WO2020253821A1 - 骑乘式割草机 - Google Patents

骑乘式割草机 Download PDF

Info

Publication number
WO2020253821A1
WO2020253821A1 PCT/CN2020/097063 CN2020097063W WO2020253821A1 WO 2020253821 A1 WO2020253821 A1 WO 2020253821A1 CN 2020097063 W CN2020097063 W CN 2020097063W WO 2020253821 A1 WO2020253821 A1 WO 2020253821A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
current
motor
axis
speed
Prior art date
Application number
PCT/CN2020/097063
Other languages
English (en)
French (fr)
Inventor
杨德中
代修波
王磊
甄文奇
Original Assignee
南京德朔实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911389143.5A external-priority patent/CN111756280A/zh
Application filed by 南京德朔实业有限公司 filed Critical 南京德朔实业有限公司
Priority to CN202080005338.XA priority Critical patent/CN113273078A/zh
Priority to EP20827316.9A priority patent/EP3979488B1/en
Publication of WO2020253821A1 publication Critical patent/WO2020253821A1/zh
Priority to US17/556,049 priority patent/US11999240B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • A01D69/02Driving mechanisms or parts thereof for harvesters or mowers electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/12Stator flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/64Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis mounted on a vehicle, e.g. a tractor, or drawn by an animal or a vehicle
    • A01D34/66Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis mounted on a vehicle, e.g. a tractor, or drawn by an animal or a vehicle with two or more cutters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/76Driving mechanisms for the cutters
    • A01D34/78Driving mechanisms for the cutters electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/58Structural details of electrical machines with more than three phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • This application relates to riding lawn mowers.
  • Riding lawn mowers or riding lawn mowers are popular on large golf courses or grass fields. Users can sit on the riding lawn mower and control the mower freely in any direction by manipulating the joystick. Compared with hand-push lawn mowers, mowing the grass saves much effort.
  • the user pushes the operating device to set the target speed of the motor driving the walking wheel.
  • the control unit can obtain the target speed, and then output a control signal according to the target speed to the first motor driving the walking wheel to output torque to the walking wheel, thereby The driving wheel travels at the set target speed.
  • the motor control method in the related technology has hysteresis, and the torque response speed of the motor is slow. It may happen that the motor cannot reach the target speed set by the operating device within the preset time, which may also cause misjudgment by the operator and cause riding. When the riding lawn mower moves when it is walking, it will make the user experience poor operation.
  • the torque response speed of the first motor is faster, so that the first motor can reach the target speed stably and quickly, and enhance User experience.
  • the torque response speed of the motor is slow, and the target rotation speed and the target torque cannot be reached in a short time, resulting in poor user experience and a safety risk.
  • the application provides a riding lawn mower with a faster motor response speed.
  • An embodiment provides a riding lawn mower, including: a frame; a seat, arranged above the frame to support an operator; a wheel set, arranged below the frame and used to drive the frame to move, and a wheel set It includes at least two driving wheels; a walking motor, which is used to drive the driving wheels to rotate, and the walking motor includes a stator and a rotor; a plurality of battery packs, at least used to provide a power source for the walking motor; operating components, which are arranged above the frame, at least It is used by the operator to set the target state of the riding lawn mower and one of the target speed or the target torque of the walking motor; wherein the target state includes one of the forward state, the stopped state or the backward state; the drive circuit , Is electrically connected to the walking motor, and is used to distribute the electric energy of the battery pack to the multi-phase winding on the stator in a preset logical relationship, so that the drive motor generates continuous torque; the first detection device is used to detect the drive in real time The actual measured speed
  • An embodiment provides a lawn care vehicle, including: a frame; a seat, which is arranged above the frame to support an operator; a wheel set, which is arranged below the frame and is used to drive the frame to move, the wheel set includes at least two A driving wheel; a walking motor, used to drive the driving wheel to rotate, the walking motor includes a stator and a rotor; a plurality of battery packs, at least used to provide a power source for the walking motor; operating components, arranged above the frame, at least for operation The operator operates to set the target state of the lawn care vehicle, and one of the target speed or target torque of the walking motor; wherein the target state includes one of the forward state, the stopped state or the backward state; the drive circuit is electrically connected to the walking motor Connection, used to distribute the electric energy of the battery pack to the multi-phase windings on the stator in a preset logical relationship, so that the drive motor generates continuous torque; the first detection device is used to detect the actual measured speed of the drive wheel in real time;
  • An embodiment provides a riding lawn mower, including: a walking assembly including a walking wheel and a first motor driving the walking wheel to travel, the first motor including a stator and a rotor; a power output assembly including a blade for mowing And a second motor for driving the blade; a power supply device for at least providing electrical energy for the first motor; a driving circuit for loading electrical energy from the power supply device to the first motor; an operating device for setting the target torque of the first motor And at least one of the target speed; a control module for outputting a control signal to the drive circuit so that the input current or input voltage of the first motor changes with the position of the rotor of the first motor, so that the actual torque of the first motor is at The target torque is reached or substantially reached within the second preset time, and the second preset time is less than 100 ms.
  • the operating device is also used to set a target rotation speed of the first motor; the actual rotation speed of the first motor reaches or substantially reaches the target rotation speed within a preset time, and the preset time is less than 800 ms.
  • it further includes: a target rotation speed detection module associated with the operating device, and the target rotation speed detection module is used to detect the target rotation speed of the first motor set by the operating device.
  • the riding lawn mower further includes: a current detection module for detecting the current of the first motor; the current detection module is connected to the first motor and connected to the control module; and a target rotation speed detection module is used for detecting operation The target speed of the first motor set by the device; the target speed detection module is associated with the operating device and connected to the control module; the actual speed detection module is used to detect the actual speed of the first motor; the actual speed detection module is associated with the first motor Connect and connect with the control module.
  • a current detection module for detecting the current of the first motor
  • the current detection module is connected to the first motor and connected to the control module
  • a target rotation speed detection module is used for detecting operation The target speed of the first motor set by the device
  • the target speed detection module is associated with the operating device and connected to the control module
  • the actual speed detection module is used to detect the actual speed of the first motor
  • the actual speed detection module is associated with the first motor Connect and connect with the control module.
  • the riding lawn mower further includes: a current detection module for detecting the current of the first motor; the current detection module is connected to the first motor and connected to the control module; and a target rotation speed detection module is used for detecting operation
  • the target rotation speed of the first motor set by the device is associated with the operating device and connected to the control module
  • the actual rotation speed estimation module is used to detect the current estimation of the first motor detected by the current detection module.
  • the actual speed of the motor; the actual speed estimation module is connected with the current detection module and connected with the control module.
  • the riding lawn mower further includes: a rotor position detection module or a rotor position estimation module for acquiring the rotor position of the first motor, the rotor position detection module or the rotor position estimation module is connected to the control module; The rotor position outputs a control signal that changes with the rotor position.
  • the target rotation speed detection module and the control module are connected through a bus.
  • the range of the communication frame rate of the bus is 100 Hz-3000 Hz.
  • the first preset time is less than 60 ms.
  • the target rotation speed detection module includes a sensor, and the data refresh rate of the sensor ranges from 50 microseconds/time to 10 milliseconds/time.
  • the first preset time is less than 10 ms.
  • the target rotation speed detection module includes a sensor, and the data refresh rate of the sensor ranges from 50 microseconds/time to 10 milliseconds/time.
  • the first preset time is less than 60 ms.
  • the included angle between the stator flux linkage of the first motor and the rotor flux linkage is 90°.
  • the angle between the stator flux linkage and the rotor flux linkage is in the range of 90°-135°.
  • the input voltage of the first motor changes in a sine wave or a saddle wave
  • the input current of the first motor changes in a sine wave
  • the operating device includes:
  • At least one bracket which can be installed on the riding lawn mower
  • the operating lever is arranged to rotate around a first pivot at least in a first direction;
  • a pivoting combination the pivoting combination includes a first pivot assembly having a first pivot, the first pivot assembly is used to pivotally mount the operating rod on the bracket, so that the operating rod is pivoted around the first direction in the first direction Shaft rotation
  • the target rotation speed detection module includes a position detection module, which is associated with the operating rod, and is used to detect the position of the operating rod in the first direction, and the position of the operating rod in the first direction corresponds to the target speed of the first motor .
  • the operating device includes a steering wheel and a speed lever
  • the target rotation speed detection module is associated with the steering wheel and/or the speed lever to detect the target rotation speed and target torque of the first motor set by the steering wheel and/or the speed lever.
  • control module includes: a first rotation speed loop, configured to generate the target current of the first motor according to the target rotation speed and the actual rotation speed of the first motor.
  • control module further includes: a current distribution unit configured to distribute the direct-axis target current and the quadrature-axis target current according to the target current of the first motor generated by the first speed loop; The actual current and the rotor position of the first motor generate the direct-axis actual current and the quadrature-axis actual current; the first current loop is used to generate the first voltage adjustment value according to the direct-axis target current and the direct-axis actual current; the second current loop is used For generating the second voltage adjustment value according to the quadrature axis target current and the quadrature axis actual current; the control signal generating unit is configured to generate a control signal according to the first voltage adjustment value and the second voltage adjustment value, and the control signal is used to control the driving circuit.
  • a current distribution unit configured to distribute the direct-axis target current and the quadrature-axis target current according to the target current of the first motor generated by the first speed loop
  • the actual current and the rotor position of the first motor generate the direct-axis actual current and the quadrat
  • control module includes: a second rotation speed loop, configured to generate the target torque of the first motor according to the target rotation speed and the actual rotation speed of the first motor.
  • control module further includes: a torque loop, which is used to generate a first adjustment amount based on the target torque and actual torque of the first motor; and a flux loop, which is used to generate a first adjustment amount based on the target stator flux and actual torque of the first motor.
  • the stator flux linkage generates a second adjustment value;
  • control signal generation unit is used to generate a control signal according to the first adjustment value and the second adjustment value, and the control signal is used to control the drive circuit.
  • the riding lawn mower of the present application can improve the faster response speed of the motor driving the walking wheels, and the user has good operating experience and good safety.
  • Fig. 1 is an external view of a riding lawn mower as an embodiment
  • Fig. 2 is an operating device of a riding lawn mower as an embodiment
  • FIG. 3 is another view of the operating device shown in Figure 2;
  • Figure 4 is a partial structural diagram of the operating device shown in Figure 2;
  • FIG. 5 is a control system block diagram of the first motor of the riding lawn mower including a left motor and a right motor;
  • FIG. 6 is a block diagram of the control system of the first motor of one of the left motor and the right motor according to an embodiment
  • FIG. 7 is a block diagram of the control system of the first motor of one of the left motor and the right motor according to another embodiment
  • Fig. 8 is a block diagram of a control system of a first motor as an embodiment
  • Figure 9 is a space vector diagram of a motor in an embodiment
  • Figure 10 is a space vector diagram of a motor in another embodiment
  • FIG. 11 is a graph showing the relationship between permanent magnet torque T1, reluctance torque T2, electromagnetic torque Te and electrical angle generated by the motor shown in FIG. 10 under the same current situation;
  • FIG. 12 is a block diagram of a control system of the first motor as another embodiment
  • Fig. 13 is a space vector diagram of the motor under the control system of the first motor shown in Fig. 12;
  • FIG. 14 is the corresponding relationship between the operating lever and the target speed of the first motor, the actual speed of the first motor, the output torque, and the maximum output torque;
  • Figure 15 is the sine wave change of the motor's three-phase voltage with the rotor position
  • Figure 16 is the saddle wave variation of the motor's three-phase voltage with the rotor position
  • Fig. 17 is an external view of a riding lawn mower as another embodiment.
  • the riding lawn mower 10 includes a frame 11, a seat 12, a power output assembly 13, a walking assembly 14, an operating device 15, and a power supply device 16.
  • the frame 11 is used to carry the seat 12, and the frame 11 extends at least partially in a front and rear direction; the seat 12 is used for the operator to sit on, and the seat 12 is installed on the frame 11 for power.
  • the power output assembly 13 is connected to the frame 11, and the power output assembly 13 includes an output member for outputting power to realize a mechanical function.
  • the output member may be a blade 131 for implementing a mowing function.
  • the output assembly 13 also includes a second motor 144 for driving the blade 131 to rotate at a high speed.
  • the power output assembly 13 may include more than one blade 131, and correspondingly, the number of the second motors 144 may correspond to the blade 131.
  • the walking assembly 14 is used to enable the riding lawn mower 10 to walk on the lawn.
  • the walking assembly 14 includes a wheel set, which is located under the frame and can drive the frame to move.
  • the wheel set includes at least two driving wheels, such as a left driving wheel 141L and a right driving wheel 141R.
  • the wheel set also includes traveling wheels 142 (left traveling wheel 142L and right traveling wheel 142R).
  • the traveling assembly 14 further includes a left traveling motor 143L for driving the left driving wheel 141L and a right traveling motor 143R for driving the right driving wheel 141R (as shown in FIG. 5).
  • the power supply device 16 is used to provide power to the riding lawn mower 10.
  • the power supply device 16 is used to supply power to the first motor 143 (the left travel motor 143L and the right travel motor 143R), the second motor 144 and other electronic components or electronic components on the riding lawn mower 10.
  • the power supply device 16 is provided on the rear side of the seat 12 on the frame 11.
  • the power supply device 16 includes a plurality of battery packs 161 for providing an energy source for the riding lawn mower 10, and at least one battery pack 161 is also configured to provide an energy source for another electric tool 20.
  • the operating device 15 is used to at least set the target speed of the first motor 143, and then the target state of the riding lawn mower 10 can be set through the operating device 15.
  • the target state of the riding lawn mower 10 includes the riding lawn mower 10's forward state, backward state, forward speed, backward speed, zero speed, ready working state (including electronic module power-on, etc.) or exit working state (ie parking state), etc.
  • the operator can use the operating device 15 to control the walking of the riding lawn mower 10 or determine the working state of the riding lawn mower 10.
  • the operating device 15 is at least used by the operator to control the first motor 143 in the walking assembly 14 to control the riding lawn mower 10 to walk on the lawn.
  • the operating device 15 is at least Used to set the target rotation speed of the first motor 143.
  • the operating device 15 is also used by the operator to make the riding lawn mower 10 enter or exit the working state.
  • the number of operating devices 15 is 2, respectively, the right operating device 15R and the left operating device 15L, which are used to correspondingly control the right motor 143R and the left motor 143L to drive the left second travel wheel and the right drive wheel respectively. 141R and left drive wheel 141L.
  • the components of the two operating devices 15 are the same, and they are respectively located on the right hand side and the left hand side of the operator sitting on the seat 12 to facilitate operation.
  • the left operating device 15L and the right operating device 15R have the same structural composition.
  • the structural composition of the operating device will be described below.
  • the operating device 15 is used for the same description. 2 to 4, as a possible implementation manner, the operating device 15 includes: at least one bracket 152, which can be installed on the riding lawn mower 10, optionally, the bracket 152 is fixedly installed on the frame 11 ;
  • Operating lever assembly including operating lever 151, operating lever 151 is set to rotate in the first direction F1 around the first axis A between the forward position, the middle position and the backward position, and in the second direction F2 around the second axis B Rotation between the inner position and the outer position; and a pivot combination for pivotally mounting the operating lever 151 on the bracket 152, so that the operating lever 151 can rotate in the first direction F1 around the first axis A, and in the second The direction F2 rotates around the second axis B.
  • the second axis B and the first direction F1 extend in
  • the pivot assembly includes a first pivot assembly 153, and the first pivot assembly 153 is mounted on the bracket 152.
  • the first pivot assembly 153 includes a first pivot 1531 fixedly mounted on the first bracket 152, and the first pivot 1531 defines a first axis A.
  • the first pivot assembly 153 further includes a sleeve (not shown).
  • the shaft sleeve partially surrounds the first pivot 1531 and can rotate around the first pivot 1531.
  • the first pivot assembly 153 is configured to allow the operating rod 151 to rotate about a first axis A in the first direction F1, and the first axis A is the axis of the first pivot 1531.
  • the position of the operating lever 151 in the first direction F1 corresponds to the target rotation speed and the target state of the first motor 143 set by the operator, and the target state includes forward, backward, and zero speed states.
  • the positions in the first direction F1 include the forward position, the mid-gear position, and the backward position, which correspond to the forward, zero-speed, and backward states of the riding lawn mower 10, respectively.
  • the operating lever 151 provides multiple target traveling speeds in the forward direction between the forward position and the middle gear position, and the operating lever 151 provides multiple target traveling speeds in the backward direction between the intermediate gear position and the reverse position.
  • the operator sets the target rotation speed and target state of the first motor 143 by pushing the operating lever 151 to rotate to different positions in the first direction F1.
  • the pivot assembly further includes a second pivot assembly 154, and the second pivot assembly 154 is mounted on the first pivot assembly 153.
  • 154 includes a second pivot 1541, which is fixedly mounted on the first pivot assembly 153, and the second pivot 1541 defines a second axis B.
  • the second pivot 1541 of the second pivot assembly 154 is fixedly installed in a mounting hole provided on a sleeve (not shown) of the first pivot assembly 153.
  • the operating lever 151 is pivotally mounted on the second pivot 1541 and can rotate around the second pivot 1541.
  • the operating rod 151 is provided with a perforation through which the second pivot 1541 passes, and the operating rod 151 can rotate around the second pivot 1541.
  • the second pivot assembly 154 is configured to allow the operating rod 151 to rotate about a second axis B in the second direction F2, and the second axis B is the axis of the second pivot 1541.
  • the second pivot assembly 155 is driven to rotate in the second direction F2 about the second pivot 1551.
  • the operator sets the target state of the riding lawn mower by pushing the operating lever 151 in the second direction F2 to rotate to a different position (inside position or outside out), including the working state (that is, the ready state or the zero speed state) And non-working state (i.e. parking state).
  • the inner position of the operating rod 151 in the second direction F2 is consistent with the middle position of the operating rod 151 in the first direction F1, and the user can power on the riding lawn mower 10 in the outer position.
  • the target traveling direction of the riding lawn mower 10 is determined by the target traveling speed difference indicated by the user operating the left operating lever 151R and the right operating lever 151L. That is, if both the left operating lever 151L and the right operating lever 151R are pushed in the forward direction, and the target traveling speed given by the left operating lever 151L is greater than the target traveling speed given by the right operating lever 151R, then riding mowing If both the left operating lever 151L and the right operating lever 151R are pushed forward, and the target travel speed given by the left operating lever 151L is less than the target travel speed given by the right operating lever 151R, the ride The riding lawn mower 10 turns forward and to the left; if both the left operating lever 151L and the right operating lever 151R are pushed forward, and the target travel speed given by the left operating lever 151L is the same as the target given by the right operating lever 151R If the traveling speeds are equal or approximately the same, the riding lawn mower 10 is traveling at approximately a constant speed at the target traveling speed
  • the traveling speed given by the left operating lever 151L and the target traveling speed given by the right operating lever 151R are different, then the riding cut
  • the lawn mower 10 walks and steers according to the given target travel speed difference given by the left operating lever 151L and the right operating lever 151R. Since the rotation speed of the motor is related to the torque, the operating device 15 sets the target torque of the first motor 143 while setting the target rotation speed of the first motor 143.
