  • the heat exchange performance of the first heat exchange unit 3A is higher than the heat exchange performance of the conventional U-shaped heat exchanger B.
  • each outdoor heat exchanger in which the shape of each outdoor heat exchanger is U-shaped, a plurality of spaces partitioned by the bent portions of each heat exchange portion are formed inside each heat exchanger. Therefore, in such a conventional outdoor unit, there is a problem that each space cannot be efficiently used as a space for accommodating each component in the outdoor unit, depending on the size of each space.
  • the space extending between the first curved portion 35A and the second curved portion 35B along the second direction X is inside the first heat exchange portion 3A and the second heat exchange portion 3B. Is formed in.
  • the space of the outdoor unit 200 is larger than each of the plurality of spaces in the conventional outdoor unit, it can be efficiently used as a space for accommodating each component in the outdoor unit 200.
  • the space is a space for accommodating each part of the outdoor unit 200. It contributes to the improvement of the assemblability and maintainability of the outdoor unit 200 by being efficiently used as the above.
  • the angle formed by the first extending portion 34A and the second extending portion 36A and the angle formed by the third extending portion 34B and the fourth extending portion 36B are It is an obtuse angle. Therefore, in the outdoor unit 200, the occurrence of buckling in the plurality of first flat pipes 30A and the plurality of second flat pipes 30B is suppressed as compared with the case where the angles are right angles, and the refrigerant associated with buckling is suppressed. The increase in pressure loss is suppressed.
  • the distance L1 between the first pillar portion 121 and the first curved portion 35A and the distance L2 between the pillar portion 123 and the second curved portion 35B (more than the case where the angle is a right angle). Since (see FIG. 2) is long, the flow rate of the gas flowing through the first curved portion 35A and the second curved portion 35B is large, and the heat exchange efficiency in the first curved portion 35A and the second curved portion 35B is high.
  • the length of the first curved portion 35A is less than the length of the second extended portion 36A, and the length of the second curved portion 35B is the length of the fourth extended portion 36B. Is less than the length of.
  • FIG. 5 is a partial plan view of the outdoor unit 200 according to the second embodiment as viewed from the first direction Z.
  • the outdoor unit 201 according to the second embodiment has basically the same configuration as the outdoor unit 200 according to the first embodiment, but further includes a third outdoor fan 9C. Therefore, it is different from the outdoor unit 200 according to the first embodiment.
  • the third outdoor fan 9C is formed so as to blow gas toward the first heat exchange section 3A.
  • the first heat exchange unit 3A and the second heat exchange unit 3B of the outdoor unit 201 have basically the same configurations as the first heat exchange unit 3A and the second heat exchange unit 3B of the outdoor unit 200, but the first heat.
  • the first heat exchange part 3A and the second heat exchange part 3B of the outdoor unit 200 are different from each other in that the exchange part 3A is arranged on the gas flow path formed by the first outdoor fan 9A and the third outdoor fan 9C. different.
  • the first extending portion 34A of the first heat exchange portion 3A is arranged at a distance from the first outdoor fan 9A and the third outdoor fan 9C in the third direction Y.
  • the length of the first extending portion 34A of the outdoor unit 201 in the second direction X is longer than that of the first extending portion 34A of the outdoor unit 200.
  • the distance L3 between the first header 31A and the third header 31B is the distance L7 between the third outdoor fan 9C and the second outdoor fan 9B (see FIG. 5).
  • the distance between the first and second inflow / outflow pipes 33A and the third and fourth inflow / outflow pipes 33B is the above-mentioned distance L7 between the third outdoor fan 9C and the second outdoor fan 9B.
  • the distance between the 13th end 345 of the 1st extending portion 34A and the 7th end 343 of the 3rd extending portion 34B is the distance between the 3rd outdoor fan 9C and the 2nd outdoor fan 9B. It is shorter than the above distance L7 between.
  • the distance L8 (see FIG. 5) between the first outdoor fan 9A and the third outdoor fan 9C is, for example, equal to the above distance L7.
  • the third rotation axis O3 of the third outdoor fan 9C overlaps the midpoint between the first rotation axis O1 and the second rotation axis O2 when viewed from the first direction Z.
  • the first outdoor fan 9A, the third outdoor fan 9C, and the second outdoor fan 9B are formed line-symmetrically with respect to the virtual line segment VL5 extending along the third direction Y through the third rotation axis O3. There is.
  • the first heat exchange unit 3A and the second heat exchange unit 3B are formed asymmetrically with respect to the virtual line segment extending along the third direction Y through the third rotation axis O3.
  • the first header 31A, the first and second inflow / outflow pipes 33A, and the first end 341 of the first extending portion 34A are located on the second outdoor fan 9B side in the second direction X, and the third outdoor fan 9C. It is arranged on the second heat exchange portion 3B side from the outermost end portion of the above. From a different point of view, as shown in FIG. 5, the first end 341 of the first extending portion 34A passes through the outermost end portion of the third outdoor fan 9C located on the second outdoor fan 9B side. It is arranged on the second heat exchange portion 3B side with respect to the virtual line segment VL6 extending along the three directions Y.
  • the outdoor unit 201 has a larger heat exchange area than the outdoor unit 200, it has basically the same configuration as the outdoor unit 200, so that it can achieve the same effect as the outdoor unit 200.
  • the first outdoor fan 9A, the third outdoor fan 9C, and the second outdoor fan 9B are virtual lines extending along the third direction Y through the third rotation axis O3. It may have a configuration asymmetric with respect to the minute VL5. In other words, the distance L7 between the second outdoor fan 9B and the third outdoor fan 9C may be longer than, for example, the distance L8 between the first outdoor fan 9A and the third outdoor fan 9C.
  • FIG. 7 is a perspective view showing the outdoor unit 202 according to the third embodiment.
  • FIG. 8 is a partial plan view of the outdoor unit 202 according to the third embodiment as viewed from the first direction Z.
  • the outdoor unit 202 according to the third embodiment has basically the same configuration as the outdoor unit 200 according to the first embodiment, but has the third heat exchange unit 3C and the third heat exchange unit 3C. It differs from the outdoor unit 200 according to the first embodiment in that it further includes the outdoor fan 9C.
  • the outdoor unit 202 is different from the outdoor unit 201 according to the second embodiment in that it further includes a third heat exchange unit 3C.
  • the first heat exchange unit 3A and the second heat exchange unit 3B of the outdoor unit 202 have basically the same configurations as the first heat exchange unit 3A and the second heat exchange unit 3B of the outdoor unit 200, but in the second direction. It differs from the first heat exchange section 3A and the second heat exchange section 3B of the outdoor unit 200 in that it is arranged so as to sandwich the third heat exchange section 3C in X.
  • the first outdoor fan 9A and the second outdoor fan 9B of the outdoor unit 202 have basically the same configuration as the first outdoor fan 9A and the second outdoor fan 9B of the outdoor unit 200, but have a second direction X. It is different from the first outdoor fan 9A and the second outdoor fan 9B of the outdoor unit 200 in that it is arranged so as to sandwich the third outdoor fan 9C.
  • the third heat exchanger 3C is configured as, for example, a so-called parallel flow type (PFC) heat exchanger.
  • the third outdoor fan 9C rotates about a third rotation axis O3 extending along the first direction Z, and is arranged at a distance from the first outdoor fan 9A and the second outdoor fan 9B in the second direction X. ing.
  • the third heat exchange unit 3C is arranged on the gas flow path formed by the third outdoor fan 9C. As shown in FIG. 8, the third heat exchange unit 3C is arranged on the outer peripheral side of the third outdoor fan 9C in the radial direction with respect to the third rotation axis O3 when viewed from the first direction Z.
  • the third heat exchange unit 3C has a plurality of third flat tubes extending on a plane intersecting the first direction Z and arranged at intervals in the first direction Z, and a plurality of third flat tubes.
  • the fifth header 31C connected to each one end of the above, the sixth header 32C connected to each other end of the plurality of third flat pipes, and the fifth and sixth inflow / outflow pipes 33C connected to the fifth header 31C. And include.
  • the refrigerant flows into the inside of the third heat exchange unit 3C from the fifth inflow / outflow pipe, and from the sixth inflow / outflow pipe to the outside of the third heat exchange unit 3C. It is formed to flow out to.
  • the fifth inflow / outflow pipe is arranged above the sixth inflow / outflow pipe in the first direction Z, for example.
  • the inside of the fifth header 31C is divided into an upper portion and a lower portion in the first direction Z. The upper part is connected to the fifth inflow / outflow pipe, and the lower part is connected to the sixth inflow / outflow pipe.
  • the inside of the sixth header 32C is not partitioned in the first direction Z.
  • the plurality of third flat tubes include the third flat tube of the first group connecting the upper portion of the fifth header 31C and the sixth header 32C, and the lower portion of the fifth header 31C and the sixth header 32C. It has a second group of third flat tubes that connect to and from.
  • the third heat exchange section 3C acts as a condenser
  • the refrigerant passes the inside of the third heat exchange section 3C to the fifth inflow / outflow pipe 33C, the upper part of the fifth header 31C, and the third flat of the first group.
  • the pipe, the sixth header 32C, the third flat pipe of the second group, the lower part of the sixth header 32C, and the sixth inflow / outflow pipe 33C flow in this order.
  • the material constituting the plurality of third flat tubes contains aluminum (Al).
  • the maximum width in the direction perpendicular to the extending direction of the plurality of third flat tubes is, for example, 9 mm or more.
  • the third flat tube of the third heat exchange section 3C is formed linearly along the second direction X.
  • the fifth header 31C and the sixth header 32C are linearly connected along the second direction X.
  • the third heat exchange section 3C has a fifth extending section 34C when viewed from the first direction Z.
  • the fifth extending portion 34C is arranged on the side opposite to the thirteenth end 345 in the second direction X with the thirteenth end 345 forming the one end of the third flat tube and being connected to the fifth header 31C. It has a 14th end 346 header.
  • the 14th end 346 forms the other end of the third flat tube and is connected to the sixth header 32C.
  • the fifth extending portion 35C may be formed in a curved shape. In this case, the curvature of the fifth extending portion 35C may be smaller than the curvature of the first curved portion 34A.
  • the first extending portion 34A, the fifth extending portion 34C, and the third extending portion 34B are arranged so as to be continuous along the second direction X.
  • the second extending portion 36A and the fourth extending portion 36B are arranged so as to face each other with the first outdoor fan 9A, the third outdoor fan 9C, and the second outdoor fan 9B in the second direction X.
  • the fifth header 31C and the third header 31B are arranged so as to face each other in the second direction X.
  • the sixth header 32C and the first header 31A are arranged so as to face each other in the second direction X.
  • the fifth and sixth inflow / outflow pipes 33C extend in a direction intersecting the extending direction of the fifth extending portion 34C when viewed from the first direction Z, that is, along the third direction Y.
  • the fifth and sixth inflow / outflow pipes 33C are arranged inside the outdoor unit 202 with respect to the fifth header 31C.
  • the distance L9 between the fifth header 31C and the third header 31B is the distance L7 between the third outdoor fan 9C and the second outdoor fan 9B (see FIG. 8).
  • the distance between the fifth and sixth inflow / outflow pipes 33C and the third and fourth inflow / outflow pipes 33B is the above-mentioned distance L7 between the third outdoor fan 9C and the second outdoor fan 9B.
  • the distance between the 13th end 345 of the 5th extending portion 34C and the 7th end 343 of the 3rd extending portion 34B is the distance between the 3rd outdoor fan 9C and the 2nd outdoor fan 9B. It is shorter than the above distance L7 between.
  • the distance L10 between the sixth header 32C and the first header 31A is the distance L8 between the first outdoor fan 9A and the third outdoor fan 9C (see FIG. 8). Shorter than.
  • the distance L9 is, for example, equal to the distance L10.
  • the distance L7 is, for example, equal to the distance L8.
  • the third rotation axis O3 of the third outdoor fan 9C overlaps the midpoint between the first rotation axis O1 and the second rotation axis O2 when viewed from the first direction Z. Have been placed. That is, the first outdoor fan 9A, the third outdoor fan 9C, and the second outdoor fan 9B are formed line-symmetrically with respect to a virtual line segment extending along the third direction Y through the third rotation axis O3. ..
  • the first heat exchange unit 3A, the third heat exchange unit 3C, and the second heat exchange unit 3B pass through the third rotation shaft O3 except for the fifth and sixth inflow / outflow pipes 33C. It is formed line-symmetrically with respect to a virtual line segment extending along the three directions Y.
  • the outdoor unit 202 Since the outdoor unit 202 has basically the same configuration as the outdoor unit 200, it can achieve the same effect as the outdoor unit 200.
  • FIG. 9 is a partial plan view seen from the arrow IX in FIG. 7, and is a diagram showing the arrangement of each heat exchange unit and the compressor 1 and the like below the plan view shown in FIG.
  • a space SP1 extending along the second direction X is formed between the first curved portion 35A and the second curved portion 35B.
  • the space SP1 of the outdoor unit 202 is wider than the space of the outdoor unit 200. Therefore, the space SP1 of the outdoor unit 202 contributes to the improvement of the assemblability and maintainability of the outdoor unit 202 as much as or more than the space of the outdoor unit 200.
  • the first outdoor fan 9A, the third outdoor fan 9C, and the second outdoor fan 9B are virtual lines extending along the third direction Y through the third rotation axis O3. It may have a configuration asymmetric with respect to the minute VL5. In other words, the distance L7 between the second outdoor fan 9B and the third outdoor fan 9C may be longer than, for example, the distance L8 between the first outdoor fan 9A and the third outdoor fan 9C.
  • FIG. 11 is a partial plan view of the outdoor unit 203 according to the fourth embodiment as viewed from the first direction Z.
  • the outdoor unit 203 according to the fourth embodiment has basically the same configuration as the outdoor unit 202 according to the third embodiment, but the third heat exchange unit 3C has a third curved portion. It differs from the outdoor unit 202 according to the third embodiment in that it has 35C.
  • the third heat exchange section 3C has a fifth extension section 34C and a third curved section 35C when viewed from the first direction Z.
  • the fifth extending portion 34C is arranged on the side opposite to the thirteenth end 345 in the second direction X with the thirteenth end 345 forming the one end of the third flat tube and being connected to the fifth header 31C. It has a 14th end 346 header.
  • the third curved portion 35C has a fifteenth end 355 connected to the fourteenth end 346 of the fifth extending portion 34C and a sixteenth end 356 arranged on the opposite side of the fifteenth end 355. There is.
  • the 16th end 356 of the 3rd curved portion 35C forms the other end of the 3rd flat tube and is connected to the 6th header 32C.
  • the fifth extending portion 34C linearly connects the fifteenth end 355 of the third curved portion 35C and the fifth header 31C along the second direction X.
  • the fifth extending portion 35C may be formed in a curved shape. In this case, the curvature of the fifth extending portion 35C may be smaller than the curvature of the third curved portion 34C.
  • the center of curvature of the third curved portion 35C is arranged on the third rotation axis O3 side with respect to the third curved portion 35C.
  • the center of curvature of the third curved portion 35C is arranged, for example, on the second rotation axis O2 side of the outermost end portion of the third outdoor fan 9C.
  • the radius of curvature RC (see FIG. 11) of the third curved portion 35C can be arbitrarily set according to the width of the third flat tube in the longitudinal direction, and is, for example, 120 mm or more and 200 mm or less.
  • the third curved portion 35C is formed by bending a plurality of third flat tubes extending linearly and a plurality of fins connected to the third flat tube. Such a third curved portion 35C can be formed by a known bending method.
  • the refrigerant flowing through the third curved portion 35C exchanges heat with the gas flowing along the radial direction with respect to the third rotating shaft O3.
  • the refrigerant flowing through the fifth extending portion 34C exchanges heat with the gas flowing along the third direction Y.
  • the first extending portion 34A and the fifth extending portion 34C are arranged so as to be continuous along the second direction X.
  • the first curved portion 35A and the third curved portion 35C are arranged so as to face each other with the first outdoor fan 9A and the third outdoor fan 9C in the second direction X.
  • the third curved portion 35C and the second curved portion 35B are arranged so as to face each other with the second outdoor fan 9B in the second direction X.
  • the fifth header 31C is arranged on the first heat exchange section 3A side in the second direction X.
  • the sixth header 32C is arranged on the second heat exchange portion 3B side in the second direction X.
  • the first header 31A and the fifth header 31C are arranged so as to face each other in the second direction X.
  • the fifth and sixth inflow / outflow pipes 33C extend in a direction intersecting the extending direction of the fifth extending portion 34C when viewed from the first direction Z, that is, along the third direction Y.
  • the fifth and sixth inflow / outflow pipes 33C are arranged inside the outdoor unit 202 with respect to the fifth header 31C.
  • the distance L11 between the first header 31A and the fifth header 31C is the distance L8 between the first outdoor fan 9A and the third outdoor fan 9C (see FIG. 11).
  • the distance between the first and second inflow / outflow pipes 33A and the fifth and sixth inflow / outflow pipes 33C is the above-mentioned distance L8 between the first outdoor fan 9A and the third outdoor fan 9C.
  • the distance between the first end 341 of the first extending portion 34A and the thirteenth end 345 of the fifth extending portion 34C is the distance between the first outdoor fan 9A and the third outdoor fan 9C. It is shorter than the above distance L8 between.
  • the distance L12 between the sixth header 32C and the third header 31B is the distance L7 between the third outdoor fan 9C and the second outdoor fan 9B (see FIG. 11). Shorter than.
  • the distance L12 is, for example, equal to the distance L11.
  • the distance L7 is, for example, equal to the distance L8.
  • the third rotation axis O3 of the third outdoor fan 9C overlaps the midpoint between the first rotation axis O1 and the second rotation axis O2 when viewed from the first direction Z. Have been placed. That is, the first outdoor fan 9A, the third outdoor fan 9C, and the second outdoor fan 9B are formed line-symmetrically with respect to the virtual line segment VL5 extending along the third direction Y through the third rotation axis O3. There is.
  • the first heat exchange unit 3A, the third heat exchange unit 3C, and the second heat exchange unit 3B extend through the third rotation shaft O3 and along the third direction Y. It is formed asymmetrically with respect to the virtual line segment VL5.
  • the first heat exchange unit 3A and the second heat exchange unit 3B are formed line-symmetrically with respect to the virtual line segment VL5, but the third heat exchange unit 3C is the virtual line segment 3C. It is formed asymmetrically with respect to the line segment VL5.
  • the third flat tube of the third heat exchange section 3C is formed asymmetrically with respect to the virtual line segment VL5.
  • the third heat exchange unit 3C is not shown to connect between the third curved unit 35C and the sixth header 32C, similarly to the first heat exchange unit 3A and the second heat exchange unit 3B.
  • the sixth extension may be further included.
  • the heat exchange efficiency of such a sixth extending portion is lower than the heat exchange efficiency of other portions of the first heat exchange unit 3A, the second heat exchange unit 3B, and the third heat exchange unit 3C. Therefore, the outdoor unit 203 shown in FIG. 11 without the sixth extending portion has a sufficiently high heat exchange as compared with the outdoor unit 203 having the sixth extending portion, while suppressing an increase in manufacturing cost. It is advantageous in that efficiency is achieved.
  • the third heat exchange unit 3C may have a configuration inverted in the second direction X.
  • the fifth header 31C may be arranged on the second heat exchange unit 3B side in the second direction X, and the sixth header 32C may be arranged on the first heat exchange unit 3A side in the second direction X.
  • the first outdoor fan 9A, the third outdoor fan 9C, and the second outdoor fan 9B are virtual lines extending along the third direction Y through the third rotation axis O3. It may have a configuration asymmetric with respect to the minute VL5.
  • the distance L7 between the second outdoor fan 9B and the third outdoor fan 9C may be longer than, for example, the distance L8 between the first outdoor fan 9A and the third outdoor fan 9C.
  • the distance L12 between the sixth header 32C and the third header 31B is the distance L7 between the third outdoor fan 9C and the second outdoor fan 9B (see FIG. 12). Shorter than.
  • the distance L12 is, for example, equal to the distance L11.
  • the length of at least one of the second heat exchange unit 3B and the third heat exchange unit 3C in the outdoor unit 203 shown in FIG. 12 in the second direction X is the length of the second heat exchange unit in the outdoor unit 203 shown in FIG. It is longer than the length of 3B and the third heat exchange unit 3C in the second direction X.
  • the first outdoor fan 9A, the third outdoor fan 9C, and the second outdoor fan 9B form a virtual line segment VL5 that passes through the third rotation axis O3 and extends along the third direction Y.
  • the first heat exchange unit 3A, the third heat exchange unit 3C, and the second heat exchange unit 3B extend through the third rotation axis O3 and along the third direction Y. It is formed asymmetrically with respect to the virtual line segment VL5.
  • the rotation directions of the outdoor fans are the same, but the present invention is not limited to this.
  • the rotation directions of the outdoor fans may be opposite to each other.
  • the first outdoor fan 9A arranged on the left side of the paper surface rotates counterclockwise with respect to the first rotation axis O1 and the second outdoor fan 9A arranged on the right side of the paper surface.
  • the fan 9B may rotate clockwise with respect to the second rotation axis O2.
  • Each may rotate counterclockwise with respect to the first rotation axis O1
  • the third outdoor fan 9C arranged in the center of the paper may rotate clockwise with respect to the second rotation axis O2.
  • the direction of the airflow formed by the first outdoor fan 9A may be opposite to the direction of the airflow formed by the second outdoor fan 9B.
  • the direction of the airflow formed by the first outdoor fan 9A may be opposite to the direction of the airflow formed by the third outdoor fan 9C.
  • the heat transfer area of each heat exchange section of the outdoor units 200, 201, 202, 203 can be optimized or maximized, so that the heat exchange efficiency of the outdoor units 200, 201, 202, 203 is further increased. Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