  • the motor control system of the riding lawn mower 10 shown in FIG. 5 includes a left motor control system and a right motor control system.
  • the functions and composition of the left motor control system and the right motor control system are the same or similar.
  • the control system includes: a left motor control module 50L, a left motor target speed detection module 51L, a left motor actual speed detection module 52L, a left motor drive circuit 53L, a left motor current detection module 54L, and a left motor 143L.
  • the left motor control module 50L is used to control the operation of the left motor 143L. It is connected with the left motor target speed detection module 51L, the left motor actual speed detection module 52L, the left motor drive circuit 53L, and the left motor current detection module 54L.
  • the detection signals of the motor target speed detection module 51L, the left motor actual speed detection module 52L, and the left motor current detection module 54L adjust the control amount of the left motor 143L, and output the control signal to the left motor drive circuit 53L, thereby controlling the left motor drive circuit 53L
  • the left motor drive circuit 53L drives the left motor 143L to reach or substantially equal the target rotation speed set by the left operating device 15L as soon as possible.
  • the control amount of the left motor 143L includes the input voltage and/or input current of the left motor 143L.
  • the left motor target speed detection module 51L is associated with the left operating device 15L, and is used to detect the state of the left operating device 15L and output it to the left motor control module 50L, so that the left motor control module 50L can detect the module 51L according to the left motor target speed
  • the detection result obtains the target rotation speed of the left motor 143L.
  • the left motor target rotation speed detection module 51L is associated with the left operating lever 151L, and is used to detect the position of the left operating lever 151L.
  • the left motor target speed detection module 51L includes an angle sensor or a position sensor, which is used to detect the rotated angle or the rotated position of the operating lever 151 of the operating device 15.
  • the left motor actual speed detection module 52L is associated with the left motor 143L, and is used to detect the actual speed of the left motor 143L.
  • the left motor actual rotation speed detection module 52L includes a speed detection sensor, which is arranged near or inside the left motor 143L to obtain the actual rotation speed of the left motor 143L, for example, a photoelectric sensor arranged near the left motor 143L, It can obtain the actual rotation speed of the left motor 143L.
  • a Hall sensor arranged near the rotor inside the left motor 143L can obtain the actual rotation speed of the left motor 143L according to the rotation speed of the rotor.
  • the left motor actual speed detection module 52L does not include a sensor, and the left motor actual speed detection module 52L uses a brushless motor, which uses the electrical signal output from the left motor actual speed detection module 52L.
  • the current and/or voltage of the left motor 143L is detected to determine the zero-crossing point of the back-EMF to obtain the periodic change of the left motor actual speed detection module 52L, thereby obtaining the left motor 143L actual speed detection module Actual speed of 52L.
  • the detection accuracy is not affected by high rotation speed and temperature, and the whole machine structure is more streamlined.
  • the left motor current detection module 54L which is associated with the left motor 143L, is used to obtain the current of the left motor 143L, and the current may be the bus current of the motor or the phase current of the left motor 143L.
  • the left motor current detection module 54L transmits the current obtained from the left motor 143L to the left motor control module 50L.
  • the left motor drive circuit 53L is connected to the left motor control module 50L and the left motor 143L, and is used to control the operation of the left motor 143L according to the signal output by the left motor control module 50L.
  • the left motor 143L can be connected to the left drive wheel 141L through a reduction device 55L, and the output speed of the left motor 143L is reduced by the reduction device 55L and then output to the left drive wheel 141L to drive the left drive wheel 141L to rotate. In this way, the left motor 143L The torque is transmitted to the left drive wheel 141L through the reduction gear to drive the left drive wheel 141L. In other embodiments, the left motor 143L and the left drive wheel 141L are directly connected.
  • the right and left motor control system mainly includes: a left motor control module 50R, a left motor target speed detection module 51R, a left motor actual speed detection module 52R, a left motor drive circuit 53R, a left motor current detection module 54R, and a left motor 143R.
  • the function and composition of the right and left motor control system and the left motor control system are the same or similar, and will not be repeated here.
  • the left motor actual rotation speed detection module 52L and the right motor actual rotation speed detection module 52R may be two separately provided modules, respectively connected to the left motor 143L and the right motor 143R, and are used to generate the left motor 143L and The actual speed of the right motor 143R.
  • the left motor actual speed detection module 52L and the right motor actual speed detection module 52R may also be an integration of the above two modules.
  • the left motor target speed detection module 51L and the right motor target speed detection module 51R respectively associated with the right operating lever 151R and the left operating lever 151L may be two separate modules or an integrated module.
  • the left motor control module 50L and the left motor target rotation speed detection module 51L are connected through the bus 56, and the left motor target rotation speed detection module 51L detects the target rotation speed of the left motor 143L through the setting of the left operating device 15L.
  • the bus 56 is sent to the left motor control module 50L, and the left motor control module 50L receives the detection result from the left motor target speed detection module 51L through the bus 56.
  • the range of the communication frame rate of the bus is 100 Hz-2000 Hz.
  • the range of the communication frame rate of the bus is 200 Hz-2000 Hz.
  • the range of the communication frame rate of the bus is 300 Hz-3000 Hz.
  • the communication frame rate of the bus ranges from 100 Hz to 1000 Hz. In some embodiments, the communication frame rate of the bus ranges from 200 Hz to 800 Hz. In some embodiments, the communication frame rate of the bus ranges from 100 Hz to 500 Hz. In some embodiments, the communication frame rate of the bus ranges from 500 Hz to 1000 Hz. In some embodiments, the communication frame rate of the bus ranges from 500 Hz to 1500 Hz. In some embodiments, the communication frame rate of the bus ranges from 1000 Hz to 2000 Hz. In some embodiments, the communication frame rate of the bus ranges from 1000 Hz to 1500 Hz. The communication frame rate of the bus refers to the number of times the bus receives and/or sends data packets in one second.
  • the data transmission rate between the left motor control module 50L and the left motor target rotation speed detection module 51L can be increased, so that the response speed of the first motor 143 can be improved.
  • the right motor control module 50R and the right motor target rotation speed detection module 51R are also connected via the bus 56, which will not be repeated here.
  • the right motor control module 50R and the right motor target speed detection module 51R can also be connected through other buses.
  • the left motor target rotation speed detection module 51L and the right motor target rotation speed detection module 51R include an angle sensor, a position sensor, etc., which are used to detect the rotation angle or rotation position of the operating lever 151 of the operating device 15.
  • the operating device 15 of the riding lawn mower 10 includes a steering wheel 751 and a speed lever 752 (throttle) (FIG. 17 ), at least used to set the target rotation speed of the first motor 141.
  • the target rotation speed of the first motor 141 is comprehensively determined by the steering wheel 751 and the speed lever 752.
  • the speed lever gives the target speed, and the rotation angle of the steering wheel 751 is used to distribute the distribution speed of the left motor and the right motor.
  • the operator can set the target rotation speed of the first motor 141 of the riding lawn mower 10 by turning the steering wheel 751 and stepping on the speed lever 752, the rotation angle of the steering wheel 751 and the position of the speed lever 752.
  • the operator can control the steering of the riding lawn mower 10 by operating the rotation of the steering wheel, such as turning or going straight, and the speed lever 752 is used to determine the target speed of the motor.
  • the steering wheel 751 is an electronic steering wheel.
  • the left motor target rotation speed detection module 51L and the right motor target rotation speed detection module 51R include sensors.
  • the data refresh rate of the sensor ranges from 50 microseconds/time to 10 milliseconds/time. In some embodiments, the data refresh rate of the sensor ranges from 50 microseconds/time to 200 microseconds/time. In some embodiments, the data refresh rate of the sensor ranges from 100 microseconds/time to 300 microseconds/time. In some embodiments, the data refresh rate of the sensor ranges from 200 microseconds/time to 500 microseconds/time. In some embodiments, the data refresh rate of the sensor ranges from 100 microseconds/time to 1 millisecond/time. In some embodiments, the data refresh rate of the sensor ranges from 500 microseconds/time to 1 millisecond/time. In some embodiments, the data refresh rate of the sensor ranges from 1 millisecond/time to 10 milliseconds/time.
  • the left motor target rotation speed detection module 51L and the right motor target rotation speed detection module 51R include a position detection module 17 (that is, a first detection device), and the position detection module 17 includes a magnetic element 171 And the magnetic sensor 172.
  • the magnetic sensor is a Hall sensor. In other embodiments, the magnetic sensor is a magnetoresistive sensor.
  • the magnetic element 171 or the magnetic sensor 172 is arranged in association with the operating rod 151 or the pivoting combination, and the magnetic sensor 172 and the magnetic element 171 are spaced apart, so that when the operating rod 151 rotates in the first direction F1 around the first axis A, it can drive The magnetic element 171 and the magnetic sensor 172 generate relative rotation to detect the forward position, the middle position and the backward position of the operating lever 151 in F1 in the first direction.
  • the magnetic element 171 and the magnetoresistive sensor 172 can be driven to produce relative displacements, so as to detect the inner position of the operating rod 151 in the second direction F2 and Outboard position.
  • the magnetic element 171 is arranged in association with the operating rod 151, which can follow the movement of the operating rod 151.
  • the magnetic sensor 172 is fixedly installed on the bracket 152. The two are correspondingly arranged so that the operating rod 151 is in the first direction F1.
  • the magnetic element 171 and the magnetic sensor 172 can produce relative movement, and the magnetic sensor 172 outputs a first detection signal related to the position of the operating rod 151 in the first direction.
  • the magnetic element 171 and the magnetic sensor 172 can produce relative movement, and the magnetic sensor 172 can output the position of the operating rod 151 in the second direction F2.
  • Related second detection signal when the operating rod 151 rotates around the second axis B in the second direction F2, the magnetic element 171 and the magnetic sensor 172 can produce relative movement, and the magnetic sensor 172 can output the position of the operating rod 151 in the second direction F2.
  • Related second detection signal when the operating rod 151 rotates around the second axis B in the second direction F2, the magnetic element 171 and the magnetic sensor 172 can produce relative movement, and the magnetic sensor 172 can output the position of the operating rod 151 in the second direction F2.
  • the magnetic element 171 is mounted on the operating rod 151.
  • the operating rod 151 is provided with a first mounting portion 1511.
  • the first mounting portion 1511 and the operating rod 151 are integrally formed or fixedly installed, and the mounting portion 1511 is used for mounting the magnetic element 171 , To fix the magnetic element 171 and the operating rod 151 together, so that it can move synchronously with the operating rod 151.
  • the magnetic sensor 172 is fixedly installed on the bracket 152.
  • a second mounting portion 1521 is provided on the bracket 1521, and the second mounting portion 1521 is integrally formed or fixedly installed with the operating rod 151, and the second mounting portion 1521 is used for mounting the magnetic sensor 172.
  • the second mounting part is also used to mount the PCB board 18.
  • the magnetic sensor 172 is arranged on the PCB board 18. In order to enable the magnetic sensor 172 to be firmly fixed on the PCB board 18, the magnetic sensor 172 is sealed on the PCB board with glue .
  • the positions of the first mounting portion 1511 and the second mounting portion 1521 are set correspondingly, so that the magnetic sensor 172 can output a detection signal that meets the requirements, and the detection signal corresponds to the position of the operating lever 151 in the first direction and the position in the second direction F2 related.
  • the position detection module 17 is at least partially associated with the bracket 152 and/or the pivot assembly or the operating lever 151, and is used to detect the position of the operating lever 151 in the first direction F1, including forward position, mid-range position, and backward position, for example, When the operating lever 151 is in the forward position, the corresponding target state of the first motor 143 is the maximum forward speed; when the operating lever 151 is in the backward position, the corresponding target state of the first motor 143 is the maximum reverse speed; when the operating lever When 151 is in the mid-gear position, the corresponding target state of the first motor 143 is zero speed.
  • the operator sets the target speed of the corresponding first motor 141 by moving the operating lever 151, and controls the action of the corresponding first motor 141, so that the corresponding target speed of the first motor 141 is also the operation obtained from the position of the operating lever 151
  • the target speed or target state set by the operator set by the operator.
  • the position detection module 17 can also detect the position of the operating rod 151 in the second direction F2, including an inner position and an outer position.
  • the state of the corresponding riding lawn mower 10 is in the working state (that is, the ready state).
  • the inner position coincides with or is close to the mid-gear position, and the corresponding first motor 143
  • the target state is the zero-speed state; when the operating lever 151 is at the outer position, the state of the corresponding riding lawn mower 10 is the non-working state.
  • the magnetic element 171 and the magnetic sensor 172 are arranged in association, so that when the operating rod 151 rotates around the first axis A in the first direction F1, the magnetic element 171 and the magnetic sensor 172 can be driven to rotate relative to each other.
  • 172 outputs detection signals related to the forward position, mid-range position, and reverse position of the operating lever 152 in the first direction F1.
  • the detection signal contains the position information of the operating lever 151.
  • the position of the operating lever 152 in the first direction F1 is detected, including the forward position, the middle gear position, and the reverse position.
  • the operating lever 152 is in the first direction F1. Different positions correspond to different target speeds and rotation directions of the first motor 143, and the target rotation speed of the first motor 143 can be obtained by detecting the position of the operating lever 152.
  • the mounting positions of the magnetic element 171 and the magnetic sensor 172 of the position detection module 17 are not limited to the above method, as long as the magnetic element 171 and the magnetic sensor 172 of the position detection module 17 are spaced apart and arranged in association, the magnetic element 171 and the magnetic
  • the sensor 172 is associated with the position of the operating rod 151 in the first direction and the position in the second direction so that the magnetic element 171 and the magnetic sensor 172 can produce relative movement when the operating rod 151 rotates, and both fall within the scope of protection of the present application.
  • two magnetic sensors 172 a first magnetic sensor 172a and a second magnetic sensor 172b, are used, which are arranged at different positions on the substrate or PCB board.
  • the first magnetic sensor 172a and the second magnetic sensor 172b may be symmetrically arranged with respect to the center line of the magnetic element.
  • multiple Hall sensors may be used at different positions of the substrate or PCB board to detect the position of the operating rod 151 in the first direction F1.
  • the principle of detecting the position of the operating rod 151 in the first direction F by the magnetic sensor 172 and the magnetic element 171 is as follows:
  • the senor is fixedly arranged, and the magnetic element is connected to the operating lever, and the relative positional relationship between the magnetic element and the sensor is used to detect the position of the operating lever in two directions. It can reduce the problem of inaccurate detection results caused by the movement of the sensor and damage to the sensor, the connection line and the circuit due to frequent movement and pulling of the connection line of the sensor, so that the detection result is more reliable, the reliability of the system is higher and the structure is simpler.
  • the control system of the first motor 143 can be applied to any one of the above-mentioned left motor control system and right motor control system.
  • the first motor 143 is a motor 38, and the motor 38 may be a brushless motor.
  • the motor 38 has a stator, a rotor, and stator windings.
  • the control system of the first motor 143 of this embodiment includes: a control module 30, a power supply 31, a power circuit 32, a drive circuit 33, a target rotation speed detection module 34, an actual rotation speed detection module 35, a rotor position detection module 36, and a current detection module 37.
  • the control module 30 is used to control the operation process of the motor 38.
  • the control module 30 adopts a dedicated controller, such as some dedicated control chips (for example, Microcontroller Unit, MCU).
  • the control module 30 is integrated with a signal processing unit, where the signal processing unit is used to process the acquired relevant parameter signals and has functions such as calculation, comparison, and judgment. After the signal processing unit processes the signal, it can generate a control signal and output it to the driver.
  • the circuit 33 operates to drive the motor 38.
  • the power supply 31 is used to provide electrical energy for the control system of the motor 38.
  • the electrical energy of the power supply 31 comes from the aforementioned power supply device 16.
  • the power supply circuit 32 is connected to the power supply 31, and the power supply 31 is used to receive electric energy from the power supply 31 and convert the electric energy of the power supply 31 into electric energy for at least the control module 30.
  • the driving circuit 33 is electrically connected to the control module 30 and the motor 38, and can operate according to the control signal output by the control module 30.
  • the motor 38 is a three-phase motor with three-phase windings
  • the drive circuit 33 is electrically connected to the three-phase windings of the motor 38.
  • the driving circuit 33 includes a switch circuit, and the switch circuit is used to drive the rotor of the motor 38 to operate according to the control signal of the control module 30.
  • the drive circuit 33 has multiple drive states. In one drive state, the stator winding of the motor generates a magnetic field.
  • the control module 30 is configured to output a corresponding drive signal to the drive circuit according to the rotor rotation position of the motor 38 33 to enable the driving circuit 33 to switch the driving state, thereby changing the state of the voltage and/or current loaded on the winding of the motor 38, and generating an alternating magnetic field to drive the rotor to rotate, thereby driving the motor.
  • the rotor position of the motor 38 can be obtained by the rotor position detection module 36.
  • the rotor position detection module 36 includes, for example, three Hall sensors, which are arranged along the circumferential direction of the rotor of the motor 38. When the rotor rotates in and out of the preset range, When the signal of the Hall sensor changes, the output signal of the rotor position detection module 36 also changes accordingly, so that the position of the rotor of the motor can be known according to the detection signal output by the rotor position detection module 36.
  • the rotor position can also be estimated from the motor current.
  • the rotor position estimation module 46 estimates the current of the motor obtained by the current detection module 47.
  • the rotor position estimation module 46 may be built in the control module 40 or may be external to the control module 40.
  • the driving circuit 33 shown in FIG. 6 includes switching elements VT1, VT2, VT3, VT4, VT5, and VT6.
  • the switching elements VT1, VT2, VT3, VT4, VT5, and VT6 form a three-phase bridge, where VT1, VT3, and VT5 are upper Bridge switches, VT2, VT4, and VT6 are lower bridge switches.
  • Switching elements VT1-VT6 can choose field effect transistors, IGBT transistors, etc.
  • the control ends of the multiple switching elements are electrically connected to the control module 30 respectively.
  • the switching elements VT1-VT6 change the on state according to the driving signal output by the control module 30, thereby changing the voltage and/or current state of the power supply 31 loaded on the winding of the motor 38, and driving the motor 38 to run.
  • the target rotational speed detection module 34 is associated with the operating device 15.
  • the target rotational speed detection module 34 is associated with the operating lever 151 of the operating device 15.
  • the target rotational speed detection module 34 can obtain the corresponding settings of the user through the operating lever 151 The target rotation speed of the first motor 143.
  • the target rotation speed detection module 34 may adopt the position detection module 17 shown in FIGS. 2 and 4.
  • the actual rotation speed detection module 35 is associated with the motor 38 to detect the actual rotation speed of the motor 38.
  • the actual rotation speed generating module 35 includes a speed detection sensor, which is arranged near or inside the motor 38 to obtain the actual rotation speed of the motor 38.
  • a photoelectric sensor disposed near the motor 38 can obtain the motor 38.