室外機(200)は、第1室外ファン(9A)および第2室外ファン(9B)と、第1熱交換部(3A)と、第2方向(X)において第1熱交換部と間隔を隔てて配置された第2熱交換部(3B)とを備える。第1熱交換部は複数の第1扁平管(30A)を含み、第2熱交換部は複数の第2扁平管(30B)を含む。複数の第1扁平管および複数の第2扁平管を構成する材料は、アルミニウムを含む。第1熱交換部は、第1方向から視て、曲率中心が複数の第1扁平管に対して第1回転軸側に配置された第1曲部(35A)と、第1曲部と第1ヘッダ(31A)との間を直線的に接続する第1延在部(34A)とを有している。第2熱交換部は、第1方向から視て、曲率中心が複数の第2扁平管に対して第2回転軸側に配置された第2曲部(35B)と、第2曲部と第3ヘッダ(31B)との間を直線的に接続する第3延在部(34B)とを有している。第1ヘッダと第3ヘッダとは、第2方向に互いに対向するように配置されている。第1ヘッダに接続された第1および第2の流出入管(33A)は、第1方向から視て第1延在部の延在方向と交差する方向に延びている。第3ヘッダに接続された第3および第4の流出入管(33B)は、第1方向から視て第3延在部の延在方向と交差する方向に延びている。

Description

室外機および冷凍サイクル装置
 本発明は、室外機および冷凍サイクル装置に関する。
 従来、複数の室外熱交換器を備える空気調和機の室外機において、熱交換器の熱交換面積および送風性能の向上を図るために、各室外熱交換器の形状がU字形状とされた空気調和機が知られている(例えば特開2008-138951号公報参照)。上記形状の熱交換器は、伝熱管とフィン(例えばコルゲートフィン)とを接続した後に伝熱管およびフィンを曲げることにより形成される。
特開2008-138951号公報
 近年、省エネに係る規制が年々強化されており、業務用空気調和機または冷凍機の熱交換器に対しても、熱交換効率の高効率化および省スペース化が求められている。
 アルミニウム製扁平管は、熱交換効率の高効率化を実現するために有効な手段と考えられる。
 一方で、大きな熱交換面積が要求される業務用空気調和機または冷凍機では、例えば車載用空気調和機または家庭用空気調和機と比べて、気体の流通方向における伝熱管の幅が広くなる。そのため、業務用空気調和機または冷凍機に用いられる上記U字形状の熱交換器では、曲げ加工性および省スペース化の観点から、各伝熱管は銅製の円管として構成されている。
 具体的には、アルミニウム製扁平管および該扁平管に接続されたフィンをU字形状に曲げる場合、扁平管の座屈およびフィンの変形が生じやすい。このような不具合の発生を抑制するためには、曲げ部の曲率半径を大きくする必要があるが、その場合室外機において熱交換器が占めるスペースは比較的大きくなる。
 本発明の主たる目的は、銅製の円管として構成されかつU字形状に曲げられた伝熱管を備える従来の室外機および冷凍サイクル装置と比べて、熱交換効率の高効率化が実現されながらも大型化が抑制された室外機および冷凍サイクル装置を提供することにある。
 本発明に係る室外機は、第1方向に沿って延びる第1回転軸を中心に回転する第1室外ファンと、第1方向に沿って延びる第2回転軸を中心に回転し、かつ第1方向と交差する第2方向において第1室外ファンと間隔を隔てて配置された第2室外ファンと、第1室外ファンによって形成される気体の流路上に配置されている第1熱交換部と、第2室外ファンによって形成される気体の流路上に配置されており、かつ第2方向において第1熱交換部と間隔を隔てて配置された第2熱交換部とを備える。第1熱交換部は、第1方向と交差する平面上に延びており、かつ第1方向において互いに間隔を隔てて配置された複数の第1扁平管と、複数の第1扁平管の各一端と接続された第1ヘッダと、複数の第1扁平管の各他端と接続された第2ヘッダと、第1ヘッダに接続された第1および第2の流出入管とを含む。第2熱交換部は、第1方向と交差する平面上に延びており、かつ第1方向において互いに間隔を隔てて配置された複数の第2扁平管と、複数の第2扁平管の各一端と接続された第3ヘッダと、複数の第2扁平管の各他端と接続された第4ヘッダと、第3ヘッダに接続された第3および第4の流出入管とを含む。複数の第1扁平管および複数の第2扁平管を構成する材料は、アルミニウムを含む。第1熱交換部は、第1方向から視て、曲率中心が複数の第1扁平管に対して第1回転軸側に配置された第1曲部と、第1曲部と第1ヘッダとの間を接続する第1延在部と、第1曲部と第2ヘッダとの間を接続する第2延在部とを有している。第2熱交換部は、第1方向から視て、曲率中心が複数の第2扁平管に対して第2回転軸側に配置された第2曲部と、第2曲部と第3ヘッダとの間を接続する第3延在部と、第2曲部と第4ヘッダとの間を接続する第4延在部とを有している。第1ヘッダと第3ヘッダとは、第2方向に互いに対向するように配置されている。第1および第2の流出入管は、第1方向から視て第1延在部の延在方向と交差する方向に延びている。第3および第4の流出入管は、第1方向から視て第3延在部の延在方向と交差する方向に延びている。
 本発明によれば、銅製の円管として構成されかつU字形状に曲げられた伝熱管を備える従来の室外機および冷凍サイクル装置と比べて、熱交換効率の高効率化が実現されながらも大型化が抑制された室外機および冷凍サイクル装置を提供することができる。
実施の形態1に係る空気調和機を示す図である。 実施の形態1に係る室外機を第1方向から視た部分平面図である。 実施の形態1に係る室外機を第3方向から視た部分正面図である。 実施の形態1に係る第1熱交換部の性能と従来のU字形状の熱交換器の性能とを比較したグラフである。 実施の形態2に係る室外機を第1方向から視た部分平面図である。 実施の形態2に係る室外機の変形例を第1方向から視た部分平面図である。 実施の形態3に係る室外機の斜視図である。 実施の形態3に係る室外機を第1方向から視た部分平面図である。 図7中の矢印IXから視た部分平面図である。 実施の形態3に係る室外機の変形例を第1方向から視た部分平面図である。 実施の形態4に係る室外機を第1方向から視た部分平面図である。 実施の形態4に係る室外機の変形例を第1方向から視た部分平面図である。
 以下、図面を参照して、本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。また、説明の便宜上、互いに交差する第1方向Z、第2方向X、および第3方向Yが導入されている。
 実施の形態1.
 <空気調和機の構成>
 実施の形態1に係る空気調和機100は、業務用空気調和機または冷凍機として構成されている。図1に示されるように,実施の形態1に係る空気調和機100は、冷媒が循環する冷媒回路を備えている。冷媒回路は、圧縮機1、油分離器2、第1熱交換部3Aおよび第2熱交換部3B、アキュームレータ4、膨張弁5、室内熱交換器6、および延長配管7,8を含む。
 上記冷媒は、例えば、R22およびR134a等の単一冷媒、R410AおよびR404A等の擬似共沸混合冷媒、ならびにR407C等の非共沸混合冷媒からなる群から選択される少なくとも1つである。また、上記冷媒は、化学式内に二重結合を含み、地球温暖化係数が比較的小さい値とされている冷媒であってもよい。上記冷媒は、例えば、化学式がCF3もしくはCF=CH2で表されるフルオロカーボン系冷媒、またはCO2もしくはプロパン等を含む自然冷媒が使用されてもよい。
 空気調和機100は、第1室外ファン9A、第2室外ファン9B、および室内ファン10をさらに備える。第1室外ファン9Aは、第1熱交換部3Aを通る気流を形成する。第2室外ファン9Bは、第2熱交換部3Bを通る気流を形成する。室内ファン10は、室内熱交換器6を通る気流を形成する。
 圧縮機1、油分離器2、第1熱交換部3Aおよび第2熱交換部3B、アキュームレータ4、第1室外ファン9A、および第2室外ファン9Bは、室外機200の内部に配置されている。膨張弁5、室内熱交換器6、および室内ファン10は、室内機300の内部に配置されている。
 異なる観点から言えば、空気調和機100は、圧縮機1、油分離器2、第1熱交換部3Aおよび第2熱交換部3B、アキュームレータ4、および第1室外ファン9Aおよび第2室外ファン9Bを内部に収容する室外機200と、膨張弁5、室内熱交換器6、および室内ファン10を内部に収容する室内機300と、室外機200と室内機300との間を接続する延長配管7,8とを備える。
 室内機300および延長配管7,8の各構成は、任意に設定されていればよく、特に制限されない。室外機200において、圧縮機1、油分離器2、およびアキュームレータ4の各構成は、任意に設定されていればよく、特に制限されない。室外機200において、第1熱交換部3A、第2熱交換部3B、第1室外ファン9A、および第2室外ファン9Bの各構成は、後述する。
 第1熱交換部3Aおよび第2熱交換部3Bは、例えば上記冷媒回路において互いに並列に接続されている。なお、第1熱交換部3Aおよび第2熱交換部3Bは、例えば上記冷媒回路において互いに直列に接続されていてもよい。
 <室外機の構成>
 図2は、図1に示される空気調和機100の室外機200を第1方向Zから視た部分平面図である。図3は、図1に示される空気調和機100の室外機200を第3方向Yから視た部分正面図である。図1および図2に示されるように、室外機200は、圧縮機1、油分離器2、第1熱交換部3A、第2熱交換部3B、アキュームレータ4、第1室外ファン9A、第2室外ファン9B、壁部11、および複数の柱部12を含む。第1方向Zは、例えば上下方向に沿っている。
 なお、図2では、室外機200を構成する部材のうち、第1熱交換部3A、第2熱交換部3B、第1室外ファン9A、第2室外ファン9B、および複数の柱部12以外の他の部材の図示が省略されている。図3では、室外機200を構成する部材のうち、圧縮機1、油分離器2、第1熱交換部3A、第2熱交換部3B、アキュームレータ4、第1室外ファン9A、および第2室外ファン9B以外の他の部材の図示が省略されている。
 第1熱交換部3Aおよび第2熱交換部3Bは、例えばいわゆるパラレルフロー型(PFC)熱交換器として構成されている。図2に示されるように、第1熱交換部3Aおよび第2熱交換部3Bは、第1方向Zから視て、第1回転軸O1と第2回転軸O2との中点を通り第3方向Yに沿って延びる仮想線分に対して線対称に形成されている。同様に、第1室外ファン9Aおよび第2室外ファン9Bは、第1方向Zから視て、第1回転軸O1と第2回転軸O2との中点を通り第3方向Yに沿って延びる仮想線分に対して線対称に形成されている。
 図2に示されるように、第1熱交換部3Aは、第1方向Zと交差する平面上に延びており、かつ第1方向Zにおいて互いに間隔を隔てて配置された複数の第1扁平管30A(図3参照)と、複数の第1扁平管30Aの各一端と接続された第1ヘッダ31Aと、複数の第1扁平管30Aの各他端と接続された第2ヘッダ32Aと、第1ヘッダ31Aに接続された第1および第2の流出入管33Aとを含む。複数の第1扁平管30Aの延在方向に垂直な断面において、複数の第1扁平管30Aの各長手方向は、第1方向Zに垂直な面に沿っている。
 例えば第1熱交換部3Aが凝縮器として作用するときに、冷媒は第1の流出入管から第1熱交換部3Aの内部に流入し、第2の流出入管から第1熱交換部3Aの外部に流出するように形成されている。第1の流出入管は、例えば第2の流出入管よりも第1方向Zにおいて上方に配置されている。第1ヘッダ31Aの内部は、第1方向Zにおいて上段部と下段部とに区画されている。上記上段部は第1の流出入管に接続されており、上記下段部は第2の流出入管に接続されている。第2ヘッダ32Aの内部は、第1方向Zにおいて区画されていない。複数の第1扁平管30Aは、第1ヘッダ31Aの上記上段部と第2ヘッダ32Aとの間を接続する第1群の第1扁平管30Aと、第1ヘッダ31Aの上記下段部と第2ヘッダ32Aとの間を接続する第2群の第1扁平管30Aとを有している。第1熱交換部3Aが凝縮器として作用するとき、冷媒は、第1熱交換部3Aの内部を、第1の流出入管33A、第1ヘッダ31Aの上記上段部、第1群の第1扁平管30A、第2ヘッダ32A、第2群の第1扁平管30A、第1ヘッダ31Aの上記下段部、第2の流出入管33Aを順に流れる。
 第1室外ファン9Aは、第1方向Zに沿って延びる第1回転軸O1を中心に回転する。第1熱交換部3Aは、第1室外ファン9Aによって形成される気体の流路上に配置されている。第1室外ファン9Aは、例えば第1熱交換部3Aに向かって気体を吹出すように形成されている。図2に示されるように、第1熱交換部3Aは、第1方向Zから視て第1回転軸O1に対する径方向において第1室外ファンよりも外周側に配置されている。
 複数の第1扁平管30Aを構成する材料は、アルミニウム(Al)を含む。複数の第1扁平管30Aの延在方向に垂直な方向(すなわち気体が流れる方向)の最大幅は、例えば9mm以上である。
 図2に示されるように、第1熱交換部3Aは、第1方向Zから視て、第1延在部34A、第1曲部35A、および第2延在部36Aを有している。第1延在部34Aは、第1扁平管30Aの上記一端を成しており第1ヘッダ31Aに接続されている第1端341と、第2方向Xにおいて第1端341とは反対側に配置された第2端342とを有している。第1曲部35Aは、第1延在部34Aの第2端342と接続されている第3端351と、第3端351とは反対側に配置された第4端352とを有している。第2延在部36Aは、第1曲部35Aの上記第4端352と接続されている第5端361と、第1扁平管30Aの上記他端を成しており第2ヘッダ32Aに接続されている第6端362とを有している。なお、第1延在部34Aと第1曲部35Aとの境界、および第1曲部35Aと第2延在部36Aとの境界は、第1方向Zから視た第1扁平管30Aの内周面および外周面の各々において曲率が変化する点間を結ぶ仮想線によって定義される。
 第1方向Zから視て、第1曲部35Aの曲率中心は、第1曲部35Aに対して第1回転軸O1側に配置されている。第1曲部35Aの曲率中心は、例えば第1室外ファン9Aの最外端部よりも第1回転軸O1側に配置されている。第1曲部35Aの曲率半径RA(図2参照)は、第1扁平管30Aの長手方向の幅に応じて任意に設定され得るが、例えば120mm以上200mm以下である。第1曲部35Aは、直線状に延びていた複数の第1扁平管およびこれと接続された複数のフィンが曲げられることにより形成されている。このような第1曲部35Aは、公知の曲げ加工方法により形成され得る。第1熱交換部3Aは、曲げ加工されることにより形成された曲部として第1曲部35Aのみを有している。第1方向Zから視て、第1曲部35Aの長さは、第2延在部36Aの長さ未満である。第1方向Zから視た第1曲部35Aの長さは、第1方向Zから視た第1曲部35Aの外周面の沿面距離と定義される。