  • a Hall sensor located near the rotor inside the motor 38 which can obtain the actual rotation speed of the motor 38 according to the rotation speed of the rotor.
  • the actual speed detection module 35 does not include a sensor, but is obtained by estimation of the electrical signal output by the motor 38, for example, by detecting the current of the motor 38 to obtain the back electromotive force of the motor 38
  • the zero crossing point is the periodic change law of the motor 38 operation, and the actual speed of the motor 38 is obtained according to the periodic change law.
  • the motor 38 may be an inner rotor motor or an outer rotor motor. In some embodiments, the motor 38 is an inner rotor brushless motor. Optionally, the motor 38 is an inner rotor permanent magnet synchronous brushless motor. In some embodiments, the motor 38 is an external rotor brushless motor. Optionally, the motor 38 is an external rotor permanent magnet synchronous brushless motor.
  • the actual rotation speed detection module 35 and the rotor position detection module 36 shown in FIG. 6 can be integrated together, and can be set separately.
  • the actual rotation speed estimation module 45 and the rotor position estimation module 46 shown in FIG. 7 can be integrated together, and can be set separately.
  • the current detection module 37 is associated with the motor 38 to obtain the working current of the motor 38.
  • the current can be the bus current of the motor 38 or the phase current of the motor 38.
  • the current detection module 37 transmits the acquired current of the motor 38 to the control module 30.
  • the control module 30 is connected with the target rotation speed detection module 34, the actual rotation speed detection module 35, the current detection module 37, and the motor rotor position detection module 36, and is used to detect the target rotation speed detection module 34 and set the motor 38 through the operating device 15 by the user.
  • the target speed and the actual speed of the motor 38 adjust the control amount of the motor 38, and output a control signal to control the motor 38 so that the actual speed of the motor 38 reaches or basically reaches the target speed within a preset time, so as to increase the user's physical experience and can To prevent the lawn mower from slipping backward due to the hysteresis of the response of the motor 38 during the climbing process, which may cause danger.
  • the control module 30 outputs a control signal to the drive circuit 33 so that the input current or input voltage of the first motor 143 changes with the position of the rotor of the first motor 143, so that the actual torque or actual torque of the first motor 143
  • the speed reaches or basically reaches the target torque within the preset time, and the preset time is less than 100ms. In some embodiments, the preset time is less than 80 ms. In some embodiments, the preset time is less than 50 ms. In some embodiments, the preset time is less than 20 ms. When the difference between the actual torque of the first motor 143 and the target torque is less than 10% of the target torque, it is considered that the target torque is basically reached.
  • the first detection device is used to detect the actual measured rotational speed of the driving wheel in real time, and send the measured rotational speed at a first preset time interval.
  • the control module receives the actual measured speed sent by the first detection device and the target speed set by the operating component;
  • the current loaded to the multiphase winding is dynamically adjusted to make
  • the drive motor reaches or substantially reaches the target torque set by the operating component within the preset time; wherein the duration of the second preset time is less than the duration of the first preset time.
  • the input voltage of the first motor 143 changes in a sine wave or a saddle wave
  • the input current of the first motor changes in a sine wave
  • the motor 38 is a three-phase motor, and the input current or input voltage of the motor 38 changes in three-phase symmetrical sine waves, as shown in Figure 15 where the three-phase voltages Uu, Uv, Uw applied to the motor 38 change in sine waves, or The input voltage of the motor 38 changes in a three-phase symmetrical saddle wave.
  • the three-phase voltages Uu, Uv, Uw applied to the motor 38 change in a three-phase symmetrical saddle wave.
  • the three-phase voltages Uu, Uv, and Uw form a phase angle of 120° with each other.
  • the input current of the motor 38 changes in a sine wave corresponding to the input voltage.
  • the control module 30 and the target rotation speed detection module 34 are connected through a bus 39.
  • the target rotation speed detection module 34 sends data to the target rotation speed detection module 34 through the bus 39, and the control module 30 receives the data through the bus 39.
  • the communication frame rate of the bus is in the range of 10Hz-600Hz. In this way, the data transmission rate between the left motor control module 50L and the left motor target speed detection module 51L can be increased, thereby increasing the response speed of the motor 58.
  • the target rotation speed detection module 34 includes a sensor, and the data refresh rate of the sensor ranges from 50 microseconds/time to 10 milliseconds/time, thereby improving the response speed of the motor 58.
  • the data refresh rate of the sensor ranges from 50 microseconds/time to 200 microseconds/time. In some embodiments, the data refresh rate of the sensor ranges from 100 microseconds/time to 300 microseconds/time. In some embodiments, the data refresh rate of the sensor ranges from 200 microseconds/time to 500 microseconds/time. In some embodiments, the data refresh rate of the sensor ranges from 100 microseconds/time to 1 millisecond/time. In some embodiments, the data refresh rate of the sensor ranges from 500 microseconds/time to 1 millisecond/time. In some embodiments, the data refresh rate of the sensor ranges from 1 millisecond/time to 10 milliseconds/time.
  • the control system includes: a control module 50, a power supply 51, a drive circuit 53, a target speed detection module 54, an actual speed detection module 55, and a rotor position detection Module 56, current detection module 57, motor 58, and bus 59.
  • the functions and structure of the multiple components of this embodiment are the same as or similar to those of the multiple components of the previous embodiment shown in FIG. 6, and will not be repeated here. The difference is that this embodiment uses a control module 50 , Which mainly includes: a first speed loop 501, a current distribution unit 502, a first current loop 503, a second current loop 504, a voltage conversion unit 505, a current conversion unit 507, and a PWM signal generation unit 506.
  • the first rotation speed ring 501 is associated with the target rotation speed detection module 54 and the actual rotation speed detection module 55, and the first rotation speed ring 501 obtains the target rotation speed n0 of the motor 58 set by the operating device 15 and detected by the user from the target rotation speed detection module 54 And the actual rotation speed n of the motor 58 detected by the actual rotation speed detection module 55.
  • the target rotational speed detection module 54 is associated with the operating device. In this embodiment, the target rotational speed detection module 54 is associated with the operating rod 151 to detect the position or the angle of rotation of the operating rod 151.
  • the target rotation speed detection module 54 can adopt the position detection module 17 shown in FIGS. 2 and 4.
  • the first rotation speed loop 501 is used to generate a target current is0 according to the target rotation speed n0 and the actual rotation speed n of the motor 58.
  • the first speed loop 501 can generate a target current is0 through comparison and adjustment according to the target speed n0 and the actual speed n of the motor 57, and the target current is0 is used to make the actual speed n of the motor 57 approach the target speed n0.
  • the first speed loop includes a comparison and adjustment unit (not shown), and the adjustment unit may be a PI adjustment unit.
  • the current distribution unit 502 is connected to the first rotation speed loop 501, and is used to distribute the direct-axis target current id0 and the quadrature-axis target current iq0 according to the target current is0.
  • the straight axis and the quadrature axis constitute a straight axis-quadrature axis coordinate system.
  • the straight axis-quadrature axis coordinate system establishes a coordinate system on the motor rotor. This coordinate system rotates synchronously with the rotor.
  • the direction of the rotor magnetic field is
  • the direct axis is the quadrature axis perpendicular to the magnetic field of the rotor.
  • the direct axis target current id0 is in the same direction as the direct axis
  • the quadrature axis target current iq0 is in the same direction as the quadrature axis.
  • the quadrature axis target current iq0 is the excitation current, which is used to control the torque.
  • the quadrature-axis target current iq0 can be used to control the speed of the motor to reach the target speed n0 of the motor 58 as quickly and stably as possible.
  • the principle is to use the torque current to control the electromagnetic torque of the motor to maximize the rotation of the rotor.
  • the quadrature-axis target current iq0 and the direct-axis target current id0 can be obtained by calculation or can be set directly.
  • the electromagnetic torque Te of the motor can be obtained by the following formula:
  • ⁇ f is the rotor flux linkage
  • iq is the quadrature axis current
  • id is the direct axis current
  • Ld is the direct axis inductance
  • Lq is the quadrature axis inductance
  • Pn is the number of magnetic pole pairs.
  • the current distribution unit 502 makes the quadrature axis target current iq0 as large as possible. Since the quadrature axis target current iq0 and the direct axis target current iq0 are actually obtained by decoupling the target current is0 of the motor, if the quadrature axis target current iq0 is to be as large as possible, the direct axis target current iq0 should be as small as possible.
  • stator flux linkage ⁇ s specifies the flux linkage formed by the magnetic flux generated by the sub-current and the stator winding.
  • the rotor flux linkage ⁇ f refers to the flux linkage formed by the magnetic flux generated by the rotor permanent magnets and the stator winding.
  • ⁇ f is the rotor flux linkage
  • Lq and Ld are the inductances of the quadrature axis and the direct axis of the stator winding, respectively.
  • is0 is the target current is0 generated by the first speed loop 501 according to the target speed n0 and actual speed n of the motor 58.
  • the stator current space vector is0 is in phase with the stator flux space vector ⁇ s, and the stator flux linkage ⁇ s is clamped to the rotor flux linkage ⁇ f.
  • Angle ⁇ (refer to Figure 10).
  • the formula contains two items.
  • 1.5Pn ⁇ f*iq is the permanent magnet torque T1, as shown in the curve in Figure 11.
  • T1; the latter 1.5Pn(Ld-Lq)*id*iq is the reluctance torque T2, as shown in the curve T2 in Figure 11; Te is the composite of the curve T1 and the curve T2. It can be seen from Fig. 11 that the synthesized electromagnetic torque Te has an approximate maximum value Tmax or a maximum value Tmax within the range of the corresponding torque angle of 90°-135°.
  • the current distribution unit 502 distributes the quadrature-axis target current iq0 and the direct-axis target current id0 so that the included angle ⁇ between the stator flux linkage ⁇ s and the rotor flux linkage ⁇ f is in the range of 90°-135°, which can obtain
  • the electromagnetic torque Te is as large as possible, so that the actual torque of the motor 58 can reach the target torque as soon as possible, thereby increasing the torque corresponding speed of the motor 58, so that the speed of the motor 58 can reach or basically reach the target speed in a relatively fast time n0.
  • the control module 50 can control the current loaded on the stator by controlling the three-phase voltage Uu, Uv, Uw loaded on the motor 58 according to the motor speed, motor current, and rotor position, so that the stator winding generates a stator current space vector is0, the stator current space vector is0 and the stator flux space vector ⁇ s are in phase, and the stator current space vector is0 is the target current is0, as the above-mentioned target current is0 can be distributed by the current distribution unit 502 as the direct-axis target current id0 and the quadrature-axis target current iq0, the control module 50 can control the angle ⁇ between the stator flux linkage ⁇ s and the rotor flux linkage ⁇ f by separately controlling the quadrature axis current iq and the direct axis current id, so that the motor 58 can output as much electromagnetic torque Te as possible.
  • the actual torque of the motor 58 can reach the target torque as soon as possible, thereby increasing the torque
  • the direct-axis target current id0 and the quadrature-axis target current iq0 distributed by the current distribution unit 502 according to the target current is0 can make the rotor of the motor 58 generate as much electromagnetic torque Te as possible, so that the actual torque of the motor 58 can reach the target as soon as possible
  • the torque so that the rotation speed of the motor 58 can reach the target rotation speed n0 of the motor 58 set by the user through the operating device 15 as quickly as possible, thereby improving the torque response speed and the rotation speed response speed of the motor 58.
  • the current conversion unit 507 obtains three-phase currents iu, iv, and iw, and performs current conversion to convert the three-phase currents iu, iv, and iw into two-phase currents, which are the direct-axis actual current id and the quadrature-axis actual current iq, respectively.
  • the current detection module 57 transmits the detected three-phase currents iu, iv, and iw in the actual operation of the motor 58 to the current conversion unit 507 in the control module 50.
  • the current conversion unit 507 includes Park conversion and Clark conversion.
  • the first current loop 503 is connected to the current distribution unit 502 and the current conversion unit 507 to obtain the direct-axis target current id0 and the direct-axis actual current id, and generate the first voltage adjustment amount Ud according to the direct-axis target current id0 and the direct-axis actual current id ,
  • the first voltage adjustment amount Ud can make the direct axis actual current id approach the direct axis target current id0 as soon as possible.
  • the first current loop 503 includes a comparison and adjustment unit (not shown).
  • the adjustment unit may be PI adjustment.
  • the first current loop 503 includes comparing the direct-axis target current id0 with the direct-axis actual current id, and performing PI according to the comparison result. Adjust to generate the first voltage adjustment amount Ud.
  • the second current loop 504 is connected to the current distribution unit 502 and the current conversion unit 507 to obtain the quadrature axis target current iq0 and the quadrature axis actual current iq, and generate the second voltage adjustment amount Uq according to the quadrature axis target current iq0 and the quadrature axis actual current iq ,
  • the second voltage adjustment amount Uq is used to make the quadrature axis actual current iq approach the quadrature axis target current iq0.
  • the second current loop 504 includes a comparison and adjustment unit (not shown).
  • the adjustment unit may be PI adjustment.
  • the second current loop 504 includes comparing the quadrature axis target current iq0 with the quadrature axis actual current iq, and performing PI according to the comparison result. Adjust to generate a second voltage adjustment amount Uq.
  • the above-mentioned first voltage adjustment amount Ud and second voltage adjustment amount Uq need to be converted into control signals for controlling the driving circuit 53 after some transformations and calculations.
  • the first voltage adjustment amount Ud and the second voltage adjustment amount Uq are sent to the control signal generating unit for conversion and calculation.
  • the control signal generation unit includes a voltage conversion unit 505 and a PWM signal generation unit 506.
  • the voltage conversion unit 505 is connected to the first current loop 503 and the second current loop 504 to obtain the first voltage adjustment amount Ud and the second voltage adjustment amount Uq, and the position of the rotor of the motor 58 from the rotor position detection module 56, and can The first voltage adjustment amount Ud and the second voltage adjustment amount Uq are converted into intermediate amounts Ua and Ub related to the three-phase voltage Uu, Uv, Uw loaded to the motor 58 and output to the PWM signal generating unit 506, and the PWM signal generating unit 506
  • the PWM signal is generated according to the intermediate quantities Ua and Ub to control the switching elements of the drive circuit 53, so that the power supply 51 can output three-phase voltages Uu, Uv, Uw to be applied to the windings of the motor 58, Uu, Uv, Uw are three-phase symmetric Sine wave voltage or saddle wave voltage, the three-phase voltages Uu, Uv, Uw form a 120° phase difference.
  • the voltage conversion unit 505 includes Park inverse
  • this embodiment adopts the following control methods:
  • the current conversion unit 507 obtains the detected three-phase currents iu, iv, iw of the current detection module 57 and the rotor position information of the rotor position detection module 56 and performs current conversion to convert the three-phase currents iu, iv, iw into two-phase
  • the currents are the direct axis actual current id and the quadrature axis actual current iq respectively.
  • the first current loop 503 obtains the direct-axis target current id0 and the direct-axis actual current id, and generates the first voltage adjustment amount Ud according to the direct-axis target current id0 and the quadrature-axis actual current id.
  • the second current loop 504 obtains the above quadrature axis target current iq0 and the direct axis actual current iq, and generates a second voltage adjustment amount Uq according to the quadrature axis target current iq0 and the quadrature axis actual current iq.
  • the voltage conversion unit 505 obtains the first voltage adjustment amount Ud, the second voltage adjustment amount Uq, and the rotor position of the rotor position detection module 56, and converts the first voltage adjustment amount Ud and the second voltage adjustment amount Uq into and loads the motor 58
  • the intermediate quantities Ua and Ub related to the three-phase voltages Uu, Uv, and Uw are output to the PWM signal generating unit 506, and the PWM signal generating unit 506 generates PWM signals according to the intermediate quantities Ua and Ub to control the switching elements of the drive circuit 53, thereby making
  • the power supply 51 outputs three-phase voltages Uu, Uv, and Uw to be applied to the windings of the motor 58.
  • the three-phase voltage Uu, Uv, Uw is three-phase symmetrical sine wave voltage ( Figure 15) or saddle wave voltage (Figure 16), three-phase voltage Uu, Uv, UwUu , Uv, Uw make 120° phase difference with each other.
  • the control module 50 outputs a control signal that changes with the change of the rotor position to dynamically adjust and control the voltage and/or current applied to the motor, so that the motor 58 can obtain a larger rotor position as much as possible.
  • the electromagnetic torque in this way, the speed of the motor 58 can reach the target speed n0 of the motor 58 set by the user through the operating device 15 as quickly as possible, thereby improving the response speed of the motor 58.
  • the riding lawn mower 10 of the present application can make the response speed of the output torque of the first motor 143 within 100 ms.
  • the first motor 143 The response speed of output torque is within 80ms.
  • the preset time is less than the response speed of the output torque of the first motor 143 within 50 ms.
  • the response speed of the output torque of the first motor 143 is within 20 ms.
  • the actual rotation speed of the first motor 143 can also reach or substantially reach the target rotation speed in a relatively quick time.
  • the actual rotation speed of the first motor 143 reaches or substantially reaches the target rotation speed within a preset time, and the preset time is less than 800 ms.
  • the preset time is less than 600 ms. In some embodiments, the preset time is less than 300 ms.
  • the present application adopts the above-mentioned bus 59 and the target rotation speed detection module 54 to increase the motor response speed of the riding lawn mower 10 of the present application, so that the response speed of the output torque of the first motor 143 is within 10 ms .
  • the range of the communication frame rate of the bus is 100 Hz-2000 Hz.
  • the range of the communication frame rate of the bus is 200 Hz-2000 Hz.
  • the range of the communication frame rate of the bus is 300 Hz-3000 Hz.
  • the communication frame rate of the bus ranges from 100 Hz to 1000 Hz. In some embodiments, the communication frame rate of the bus ranges from 200 Hz to 800 Hz. In some embodiments, the communication frame rate of the bus ranges from 100 Hz to 500 Hz. In some embodiments, the communication frame rate of the bus ranges from 500 Hz to 1000 Hz. In some embodiments, the communication frame rate of the bus ranges from 500 Hz to 1500 Hz. In some embodiments, the communication frame rate of the bus ranges from 1000 Hz to 2000 Hz. In some embodiments, the communication frame rate of the bus ranges from 1000 Hz to 1500 Hz.
  • the communication frame rate of the bus 59 refers to the number of times the bus receives and/or sends data packets in one second.
  • the target rotation speed detection module 54 includes a sensor, and the sensor data refresh rate ranges from 50 microseconds/time to 10 milliseconds/time.
  • the data refresh rate of the sensor ranges from 50 microseconds/time to 200 microseconds/time.
  • the data refresh rate of the sensor ranges from 100 microseconds/time to 300 microseconds/time.
  • the data refresh rate of the sensor ranges from 200 microseconds/time to 500 microseconds/time.
  • the data refresh rate of the sensor ranges from 100 microseconds/time to 1 millisecond/time.
  • the data refresh rate of the sensor ranges from 500 microseconds/time to 1 millisecond/time.