 第1延在部34Aは、第1曲部35Aの上記第3端351と第1ヘッダ31Aとの間を第2方向Xに沿って直線的に接続している。第2延在部36Aは、第1曲部35Aの上記第4端352と第2ヘッダ32Aとの間を第3方向Yに沿って直線的に接続している。異なる観点から言えば、第1延在部34Aは、第1方向Zから視て、L字形状を有している。第1方向Zから視て、第1延在部35Aと第2延在部36Aとが成す角度θ(図2参照)は鈍角である。なお、第1延在部35Aおよび第2延在部36Aは、曲線状に形成されていてもよい。この場合、第1延在部35Aおよび第2延在部36Aの各曲率は、第1曲部34Aの曲率よりも小さければよい。
 第1曲部35Aを流れる冷媒は、第1回転軸O1に対する径方向に沿って流れる気体と熱交換する。第1延在部34Aを流れる冷媒は、第1方向Zおよび第2方向Xと交差する第3方向Yに沿って流れる気体と熱交換する。第2延在部36Aを流れる冷媒は、第2方向Xに沿って流れる気体と熱交換する。
 第2熱交換部3Bは、第1方向Zと交差する平面上に延びており、かつ第1方向Zにおいて互いに間隔を隔てて配置された複数の第2扁平管30Bと、複数の第2扁平管30Bの各一端と接続された第3ヘッダ31Bと、複数の第2扁平管30Bの各他端と接続された第4ヘッダ32Bと、第3ヘッダ31Bに接続された第3および第4の流出入管33Bとを含む。複数の第2扁平管30Bの延在方向に垂直な断面において、複数の第2扁平管30Bの各長手方向は、第1方向Zに垂直な面に沿っている。
 例えば第2熱交換部3Bが凝縮器として作用するときに、冷媒は第3の流出入管から第2熱交換部3Bの内部に流入し、第4の流出入管から第2熱交換部3Bの外部に流出するように形成されている。第3の流出入管は、例えば第4の流出入管よりも第1方向Zにおいて上方に配置されている。第3ヘッダ31Bの内部は、第1方向Zにおいて上段部と下段部とに区画されている。上記上段部は第3の流出入管に接続されており、上記下段部は第4の流出入管に接続されている。第4ヘッダ32Bの内部は、第1方向Zにおいて区画されていない。複数の第2扁平管30Bは、第3ヘッダ31Bの上記上段部と第4ヘッダ32Bとの間を接続する第1群の第2扁平管30Bと、第3ヘッダ31Bの上記下段部と第4ヘッダ32Bとの間を接続する第2群の第2扁平管30Bとを有している。第2熱交換部3Bが凝縮器として作用するとき、冷媒は、第2熱交換部3Bの内部を、第3の流出入管33B、第3ヘッダ31Bの上記上段部、第1群の第2扁平管30B、第4ヘッダ32B、第2群の第2扁平管30B、第3ヘッダ31Bの上記下段部、第4の流出入管33Bを順に流れる。
 第2室外ファン9Bは、第1方向Zに沿って延びる第2回転軸O2を中心に回転し、かつ第1方向と交差する第2方向Xにおいて第1室外ファン9Aと間隔を隔てて配置されている。第2室外ファン9Bは、例えば第2熱交換部3Bに向かって気体を吹出すように形成されている。第2熱交換部3Bは、第2室外ファン9Bによって形成される気体の流路上に配置されており、かつ第2方向Xにおいて第1熱交換部3Aと間隔を隔てて配置されている。第2熱交換部3Bは、第1方向Zから視て第2回転軸O2に対する径方向において第2室外ファン9Bよりも外周側に配置されている。
 複数の第2扁平管30Bを構成する材料は、アルミニウム(Al)を含む。複数の第2扁平管30Bの延在方向に垂直な方向(すなわち気体が流れる方向)の最大幅は、例えば9mm以上である。
 第2熱交換部3Bは、第1方向Zから視て、第3延在部34B、第2曲部35B、および第4延在部36Bを有している。第3延在部34Bは、第2扁平管30Bの上記一端を成しており第3ヘッダ31Bに接続されている第7端343と、第2方向Xにおいて第7端343とは反対側に配置された第8端344とを有している。第2曲部35Bは、第3延在部34Bの第8端344と接続されている第9端353と、第9端353と反対側に配置された第10端354とを有している。第4延在部36Bは、第2曲部35Bの上記第10端354と接続されている第11端363と、第2扁平管30Bの上記他端を成しており第4ヘッダ32Bに接続されている第12端364とを有している。
 第2曲部35Bの曲率中心は、第2曲部35Bに対して第2回転軸O2側に配置されている。第2曲部35Bの曲率中心は、例えば第2室外ファン9Bの最外端部よりも第2回転軸O2側に配置されている。第2曲部35Bは、直線状に延びていた複数の第2扁平管およびこれと接続された複数のフィンが曲げられることにより形成されている。このような第2曲部35Bは、公知の曲げ加工方法により形成され得る。第2熱交換部3Bは、曲げ加工されることにより形成された曲部として第2曲部35Bのみを有している。第1方向Zから視て、第2曲部35Bの長さは、第4延在部36Bの長さ未満である。第1方向Zから視た第2曲部35Bの長さは、第1方向Zから視た第2曲部35Bの外周面の沿面距離と定義される。
 第3延在部34Bは、第2曲部35Bの第9端353と第3ヘッダ31Bとの間を第2方向Xに沿って直線的に接続している。第4延在部36Bは、第2曲部35Bの第10端354と第4ヘッダ32Bとの間を第3方向Yに沿って直線的に接続している。異なる観点から言えば、第2熱交換部3Bは、第1方向Zから視て、L字形状を有している。第1方向Zから視て、第3延在部35Bと第4延在部36Bとが成す角度は鈍角である。なお、第3延在部35Bおよび第4延在部36Bは、曲線状に形成されていてもよい。この場合、第3延在部35Bおよび第4延在部36Bの各曲率は、第2曲部34Bの曲率よりも小さければよい。
 第2曲部35Bを流れる冷媒は、第2回転軸O2に対する径方向に沿って流れる気体と熱交換する。第3延在部34Bを流れる冷媒は、第3方向Yに沿って流れる気体と熱交換する。第4延在部36Bを流れる冷媒は、第2方向Xに沿って流れる気体と熱交換する。
 第1ヘッダ31Aと第3ヘッダ31Bとは、第2方向Xに互いに対向するように配置されている。第1延在部34Aおよび第3延在部34Bは、第2方向Xに沿って連なるように配置されている。第2延在部36Aおよび第4延在部36Bは、第2方向Xにおいて第1室外ファン9Aおよび第2室外ファン9Bを挟んで対向するように配置されている。
 第1ヘッダ31A、第1および第2の流出入管33A、ならびに第1延在部34Aの上記第1端341は、第2方向Xにおいて、第2室外ファン9B側に位置する第1室外ファン9Aの最外端部よりも第2熱交換部3B側に配置されている。異なる観点から言えば、図2に示されるように、第1延在部34Aの上記第1端341は、第2室外ファン9B側に位置する第1室外ファン9Aの最外端部を通り第3方向Yに沿って延びる仮想線分VL1よりも第2熱交換部3B側に配置されている。
 第1延在部34Aの上記第2端342および第1曲部35Aの上記第3端351は、第2方向Xにおいて、第2室外ファン9Bとは反対側に位置する第1室外ファン9Aの最外端部を通り第3方向Yに沿って延びる仮想線分VL2よりも第2熱交換部3B側に配置されている。第1曲部35Aの上記第4端352および第2延在部36Aの上記第5端361は、第2方向Xにおいて、上記仮想線分VL2よりも第2熱交換部3Bとは反対側に配置されている。
 第3ヘッダ31B、第3および第4の流出入管33B、ならびに第3延在部34Bの上記第7端343は、第2方向Xにおいて、第1室外ファン9A側に位置する第2室外ファン9Bの最外端部よりも第1熱交換部3A側に配置されている。異なる観点から言えば、第3延在部34Bの上記第7端343は、第1室外ファン9A側に位置する第2室外ファン9Bの最外端部を通り第3方向Yに沿って延びる仮想線分VL3よりも第1熱交換部3A側に配置されている。
 第3延在部34Bの上記第8端344および第2曲部35Bの上記第9端353は、第2方向Xにおいて、第1室外ファン9Aとは反対側に位置する第2室外ファン9Bの最外端部を通り第3方向Yに沿って延びる仮想線分VL4よりも第1熱交換部3A側に配置されている。第2曲部35Bの上記第10端354および第4延在部36Bの上記第11端363は、第2方向Xにおいて、上記仮想線分VL4よりも第1熱交換部3Aとは反対側に配置されている。
 第1および第2の流出入管33Aは、第1方向Zから視て第1延在部34Aの延在方向と交差する方向、すなわち第3方向Yに沿って延びている。第1および第2の流出入管33Aは、第1ヘッダ31Aよりも室外機200の内側に配置されている。
 第3および第4の流出入管33Bは、第1方向から視て第3延在部の延在方向と交差する方向、すなわち第3方向Yに沿って延びている。第3および第4の流出入管33Bは、第3ヘッダ31Bよりも室外機200の内側に配置されている。
 第2方向Xにおいて、第1ヘッダ31Aと第3ヘッダ31Bとの間の距離L3(図2参照)は、第1室外ファン9Aと第2室外ファン9Bとの間の距離L6(図2参照)よりも短い。第2方向Xにおいて、第1および第2の流出入管33Aと第3および第4の流出入管33Bとの間の距離は、第1室外ファン9Aと第2室外ファン9Bとの間の上記距離L6よりも短い。第2方向Xにおいて、第1延在部34Aの上記第1端341と第3延在部34Bの上記第7端343との間の距離は、第1室外ファン9Aと第2室外ファン9Bとの間の上記距離L6よりも短い。
 壁部11および複数の柱部12は、室外機200の筐体を構成している。壁部11は、室外機200の内外を区画する外郭部材である。複数の柱部12は、筐体に強度を付与するためのフレームである。図2に示されるように、壁部11は、第1熱交換部3Aの第1延在部34Aおよび第2熱交換部3Bの第3延在部34Bと対向する背面部111と、背面部111とは反対側に配置されている正面部112と、第1熱交換部3Aの第2延在部36Aと対向する第1側面部113と、第2熱交換部3Bの第4延在部36Bと対向する第2側面部114とを有している。背面部111は、第1方向Zから視て第1回転軸O1に対する径方向において第1延在部34Aよりも外周側に配置された第1壁部を成している。第1熱交換部3Aおよび第2熱交換部3Bの各吸気口は、背面部111、第1側面部113、および第2側面部114に形成されている。
 図2に示されるように、複数の柱部12は、例えば第1方向Zから視て室外機200の4隅に配置されている。複数の柱部12は、第1曲部35Aと間隔を隔てて配置されている第1柱部121と、第2曲部35Bと間隔を隔てて配置されている第2柱部122と、第2ヘッダ32Aと間隔を隔てて配置されている第3柱部123と、第4ヘッダ32Bと間隔を隔てて配置されている第4柱部124とを含む。第1柱部121は、第1方向Zから視て、第1回転軸O1に対する径方向において第1曲部35Aよりも外周側に配置されている。
 第1柱部121と第1曲部35Aとの間隔L1(図2参照)は、第1曲部35Aの曲率半径が大きいほど、長くなる。第2柱部122と第2曲部35Bとの間隔L2(図2参照)は、第2曲部35Bの曲率半径が大きいほど、長くなる。間隔L1および間隔L2の各々は、背面部111と第1延在部34Aとの間隔L4(図2参照)および側面部113と第2延在部36Aとの間隔L5(図2参照)よりも長い。間隔L1および間隔L2の各々は、第1ヘッダ31Aと第3ヘッダ31Bとの間の距離L3よりも長い。
 第1柱部121と第1曲部35Aとの間隔L1(図2参照)は、第1扁平管30Aの延在方向に垂直な断面における第1扁平管30Aの長手方向の幅よりも長い。第2柱部122と第2曲部35Bとの間隔L2(図2参照)は、第2扁平管30Bの延在方向に垂直な断面における第2扁平管30Bの長手方向の幅よりも長い。
 なお、室外機200において、第1曲部35Aおよび第2曲部35Bには、空気調和機100に要求される性能に影響を及ぼさない限りにおいて、座屈が生じていてもよい。
 <作用効果>
 室外機200では、第1熱交換部3Aが複数の第1扁平管30Aを含み、第2熱交換部3Bが複数の第2扁平管30Bを含むため、各熱交換部の伝熱管が円管として構成されている場合と比べて、熱交換効率が高い。
 さらに、室外機200では、第1扁平管30Aおよび第2扁平管30Bを構成する材料がアルミニウムを含むため、各伝熱管が銅製円管として構成されている場合と比べて、熱交換効率がさらに高められている。
 なお、上述のように、比較的大きな熱交換面積が要求された従来の業務用空気調和機および冷凍機の室外機において、U字形状に折り曲げられたアルミニウム製扁平管により省スペース化を実現する場合には、アルミニウム製扁平管に形成される2つの曲部の少なくとも一方の曲率半径は十分に小さくされる必要がある。この場合、当該曲部に座屈が生じ易く、座屈が生じた場合には内部を流れる冷媒の圧力損失が増大するという問題がある。従来の業務用空気調和機および冷凍機の室外機では、大きな熱交換面積を有しながらも省スペース化を実現し、かつ座屈による圧力損失の増大を抑制するために、U字形状に折り曲げられた銅製円管が用いられている。
 これに対し、室外機200の第1熱交換部3Aは、第1延在部34A、第1曲部35A、および第2延在部36Aを有し、第1延在部34Aは第1曲部35Aと第1ヘッダ31Aとの間を直線的に接続し、かつ第2延在部36Aは第1曲部35Aと第2ヘッダ32Aとの間を直線的に接続している。このように曲げ加工された第1熱交換部3Aの第1曲部35Aの曲率半径RAは、U字形状に曲げ加工された従来の熱交換部の2つの曲部の各曲率半径よりも長くされ得る。具体的には、第1曲部35Aの曲率半径RAは、上述のように120mm以上200mm以下とされ得る。これに対し、銅製の円管として構成されかつU字形状に曲げられた伝熱管を備える従来の室外機では、該円管の曲部の曲率半径が約69mmとされている。そのため、室外機200では、第1扁平管30Aおよび第2扁平管30Bを構成する材料がアルミニウムを含みながらも、座屈による冷媒の圧力損失の増大が抑制されている。
 また、第1熱交換部3Aおよび第2熱交換部3Bが単に上記構成とされただけでは、第1熱交換部3Aおよび第2熱交換部3Bの各熱交換面積は、U字形状に曲げ加工された従来の熱交換部の熱交換面積と比べて小さくなる場合がある。例えば、第1ヘッダ31Aおよび第3ヘッダ31Bが第2方向Xに互いに対向するように配置されており、かつ第1および第2の流出入管33Aならびに第3および第4の流出入管33Bが第2方向Xに沿って延びている場合、第1ヘッダ31Aおよび第3ヘッダ31Bの第2方向Xの間隔L3は比較的長くなり、熱交換面積が小さくなる。
 これに対し、室外機200では、第1ヘッダ31Aおよび第3ヘッダ31Bが第2方向Xに互いに対向するように配置されており、かつ第1および第2の流出入管33Aならびに第3および第4の流出入管33Bが第3方向Yに沿って延びている。
 そのため、室外機200では、第2方向Xにおける第1ヘッダ31Aと第3ヘッダ31Bとの間の距離L3が、第1および第2の流出入管33Aならびに第3および第4の流出入管33Bが第2方向Xに沿って延びている場合のそれと比べて、短い。その結果、室外機200の熱交換面積は、第1および第2の流出入管33Aならびに第3および第4の流出入管33Bが第2方向Xに沿って延びている場合のそれと比べて、大きくなる。
 以上のように、室外機200では、従来の銅製円管を備える空気調和機の室外機と比べて熱交換効率が高められながらも座屈による冷媒の圧力損失の増大が抑制されており、かつ座屈による冷媒の圧力損失の増大を抑制し得る上記構成において熱交換面積が最大化されている。
 図4は、実施の形態1に係る第1熱交換部3Aの熱交換性能と、従来の銅製円管およびフィンを曲げ加工して成るU字形状の熱交換器Bの熱交換性能とを比較したグラフである。図4に示される熱交換性能は、各熱交換器を同一の条件で凝縮器として運転させたときに実測されたものである。具体的には、図4の縦軸は、温度、ファンの回転数、冷媒循環量などの条件が同等とされた各熱交換器から実測された、凝縮性能を示すパラメータGaCpa ε(単位:kW/K)を示す。なお、比較した第1熱交換部3Aおよび熱交換器Bの各伝熱管の延在方向の長さは、同等とした。図4に示されるように、第1熱交換部3Aの熱交換性能は、従来のU字形状の熱交換器Bの熱交換性能よりも高い。
 また、各室外熱交換器の形状がU字形状とされた従来の室外機では、各熱交換部の屈曲部によって区画された複数の空間が各熱交換器よりも内側に形成されている。そのため、このような従来の室外機では、各空間の寸法によっては、各空間は室外機において各部品を収容するスペースとして効率的に利用できないという問題がある。
 これに対し、室外機200では、第1曲部35Aと第2曲部35Bとの間を第2方向Xに沿って延びる空間が第1熱交換部3Aおよび第2熱交換部3Bよりも内側に形成されている。第2方向Xにおいて、室外機200の上記空間は、従来の室外機における複数の空間の各々と比べて広いため、室外機200において各部品を収容するスペースとして効率的に利用され得る。例えば、室外機200の各部品の配置が室外機200の組立性およびメンテナンス性を従来の室外機よりも向上する観点で設定される場合、上記空間は、室外機200の各部品を収容するスペースとして効率的に利用されることによって、室外機200の組立性およびメンテナンス性の向上に寄与する。
 室外機200では、第1方向Zから視て、第1延在部34Aと第2延在部36Aとが成す角度、および第3延在部34Bと第4延在部36Bとが成す角度が鈍角である。そのため、室外機200では、上記角度が直角である場合と比べて、複数の第1扁平管30Aおよび複数の第2扁平管30Bでの座屈の発生が抑制されており、座屈に伴う冷媒の圧力損失の増大が抑制されている。さらに、室外機200では、上記角度が直角である場合と比べて、第1柱部121と第1曲部35Aとの間の距離L1および柱部123と第2曲部35Bとの間隔L2(図2参照)が長いため、第1曲部35Aおよび第2曲部35Bを流れる気体の流量が多く、第1曲部35Aおよび第2曲部35Bでの熱交換効率が高い。
 室外機200では、第1方向Zから視て、第1曲部35Aの長さが第2延在部36Aの長さ未満であり、第2曲部35Bの長さが第4延在部36Bの長さ未満である。
 実施の形態2.
 図5は、実施の形態2に係る室外機200を第1方向Zから視た部分平面図である。図5に示されるように、実施の形態2に係る室外機201は、実施の形態1に係る室外機200と基本的に同様の構成を備えるが、第3室外ファン9Cをさらに備えている点で、実施の形態1に係る室外機200とは異なる。第3室外ファン9Cは、第1熱交換部3Aに向かって気体を吹出すように形成されている。
 なお、図5では、室外機201を構成する部材のうち、第1熱交換部3A、第2熱交換部3B、第3熱交換部3C、第1室外ファン9A、第2室外ファン9B、および第3室外ファン9C以外の他の部材の図示が省略されている。
 室外機201の第1熱交換部3Aおよび第2熱交換部3Bは、室外機200の第1熱交換部3Aおよび第2熱交換部3Bと基本的に同様の構成を備えるが、第1熱交換部3Aが第1室外ファン9Aおよび第3室外ファン9Cによって形成される気体の流路上に配置されている点で、室外機200の第1熱交換部3Aおよび第2熱交換部3Bとは異なる。
 第1熱交換部3Aの第1延在部34Aは、第3方向Yにおいて、第1室外ファン9Aおよび第3室外ファン9Cと間隔を隔てて配置されている。室外機201の第1延在部34Aの第2方向Xの長さは、室外機200の第1延在部34Aのそれよりも長い。
 第2方向Xにおいて、第1ヘッダ31Aと第3ヘッダ31Bとの間の距離L3(図5参照)は、第3室外ファン9Cと第2室外ファン9Bとの間の距離L7(図5参照)よりも短い。第2方向Xにおいて、第1および第2の流出入管33Aと第3および第4の流出入管33Bとの間の距離は、第3室外ファン9Cと第2室外ファン9Bとの間の上記距離L7よりも短い。第2方向Xにおいて、第1延在部34Aの上記第13端345と第3延在部34Bの上記第7端343との間の距離は、第3室外ファン9Cと第2室外ファン9Bとの間の上記距離L7よりも短い。
 第2方向Xにおいて、第1室外ファン9Aと第3室外ファン9Cとの間の距離L8(図5参照)は、例えば上記距離L7と等しい。
 図5に示される室外機201では、第3室外ファン9Cの第3回転軸O3は、第1方向Zから視て、第1回転軸O1と第2回転軸O2との中点と重なるように配置されている。すなわち、第1室外ファン9A、第3室外ファン9C、および第2室外ファン9Bは、第3回転軸O3を通り第3方向Yに沿って延びる仮想線分VL5に対して線対称に形成されている。
 さらに、室外機201では、第1熱交換部3Aおよび第2熱交換部3Bは、第3回転軸O3を通り第3方向Yに沿って延びる仮想線分に対して非対称に形成されている。
 第1ヘッダ31A、第1および第2の流出入管33A、ならびに第1延在部34Aの上記第1端341は、第2方向Xにおいて、第2室外ファン9B側に位置する第3室外ファン9Cの最外端部よりも第2熱交換部3B側に配置されている。異なる観点から言えば、図5に示されるように、第1延在部34Aの上記第1端341は、第2室外ファン9B側に位置する第3室外ファン9Cの最外端部を通り第3方向Yに沿って延びる仮想線分VL6よりも第2熱交換部3B側に配置されている。
 室外機201は、室外機200よりも大きな熱交換面積を有しながらも、室外機200と基本的に同様の構成を備えるため、室外機200と同様の効果を奏することができる。
 <変形例>
 図6に示されるように、室外機201では、第1室外ファン9A、第3室外ファン9C、および第2室外ファン9Bは、第3回転軸O3を通り第3方向Yに沿って延びる仮想線分VL5に対して非対称の構成を有していてもよい。言い換えると、第2室外ファン9Bと第3室外ファン9Cとの間の距離L7は、例えば第1室外ファン9Aと第3室外ファン9Cとの間の距離L8よりも長くてもよい。
 実施の形態3.
 図7は、実施の形態3に係る室外機202を示す斜視図である。図8は、実施の形態3に係る室外機202を第1方向Zから視た部分平面図である。図7および図8に示されるように、実施の形態3に係る室外機202は、実施の形態1に係る室外機200と基本的に同様の構成を備えるが、第3熱交換部3Cおよび第3室外ファン9Cをさらに備えている点で、実施の形態1に係る室外機200とは異なる。言い換えると、室外機202は、第3熱交換部3Cをさらに備えている点で、実施の形態2に係る室外機201と異なる。
 なお、図8では、室外機202を構成する部材のうち、第1熱交換部3A、第2熱交換部3B、第3熱交換部3C、第1室外ファン9A、第2室外ファン9B、第3室外ファン9C以外の他の部材の図示が省略されている。
 室外機202の第1熱交換部3Aおよび第2熱交換部3Bは、室外機200の第1熱交換部3Aおよび第2熱交換部3Bと基本的に同様の構成を備えるが、第2方向Xにおいて第3熱交換部3Cを挟むように配置されている点で、室外機200の第1熱交換部3Aおよび第2熱交換部3Bと異なる。同様に、室外機202の第1室外ファン9Aおよび第2室外ファン9Bは、室外機200の第1室外ファン9Aおよび第2室外ファン9Bと基本的に同様の構成を備えるが、第2方向Xにおいて第3室外ファン9Cを挟むように配置されている点で、室外機200の第1室外ファン9Aおよび第2室外ファン9Bとは異なる。
 第3熱交換部3Cは、例えばいわゆるパラレルフロー型(PFC)熱交換器として構成されている。第3室外ファン9Cは、第1方向Zに沿って延びる第3回転軸O3を中心に回転し、かつ第2方向Xにおいて第1室外ファン9Aおよび第2室外ファン9Bと間隔を隔てて配置されている。
 第3熱交換部3Cは、第3室外ファン9Cによって形成される気体の流路上に配置されている。図8に示されるように、第3熱交換部3Cは、第1方向Zから視て第3回転軸O3に対する径方向において第3室外ファン9Cよりも外周側に配置されている。
 第3熱交換部3Cは、第1方向Zと交差する平面上に延びており、かつ第1方向Zにおいて互いに間隔を隔てて配置された複数の第3扁平管と、複数の第3扁平管の各一端と接続された第5ヘッダ31Cと、複数の第3扁平管の各他端と接続された第6ヘッダ32Cと、第5ヘッダ31Cに接続された第5および第6の流出入管33Cとを含む。
 例えば第3熱交換部3Cが凝縮器として作用するときに、冷媒は第5の流出入管から第3熱交換部3Cの内部に流入し、第6の流出入管から第3熱交換部3Cの外部に流出するように形成されている。第5の流出入管は、例えば第6の流出入管よりも第1方向Zにおいて上方に配置されている。第5ヘッダ31Cの内部は、第1方向Zにおいて上段部と下段部とに区画されている。上記上段部は第5の流出入管に接続されており、上記下段部は第6の流出入管に接続されている。第6ヘッダ32Cの内部は、第1方向Zにおいて区画されていない。複数の第3扁平管は、第5ヘッダ31Cの上記上段部と第6ヘッダ32Cとの間を接続する第1群の第3扁平管と、第5ヘッダ31Cの上記下段部と第6ヘッダ32Cとの間を接続する第2群の第3扁平管とを有している。第3熱交換部3Cが凝縮器として作用するとき、冷媒は、第3熱交換部3Cの内部を、第5の流出入管33C、第5ヘッダ31Cの上記上段部、第1群の第3扁平管、第6ヘッダ32C、第2群の第3扁平管、第6ヘッダ32Cの上記下段部、第6の流出入管33Cを順に流れる。
 複数の第3扁平管を構成する材料は、アルミニウム(Al)を含む。複数の第3扁平管の延在方向に垂直な方向(すなわち気体が流れる方向)の最大幅は、例えば9mm以上である。
 図8に示されるように、第3熱交換部3Cの第3扁平管は、第2方向Xに沿って直線状に形成されている。第5ヘッダ31Cおよび第6ヘッダ32Cは、第2方向Xに沿って直線的に接続されている。第3熱交換部3Cは、第1方向Zから視て、第5延在部34Cを有している。第5延在部34Cは、第3扁平管の上記一端を成しており第5ヘッダ31Cに接続されている第13端345と、第2方向Xにおいて第13端345とは反対側に配置された第14端346とを有している。第14端346は、第3扁平管の上記他端を成しており第6ヘッダ32Cに接続されている。なお、第5延在部35Cは、曲線状に形成されていてもよい。この場合、第5延在部35Cの曲率は、第1曲部34Aの曲率よりも小さければよい。