  • the data refresh rate of the sensor ranges from 1 millisecond/time to 10 milliseconds/time.
  • the above-mentioned bus 59 may not be used, the control module 50 and the target speed detection module 54 are connected by a common connection line, and the target speed detection module 54 uses a sensor with the above-mentioned data refresh rate.
  • the control method can make the actual torque of the first motor reach or substantially reach the target torque within the first preset time, and the first preset time is less than 60 ms.
  • the target rotation speed detection module 54 uses a sensor with a normal data refresh rate
  • the bus 59 uses a bus with the above communication frame rate. In this way, the above control method can make the actual torque of the first motor The target torque is reached or substantially reached within the first preset time, and the first preset time is less than 60 ms.
  • the control system includes: a control module 60, a power supply 61, a drive circuit 63, a target rotation speed detection module 64, an actual rotation speed detection module 65, and a rotor position Detection module 66, current detection module 67, motor 68, bus 69.
  • the functions and structures of the multiple components of this embodiment are the same as or similar to those of the multiple components of the previous embodiment shown in FIG. 10, and will not be repeated here. The difference is that this embodiment uses another control module. 60.
  • the control module 60 includes: a second speed loop 601, a current distribution unit 602, a target flux linkage calculation unit 603, a torque loop 604, a flux linkage loop 605, a feedback linearization control unit 606, a voltage conversion unit 607, and PWM signal generation Unit 608, current conversion unit 609, torque and flux linkage calculation unit 610.
  • the second rotation speed ring 601 is associated with the target rotation speed detection module 64 and the actual rotation speed detection module 65.
  • the second rotation speed ring 601 obtains the target rotation speed n0 of the motor 68 set by the operating device 15 and detected by the user from the target rotation speed detection module 64.
  • the target rotational speed detection module 64 is associated with the operating device. In this embodiment, the target rotational speed detection module 64 is associated with the operating rod 151 and is used to detect the position or the angle of rotation of the operating rod 151.
  • the target rotation speed detection module 64 may adopt the position detection module 17 shown in FIGS. 2 and 4.
  • the second speed loop 601 is used to generate a target torque Te0 according to the target speed n0 and the actual speed n of the motor 68, and the target torque Te0 is the electromagnetic torque Te0.
  • the second rotation speed ring 601 can generate a target torque Te0 through comparison and adjustment according to the target rotation speed n0 and the actual rotation speed n of the motor 68.
  • the target torque Te0 is used to make the actual rotation speed n approach the target rotation speed n0 as soon as possible.
  • the second speed ring 601 includes a comparison and adjustment unit (not shown), and the adjustment unit may be a PI adjustment unit.
  • the current distribution unit 602 distributes the direct-axis target current id0 and the quadrature-axis target current iq0 according to the output target torque Te0.
  • the direct-axis target current id0 and the quadrature-axis target current iq0 are vectors with directions and magnitudes, and the electrical angle between the direct-axis target current id0 and the quadrature-axis target current iq0 is 90°, and the direct-axis target current id0 And the quadrature axis target current iq0 is located on the direct axis and quadrature axis respectively.
  • the direct-axis target current id0 and the quadrature-axis target current iq0 can be obtained according to the following formula:
  • ⁇ f is the rotor flux
  • ⁇ s is the stator flux
  • Lq and Ld are the inductances of the quadrature axis and the direct axis of the stator windings
  • Pn is the number of magnetic pole pairs.
  • the target flux linkage calculation unit 603 can calculate the target stator flux linkage ⁇ s0 based on the direct-axis target current id0 and the quadrature-axis target current iq0. In this way, the control module 73 can directly dynamically adjust the stator flux ⁇ s and the electromagnetic torque Te0, so that the motor speed can reach or basically reach the target speed within the preset time range.
  • the target stator flux linkage ⁇ s0 can also be obtained in other ways, and is not limited to the calculation obtained by the target flux linkage calculation unit 603 of this embodiment according to the direct-axis target current id0 and the quadrature-axis target current iq0.
  • control module 73 controls the angle ⁇ between the stator flux ⁇ s and the rotor flux ⁇ f to be 90°; optionally, the control module 73 controls the angle ⁇ between the stator flux ⁇ s and the rotor flux ⁇ f Between 90°-135° (refer to Figure 13), in this way, the motor 68 can obtain a larger electromagnetic torque Te, so that the actual speed of the motor 68 can reach or basically reach within the preset time range Target speed.
  • the current conversion unit 609 obtains the detected three-phase currents iu, iv, iw of the current detection module 67 and the rotor position ⁇ output from the rotor position detection module 66, and converts the three-phase currents iu, iv, iw into Two-phase actual currents, the direct axis actual current id and the quadrature axis actual current iq respectively, the direct axis actual current id and the quadrature axis actual current iq are vectors with direction and magnitude, and the direct axis actual current id and the quadrature axis actual current iq are The directions are perpendicular to each other.
  • the torque and flux calculation unit 610 obtains the direct axis actual current id and the quadrature axis actual current iq from the current conversion unit 609, and generates the actual torque Te and the actual stator flux linkage based on the direct axis actual current id and the quadrature axis actual current iq ⁇ s.
  • the actual torque Te is output to the torque ring 604, and the actual flux linkage ⁇ s is output to the flux linkage ring 605.
  • the actual torque Te and the actual stator flux linkage ⁇ s can also be obtained by direct detection.
  • the torque loop 604 obtains the actual torque Te calculated by the torque and flux calculation unit 610 and the target torque Te0 output by the speed loop 610, and generates a first adjustment amount v1 according to the actual torque Te and the target torque Te0.
  • the first adjustment value v1 is used to compensate the actual torque Te, so that the actual torque Te approaches the target torque Te0.
  • the torque ring 604 includes a comparison and adjustment unit.
  • the adjustment unit includes PI adjustment.
  • the torque ring 604 compares the actual torque Te with the target torque Te0, and performs PI adjustment to obtain the first adjustment amount v1.
  • the flux ring 605 obtains the actual stator flux ⁇ s calculated by the torque and flux calculation unit and the target stator flux ⁇ s0 generated by the target flux calculation unit 603, and generates it based on the actual stator flux ⁇ s and the target stator flux ⁇ s0
  • the second adjustment amount v2 is used to compensate the actual stator flux linkage ⁇ s, so that the actual stator flux linkage ⁇ s approaches the target stator flux linkage ⁇ s0.
  • the flux ring 605 includes a comparison and adjustment unit.
  • the adjustment unit includes PI adjustment.
  • the flux ring 605 compares the actual stator flux linkage ⁇ s with the target stator flux linkage ⁇ s0, and performs PI adjustment to obtain the second adjustment amount v2 .
  • the first adjustment amount v1 and the second adjustment amount v2 need to be converted and calculated into control signals for controlling the driving circuit 63 after some transformations and calculations.
  • the first adjustment amount v1 and the second adjustment amount v2 are input to the control signal generation unit.
  • the control signal generation unit optionally includes a feedback linearization control unit 606, a voltage conversion unit 607, and a PWM signal generation unit 608 .
  • the feedback linearization control unit 606 is based on the first adjustment amount v1 generated by the torque loop 604, the second adjustment amount v2 generated by the flux link 605, and the direct axis of the actual stator flux ⁇ s generated by the torque and flux calculation unit 610 Component ⁇ d and quadrature axis component ⁇ q, and according to v1, v2, ⁇ d, ⁇ q to generate voltage control quantity Uq and voltage control quantity Ud in the direct axis and quadrature axis coordinate system.
  • the voltage conversion unit 607 acquires the voltage control quantity Uq and the second voltage control quantity Ud, and transforms the voltage control quantity Uq and the voltage control quantity Ud into the voltage control quantity U ⁇ and the voltage control quantity U ⁇ in the ⁇ - ⁇ coordinate system.
  • the PWM signal generating unit 608 generates a PWM control signal for controlling the drive circuit 63 according to the voltage control amount U ⁇ and the voltage control amount U ⁇ in the ⁇ - ⁇ coordinate system, so that the power supply 61 outputs three-phase voltages Uu, Uv, Uw and loads them to The windings of the motor 68.
  • Uu, Uv, and Uw are three-phase symmetrical sine wave voltages or saddle wave voltages, and Uu, Uv, and Uw form a 120° phase difference with each other.
  • the three phases Uu, Uv, Uw loaded to the motor 68 make the angle between the stator flux ⁇ s0 and the rotor flux ⁇ f 90°.
  • the three phases Uu, Uv, Uw loaded to the motor 68 make the angle between the stator flux ⁇ s0 and the rotor flux ⁇ f in the range of 90°-135°.
  • the torque control is performed directly according to the actual feedback electromagnetic torque Te and the stator flux linkage ⁇ s, so that the motor can obtain a faster torque response speed.
  • This embodiment compares the error obtained by comparing the given target torque and the actual torque, and the error obtained by comparing the given target stator flux with the actual stator flux, to select an appropriate voltage vector for control Since the comparison between the given torque and the actual torque is performed directly, the control effect of this embodiment is determined by the actual torque. Therefore, a faster torque response can be obtained, thereby making the riding style of the application
  • the lawn mower 10 can make the response speed of the output torque of the first motor 143 within 100 ms.
  • the present application adopts the above-mentioned bus 69 and the target rotation speed detection module 64, which can improve the motor response speed of the riding lawn mower 10 of the present application, and can make the response speed of the output torque of the first motor 143 be within 10 ms.
  • the bus 69 and the target rotation speed detection module 64 are the same as the bus 59 and the target rotation speed detection module 54 in the foregoing embodiment.
  • the above two implementation manners use different control methods to enable the motor to obtain a faster torque response and increase the response speed of the motor output torque, so that the actual torque of the first motor reaches or reaches within the first preset time.
  • the target torque is basically reached, and the first preset time is less than 100 ms, so that the actual rotation speed of the first motor reaches or substantially reaches the target rotation speed within the preset time, and the preset time is less than 800 ms.
  • the control signal output by the control module (30, 50, 60) to the drive circuit (33, 53, 63) is a control signal that changes following the change of the rotor position of the motor (38, 58, 68),
  • the input voltage and/or current of the motor (38, 58, 68) changes with the change of the rotor position, and the input voltage and/or current of the motor (38, 58, 68) changes in a sine wave or a saddle wave, thereby Make the motor have continuous and alternating current states on the three-phase stator windings in at least one electric cycle or part of the electric cycle.
  • the current states on the three-phase stator windings can synthesize vector torques, which are approximately continuously moving along the circumference.
  • the control module outputs a control signal to the drive circuit so that the input current or input voltage of the first motor changes with the position of the rotor of the first motor, so that the actual rotation speed of the first motor reaches or The target speed is basically reached, and the preset time is less than 100ms.
  • buses (59, 69) and target speed detection modules (54, 64) can be used to increase the motor response speed of the riding lawn mower 10 of the present application, and the response speed of the output torque of the first motor 143 can be increased. Within 10ms.
  • the position of the operating lever 151 corresponds to the speed of the first motor 143.
  • the target speed detection module (54, 64) corresponding to the operating rod 151 outputs a detection signal to the control module (30, 50, 60), and the detection signal corresponds to the current position of the operating rod 151.
  • the control module 30 obtains the target rotation speed of the first motor 151 corresponding to the operating rod 151 through a table lookup or calculation method according to the detection signal.
  • the actual rotation speed detection module (55, 65) feeds back the detection signal about the actual rotation speed of the first motor 143 detected by the control module (50, 60), and the control module (50, 60) obtains the first detection signal according to the detection signal.
  • the actual speed of the motor 143, the control module (50, 60) compares the obtained actual speed of the first motor 143 with the target speed to obtain an error, and according to the obtained error, by controlling the quadrature axis and the direct axis current vector or through
  • the stator flux and torque are controlled so that the first motor 143 can reach or basically reach the target speed set by the user through the operating lever 151 within a preset time.
  • This process control module (50, 60) constantly compares the target speed of the first motor 143 with the actual speed. By using the above two controllers (50, 60) and the corresponding control process, it can be used in a relatively short time.
  • the first motor 143 can reach or substantially reach the target speed set by the user through the operating lever 151 within a prese
  • the target speed n0 of the first motor 143 is proportional to the operating position of the operating lever 151 (such as the angle position P), and the angle of the operating lever 151 A dead zone is set near the zero angle position of the position P (such as the dashed line near the zero operation position in FIG. 14(a)). In the dead zone, the target speed of the first motor 143 does not change.
  • the dead zone indicates that the target speed of the first motor 143 remains unchanged when the operating lever 151 is pushed from the beginning to the preset angle position Pa.
  • the target speed of the first motor 143 is zero at this time, so that It prevents the first motor 143 from malfunctioning due to some jitters and causing safety accidents. Outside the dead zone, it can be considered that the position of the operating rod 151 at a certain angular position represents a certain target rotation speed n0 of the first motor 143.
  • the first motor 143 is provided with a maximum output torque TM.
  • the target rotation speed n0 and the maximum output torque TM of the first motor 143 can be determined.
  • the target torque is also set, and the target torque can be used to make the first motor 143 reach the target speed as soon as possible.
  • the output torque T of the first motor 143 changes in a curve with the actual rotation speed n of the first motor 143.
  • the first motor 143 The output torque of a motor should be increased to make the first motor 143 accelerate, but the increased torque should not exceed the maximum torque value TM specified by the first motor 143 at this angle; in the same way, if the actual value of the first motor 143 If the speed n is greater than the target speed n0, the output torque T should be reduced to decelerate the first motor 143; if the actual speed n of the first motor 143 is equal to the target speed n0, the output torque Ta of the first motor 143 is zero at this time.
  • the response speed of the first motor 143 Due to the setting of the aforementioned dead zone interval, the response speed of the first motor 143 will be reduced. However, with the solution of the present application, even if the aforementioned dead zone interval is provided, the response speed of the output torque of the first motor 143 can be made within 100 ms.
  • the operating device of the riding lawn mower 10 in the above embodiment is not limited to the operating device 15 including the operating rods 151 provided on the left and right in the above embodiment, and other operating devices, such as the riding device shown in FIG.
  • the operating device 75 of the riding lawn mower 70 includes a steering wheel 751 and a speed lever 752 (throttle), which can also achieve a response speed of the motor output torque within 100ms and within 40ms.
  • the steering wheel 751 is an electronic steering wheel.
  • the vehicle lawn mower 70 includes: a frame 71, a seat 72, a power output assembly 73, a traveling assembly 74, an operating device 75, and a power supply device 76.
  • the structure and function of the frame 71, the seat 72, the power output assembly 73, the walking assembly 74, and the power supply device 76 are the same as or similar to those of the riding lawn mower 10 of the foregoing embodiment, and will not be repeated here. The difference lies in the different operating devices.
  • the operating device 75 of the vehicular lawn mower 70 uses a combination of a steering wheel 751 and a speed lever 752 (throttle).
  • the speed of the left motor and the right motor are distributed through the rotation angle of the steering wheel 751 and the speed given by the speed lever to control the first travel Wheel 741 of walking. Similar to the above embodiment, the target speed is determined by the position of the speed lever 752 (throttle), and the target speed is compared with the actual speed.