 第1延在部34A、第5延在部34C、および第3延在部34Bは、第2方向Xに沿って連なるように配置されている。第2延在部36Aおよび第4延在部36Bは、第2方向Xにおいて第1室外ファン9A、第3室外ファン9Cおよび第2室外ファン9Bを挟んで対向するように配置されている。
 第5ヘッダ31Cと第3ヘッダ31Bとは、第2方向Xに互いに対向するように配置されている。第6ヘッダ32Cと第1ヘッダ31Aとは、第2方向Xに互いに対向するように配置されている。
 第5および第6の流出入管33Cは、第1方向Zから視て第5延在部34Cの延在方向と交差する方向、すなわち第3方向Yに沿って延びている。第5および第6の流出入管33Cは、第5ヘッダ31Cよりも室外機202の内側に配置されている。
 第2方向Xにおいて、第5ヘッダ31Cと第3ヘッダ31Bとの間の距離L9(図8参照)は、第3室外ファン9Cと第2室外ファン9Bとの間の距離L7(図8参照)よりも短い。第2方向Xにおいて、第5および第6の流出入管33Cと第3および第4の流出入管33Bとの間の距離は、第3室外ファン9Cと第2室外ファン9Bとの間の上記距離L7よりも短い。第2方向Xにおいて、第5延在部34Cの上記第13端345と第3延在部34Bの上記第7端343との間の距離は、第3室外ファン9Cと第2室外ファン9Bとの間の上記距離L7よりも短い。
 第2方向Xにおいて、第6ヘッダ32Cと第1ヘッダ31Aとの間の距離L10(図8参照)は、第1室外ファン9Aと第3室外ファン9Cとの間の距離L8(図8参照)よりも短い。上記距離L9は、例えば上記距離L10と等しい。上記距離L7は、例えば上記距離L8と等しい。
 図8に示される室外機202では、第3室外ファン9Cの第3回転軸O3は、第1方向Zから視て、第1回転軸O1と第2回転軸O2との中点と重なるように配置されている。すなわち、第1室外ファン9A、第3室外ファン9C、および第2室外ファン9Bは、第3回転軸O3を通り第3方向Yに沿って延びる仮想線分に対して線対称に形成されている。
 さらに、室外機202では、第1熱交換部3A、第3熱交換部3C、および第2熱交換部3Bは、第5および第6の流出入管33Cを除き、第3回転軸O3を通り第3方向Yに沿って延びる仮想線分に対して線対称に形成されている。
 室外機202は、室外機200と基本的に同様の構成を備えるため、室外機200と同等の効果を奏することができる。
 図9は、図7中の矢印IXから視た部分平面図であり、図8に示される平面図より下方において各熱交換部および圧縮機1等の配置を示す図である。図9に示されるように、室外機202では、第1曲部35Aと第2曲部35Bとの間に第2方向Xに沿って延びる空間SP1が形成されている。
 第2方向Xにおいて、室外機202の上記空間SP1は、室外機200の上記空間よりも広い。そのため、室外機202の上記空間SP1は、室外機200の上記空間と同等あるいはそれ以上に、室外機202の組立性およびメンテナンス性の向上に寄与する。
 <変形例>
 図10に示されるように、室外機202では、第1室外ファン9A、第3室外ファン9C、および第2室外ファン9Bは、第3回転軸O3を通り第3方向Yに沿って延びる仮想線分VL5に対して非対称の構成を有していてもよい。言い換えると、第2室外ファン9Bと第3室外ファン9Cとの間の距離L7は、例えば第1室外ファン9Aと第3室外ファン9Cとの間の距離L8よりも長くてもよい。
 実施の形態4.
 図11は、実施の形態4に係る室外機203を第1方向Zから視た部分平面図である。図11に示されるように、実施の形態4に係る室外機203は、実施の形態3に係る室外機202と基本的に同様の構成を備えるが、第3熱交換部3Cが第3曲部35Cを有している点で、実施の形態3に係る室外機202とは異なる。
 図11に示されるように、第3熱交換部3Cは、第1方向Zから視て、第5延在部34Cおよび第3曲部35Cを有している。第5延在部34Cは、第3扁平管の上記一端を成しており第5ヘッダ31Cに接続されている第13端345と、第2方向Xにおいて第13端345とは反対側に配置された第14端346とを有している。第3曲部35Cは、第5延在部34Cの第14端346と接続されている第15端355と、第15端355とは反対側に配置された第16端356とを有している。第3曲部35Cの第16端356は、第3扁平管の上記他端を成しており第6ヘッダ32Cに接続されている。第5延在部34Cは、第3曲部35Cの上記第15端355と第5ヘッダ31Cとの間を第2方向Xに沿って直線的に接続している。なお、第5延在部35Cは、曲線状に形成されていてもよい。この場合、第5延在部35Cの曲率は、第3曲部34Cの曲率よりも小さければよい。
 第1方向Zから視て、第3曲部35Cの曲率中心は、第3曲部35Cに対して第3回転軸O3側に配置されている。第3曲部35Cの曲率中心は、例えば第3室外ファン9Cの最外端部よりも第2回転軸O2側に配置されている。第3曲部35Cの曲率半径RC(図11参照)は、第3扁平管の長手方向の幅に応じて任意に設定され得るが、例えば120mm以上200mm以下である。第3曲部35Cは、直線状に延びていた複数の第3扁平管およびこれと接続された複数のフィンが曲げられることにより形成されている。このような第3曲部35Cは、公知の曲げ加工方法により形成され得る。
 第3曲部35Cを流れる冷媒は、第3回転軸O3に対する径方向に沿って流れる気体と熱交換する。第5延在部34Cを流れる冷媒は、第3方向Yに沿って流れる気体と熱交換する。
 第1延在部34A、および第5延在部34Cは、第2方向Xに沿って連なるように配置されている。第1曲部35Aおよび第3曲部35Cは、第2方向Xにおいて第1室外ファン9Aおよび第3室外ファン9Cを挟んで対向するように配置されている。第3曲部35Cおよび第2曲部35Bは、第2方向Xにおいて第2室外ファン9Bを挟んで対向するように配置されている。
 第5ヘッダ31Cは、第2方向Xにおいて第1熱交換部3A側に配置されている。第6ヘッダ32Cは、第2方向Xにおいて第2熱交換部3B側に配置されている。第1ヘッダ31Aと第5ヘッダ31Cとは、第2方向Xに互いに対向するように配置されている。
 第5および第6の流出入管33Cは、第1方向Zから視て第5延在部34Cの延在方向と交差する方向、すなわち第3方向Yに沿って延びている。第5および第6の流出入管33Cは、第5ヘッダ31Cよりも室外機202の内側に配置されている。
 第2方向Xにおいて、第1ヘッダ31Aと第5ヘッダ31Cとの間の距離L11(図11参照)は、第1室外ファン9Aと第3室外ファン9Cとの間の上記距離L8(図11参照)よりも短い。第2方向Xにおいて、第1および第2の流出入管33Aと第5および第6の流出入管33Cとの間の距離は、第1室外ファン9Aと第3室外ファン9Cとの間の上記距離L8よりも短い。第2方向Xにおいて、第1延在部34Aの上記第1端341と第5延在部34Cの上記第13端345との間の距離は、第1室外ファン9Aと第3室外ファン9Cとの間の上記距離L8よりも短い。
 第2方向Xにおいて、第6ヘッダ32Cと第3ヘッダ31Bとの間の距離L12(図11参照)は、第3室外ファン9Cと第2室外ファン9Bとの間の距離L7(図11参照)よりも短い。上記距離L12は、例えば上記距離L11と等しい。上記距離L7は、例えば上記距離L8と等しい。
 図11に示される室外機203では、第3室外ファン9Cの第3回転軸O3は、第1方向Zから視て、第1回転軸O1と第2回転軸O2との中点と重なるように配置されている。すなわち、第1室外ファン9A、第3室外ファン9C、および第2室外ファン9Bは、第3回転軸O3を通り第3方向Yに沿って延びる仮想線分VL5に対して線対称に形成されている。
 さらに、図11に示される室外機203では、第1熱交換部3A、第3熱交換部3C、および第2熱交換部3Bは、第3回転軸O3を通り第3方向Yに沿って延びる仮想線分VL5に対して非対称に形成されている。図11に示される室外機203では、第1熱交換部3Aおよび第2熱交換部3Bは上記仮想線分VL5に対して線対称に形成されているが、第3熱交換部3Cは当該仮想線分VL5に対して非対称に形成されている。第3熱交換部3Cの第3扁平管は上記仮想線分VL5に対して非対称に形成されている。
 このような室外機203も、室外機200と基本的に同様の構成を備えるため、室外機200と同等の効果を奏することができる。
 <変形例>
 なお、室外機203において、第3熱交換部3Cは、第1熱交換部3Aおよび第2熱交換部3Bと同様に、第3曲部35Cと第6ヘッダ32Cとの間を接続する図示しない第6延在部をさらに含んでいてもよい。ただし、このような第6延在部の熱交換効率は、第1熱交換部3A、第2熱交換部3Bおよび第3熱交換部3Cの他の部分の熱交換効率と比べて低い。そのため、上記第6延在部を備えない図11に示される室外機203は、上記第6延在部を備える室外機203と比べて、製造コストの増大を抑制しながらも十分に高い熱交換効率が実現されている点で、有利である。
 また、室外機203において、第3熱交換部3Cは第2方向Xにおいて反転した構成を有していてもよい。第5ヘッダ31Cが第2方向Xにおいて第2熱交換部3B側に配置され、かつ第6ヘッダ32Cが第2方向Xにおいて第1熱交換部3A側に配置されていてもよい。
 図12に示されるように、室外機203では、第1室外ファン9A、第3室外ファン9C、および第2室外ファン9Bは、第3回転軸O3を通り第3方向Yに沿って延びる仮想線分VL5に対して非対称の構成を有していてもよい。言い換えると、第2室外ファン9Bと第3室外ファン9Cとの間の距離L7は、例えば第1室外ファン9Aと第3室外ファン9Cとの間の距離L8よりも長くてもよい。第2方向Xにおいて、第6ヘッダ32Cと第3ヘッダ31Bとの間の距離L12(図12参照)は、第3室外ファン9Cと第2室外ファン9Bとの間の距離L7(図12参照)よりも短い。上記距離L12は、例えば上記距離L11と等しい。図12に示される室外機203における第2熱交換部3Bおよび第3熱交換部3Cの少なくともいずれかの第2方向Xにおける長さは、図11に示される室外機203における第2熱交換部3Bおよび第3熱交換部3Cの第2方向Xにおける長さよりも長い。図12に示される室外機203では、第1室外ファン9A、第3室外ファン9C、および第2室外ファン9Bが、第3回転軸O3を通り第3方向Yに沿って延びる仮想線分VL5に対して非対称の構成を有しているとともに、第1熱交換部3A、第3熱交換部3C、および第2熱交換部3Bが、第3回転軸O3を通り第3方向Yに沿って延びる仮想線分VL5に対して非対称に形成されている。
 また、実施の形態1~4に係る室外機200,201,202,203において、各室外ファンの回転方向は同一方向とされているが、これに限られるものではない。各室外ファンの回転方向は、互いに反対方向とされていてもよい。例えば図2に示される部分平面図において、紙面に向かって左側に配置された第1室外ファン9Aは第1回転軸O1に対して左回転し、紙面に向かって右側に配置された第2室外ファン9Bは第2回転軸O2に対して右回転してもよい。例えば図5、図6、図10~図12に示される部分平面図において、紙面に向かって左側に配置された第1室外ファン9Aおよび紙面に向かって右側に配置された第2室外ファン9Bの各々は第1回転軸O1に対して左回転し、紙面中央に配置された第3室外ファン9Cは第2回転軸O2に対して右回転してもよい。異なる観点から言えば、室外機200において、第1室外ファン9Aによって形成される気流の向きは、第2室外ファン9Bによって形成される気流の向きと反対であってもよい。また、室外機201,202,203において、第1室外ファン9Aによって形成される気流の向きは、第3室外ファン9Cによって形成される気流の向きと反対であってもよい。このようにすれば、室外機200,201,202,203の各熱交換部の伝熱面積は最適化または最大化され得るため、室外機200,201,202,203の熱交換効率はさらに高められ得る。
 以上のように本発明の実施の形態について説明を行なったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。
 1 圧縮機、2 油分離器、3A 第1熱交換部、3B 第2熱交換部、3C 第3熱交換部、4 アキュームレータ、5 膨張弁、6 室内熱交換器、7,8 延長配管、9A 第1室外ファン、9B 第2室外ファン、9C 第3室外ファン、10 室内ファン、11 壁部、12,121,122,123,124 柱部、30A 第1扁平管、30B 第2扁平管、30C 第3扁平管、31A 第1ヘッダ、31B 第3ヘッダ、31C 第5ヘッダ、32A 第2ヘッダ、32B 第4ヘッダ、32C 第6ヘッダ、33A 第1および第2の流出入管、33B 第3および第4の流出入管、33C 第5および第6の流出入管、34A 第1延在部、34B 第3延在部、34C 第5延在部、35A 第1曲部、35B 第2曲部、35C 第3曲部、36A 第2延在部、36B 第4延在部、100 空気調和機、111 背面部、112 正面部、113 第1側面部、114 第2側面部、200,201,202,203 室外機、300 室内機。

Claims (13)

  1.  第1方向に沿って延びる第1回転軸を中心に回転する第1室外ファンと、
     前記第1方向に沿って延びる第2回転軸を中心に回転し、かつ前記第1方向と交差する第2方向において前記第1室外ファンと間隔を隔てて配置された第2室外ファンと、
     前記第1室外ファンによって形成される気体の流路上に配置されている第1熱交換部と、
     前記第2室外ファンによって形成される気体の流路上に配置されており、かつ前記第2方向において前記第1熱交換部と間隔を隔てて配置された第2熱交換部とを備え、
     前記第1熱交換部は、前記第1方向と交差する平面上に延びており、かつ前記第1方向において互いに間隔を隔てて配置された複数の第1扁平管と、前記複数の第1扁平管の各一端と接続された第1ヘッダと、前記複数の第1扁平管の各他端と接続された第2ヘッダと、前記第1ヘッダに接続された第1および第2の流出入管とを含み、
     前記第2熱交換部は、前記第1方向と交差する平面上に延びており、かつ前記第1方向において互いに間隔を隔てて配置された複数の第2扁平管と、前記複数の第2扁平管の各一端と接続された第3ヘッダと、前記複数の第2扁平管の各他端と接続された第4ヘッダと、前記第3ヘッダに接続された第3および第4の流出入管とを含み、
     前記複数の第1扁平管および前記複数の第2扁平管を構成する材料は、アルミニウムを含み、
     前記第1熱交換部は、前記第1方向から視て、曲率中心が前記複数の第1扁平管に対して前記第1回転軸側に配置された第1曲部と、前記第1曲部と前記第1ヘッダとの間を接続する第1延在部と、前記第1曲部と前記第2ヘッダとの間を接続する第2延在部とを有し、
     前記第2熱交換部は、前記第1方向から視て、曲率中心が前記複数の第2扁平管に対して前記第2回転軸側に配置された第2曲部と、前記第2曲部と前記第3ヘッダとの間を接続する第3延在部と、前記第2曲部と前記第4ヘッダとの間を接続する第4延在部とを有し、
     前記第1ヘッダと前記第3ヘッダとは、前記第2方向に互いに対向するように配置されており、
     前記第1および第2の流出入管は、前記第1方向から視て前記第1延在部の延在方向と交差する方向に延びており、
     前記第3および第4の流出入管は、前記第1方向から視て前記第3延在部の延在方向と交差する方向に延びている、室外機。
  2.  前記第1および第2の流出入管は、前記第1方向から視て前記第1ヘッダよりも前記室外機の内側に配置されており、
     前記第3および第4の流出入管は、前記第1方向から視て前記第3ヘッダよりも前記室外機の内側に配置されている、請求項1に記載の室外機。
  3.  前記第1方向から視て前記第1延在部と前記第2延在部とが成す角度は鈍角であり、
     前記第1方向から視て前記第3延在部と前記第4延在部とが成す角度は鈍角である、請求項1または2に記載の室外機。
  4.  前記第1方向から視て、前記第1曲部の長さは、前記第2延在部の長さ未満であり、
     前記第1方向から視て、前記第2曲部の長さは、前記第4延在部の長さ未満である、請求項1~3のいずれか1項に記載の室外機。
  5.  前記第1室外ファンの回転方向は、前記第2室外ファンの回転方向と反対とされている、請求項1~4のいずれか1項に記載の室外機。
  6.  前記第1方向に沿って延びる第3回転軸を中心に回転し、かつ前記第2方向において前記第1室外ファンと前記第2室外ファンとの間に配置された第3室外ファンをさらに備え、
     前記第1熱交換部は、前記第1室外ファンおよび前記第3室外ファンによって形成される気体の流路上に配置されており、
     前記第1延在部は、前記第1方向から視て、前記第1方向および前記第2方向と交差する第3方向において前記第1回転軸および前記第3回転軸と間隔を隔てて配置されている、請求項1~5のいずれか1項に記載の室外機。
  7.  前記第1方向に沿って延びる第3回転軸を中心に回転し、かつ前記第2方向において前記第1室外ファンと前記第2室外ファンとの間に配置された第3室外ファンと、
     前記第3室外ファンによって形成される気体の流路上に配置されており、かつ前記第2方向において前記第1熱交換部と前記第2熱交換部との間に配置された第3熱交換部をさらに備え、
     前記第3熱交換部は、前記第1方向から視て前記第3回転軸に対する径方向において前記第3室外ファンよりも外周側に配置されており、
     前記第3熱交換部は、前記第1方向と交差する平面上に延びており、かつ前記第1方向において互いに間隔を隔てて配置された複数の第3扁平管と、前記複数の第3扁平管の各一端と接続された第5ヘッダと、前記複数の第3扁平管の各他端と接続された第6ヘッダと、前記第5ヘッダに接続された第5および第6の流出入管とを含み、
     前記第5および第6の流出入管は、前記第1方向から視て前記複数の第3扁平管の延在方向と交差する方向に延びている、請求項1~5のいずれか1項に記載の室外機。
  8.  前記複数の第3扁平管は、前記第1方向から視て、前記第3回転軸を通りかつ前記第1方向および前記第2方向と交差する第3方向に沿って延びる仮想線分に対して、線対称に形成されている、請求項7に記載の室外機。
  9.  前記複数の第3扁平管は、前記第1方向から視て、前記第3回転軸を通りかつ前記第1方向および前記第2方向と交差する第3方向に沿って延びる仮想線分に対して、非対称に形成されている、請求項7に記載の室外機。
  10.  前記複数の第3扁平管は、前記第1方向から視て、直線状に形成されている、請求項8または9に記載の室外機。
  11.  前記第3熱交換部は、前記第1方向から視て、曲率中心が前記複数の第3扁平管に対して前記第3回転軸側に配置された第3曲部と、前記第3曲部と前記第5ヘッダとの間を接続する第5延在部を有している、請求項9に記載の室外機。
  12.  前記第1方向から視て前記第1回転軸に対する径方向において前記第1熱交換部の前記第1曲部よりも外周側に配置された第1柱部と、
     前記第1方向から視て前記第1回転軸に対する径方向において前記第1熱交換部の前記第1延在部よりも外周側に配置された第1壁部とをさらに備え、
     前記第1曲部と前記第1柱部との間の距離は、前記第1延在部と前記第1壁部との間の距離よりも長い、請求項1~11のいずれか1項に記載の室外機。
  13.  請求項1~12のいずれか1項に記載の室外機と、
     室内熱交換器を含む室内機とを備える、冷凍サイクル装置。
PCT/JP2019/024587 2019-06-20 2019-06-20 室外機および冷凍サイクル装置 WO2020255356A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/024587 WO2020255356A1 (ja) 2019-06-20 2019-06-20 室外機および冷凍サイクル装置
GB2115224.4A GB2596994B (en) 2019-06-20 2019-06-20 Outdoor unit and refrigeration cycle apparatus
JP2021528582A JPWO2020255356A1 (ja) 2019-06-20 2019-06-20
CN201980097074.2A CN113939694A (zh) 2019-06-20 2019-06-20 室外机以及制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/024587 WO2020255356A1 (ja) 2019-06-20 2019-06-20 室外機および冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2020255356A1 true WO2020255356A1 (ja) 2020-12-24