  • the two controllers and control methods in the above embodiment are used to achieve the actual speed of the motor quickly through
  • the target speed set by the speed lever 151 can be checked to increase the corresponding speed of the motor to improve the user experience and the safety of the riding lawn mower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Harvester Elements (AREA)

Abstract

一种骑乘式割草机,包括:行走组件、动力输出组件、电源装置、驱动电路、操作装置、控制模块,其中,行走组件包括行走轮以及驱动行走轮行走的第一马达,操作装置用于设置第一马达的目标转矩和目标转速中的至少一个,控制模块用于输出控制信号至驱动电路使第一马达的输入电流或输入电压跟随第一马达的转子的位置变化而变化,使得第一马达的实际转矩在预设时间内达到或基本达到目标转矩。

Description

骑乘式割草机
本申请要求申请日为2019年6月21日、申请号为201910543909.4,以及申请日为2019年12月30日、申请号为201911389143.5的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及骑乘式割草机。
背景技术
骑乘式割草机或骑式割草机,在面积比较大的高尔夫球场或草场比较受欢迎,用户可以坐在骑乘式割草机上,通过操控操作杆自如地控制割草机任意行进方向进行割草,相较于手推式割草机进行割草,省力得多。
用户通过推动操作装置,以设定驱动行走轮的马达的目标速度,控制单元能够获取该目标速度,然后根据该目标转速输出控制信号给驱动行走轮的第一马达以输出扭矩给行走轮,从而驱动行走轮按照设定的目标速度行走。但是,相关技术中的电机控制方式,存在滞后性,马达的扭矩响应速度慢,可能会出现马达不能在预设时间内达到操作装置设定的目标速度,也会造成操作者误判断而导致骑乘式割草机行走时发生窜动,这样会使得用户操作体验差,当马达的扭矩响应速度超过100ms-200ms范围时,操作者已经能够感觉到马达的扭矩响应速度慢。另外,由于马达的扭矩响应速度慢,一方面会造成操作者误判断而错误操作导致骑乘式割草机窜动,另一方面,在割草机在爬坡过程中,可能会由于马达的响应的滞后性导致割草机后溜而发生危险。
对于骑乘式割草机而言,希望通过操作装置设定马达的目标转速和目标转矩后,第一马达的扭矩响应速度更快,使得第一马达能稳定且快速地达到目标转速,增强用户体验感。而相关技术中的控制系统,马达的扭矩响应速度慢,无法在较短的时间内达到目标转速和目标转矩,造成用户体验差,且存在安全风险。
发明内容
本申请提供了一种具有较快马达响应速度的骑乘式割草机。
一实施例提供一种骑乘式割草机,包括:机架;座椅,设置在机架的上方以支撑操作者;轮组,设置于机架下方且用于带动机架移动,轮组至少包括两个驱动轮;行走电机,用于驱动驱动轮转动,行走电机包括定子和转子;多个电池包,至少用于为行走电机提供动力来源;操作组件,设置于机架上方,至少用于供操作者操作以设定骑乘式割草机的目标状态,以及行走电机的目标转速或目标转矩中的一个;其中,目标状态包括前进状态、停止状态或后退状态之一;驱动电路,与行走电机电性连接,用于将电池包的电能以预设逻辑关系分配给定子上的多相绕组,以使驱动电机产生持续不断地转矩;第一检测装置,用于实时检测驱动轮的实测转速;电流检测模块,用于检测驱动电机的三相电流;控制模块,被配置为:接收第一检测装置发送的实测转速和操作组件设定的目标转速;基于第一检测装置以第一预设时间间隔发送的驱动轮的实测转速、操作组件设定的目标转速或目标转矩之一以及驱动电机的转子位置,动态调整加载至多相绕组的电流以使驱动电机在预设时间内达到或基本达到操作组件设定的目标转矩;第一检测装置的数据刷新率位于50微秒/次至10毫秒/次之间。
一实施例提供一种草坪护理车,包括:机架;座椅,设置在机架的上方以支撑操作者;轮组,设置于机架下方且用于带动机架移动,轮组至少包括两个驱动轮;行走电机,用于驱动驱动轮转动,行走电机包括定子和转子;多个电池包,至少用于为行走电机提供动力来源;操作组件,设置于机架上方,至少用于供操作者操作以设定草坪护理车的目标状态,以及行走电机的目标转速或目标转矩中的一个;其中,目标状态包括前进状态、停止状态或后退状态之一;驱动电路,与行走电机电性连接,用于将电池包的电能以预设逻辑关系分配给定子上的多相绕组,以使驱动电机产生持续不断地转矩;第一检测装置,用于实时检测驱动轮的实测转速;电流检测模块,用于检测驱动电机的三相电流;控制模块,被配置为:接收第一检测装置发送的实测转速和操作组件设定的目标转速;基于第一检测装置以第一预设时间间隔发送的驱动轮的实测转速、操作组件设定的目标转速或目标转矩之一以及驱动电机的转子位置,动态调整加载至多相绕组的电流以使驱动电机在预设时间内达到或基本达到操作组件设定的目标转矩。
一实施例提供一种骑乘式割草机,包括:行走组件,包括行走轮以及驱动行走轮行走的第一马达,第一马达包括定子和转子;动力输出组件,包括用于割草的刀片以及驱动刀片的第二马达;电源装置,至少用于为第一马达提供电 能;驱动电路,用于将电源装置的电能加载至第一马达;操作装置,用于设置第一马达的目标转矩和目标转速中的至少一个;控制模块,用于输出控制信号至驱动电路使第一马达的输入电流或输入电压跟随第一马达的转子的位置变化而变化,使得第一马达的实际转矩在第二预设时间内达到或基本达到目标转矩,第二预设时间小于100ms。
可选地,操作装置还用于设置第一马达的目标转速;第一马达的实际转速在预设时间内达到或基本达到目标转速,预设时间小于800ms。
可选地,还包括:目标转速检测模块,与操作装置关联连接,目标转速检测模块用于检测操作装置设置的第一马达的目标转速。
可选地,骑乘式割草机还包括:电流检测模块,用于检测第一马达的电流;电流检测模块与第一马达连接,且与控制模块连接;目标转速检测模块,用于检测操作装置设置的第一马达的目标转速;目标转速检测模块与操作装置关联连接,且与控制模块连接;实际转速检测模块,用于检测第一马达的实际转速;实际转速检测模块与第一马达关联连接,且与控制模块连接。
可选地,骑乘式割草机还包括:电流检测模块,用于检测第一马达的电流;电流检测模块与第一马达连接,且与控制模块连接;目标转速检测模块,用于检测操作装置设置的第一马达的目标转速;目标转速检测模块与操作装置关联连接,且与控制模块连接;实际转速估算模块,用于检测根据电流检测模块的检测到的第一马达的电流估算第一马达的实际转速;实际转速估算模块与电流检测模块连接,且与控制模块连接。
可选地,骑乘式割草机还包括:转子位置检测模块或转子位置估算模块,用于获取第一马达的转子位置,转子位置检测模块或转子位置估算模块与控制模块连接;控制模块根据转子位置输出跟随转子位置变化而变换的控制信号。
可选地,目标转速检测模块与控制模块通过总线连接。
可选地,总线的通讯帧率的范围为100Hz-3000Hz。
可选地,第一预设时间小于60ms。
可选地,目标转速检测模块包括传感器,传感器的数据刷新速率的范围为50微秒/次-10毫秒/次。
可选地,第一预设时间小于10ms。
可选地,目标转速检测模块包括传感器,传感器的数据刷新速率的范围为50微秒/次-10毫秒/次。
可选地,第一预设时间小于60ms。
可选地,第一马达的定子磁链与转子磁链的夹角为90°。
可选地,定子磁链与转子磁链的夹角的处于90°-135°范围内。
可选地,第一马达的输入电压呈正弦波或马鞍波变化,第一马达的输入电流呈正弦波变化。
可选地,操作装置包括:
至少一个支架,支架能够安装在骑乘式割草机上;
操作杆,其设置成至少在第一方向绕第一枢轴转动;
枢转组合,枢转组合包括具有第一枢轴的第一枢转组件,第一枢转组件用以将操作杆可枢转地安装在支架上,使操作杆在第一方向绕第一枢轴转动;
目标转速检测模块包括位置检测模组,位置检测模组与操作杆关联连接,用于检测操作杆在第一方向上的位置,操作杆在第一方向上的位置与第一马达的目标转速对应。
可选地,操作装置包括方向盘和速度杆,目标转速检测模块与方向盘和/或速度杆关联连接,用于检测由方向盘和/或速度杆设置的第一马达的目标转速和目标转矩。
可选地,控制模块包括:第一转速环,用于根据第一马达的目标转速和实际转速生成第一马达的目标电流。
可选地,控制模块还包括:电流分配单元,用于根据第一转速环生成的第一马达的目标电流分配直轴目标电流和交轴目标电流;电流变换单元,用于根据第一马达的实际电流和第一马达的转子位置生成直轴实际电流和交轴实际电流;第一电流环,用于根据直轴目标电流和直轴实际电流生成第一电压调节量;第二电流环,用于根据交轴目标电流和交轴实际电流生成第二电压调节量;控制信号生成单元,用于根据第一电压调节量和第二电压调节量生成控制信号,控制信号用于控制驱动电路。
可选地,控制模块包括:第二转速环,用于根据第一马达的目标转速和实际转速生成第一马达的目标转矩。
可选地,控制模块还包括:转矩环,用于根据第一马达的目标转矩和实际转矩生成第一调节量;磁链环,用于根据第一马达的目标定子磁链和实际定子磁链生成第二调节量;控制信号生成单元,用于根据第一调节量和第二调节量生成控制信号,控制信号用于控制驱动电路。
可选地,操作装置的操作位置与第一马达的目标转速之间存在死区区间,在死区区间中,第一马达的目标转速不变。
可选地,操作装置的操作位置与第一马达的目标转矩之间存在死区区间,在死区区间中,第一马达的目标转矩不变。
本申请的骑乘式割草机能够提高驱动行走轮行走的马达更快的响应速度,用户操作体验佳且安全性好。
附图说明
图1是作为一个实施方式的骑乘式割草机的外观图;
图2是作为一种实施方式的骑乘式割草机的操作装置;
图3是另一个视角的图2所示的操作装置;
图4是图2所示的操作装置部分结构图;
图5是骑乘式割草机的包括左马达和右马达的第一马达的控制系统框图;
图6是一个实施方式的左马达和右马达的其中一个的第一马达的控制系统框图;
图7是另一个实施方式的左马达和右马达的其中一个的第一马达的控制系统框图;
图8是作为一种实施方式的第一马达的控制系统框图;
图9是在一种实施方式的电机的空间矢量图;
图10是在另一种实施方式的电机的空间矢量图;
图11是图10所示的电机在相同电流情况下产生的永磁转矩T1、磁阻转矩T2、电磁转矩Te与电角度的关系曲线图;
图12是作为另一种实施方式的第一马达的控制系统框图;
图13是图12所示的第一马达的控制系统下电机的空间矢量图;
图14是操作杆与第一马达的目标转速,第一马达的实际转速与输出扭矩、最大输出扭矩之间的对应关系;
图15是电机的三相电压随转子位置的呈正弦波变化;
图16是电机的三相电压随转子位置的呈马鞍波变化;
图17是作为另一种实施方式的骑乘式割草机的外观图。
具体实施方式
参照图1,作为一种实施方式的骑乘式割草机10,包括:机架11、座椅12、动力输出组件13、行走组件14、操作装置15、电源装置16。
机架11用于承载座椅12,机架11至少部分沿平行于前后方向延伸;座椅12用于供操作者乘坐,座椅12安装至机架11上动力。动力输出组件13连接至机架11,动力输出组件13包括用于输出动力的以实现机械功能的输出件,例如在本实施方式中,输出件可以为用于实现割草功能的刀片131,动力输出组件13还包括用于驱动刀片131高速旋转的第二马达144。动力输出组件13可以包括一个以上的刀片131,对应地,第二马达144的数目可以与刀片131相对应。
行走组件14用于使骑乘式割草机10能够在草坪上行走。行走组件14包括轮组,轮组位于机架下方且能带动机架移动。轮组至少包括两个驱动轮,例如左驱动轮141L和右驱动轮141R。轮组还包括行走轮142(左行走轮142L和右行走轮142R)。行走组件14还包括用于驱动左驱动轮141L的左行走电机143L和驱动右驱动轮141R的右行走电机143R(如图5所示)。
这样,当左行走电机143L和右行走电机143R以不同的转速驱动对应的左驱动轮141L和右驱动轮141R时,左驱动轮141L和右驱动轮141R之间产生速度差,以实现骑乘式割草机10的转向。
电源装置16用于为骑乘式割草机10提供电能。示例性地,电源装置16用于给第一马达143(左行走电机143L和右行走电机143R)、第二马达144以及骑乘式割草机10上的其他电子元器件或电子组件进行供电。在一些实施方式中,电源装置16设置在机架11上的座椅12的后侧。电源装置16包括多个电池包161,用于给骑乘式割草机10提供能量来源,至少一个电池包161还被配置为能为另外一个电动工具20提供能量来源。
操作装置15至少用于设置第一马达143的目标转速,进而能够通过操作装置15设置骑乘式割草机10的目标状态,骑乘式割草机10的目标状态包括骑乘式割草机10的前进状态、后退状态、前进速度、后退速度、零速、准备工作状态(包括,电子模块上电等)或退出工作状态(即驻车状态)等。操作者能够使用操作装置15以控制骑乘式割草机10的行走,或决定骑乘式割草机10的工作状态。
在本实施方式中,操作装置15至少用于供操作者使用以控制行走组件14中的第一马达143,从而控制骑乘式割草机10在草坪上行走,可选的,操作装置15至少用于设定第一马达143的目标转速。示例性的,操作装置15还用于供操作者使用以使骑乘式割草机10进入或退出工作状态。在本实施方式中,操作装置15 的数量为2,分别为右操作装置15R和左操作装置15L,用于对应的控制右马达143R和左马达143L,以分别驱动左第二行走轮右驱动轮141R和左驱动轮141L。两个操作装置15的组成部件相同,且分别位于坐在座骑12上的操作者的右手侧和左手侧,以方便操作。
左操作装置15L和右操作装置15R的结构组成相同,下面说明操作装置的结构组成,为方便描述,以操作装置15来同一描述。参照图2至图4,作为一种可能的实施方式,操作装置15包括:至少一个支架152,能够安装在骑乘式割草机10上,可选地,支架152固定安装在机架11上;操作杆组件,包括操作杆151,操作杆151设置成在第一方向F1绕第一轴线A在前进位置、中档位置及后退位置之间转动,以及在第二方向F2绕第二轴线B在内侧位置及外侧位置之间转动;以及枢转组合,用以将操作杆151可枢转地安装在支架152上,使操作杆151在第一方向F1绕第一轴线A转动,以及在第二方向F2绕第二轴线B转动。在本实施方式中,对于坐在座椅12上的操作者来说,第二轴线B和第一方向F1在其前后方向延伸,第一轴线A和第二方向F2在其左右方向延伸。
枢转组合包括第一枢转组件153,第一枢转组件153安装在支架152上。第一枢转组件153包括第一枢轴1531,其固定安装在第一支架152上,第一枢轴1531限定第一轴线A。在一些实施方式中,第一枢转组件153还包括轴套(未示出)。轴套部分地包围第一枢轴1531,且可绕第一枢轴1531转动。第一枢转组件153供操作杆151在第一方向F1上绕第一轴线A转动,的第一轴线A为第一枢轴1531的轴线。当操作杆251沿第一方向F1绕第一轴线A在前进位置、中档位置、后退位置之间转动时,带动第一枢转组件253在第一方向F1上绕第一轴线A转动。
操作杆151在第一方向F1上的位置对应于操作者设定的对应的第一马达143的目标转速和目标状态,目标状态包括前进、后退、零速状态。在本实施方式中,第一方向F1上的位置包前进位置,中档位置、后退位置,分别对应骑乘式割草机10的前进、零速、后退状态。操作杆151在前进位置与中档位置之间提供前进方向上的多个目标行进速度,操作杆151在中档位置及后退位置之间提供后退方向上的多个目标行进速度。操作者通过推动操作杆151在第一方向F1上转动至不同的位置来设置第一马达143的目标转速和目标状态。
可选地,枢转组合还包括第二枢转组件154,第二枢转组件154安装在第一枢转组件153上第二枢转组件。154包括第二枢轴1541,其固定安装在第一枢转组件153上,第二枢轴1541限定第二轴线B。可选地,第二枢转组件154的第二枢 轴1541固定安装在第一枢转组件153的轴套(未示出)上设置的安装孔中。操作杆151可枢转地安装在第二枢轴1541上,且可绕第二枢轴1541转动。操作杆151上设置有穿孔,穿孔供第二枢轴1541穿过,操作杆151可绕第二枢轴1541转动。第二枢转组件154供操作杆151在第二方向F2上绕第二轴线B转动,的第二轴线B为第二枢轴1541的轴线。当操作杆151在第二方向F2上绕第二枢轴1551在内侧位置、外侧位置之间转动时,带动第二枢转组件155在第二方向F2上绕第二枢轴1551转动。
操作者通过推动操作杆151在第二方向F2上转动至不同的位置(内侧位置或外侧外置)来设置骑乘式割草机的目标状态,包括工作状态(即准备状态或零速状态)和非工作状态(即驻车状态)。操作杆151在第二方向F2上的内侧位置与操作杆151在第一方向F1上的中档位置一致,用户可以在外侧位置上将骑乘式割草机10接通电源。
可选的,骑乘式割草机10的目标行进方向,由用户操作左操作杆151R和右操作杆151L所指示的目标行进速度差来确定。也就是说,如果左操作杆151L和右操作杆151R都被向前方向推动,且左操作杆151L给出的目标行进速度大于右操作151R杆给出的目标行进速度,则骑乘式割草机向前并向右转向;如果左操作杆151L和右操作杆151R都被向前方向推动,且左操作杆151L给出的目标行进速度小于右操作杆151R给出的目标行进速度,则骑乘式割草机10向前并往左转向;如果左操作杆151L和右操作杆151R都被向前方向推动,且左操作杆151L给出的目标行进速度与右操作杆151R给出的目标行进速度相等或大致相等,则骑乘式割草机10以左右操作杆给出的目标行进速度保持大致匀速前行。类似地,如果左操作杆151L和右操作杆151R都被向后方向推动,则通过左操作杆151L给出的目标行进速度与右操作杆151R给出的目标行进速度差,则骑乘式割草机10按照给出的左操作杆151L和右操作杆151R给出的目标行进速度差来行走和转向。由于马达的转速与转矩相关,操作装置15在设定第一马达143的目标转速的同时,也对应地设置了第一马达的目标转矩。
参照图5所示的骑乘式割草机10的马达控制系统框图,包括左马达控制系统和右马达控制系统,左马达控制系统和右马达控制系统的功能和组成相同或类似,以左马达控制系统为例,其包括主要包括:左马达控制模块50L、左马达目标转速检测模块51L、左马达实际转速检测模块52L、左马达驱动电路53L、左马达电流检测模块54L以及左马达143L。
左马达控制模块50L用于控制左马达143L的运行,其与左马达目标转速检测模块51L、左马达实际转速检测模块52L、左马达驱动电路53L、左马达电流检测模块54L连接,用于根据左马达目标转速检测模块51L、左马达实际转速检测模块52L、左马达电流检测模块54L的检测信号调整左马达143L的控制量,并输出控制信号给左马达驱动电路53L,从而控制左马达驱动电路53L以使左马达驱动电路53L驱动左马达143L尽快地达到或基本等于通过左操作装置15L设置的目标转速。左马达143L的控制量包括左马达143L的输入电压和/或输入电流。