Family

ID=74040353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024587 WO2020255356A1 (ja) 2019-06-20 2019-06-20 室外機および冷凍サイクル装置

Country Status (4)

Country Link
JP (1) JPWO2020255356A1 (ja)
CN (1) CN113939694A (ja)
GB (1) GB2596994B (ja)
WO (1) WO2020255356A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229422A (ja) * 1996-02-23 1997-09-05 Sanyo Electric Co Ltd 空気調和機の室外ユニット
JP2003240276A (ja) * 2002-02-13 2003-08-27 Daikin Ind Ltd 空気調和機用室外機
JP2004125264A (ja) * 2002-10-02 2004-04-22 Hitachi Ltd 空気調和機の室外機、及びその室外機を備えた空気調和機
JP2008138951A (ja) * 2006-12-04 2008-06-19 Hitachi Appliances Inc 空気調和機の室外機
JP2011112303A (ja) * 2009-11-27 2011-06-09 Mitsubishi Electric Corp 空調室外機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115023A (ja) * 2012-12-10 2014-06-26 Mitsubishi Electric Corp 空気調和機の室外機
JP2015072105A (ja) * 2013-10-04 2015-04-16 ダイキン工業株式会社 熱交換器およびそれを備えた冷凍装置ユニット、冷凍装置
EP3239619B1 (en) * 2014-12-26 2019-01-30 Mitsubishi Electric Corporation Outdoor machine
JP6844946B2 (ja) * 2015-12-28 2021-03-17 株式会社富士通ゼネラル 熱交換器
JP6704361B2 (ja) * 2017-01-13 2020-06-03 日立ジョンソンコントロールズ空調株式会社 空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229422A (ja) * 1996-02-23 1997-09-05 Sanyo Electric Co Ltd 空気調和機の室外ユニット
JP2003240276A (ja) * 2002-02-13 2003-08-27 Daikin Ind Ltd 空気調和機用室外機
JP2004125264A (ja) * 2002-10-02 2004-04-22 Hitachi Ltd 空気調和機の室外機、及びその室外機を備えた空気調和機
JP2008138951A (ja) * 2006-12-04 2008-06-19 Hitachi Appliances Inc 空気調和機の室外機
JP2011112303A (ja) * 2009-11-27 2011-06-09 Mitsubishi Electric Corp 空調室外機

Also Published As

Publication number Publication date
CN113939694A (zh) 2022-01-14
GB202115224D0 (en) 2021-12-08
GB2596994A (en) 2022-01-12
JPWO2020255356A1 (ja) 2020-12-24
GB2596994B (en) 2023-02-22

Similar Documents

Publication Publication Date Title
JP4715971B2 (ja) 熱交換器及びそれを備えた室内機
US8205470B2 (en) Indoor unit for air conditioner
JP6017047B2 (ja) 熱交換器、空調機、冷凍サイクル装置及び熱交換器の製造方法
US10648742B2 (en) Finless heat exchanger, outdoor unit of an air-conditioning apparatus including the finless heat exchanger, and indoor unit of an air-conditioning apparatus including the finless heat exchanger
WO2007017969A1 (ja) 空気調和機及び空気調和機の製造方法
JPWO2019077744A1 (ja) 空気調和機
KR102048356B1 (ko) 냉매 배관과, 이를 포함하는 핀형 열교환기 및 공기조화기
WO2017056250A1 (ja) 熱交換器及びそれを備えた冷凍サイクル装置
JP5171983B2 (ja) 熱交換器及び冷凍サイクル装置
WO2017068723A1 (ja) 熱交換器及び冷凍サイクル装置
WO2020255356A1 (ja) 室外機および冷凍サイクル装置
JP5295207B2 (ja) フィンチューブ型熱交換器、およびこれを用いた空気調和機
JPH05164483A (ja) 二重管式熱交換器
WO2021234961A1 (ja) 熱交換器、空気調和装置の室外機及び空気調和装置
JP7442731B2 (ja) 空気調和装置
WO2017130975A1 (ja) 熱交換器
JP7414845B2 (ja) 冷凍サイクル装置
JPH11264630A (ja) 空気調和機
JP2020148346A (ja) 熱交換器及び空気調和機
KR20050002569A (ko) 열교환기
WO2022244188A1 (ja) 空気調和装置の室内ユニット
JP6807766B2 (ja) 空気調和機の室内機およびこれを備えた空気調和機
WO2019220585A1 (ja) 冷凍サイクル装置
WO2020136797A1 (ja) 室外機、及び、冷凍サイクル装置
JP2020153528A (ja) 熱交換器及び空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528582

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202115224

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190620

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934194

Country of ref document: EP

Kind code of ref document: A1