左马达目标转速检测模块51L与左操作装置15L关联连接,用于检测左操作装置15L的状态,并输出给左马达控制模块50L,从而左马达控制模块50L能够根据左马达目标转速检测模块51L的检测结果获得左马达143L的目标转速。在本实施方式中,左马达目标转速检测模块51L与左操作杆151L关联设置,用于检测左操作杆151L的位置。的左马达目标转速检测模块51L包括角度传感器或位置传感器,其用于检测操作装置15的操作杆151的转过的角度或转动后的位置。
左马达实际转速检测模块52L与左马达143L关联连接,用于检测左马达143L的实际转速。在一实施例中,左马达实际转速检测模块52L包括速度检测传感器,其设置在左马达143L的附近或内部设置来获取左马达143L的实际转速,例如,设置在左马达143L附近的光电传感器,其能够获取左马达143L的实际转速,又如,设置在左马达143L内部的转子附近的霍尔传感器,其能够根据转子转动的速度来获取左马达143L的实际转速。
但在一些情况下,例如第一马达143在高速和/或高温下运转,或第一行走轮141在高速和/或高温下运转,抑或骑乘式割草机在高温下作业,会影响传感器检测精确度,甚至速度检测传感器检测会失效。因此,为了解决该问题,作为另一种实施方式,左马达实际转速检测模块52L不包括传感器,左马达实际转速检测模块52L选用无刷电机,通过左马达实际转速检测模块52L的输出的电信号如呈周期性变化反电动势,即通过检测左马达143L的电流和/或电压,从而确定反电动势的过零点来获得左马达实际转速检测模块52L的周期变化,从而获取左马达143L实际转速检测模块52L的实际转速。通过这样的方式,无需设置传感器检测左马达实际转速检测模块52L的实际转速,降低了成本,同时检测精度不受高转速、温度影响外,其整机结构也更精简。
左马达电流检测模块54L,其与左马达143L关联连接,用于获取左马达143L的电流,电流可以是马达的母线电流或左马达143L的相电流。左马达电流检测 模块54L将获取左马达143L的电流传输给左马达控制模块50L。
左马达驱动电路53L与左马达控制模块50L和左马达143L连接,用于根据左马达控制模块50L输出的信号控制左马达143L的运行。
可选地,左马达143L可通过减速装置55L连接至左驱动轮141L,左马达143L的输出转速通过减速装置55L减速后输出给左驱动轮141L以驱动左驱动轮141L转动,这样,左马达143L的扭矩通过减速装置传递至左驱动轮141L以驱动左驱动轮141L。在其他的实施方式中,左马达143L和左驱动轮141L直接连接。
右左马达控制系统主要包括:左马达控制模块50R、左马达目标转速检测模块51R、左马达实际转速检测模块52R、左马达驱动电路53R、左马达电流检测模块54R以及左马达143R。右左马达控制系统与左马达控制系统的功能和组成相同或相似,此处不再赘述。
在上述实施方式中,左马达实际转速检测模块52L与右马达实际转速检测模块52R可以是两个单独设置的模块,分别与左马达143L和右马达143R关联连接,分别用于生成左马达143L和右马达143R的实际转速。左马达实际转速检测模块52L和右马达实际转速检测模块52R也可以是上述两个模块的集成。
上述实施方式中,分别与右操作杆151R和左操作杆151L关联连接的左马达目标转速检测模块51L和右马达目标转速检测模块51R可以是分开的两个模块也可以是集成在一起的模块。
在上述实施方式中,左马达控制模块50L和左马达目标转速检测模块51L通过总线56连接,左马达目标转速检测模块51L检测到的通过左操作装置15L的设置的左马达143L的目标转速能够通过总线56发送给左马达控制模块50L,左马达控制模块50L通过总线56接收来自左马达目标转速检测模块51L的检测结果。可选地,总线的通讯帧率的范围为100Hz-2000Hz。可选地,总线的通讯帧率的范围为200Hz-2000Hz。可选地,总线的通讯帧率的范围为300Hz-3000Hz。
在一些实施方式中,总线的通讯帧率的范围为100Hz-1000Hz。在一些实施方式中,总线的通讯帧率的范围为200Hz-800Hz。在一些实施方式中,总线的通讯帧率的范围为100Hz-500Hz。在一些实施方式中,总线的通讯帧率的范围为500Hz-1000Hz。在一些实施方式中,总线的通讯帧率的范围为500Hz-1500Hz。在一些实施方式中,总线的通讯帧率的范围为1000Hz-2000Hz。在一些实施方式中,总线的通讯帧率的范围为1000Hz-1500Hz。总线的通讯帧率指的是总线在一秒时间内接收和/或发送数据包的次数。
通过这样的方式,以提高左马达控制模块50L和左马达目标转速检测模块51L之间的数据传输速率,这样,能够提高第一马达143的响应速度。
同样地,右马达控制模块50R和右马达目标转速检测模块51R也通过总线56连接,此处不再赘述。右马达控制模块50R和右马达目标转速检测模块51R也可以通过其他总线连接。
可选地,左马达目标转速检测模块51L和右马达目标转速检测模块51R包括角度传感器、位置传感器等,其用于检测操作装置15的操作杆151的转动的角度或转动位置。在其他的实施方式中,骑乘式割草机10的操作装置15包括方向盘751和速度杆752(油门)(图17),至少用于设置第一马达141的目标转速。第一马达141的目标转速由方向盘751和速度杆752综合决定,速度杆给出目标速度,方向盘751的转动角度则用于分配左马达和右马达的分配速度。操作者可通过转动方向盘751和脚踩速度杆752,通过方向盘751的转动角度以及速度杆752所处的位置控制骑乘式割草机10的设置第一马达141的目标转速。操作者可通过操作方向盘的转动控制骑乘式割草机10的转向,如转向、或直走,而速度杆752则用于确定马达的目标速度。可选地,方向盘751为电子方向盘。
可选地,左马达目标转速检测模块51L和右马达目标转速检测模块51R包括传感器。可选地,传感器的数据刷新速率的范围为50微秒/次-10毫秒/次。在一些实施方式中,传感器的数据刷新速率的范围为50微秒/次-200微秒/次。在一些实施方式中,传感器的数据刷新速率的范围为100微秒/次-300微秒/次。在一些实施方式中,传感器的数据刷新速率的范围为200微秒/次-500微秒/次。在一些实施方式中,传感器的数据刷新速率的范围为100微秒/次-1毫秒/次。在一些实施方式中,传感器的数据刷新速率的范围为500微秒/次-1毫秒/次。在一些实施方式中,传感器的数据刷新速率的范围为1毫秒/次-10毫秒/次。
参照图2至4,在一实施例中,左马达目标转速检测模块51L和右马达目标转速检测模块51R包括位置检测模组17(即第一检测装置),位置检测模组17包括磁性元件171和磁传感器172。在本实施方式中,磁传感器为霍尔传感器。在其他实施方式中,磁传感器为磁电阻传感器。
磁性元件171或磁传感器172与操作杆151或枢转组合关联设置,磁传感器172与磁性元件171间隔设置,以使得在操作杆151在第一方向F1上绕第一轴线A转动时,能带动磁性元件171和磁传感器172产生相对转动,以检测操作杆151在第一方向上F1上的前进位置、中档位置及后退位置。
可选地,操作杆151在第二方向F2上绕第二轴线B转动时,能带动磁性元件171和磁阻传感器172产生相对位移,以检测操作杆151在第二方向上F2的内侧位置和外侧位置。
磁性元件171与操作杆151关联设置,其能够跟随操作杆151的运动而运动,磁传感器172则固定安装在支架152上,二者对应地设置,以使得在操作杆151在第一方向F1上绕第一轴线A转动时,磁性元件171与磁传感器172能够产生相对运动,磁传感器172输出与操作杆151在第一方向上的位置有关的第一检测信号。
可选地,操作杆151在第二方向F2上绕第二轴线B转动时,磁性元件171与磁传感器172能够产生相对运动,磁传感器172能够输出与操作杆151在第二方向F2上的位置有关的第二检测信号。
磁性元件171安装在操作杆151上,示例性地,操作杆151上设置有第一安装部1511,第一安装部1511与操作杆151一体成型或固定安装,安装部1511用于安装磁性元件171,以将磁性元件171与操作杆151固定在一起,使其能够与操作杆151同步运动。
磁传感器172固定安装在支架152上,可选地,支架1521上设置有第二安装部1521,第二安装部1521与操作杆151一体成型或固定安装,第二安装部1521用于安装磁传感器172。第二安装部还用于安装PCB板18,磁传感器172设置在PCB板18上,为了能够使磁传感器172能牢固的固定在PCB板18上,采用灌胶将磁传感器172密封在PCB板上。
第一安装部1511和第二安装部1521的位置对应设置,以使磁传感器172能够输出满足要求的检测信号,检测信号与操作杆151在第一方向上的位置和第二方向F2上的位置有关。
位置检测模组17至少部分地与支架152和/或枢转组合或操作杆151关联,用于检测操作杆151在第一方向F1上的位置,包括前进位置、中档位置、后退位置,例如,当操作杆151在前进位置时,对应的第一马达143的目标状态是最大前进速度;当操作杆151在后退位置时,对应的第一马达143的目标状态是最大反转速度;当操作杆151在中档位置时,对应的第一马达143的目标状态是零速。操作者通过移动操作杆151来设定对应的第一马达141的目标转速,控制对应的第一马达141的动作,这样对应的第一马达141的目标转速也是从操作杆151的位置获得的操作者设定的目标转速或目标状态。
可选地,位置检测模组17还能够检测操作杆151在第二方向F2的位置,包括 内侧位置、外侧位置。当操作杆151在内侧位置时,对应的骑乘式割草机10的状态为工作状态(即准备状态),在一些实施方式中,内侧位置与中档位置重合或者相近,对应的第一马达143的目标状态是零速状态;当操作杆151在外侧位置时,对应的骑乘式割草机10的状态为非工作状态。
在本实施方式中,磁性元件171和磁传感器172关联设置,以使得操作杆151在第一方向F1上绕第一轴线A转动时能带动磁性元件171和磁传感器172产生相对转动时,磁传感器172输出与操作杆152在第一方向F1上的前进位置、中档位置及后退位置有关的检测信号。的检测信号包含与操作杆151在位置信息,通过这样的方式来检测操作杆152在第一方向F1上的位置,包括前进位置、中档位置、后退位置,操作杆152在第一方向F1上的不同位置对应于第一马达143的不同的目标速度和转动方向,通过检测操作杆152的位置从而能够获得第一马达143的目标转速。
位置检测模组17的磁性元件171和磁传感器172的安装位置不限于上述方式,只要是将位置检测模组17的磁磁性元件171和磁传感器172间隔设置且关联设置,使磁性元件171和磁传感器172与操作杆151在第一方向上的位置以及在第二方向上的位置关联起来使得磁性元件171和磁传感器172在操作杆151转动时能够产生相对运动,均落在本申请的保护范围内。
在本实施方式中,采用两个磁传感器172——第一磁传感器172a和第二磁传感器172b,其设置在基板或PCB板不同的位置。作为一种实施方式,第一磁传感器172a和第二磁传感器172b可以关于磁性元件的中心线对称设置。在本申请的其他一些实施例中,可以采用多个霍尔传感器,位于基板或PCB板不同的位置,以检测操作杆151在第一方向F1上的位置。
可选地,磁传感器172和磁性元件171检测操作杆151在第一方向F上的位置的原理如下:
参照图3和图4,当操作杆251在第一方向F1上转动时带动磁性元件171转动,磁传感器172与磁性元件171产生相对转动的角度,由于磁传感器172的电压与磁场强度呈线性关系,根据两个磁传感器172的输出电压能够判断磁传感器172和磁性元件171的相对位置关系,从而能够标定磁传感器172的输出电压和操作杆151的位置之间的关系,并将标定结果存储在控制模块(30、50、60)中,从而控制模块(30、50、60)能够根据磁传感器172的输出电压判断对应的操作杆151的位置。
参照图3,假设图3为操作杆151处于第一方向F1上的后退位置为最大后退位置,操作杆151处于第一方向F1上的前进位置为最大前进位置,当操作杆151从后退位置转动至前进位置时,两个磁传感器172的输出电压随着操作杆151的运动的位置发生变化。通过标定两个磁传感器172的输出电压与操作杆151的位置关系,能够根据两个磁传感器172的输出电压判断出操作杆151的当前位置。
本实施方式中,由于采用上述结构,使传感器固定设置,而磁性元件与操作杆关联连接,利用磁性元件和传感器之间的相对位置关系来进行操作杆在两个方向上的位置检测的方式,能够减小传感器因运动造成的检测结果不准确以及传感器的连接线因频繁移动和拉扯而损坏传感器、连接线和电路的问题,使得检测结果更可靠,系统的可靠性更高且结构更简单。
参照图6,作为一种实施方式的第一马达143的控制系统,其可以应用于上述左马达控制系统和右马达控制系统中的任意一个。在本实施方式中,第一马达143为电机38,电机38可以是无刷电机。电机38有定子、转子和定子绕组。
本实施方式的第一马达143的控制系统包括:控制模块30、供电电源31、电源电路32、驱动电路33、目标转速检测模块34、实际转速检测模块35、转子位置检测模块36、电流检测模块37、行走电机38、总线39以及如前所述的操作装置15。
控制模块30用于控制电机38的运行过程。在一些实施例中,控制模块30采用专用的控制器,例如一些专用的控制芯片(例如,Microcontroller Unit,MCU)。控制模块30集成有信号处理单元,其中,信号处理单元用于对获取相关参数信号进行处理,其具有计算,比较、判断等功能,信号处理单元对信号进行处理后,能够生成控制信号输出给驱动电路33以驱动电机38运行。
供电电源31用于为电机38的控制系统提供电能,在本实施方式,供电电源31的电能来自于前述的电源装置16。电源电路32与供电电源31连接,供电电源31用于接收来自供电电源31的电能,并将供电电源31的电能转换成至少供控制模块30使用的电能。
驱动电路33电连接至控制模块30和电机38,其能够根据控制模块30输出的控制信号电机38运行。作为一种实施方式,电机38为三相电机,其具有三相绕组,驱动电路33与电机38的三相绕组电连接。驱动电路33包括有开关电路,开关电路用于根据控制模块30的控制信号驱动所电机38的转子运转。
为了使电机38转动,驱动电路33具有多个驱动状态,在一个驱动状态下电 机的定子绕组会产生一个磁场,控制模块30被配置为依据电机38的转子转动位置输出相应的驱动信号至驱动电路33以使驱动电路33切换驱动状态,从而改变加载在电机38的绕组上的电压和/或电流的状态,产生交变的磁场驱动转子转动,进而实现对电机的驱动。
电机38的转子位置可通过转子位置检测模块36获得,转子位置检测模块36例如包括3个霍尔传感器,其沿电机38的转子的圆周方向设置,当转子转入和转出预设范围时,霍尔传感器的信号发生改变,转子位置检测模块36的输出信号也随之改变,这样依据转子位置检测模块36输出的检测信号即可得知电机的转子所处的位置。
转子位置也可以根据电机电流估算得出。参照图7,转子位置估算模块46根据电流检测模块47获得的电机的电流估算获得。转子位置估算模块46可以内置于控制模块40,也可以外置于控制模块40。
图6所示的驱动电路33包括开关元件VT1、VT2、VT3、VT4、VT5、VT6,开关元件VT1、VT2、VT3、VT4、VT5、VT6组成三相电桥,其中VT1、VT3、VT5为上桥开关,VT2、VT4、VT6为下桥开关。开关元件VT1-VT6可选用场效应管、IGBT晶体管等。多个开关元件的控制端分别与控制模块30电性连接。开关元件VT1-VT6依据控制模块30输出的驱动信号改变接通状态,从而改变供电电源31加载在电机38的绕组上的电压和/或电流状态,驱动电机38运转。
目标转速检测模块34与操作装置15关联连接,在本实施方式中,目标转速检测模块34与操作装置15的操作杆151关联连接,目标转速检测模块34能够获取用户通过操作杆151的设置的对应第一马达143的目标转速。在本实施方式中,目标转速检测模块34可采用如图2和4所示的位置检测模组17。
实际转速检测模块35与电机38关联连接,用于检测电机38的实际转速。在一实施例中,实际转速生成模块35包括速度检测传感器,其设置在电机38的附近或内部设置来获取电机38的实际转速,例如,设置在电机38附近的光电传感器,其能够获取电机38的转速,又如,设置在电机38内部的转子附近的霍尔传感器,其能够根据转子转动的速度来获取电机38的实际转速。
但在一些情况下,例如第一马达143在高速和/或高温下运转,或第一行走轮141在高速和/或高温下运转,抑或骑乘式割草机在高温下作业,会影响传感器检测精确度,甚至速度检测传感器检测会失效。为了解决该问题,作为另一种实施方式,实际转速检测模块35不包括传感器,而是通过电机38的输出的电 信号估算获得,例如,通过检测电机38的电流,获得电机38的反电动势的过零点,从而电机38运转的周期变化规律,从而依据该周期变化规律获取电机38的实际转速。参照图7,实际转速估算模块45连接至电流检测模块47,依据电流检测模块47输出的电机的电流来获得电机38的实际转速。通过这样的方式,无需设置传感器检测电机38的实际转速,降低了成本,同时检测精度不受高转速、温度影响外,其整机结构也更精简。电机38可以为内转子电机,也可以为外转子电机。在一些实施方式中,电机38为内转子无刷电机,可选地,电机38为内转子永磁同步无刷电机。在一些实施方式中,电机38为外转子无刷电机,可选地,电机38为外转子永磁同步无刷电机。
图6所示的实际转速检测模块35和转子位置检测模块36可以集成在一起,可以分来单独设置。图7所示的实际转速估算模块45和转子位置估算模块46可以集成在一起,可以分来单独设置。
电流检测模块37与电机38关联连接,用于获取电机38的工作电流,电流可以是电机38的母线电流或电机38的相电流。电流检测模块37将获取的电机38的电流传输给控制模块30。
控制模块30与目标转速检测模块34、实际转速检测模块35、电流检测模块37、电机转子位置检测模块36连接,用于根据目标转速检测模块34检测到的用户通过操作装置15设置的电机38的目标转速、电机38的实际转速调整电机38的控制量,并输出控制信号控制电机38以使电机38的实际转速在预设时间内达到或基本达到目标转速,以增加用户体体验感,并且能够防止割草机在爬坡过程中,可能会由于电机38响应的滞后性导致骑乘式割草机后溜而发生危险。
本实施方式中,控制模块30输出控制信号至驱动电路33使第一马达143的输入电流或输入电压跟随第一马达143的转子的位置变化而变化,使得第一马达143的实际转矩或实际转速在预设时间内达到或基本达到目标转矩,预设时间小于100ms。在一些实施方式中,预设时间小于80ms。在一些实施方式中,预设时间小于50ms。在一些实施方式中,预设时间小于20ms。当第一马达143实际转矩与目标转矩的差值小于目标转矩10%时,即认为基本达到目标转矩。
在一些实施方式中,第一检测装置用于实时检测驱动轮的实测转速,并以第一预设时间间隔发送实测转速。控制模块接收第一检测装置发送的实测转速和操作组件设定的目标转速;
基于第一检测装置以第一预设时间间隔发送的驱动轮的实测转速、操作组 件设定的目标转速或目标转矩之一以及驱动电机的转子位置,动态调整加载至多相绕组的电流以使驱动电机在预设时间内达到或基本达到操作组件设定的目标转矩;其中,第二预设时间的时长小于第一预设时间的时长。
在本实施方式中,第一马达143的输入电压呈正弦波或马鞍波变化,第一马达的输入电流呈正弦波变化。可选地,电机38为三相电机,电机38的输入电流或输入电压呈三相对称正弦波变化,如图15中加载至电机38的三相电压Uu、Uv、Uw呈正弦波变化,或电机38的输入电压呈三相对称马鞍波变化,如图16中加载至电机38的三相电压Uu、Uv、Uw呈三相对称马鞍波变化。本实施方式中,三相电压Uu、Uv、Uw互成120°相位角。电机38的输入电流与输入电压相对应地呈正弦波变化。
控制模块30与目标转速检测模块34通过总线39连接。目标转速检测模块34通过总线39向目标转速检测模块34发送数据,控制模块30通过总线39接收数据。总线的通讯帧率的范围为10Hz-600Hz。,通过这样的方式,能够提高左马达控制模块50L和左马达目标转速检测模块51L之间的数据传输速率,从而提高电机58的响应速度。目标转速检测模块34包括传感器,传感器的数据刷新速率的范围为50微秒/次-10毫秒/次,从而提高电机58的响应速度。
在一些实施方式中,传感器的数据刷新速率的范围为50微秒/次-200微秒/次。在一些实施方式中,传感器的数据刷新速率的范围为100微秒/次-300微秒/次。在一些实施方式中,传感器的数据刷新速率的范围为200微秒/次-500微秒/次。在一些实施方式中,传感器的数据刷新速率的范围为100微秒/次-1毫秒/次。在一些实施方式中,传感器的数据刷新速率的范围为500微秒/次-1毫秒/次。在一些实施方式中,传感器的数据刷新速率的范围为1毫秒/次-10毫秒/次。
参照图8,作为一种第一马达143的控制系统的实施方式,控制系统,包括:控制模块50、供电电源51、驱动电路53、目标转速检测模块54、实际转速检测模块55、转子位置检测模块56、电流检测模块57、电机58、总线59。本实施方式的上述多个组件与图6所示的前述实施方式的多个组件的功能和结构组成相同或类似,此处不再赘述,不同之处在于,本实施方式采用一种控制模块50,其主要包括:第一转速环501、电流分配单元502、第一电流环503、第二电流环504、电压变换单元505、电流变换单元507、PWM信号生成单元506。
第一转速环501与目标转速检测模块54以及实际转速检测模块55关联连接,第一转速环501获取来自目标转速检测模块54的检测到的用户设置通过操作装 置15设置的电机58的目标转速n0以及来自实际转速检测模块55检测到的电机58的实际转速n。目标转速检测模块54与操作装置关联连接,在本实施方式中,目标转速检测模块54与操作杆151关联设置,用于检测操作杆151的所处位置或转动的角度。目标转速检测模块54可以采用如图2和图4所示的位置检测模组17。
第一转速环501用于根据电机58的目标转速n0和实际转速n生成目标电流is0。可选地,第一转速环501能够根据电机57的目标转速n0和实际转速n通过比较和调节,生成目标电流is0,目标电流is0用于使电机57的实际转速n趋近于目标转速n0。第一转速环包括比较、调节单元(未示出),调节单元可以是PI调节单元。
电流分配单元502与第一转速环501连接,用于根据目标电流is0分配出直轴目标电流id0和交轴目标电流iq0。
参照图9,直轴和交轴构成直轴-交轴坐标系,直轴-交轴坐标系为在电机转子上建立了一个坐标系,此坐标系与转子同步转动,其中,转子磁场方向为直轴,垂直于转子磁场方向为交轴,直轴目标电流id0与直轴同向,交轴目标电流iq0与交轴同向,其中,交轴目标电流iq0为励磁电流,其用于控制力矩,产生垂直于转子的力矩带动转子转动。交轴目标电流iq0能够用于控制电机速度尽可能快速且稳定地达到电机58的目标转速n0,其原理是利用转矩电流控制电机的电磁转矩使其能最大限度的带动转子转动。交轴目标电流iq0和直轴目标电流id0可以通过计算获得,也可以直接设置。
当在电机上加载电压,能够使定子产生电流,从而使得电机58产生电磁转矩Te。电机的电磁转矩Te可由如下公式获得:
Te=1.5Pn[Ψf*iq0+(Ld-Lq)*id*iq],
其中,Ψf为转子磁链,iq为交轴电流,id为直轴电流,Ld为直轴电感,Lq为交轴电感,Pn为磁极对数。
作为一种实施方式的电机,Ld=Lq,参照图9,此时,Te0=1.5Pn*Ψf*iq0。为了获得较大的电磁转矩Te,电流分配单元502使交轴目标电流iq0尽量大。而由于交轴目标电流iq0和直轴目标电流iq0实际上是电机的目标电流is0解耦获得,若要使交轴目标电流iq0尽量大,则直轴目标电流iq0应尽可能的小。作为一种实施方式,设置id0=0,由此产生的定子磁链Ψs与转子磁链Ψf的夹角β为90°(如图9),这样通过控制交轴目标电流iq0而控制力矩,该力矩产生垂直于转子从而带动转子转动。定子磁链Ψs指定子电流生成磁通与定子绕组交链形 成的磁链,转子磁链Ψf指转子永磁体生成磁通与定子绕组交链形成的磁链。
作为另一种实施方式的电机,Ld<Lq,参照图10,若要获得尽可能大的电磁转矩Te,则需要使id0<0,其中,直轴目标电流id0和交轴目标电流iq0可以根据以下公式获得:
Figure PCTCN2020097063-appb-000001
Figure PCTCN2020097063-appb-000002
其中,Ψf为转转子磁链,Lq、Ld分别为定子绕组的交轴和直轴的电感。is0即为第一转速环501根据电机58的目标转速n0和实际转速n生成的目标电流is0,定子电流空间矢量is0与定子磁链空间矢量Ψs同相,定子磁链Ψs与转子磁链Ψf的夹角β(参照图10)。
由于,电机的电磁转矩Te=1.5Pn[Ψf*iq+(Ld-Lq)*id*iq],公式中包含了两项,前者1.5PnΨf*iq为永磁转矩T1,如图11中曲线T1;后者1.5Pn(Ld-Lq)*id*iq为磁阻转矩T2,如图11中曲线T2;Te为曲线T1和曲线T2所合成。从图11中可以看出,合成的电磁转矩Te在对应的转矩角处于90°-135°范围内具有一个近似最大值Tmax或最大值Tmax。因此,可选地,电流分配单元502通过分配交轴目标电流iq0和直轴目标电流id0,使得定子磁链Ψs与转子磁链Ψf的夹角β处于90°-135°范围内,这样能够获得尽可能大电磁转矩Te,使得电机58的实际转矩能够尽快地达到目标转矩,从而提高电机58的转矩相应速度,从而使得电机58转速能够在较快时间内达到或基本达到目标转速n0。
总而言之,控制模块50能够依据电机转速、电机电流以及转子位置,通过控制加载在电机58上的三相电压Uu、Uv、Uw以控制加载至定子上的电流,以使定子绕组产生定子电流空间矢量is0,定子电流空间矢量is0与定子磁链空间矢量Ψs同相,的定子电流空间矢量is0即目标电流is0,如上述目标电流is0能够被电流分配单元502分配为直轴目标电流id0和交轴目标电流iq0,控制模块50能够通过分别控制交轴电流iq和直轴电流id,从而控制定子磁链Ψs与转子磁链Ψf的夹角β,以使电机58尽可能输出较大的电磁转矩Te,使得电机58的实际转矩能够尽快地达到目标转矩,从而提高电机58的转矩相应速度,从而使得电机58转速能够在较快时间内达到或基本达到目标转速n0。
电流分配单元502根据目标电流is0分配出的直轴目标电流id0和交轴目标电流iq0能够使得电机58的转子产生尽可能大的电磁转矩Te,使得电机58的实际转矩能够尽快地达到目标转矩,从而使得电机58的转速能够尽可能快的达到用户通过操作装置15设置的电机58的目标转速n0,从而提高电机58的转矩响应速度和转速响应速度。
电流变换单元507获取三相电流iu、iv、iw,并进行电流变换,将三相电流iu、iv、iw变换成两相电流,分别为直轴实际电流id和交轴实际电流iq。电流检测模块57将检测到的电机58的实际工作中的三相电流iu、iv、iw传输至控制模块50中的电流变换单元507。可选地,电流变换单元507包括Park变换、Clark变换。
第一电流环503与电流分配单元502和电流变换单元507连接,获取直轴目标电流id0和直轴实际电流id,并根据直轴目标电流id0和直轴实际电流id生成第一电压调节量Ud,第一电压调节量Ud能够使直轴实际电流id尽快地趋近于直轴目标电流id0。第一电流环503包括比较、调节单元(未示出),调节单元可以是PI调节,第一电流环503包括将直轴目标电流id0和直轴实际电流id进行比较,以及根据比较结果进行PI调节以生成第一电压调节量Ud。
第二电流环504与电流分配单元502和电流变换单元507连接,获取交轴目标电流iq0和交轴实际电流iq,并根据交轴目标电流iq0和交轴实际电流iq生成第二电压调节量Uq,第二电压调节量Uq用于使交轴实际电流iq趋近于交轴目标电流iq0。第二电流环504包括比较、调节单元(未示出),调节单元可以是PI调节,第二电流环504包括将交轴目标电流iq0和交轴实际电流iq进行比较,以及根据比较结果进行PI调节以生成第二电压调节量Uq。
上述第一电压调节量Ud和第二电压调节量Uq还需经过一些变换和计算后转换成用于控制驱动电路53的控制信号。第一电压调节量Ud和第二电压调节量Uq送入控制信号生成单元中进行变换和计算等。在本实施方式中,控制信号生成单元包括电压变换单元505和PWM信号生成单元506。
电压变换单元505与第一电流环503和第二电流环504连接,获取第一电压调节量Ud和第二电压调节量Uq,以及来转子位置检测模块56的电机58的转子的位置,并能将第一电压调节量Ud和第二电压调节量Uq变换成与加载至电机58的三相电压Uu、Uv、Uw有关的中间量Ua和Ub输出至PWM信号生成单元506,PWM信号生成单元506根据中间量Ua和Ub生成PWM信号用于控制驱动电路53的开关元件,从 而能够使供电电源51输出三相电压Uu、Uv、Uw加载至电机58的绕组,Uu、Uv、Uw为三相对称正弦波电压或马鞍波电压,三相电压Uu、Uv、Uw互成120°相位差。可选地,电压变换单元505包括Park逆变换、Clark逆变换。
采用上述控制模块50,本实施方式采用如下控制方式:
电流变换单元507获取电流检测模块57的检测到的三相电流iu、iv、iw以及转子位置检测模块56的转子位置信息,并进行电流变换,将三相电流iu、iv、iw变换成两相电流,分别为直轴实际电流id和交轴实际电流iq。第一电流环503获取上述直轴目标电流id0和直轴实际电流id,并根据直轴目标电流id0和交轴实际电流id生成第一电压调节量Ud。第二电流环504获取上述交轴目标电流iq0和直轴实际电流iq,并根据交轴目标电流iq0和交轴实际电流iq生成第二电压调节量Uq。电压变换单元505获取第一电压调节量Ud和第二电压调节量Uq以及转子位置检测模块56的转子位置,并将第一电压调节量Ud和第二电压调节量Uq变换成与加载至电机58的三相电压Uu、Uv、Uw有关的中间量Ua和Ub输出至PWM信号生成单元506,PWM信号生成单元506根据中间量Ua和Ub生成PWM信号用于控制驱动电路53的开关元件,从而使供电电源51输出三相电压Uu、Uv、Uw加载至电机58的绕组。参照图15和图16,在本实施方式中,的三相电压Uu、Uv、Uw为三相对称正弦波电压(图15)或马鞍波电压(图16),三相电压Uu、Uv、UwUu、Uv、Uw互成120°相位差。
在此过程中,控制模块50输出跟随转子位置变换而变化的控制信号,以动态调整控制加载至电机的电压和/或电流,以使得电机58在每个转子位置能够尽可能获得一个较大的电磁转矩,这样,电机58的转速能够尽可能快的达到用户通过操作装置15设置的电机58的目标转速n0,从而提高58的响应速度。相比于相关技术的骑乘式割草机10,本申请的骑乘式割草机10可使得第一马达143输出转矩的响应速度在100ms以内,在一些实施方式中,第一马达143输出转矩的响应速度在80ms以内。在一些实施方式中,预设时间小于第一马达143输出转矩的响应速度在50ms以内。在一些实施方式中,第一马达143输出扭矩的响应速度在20ms以内。
相应地,第一马达143的实际转速也能够在较快时间内达到或基本达到目标转速。可选地,第一马达143的实际转速在预设时间内达到或基本达到目标转速,预设时间小于800ms。在一些实施方式中,预设时间小于600ms。在一些实施方式中,预设时间小于300ms。
可选地,本申请采用上述总线59以及目标转速检测模块54,能够使得本申请的骑乘式割草机10的马达响应速度提高,可使得第一马达143输出转矩的响应速度在10ms以内。
可选地,总线的通讯帧率的范围为100Hz-2000Hz。可选地,总线的通讯帧率的范围为200Hz-2000Hz。可选地,总线的通讯帧率的范围为300Hz-3000Hz。
在一些实施方式中,总线的通讯帧率的范围为100Hz-1000Hz。在一些实施方式中,总线的通讯帧率的范围为200Hz-800Hz。在一些实施方式中,总线的通讯帧率的范围为100Hz-500Hz。在一些实施方式中,总线的通讯帧率的范围为500Hz-1000Hz。在一些实施方式中,总线的通讯帧率的范围为500Hz-1500Hz。在一些实施方式中,总线的通讯帧率的范围为1000Hz-2000Hz。在一些实施方式中,总线的通讯帧率的范围为1000Hz-1500Hz。总线59的通讯帧率指的是总线在一秒时间内接收和/或发送数据包的次数。
目标转速检测模块54包括传感器,传感器数据刷新速率的范围为50微秒/次-10毫秒/次。在一些实施方式中,传感器的数据刷新速率的范围为50微秒/次-200微秒/次。在一些实施方式中,传感器的数据刷新速率的范围为100微秒/次-300微秒/次。在一些实施方式中,传感器的数据刷新速率的范围为200微秒/次-500微秒/次。在一些实施方式中,传感器的数据刷新速率的范围为100微秒/次-1毫秒/次。在一些实施方式中,传感器的数据刷新速率的范围为500微秒/次-1毫秒/次。在一些实施方式中,传感器的数据刷新速率的范围为1毫秒/次-10毫秒/次。
在其他的一些实施方式中,可以不采用上述总线59,控制模块50与目标转速检测模块54通过普通连接线方式连接,而目标转速检测模块54则采用具有上述数据刷新速率的传感器,这样采用上述控制方式,能够使得第一马达的实际转矩在第一预设时间内达到或基本达到目标转矩,第一预设时间小于60ms。
在其他的一些实施方式中,目标转速检测模块54采用普通数据刷新速率的传感器,而总线59则采用具有上述通讯帧率的总线,这样,采用上述控制方式,能够使得第一马达的实际转矩在第一预设时间内达到或基本达到目标转矩,第一预设时间小于60ms。
参照图12,作为另一种第一马达143的控制系统的实施方式,控制系统,包括:控制模块60、供电电源61、驱动电路63、目标转速检测模块64、实际转速检测模块65、转子位置检测模块66、电流检测模块67、电机68、总线69。本实 施方式的上述多个组件与图10所示的前述实施方式的多个组件的功能和结构组成相同或类似,此处不再赘述,不同之处在于,本实施方式采用另一种控制模块60,控制模块60包括:第二转速环601、电流分配单元602、目标磁链计算单元603、转矩环604、磁链环605、反馈线性化控制单元606、电压变换单元607、PWM信号生成单元608,电流变换单元609、转矩和磁链计算单元610。
第二转速环601与目标转速检测模块64以及实际转速检测模块65关联连接,第二转速环601获取来自目标转速检测模块64的检测到的用户设置通过操作装置15设置的电机68的目标转速n0以及来自实际转速检测模块65检测到的电机68的实际转速n。目标转速检测模块64与操作装置关联连接,在本实施方式中,目标转速检测模块64与操作杆151关联设置,用于检测操作杆151的所处位置或转动的角度。目标转速检测模块64可以采用如图2和图4所示的位置检测模组17。
第二转速环601用于根据电机68的目标转速n0和实际转速n生成目标转矩Te0,目标转矩Te0为电磁转矩Te0。示例性地,第二转速环601能够根据电机68的目标转速n0和实际转速n通过比较和调节生成目标转矩Te0,目标转矩Te0用于使实际转速n尽快地趋近于目标转速n0。第二转速环601包括比较、调节单元(未示出),调节单元可以是PI调节单元。
电流分配单元602根据输出的目标转矩Te0分配直轴目标电流id0和交轴目标电流iq0。参考图13,直轴目标电流id0和交轴目标电流iq0为具有方向和大小的矢量,并且直轴目标电流id0和交轴目标电流iq0的之间的电角度为90°,直轴目标电流id0和交轴目标电流iq0分别位于直轴和交轴上。可选地,直轴目标电流id0、交轴目标电流iq0可以根据以下公式获得:
Figure PCTCN2020097063-appb-000003
Figure PCTCN2020097063-appb-000004
Figure PCTCN2020097063-appb-000005
其中,Ψf为转子磁链,Ψs为定子磁链,Lq、Ld分别为定子绕组的交轴和直轴的电感,Pn为磁极对数。
目标磁链计算单元603能够根据直轴目标电流id0和交轴目标电流iq0计算 出目标定子磁链Ψs0。这样,控制模块73能够通过直接动态调整定子磁链Ψs和电磁转矩Te0,从而使得电机转速能够在预设时间范围内达到或基本达到目标转速。目标定子磁链Ψs0还可以通过其他方式获得,并不限定与本实施方式的目标磁链计算单元603根据直轴目标电流id0和交轴目标电流iq0计算得出。
可选地,控制模块73控制定子磁链Ψs与转子磁链Ψf之间的夹角β为90°;可选地,控制模块73控制定子磁链Ψs与转子磁链Ψf之间的夹角β处于90°-135°之间(参考图13),通过这样的方式,能够使电机68获得较大的电磁转矩Te,从而使得电机68的实际转速能够在预设时间范围内达到或基本达到目标转速。
下面需要将目标定子磁链Ψs0、目标转矩Te0与实际定子磁链Ψs、实际转矩Te进行比较、调节,生成控制信号来调整实际的定子磁链Ψs和实际转矩Te,以使得实际定子磁链Ψs和实际转矩Te能够尽快达到目标定子磁链Ψs0、目标转矩Te0。
示例性地,电流变换单元609获取电流检测模块67的检测到的三相电流iu、iv、iw以及转子位置检测模块66的输出的转子的位置θ,将三相电流iu、iv、iw变换成两相实际电流,分别直轴实际电流id和交轴实际电流iq,直轴实际电流id和交轴实际电流iq是具有方向和大小的矢量,且直轴实际电流id和交轴实际电流iq的方向相互垂直。
转矩和磁链计算单元610获取来自电流变换单元609的直轴实际电流id和交轴实际电流iq,并且根据直轴实际电流id和交轴实际电流iq生成实际转矩Te和实际定子磁链Ψs。实际转矩Te输出至转矩环604,实际磁链Ψs输出至磁链环605。在其他实施方式中,实际转矩Te和实际定子磁链Ψs还可以通过直接检测获得。
转矩环604获取转矩和磁链计算单元610计算得出的实际转矩Te以及转速环610输出的目标转矩Te0,并根据实际转矩Te和目标转矩Te0生成第一调节量v1。的第一调节量v1用于补偿实际转矩Te,以使实际转矩Te趋近于目标转矩Te0。转矩环604包括比较、调节单元,可选地,调节单元包括PI调节,转矩环604将实际转矩Te和目标转矩Te0进行比较,并进行PI调节以获得第一调节量v1。
磁链环605获取转矩和磁链计算单元计算得出的实际定子磁链Ψs以及目标磁链计算单元603生成的目标定子磁链Ψs0,并根据实际定子磁链Ψs和目标定子磁链Ψs0生成第二调节量v2。的第二调节量v2用于补偿实际定子磁链Ψs,以使实际定子磁链Ψs趋近于目标定子磁链Ψs0。磁链环605包括比较、调节单元, 可选地,调节单元包括PI调节,磁链环605将实际定子磁链Ψs和目标定子磁链Ψs0进行比较,并进行PI调节以获得第二调节量v2。
第一调节量v1和第二调节量v2需要进行一些变换和计算后转换成用于控制驱动电路63的控制信号。第一调节量v1和第二调节量v2输入至控制信号生成单元,在本实施方式中,可选地,控制信号生成单元包括反馈线性化控制单元606、电压变换单元607以及PWM信号生成单元608。
反馈线性化控制单元606依据转矩环604生成的第一调节量v1、磁链环605生成的第二调节量v2、以及转矩和磁链计算单元610生成的实际定子磁链Ψs的直轴分量Ψd和交轴分量Ψq,并根据v1、v2、Ψd、Ψq生成直轴和交轴坐标系下的电压控制量Uq和电压控制量Ud。
电压变换单元607获取电压控制量Uq和第二电压控制量Ud,并将电压控制量Uq和电压控制量Ud变换成α-β坐标系下的电压控制量Uα和电压控制量Uβ。
PWM信号生成单元608根据α-β坐标系下的电压控制量Uα和电压控制量Uβ生成用于控制驱动电路63的PWM控制信号,从而使供电电源61输出三相电压Uu、Uv、Uw加载至电机68的绕组。在本实施方式中,的Uu、Uv、Uw为三相对称正弦波电压或马鞍波电压,Uu、Uv、Uw互成120°相位差。可选地,加载至电机68的三相Uu、Uv、Uw使得定子磁链Ψs0与转子磁链Ψf之间的夹角为90°。可选地,加载至电机68的三相Uu、Uv、Uw使得定子磁链Ψs0与转子磁链Ψf之间的夹角在90°-135°范围内。
通过这样的方式,直接根据实际反馈的电磁转矩Te和定子磁链Ψs来进行转矩控制,以使电机获得较快的转矩响应速度。本实施方式将给定的目标转矩和实际转矩进行比较得到的误差、以及将给定的目标定子磁链和实际的定子磁链的进行比较得到的误差,去选择适当的电压矢量进行控制,由于是通过直接的给定转矩和实际转矩进行比较,本实施方式的控制效果是由实际转矩情况决定,因此,能够获得较迅速的转矩响应,从而使得本申请的骑乘式割草机10可使得第一马达143输出扭矩的响应速度在100ms以内。
可选地,本申请采用上述总线69以及目标转速检测模块64,能够使得本申请的骑乘式割草机10的马达响应速度提高,可使得第一马达143输出扭矩的响应速度在10ms以内。总线69以及目标转速检测模块64与前述实施方式中的总线59以及目标转速检测模块54相同。
上述两种实施方式,分别利用不同的控制方法,能够使电机在获得较迅速 的转矩响应,提升电机输出转矩响应速度,使得第一马达的实际转矩在第一预设时间内达到或基本达到目标转矩,第一预设时间小于100ms,从而使得第一马达的实际转速在预设时间内达到或基本达到目标转速,预设时间小于800ms。
在本实施方式中,控制模块(30、50、60)输出至驱动电路(33、53、63)的控制信号是跟随电机(38、58、68)的转子位置变化的而变化的控制信号,使得电机(38、58、68)的输入电压和/或电流随转子的位置的变化而变化,电机(38、58、68)的输入电压和/或电流呈正弦波或马鞍状波变化,从而使得电机在至少一个电周期或部分电周期内在三相定子绕组上均具有连续的、交变的电流状态,三相定子绕组上的电流状态能够合成矢量力矩,这些矢量力矩近似沿着圆周连续移动,电机的转子跟随近似沿圆周连续移动的矢量力矩同步旋转,相较于相关技术中的方波控制方式下的仅有6个离散的、非连续的驱动状态,本申请能够提升电机驱动效率和电机响应速度。在本申请中,控制模块输出控制信号至驱动电路使第一马达的输入电流或输入电压跟随第一马达的转子的位置变化而变化,以使第一马达的实际转速在预设时间内达到或基本达到目标转速,预设时间小于100ms。
并且采用上述总线(59、69)以及目标转速检测模块(54、64),能够使得本申请的骑乘式割草机10的马达响应速度提高,可使得第一马达143输出扭矩的响应速度在10ms以内。
在上述实施方式中,操作杆151的位置对应于第一马达143的速度。当用户推动操作杆151,操作杆151对应的目标转速检测模块(54、64)输出一个检测信号给控制模块(30、50、60),该检测信号对应于操作杆151当前所处的位置。控制模块30接收到该检测信号后,根据该检测信号通过查表或计算方式获得操作杆151对应的第一马达151的目标转速。另外,实际转速检测模块(55、65)反馈给控制模块(50、60)其检测到的关于第一马达143的实际转速的检测信号,控制模块(50、60)根据该检测信号获得第一马达143的实际转速,控制模块(50、60)将获得的第一马达143的实际转速与目标转速进行比较获得误差,并且根据该获得的误差,通过控制交轴和直轴电流矢量或是通过定子磁链和转矩控制,使得第一马达143能够在预设时间内达到或基本达到用户通过操作杆151设置的目标转速。此过程控制模块(50、60)不断将第一马达143目标转速与实际转速进行比较,通过采用上述两种控制器(50、60)及对应的控制过程,能够在较短时间内就能使第一马达143能够在预设时间内达到或基本达到用户通过操作 杆151设置的目标转速。
作为一种实施方式,操作装置15的操作位置与第一马达的目标转速之间存在死区区间,在死区区间中,第一马达143的目标转速不变。参照图14,对于采用如图2至4所示的操作装置而言15,第一马达143的目标转速n0与操作杆151的操作位置(如角度位置P)成正比,在操作杆151的角度位置P的零角度位置附近设置有死区区间(如图14(a)图中零操作位置附近的虚线,在死区区间中,第一马达143的目标转速不变。
死区区间表示:在操作杆151从开始被推动到达到预设角度位置Pa内,第一马达143的目标转速不变,可选地,此时第一马达143的目标转速为零,这样可以防止因一些抖动引起第一马达143误动作而导致安全事故。在死区区间外,可以认为操作杆151在某一角度位置的位置代表第一马达143的某一目标转速n0。
另外,参照图14中的(c)图,为了防止用户在推动操作杆143意外超过允许的角度范围时,对第一马达143设置有最大输出扭矩TM。在操作杆151处于某一角度位置时Pa时,第一马达143的目标转速n0和最大输出扭矩TM即可确定。也即是说,操作杆151在设置目标转速时,也同样的设置了目标转矩,目标转矩能够用于使第一马达143尽快地达到目标转速。
如图14中的(b),第一马达143的输出的转矩T与第一马达143的实际转速n成曲线变化,当第一马达143的实际转速n小于目标转速n0时,此时第一马达的输出转矩应该增加,使得第一马达143加速,但增加后的扭矩不应超过在此角度时规定第一马达143输出的最大扭矩值TM;同理,若第一马达143的实际转速n大于目标转速n0,此时输出转矩T应该减少使第一马达143减速;若第一马达143的实际转速n等于目标转速n0,此时第一马达143输出转矩Ta为零。
由于上述死区区间的设置,会降低第一马达143的响应速度,而采用本申请的方案,即使设置有上述死区区间,也能够使得第一马达143输出扭矩的响应速度在100ms以内。
上述实施方式中的骑乘式割草机10的操作装置不限于上述实施方式中的左右分别设置的包括操作杆151的操作装置15,还可以采用其他的操作装置,例如图17所示的骑乘式割草机70的操作装置75,操作装置75包括方向盘751和速度杆752(油门),同样也能够实现马达输出扭矩的响应速度在100ms以内,可以在40ms以内。可选地,方向盘751为电子方向盘。
车辆行割草机70的其他组件包括:机架71、座椅72、动力输出组件73、行 走组件74、操作装置75、电源装置76。上述机架71、座椅72、动力输出组件73、行走组件74、电源装置76与前述实施方式的骑乘式割草机10的结构组成和功能相同或类似,此处不再赘述。不同之处在于操作装置不同。车辆行割草机70的操作装置75采用方向盘751和速度杆752(油门)组合,通过方向盘751旋转的角度以及速度杆给定的速度来分配左马达和右马达的速度,以控制第一行走轮741的行走。与上述实施方式类似,通过速度杆752(油门)的位置来确定目标速度,将目标速度与实际速度进行比较,采用上述实施方式中的两种控制器和控制方法实现马达的实际速度快速达到通过速度杆151设置的目标速度,检从而提高马达的相应速度,以提升用户体验和骑乘式割草机的安全性。

Claims (36)

  1. 一种骑乘式割草机,包括:
    机架;
    座椅,设置在所述机架的上方以支撑操作者;
    轮组,设置于所述机架下方且用于带动所述机架移动,所述轮组至少包括两个驱动轮;
    行走电机,用于驱动所述驱动轮转动,所述行走电机包括定子和转子;
    多个电池包,至少用于为所述行走电机提供动力来源;
    操作组件,设置于所述机架上方,至少用于供操作者操作以设定所述骑乘式割草机的目标状态,以及所述行走电机的目标转速或目标转矩中的一个;其中,所述目标状态包括前进状态、停止状态或后退状态之一;
    驱动电路,与所述行走电机电性连接,用于将所述电池包的电能以预设逻辑关系分配给所述定子上的多相绕组,以使所述驱动电机产生持续不断地转矩;
    第一检测装置,用于实时检测所述驱动轮的实测转速;
    电流检测模块,用于检测所述驱动电机的三相电流;
    控制模块,被配置为:
    接收所述第一检测装置发送的所述实测转速和所述操作组件设定的目标转速;
    基于所述第一检测装置以第一预设时间间隔发送的所述驱动轮的实测转速、所述操作组件设定的目标转速或目标转矩之一以及所述驱动电机的转子位置,动态调整加载至所述多相绕组的电流以使所述驱动电机在预设时间内达到或基本达到所述操作组件设定的目标转矩;所述第一检测装置的数据刷新率位于50微秒/次至10毫秒/次之间。
  2. 根据权利要求1所述的骑乘式割草机,其中,预设时间的时长小于等于100ms。
  3. 根据权利要求1所述的骑乘式割草机,其中,预设时间的时长小于等于20ms。
  4. 根据权利要求1所述的骑乘式割草机,还包括:
    线束系统,所述线束系统包括电源线和信号总线;
    所述第一检测装置、所述操作组件、人机界面和所述控制模块通过总线连接,所述总线的通讯帧率的取值范围为100Hz-3000Hz。
  5. 根据权利要求1所述的骑乘式割草机,其中,所述操作组件包括:
    支架,固定安装在所述机架的上方;
    操作杆,被设置成能在第一方向绕第一轴线在前进位置、中档位置和后退位置转动,能在第二方向绕第二轴线在内侧位置和外侧位置转动;
    枢转组合,用以将所述操作杆可枢转地安装在所述支架上,使所述操作杆在所述第一方向绕第一轴线转动,在第二方向绕第二轴线转动;
    所述枢转组合,包括安装在所述支架上的第一枢转组件和安装在所述第一枢转组件上的二枢转组件,所述第一枢转组件供所述操作杆在所述第一方向上绕所述第一轴线转动,所述第二枢转组件供所述操作杆在所述第二方向上绕所述第二轴线转动;
    所述第一枢转组件包括固定在所述支架上的第一枢轴,和部分包围所述第一枢轴且绕所述第一枢轴转动的轴套;
    所述第二枢转组件包括固定安装在所述第一枢转组件上的第二枢轴,所述操作杆可枢转地安装在所述第二枢轴上。
  6. 根据权利要求1所述的骑乘式割草机,其中,所述操作组件包括:
    操作装置,用于供操作者操作以设定所述骑乘式割草机的目标状态;
    人机界面,设置在所述座椅的一侧,用于供操作者操作以设定所述行走电机的目标转速或目标转矩中的一个;
    所述第一检测装置与总线连接;所述人机界面与所述总线连接。
  7. 根据权利要求1所述的骑乘式割草机,其中,所述操作组件包括:
    方向盘,基于转动角度为所述行走电机分配速度,并供操作者控制所述割草机的转向;
    速度杆,用以根据当前所处的位置配置所述割草机的目标速度;
    所述方向盘的转动角度和所述速度杆当前所处的位置用以设置所述割草机的目标转速。
  8. 根据权利要求5所述的骑乘式割草机,其中,所述第一检测装置包括:
    检测元件,固定在所述操作杆上以跟随所述操作杆运动;
    检测传感器,与所述检测元件间隔设置在所述操作杆上,以使所述操作杆在所述第一方向上绕所述第一轴线转动时,带动所述检测元件和所述检测传感器产生相对转动。
  9. 根据权利要求1所述的骑乘式割草机,其中,所述控制模块包括:
    第一转速环,所述第一转速环被配置为:
    获取由所述操作组件所设置的所述行走电机的目标转速或目标转矩中的一个;
    获取由所述第一检测装置实时检测的所述驱动轮的实测转速;
    比较调节所述行走电机的目标转速和所述驱动轮的实测转速,生成使所述驱动电机的实测转速趋近于所述目标转速的目标电流矢量。
  10. 根据权利要求9所述的骑乘式割草机,其中,所述控制模块还包括:
    电流分配单元,所述电流分配单元与所述第一转速环连接以将所述目标电流矢量分解为与所述转子的磁场方向同向的直轴目标电流和垂直于所述转子的磁场方向的交轴目标电流。
  11. 根据权利要求4所述的骑乘式割草机,其中,所述控制模块还包括:
    电流变换单元,用于获取所述驱动电机的三相相电流;将所述驱动电机的三相相电流变换为直轴实测电流和交轴实测电流。
  12. 根据权利要求5所述的骑乘式割草机,其中,所述控制模块还包括:
    第一电流环,用于获取所述电流分配单元输出的直轴目标电流和所述电流变换单元输出的直轴实测电流,比较所述直轴目标电流和所述直轴实测电流以生成使所述直轴实测电流在预设时间内趋近于所述直轴目标电流的第一电压调节量;
    第二电流环,用于获取所述电流分配单元输出的交轴目标电流和所述电流变换单元输出的交轴实测电流;比较所述交轴目标电流和所述交轴实测电流以生成使所述交轴实测电流在预设时间内趋近于所述交轴目标电流的第二电压调节量;
    信号生成单元,用于获取所述第一电压调节量、所述第二电压调节量和所述转子的位置;依据所述第一电压调节量、所述第二电压调节量和所述转子的位置生成驱动所述驱动电路的PWM信号以使所述驱动电机在预设时间内达到或基本达到操作组件设定的目标转矩。
  13. 根据权利要求1所述的骑乘式割草机,其中,所述驱动电机的定子磁链与转子磁链的夹角位于90°至135°之间。
  14. 根据权利要求1所述的骑乘式割草机,其中,所述控制模块还包括:
    转矩环,用于根据所述行走电机的目标转矩和实际转矩生成第一调节量;
    磁链环,用于根据所述行走电机的目标定子磁链和实际定子磁链生成第二调节量;
    控制信号生成单元,用于根据所述第一调节量和所述第二调节量生成控制信号,所述控制信号用于控制所述驱动电路。
  15. 一种草坪护理车,包括:
    机架;
    座椅,设置在所述机架的上方以支撑操作者;
    轮组,设置于所述机架下方且用于带动所述机架移动,所述轮组至少包括两个驱动轮;
    行走电机,用于驱动所述驱动轮转动,所述行走电机包括定子和转子;
    多个电池包,至少用于为所述行走电机提供动力来源;
    操作组件,设置于所述机架上方,至少用于供操作者操作以设定所述草坪护理车的目标状态,以及所述行走电机的目标转速或目标转矩中的一个;其中,所述目标状态包括前进状态、停止状态或后退状态之一;
    驱动电路,与所述行走电机电性连接,用于将所述电池包的电能以预设逻辑关系分配给所述定子上的多相绕组,以使所述驱动电机产生持续不断地转矩;
    第一检测装置,用于实时检测所述驱动轮的实测转速;
    电流检测模块,用于检测驱动电机的三相电流;
    控制模块,被配置为:
    接收第一检测装置发送的实测转速和操作组件设定的目标转速;
    基于所述第一检测装置以第一预设时间间隔发送的所述驱动轮的实测转速、所述操作组件设定的目标转速或目标转矩之一以及所述驱动电机的转子位置,动态调整加载至所述多相绕组的电流以使所述驱动电机在预设时间内达到或基本达到所述操作组件设定的目标转矩。
  16. 根据权利要求15所述的草坪护理车,其中,预设时间的时长小于等于100ms。
  17. 根据权利要求15所述的草坪护理车,其中,预设时间的时长小于等于20ms。
  18. 根据权利要求15所述的草坪护理车,还包括:
    线束系统,所述线束系统包括电源线和信号总线;
    所述第一检测装置、所述操作组件、人机界面和所述控制模块通过总线连接,所述总线的通讯帧率的取值范围为100Hz-3000Hz。
  19. 根据权利要求15所述的草坪护理车,其中,所述操作组件包括:
    支架,固定安装在所述机架的上方;
    操作杆,被设置成能在第一方向绕第一轴线在前进位置、中档位置和后退位置转动,能在第二方向绕第二轴线在内侧位置和外侧位置转动;
    枢转组合,用以将所述操作杆可枢转地安装在所述支架上,使所述操作杆在所述第一方向绕第一轴线转动,在第二方向绕第二轴线转动;
    所述枢转组合,包括安装在所述支架上的第一枢转组件和安装在所述第一枢转组件上的二枢转组件,所述第一枢转组件供所述操作杆在所述第一方向上绕所述第一轴线转动,所述第二枢转组件供所述操作杆在所述第二方向上绕所述第二轴线转动;
    所述第一枢转组件包括固定在所述支架上的第一枢轴,和部分包围所述第一枢轴且绕所述第一枢轴转动的轴套;
    所述第二枢转组件包括固定安装在所述第一枢转组件上的第二枢轴,所述操作杆可枢转地安装在所述第二枢轴上。
  20. 根据权利要求15所述的草坪护理车,其中,所述操作组件包括:
    操作装置,用于供操作者操作以设定所述草坪护理车的目标状态;
    人机界面,设置在所述座椅的一侧,用于供操作者操作以设定所述行走电机的目标转速或目标转矩中的一个;
    所述第一检测装置与总线连接;所述人机界面与所述总线连接。
  21. 根据权利要求15所述的草坪护理车,其中,所述操作组件包括:
    方向盘,基于转动角度为所述行走电机分配速度,并供操作者控制所述草坪护理车的转向;
    速度杆,用以根据当前所处的位置配置所述草坪护理车的目标速度;
    所述方向盘的转动角度和所述速度杆当前所处的位置用以设置所述草坪护理车的目标转速。
  22. 根据权利要求19所述的草坪护理车,其中,所述第一检测装置包括:
    检测元件,固定在所述操作杆上以跟随所述操作杆运动;
    检测传感器,与所述检测元件间隔设置在所述操作杆上,以使所述操作杆在所述第一方向上绕所述第一轴线转动时,带动所述检测元件和所述检测传感器产生相对转动。
  23. 根据权利要求15所述的草坪护理车,其中,所述控制模块包括:
    第一转速环,所述第一转速环被配置为:
    获取由所述操作组件所设置的所述行走电机的目标转速或目标转矩中的一个;
    获取由所述第一检测装置实时检测的所述驱动轮的实测转速;
    比较调节所述行走电机的目标转速和所述驱动轮的实测转速,生成使所述驱动电机的实测转速趋近于所述目标转速的目标电流矢量。
  24. 根据权利要求23所述的草坪护理车,其中,所述控制模块还包括:
    电流分配单元,所述电流分配单元与所述第一转速环连接以将所述目标电流矢量分解为与所述转子的磁场方向同向的直轴目标电流和垂直于所述转子的磁场方向的交轴目标电流。
  25. 根据权利要求18所述的草坪护理车,其中,所述控制模块还包括:
    电流变换单元,用于获取所述驱动电机的三相相电流;将所述驱动电机的三相相电流变换为直轴实测电流和交轴实测电流。
  26. 根据权利要求19所述的草坪护理车,其中,所述控制模块还包括:
    第一电流环,用于获取所述电流分配单元输出的直轴目标电流和所述电流变换单元输出的直轴实测电流,比较所述直轴目标电流和所述直轴实测电流以生成使所述直轴实测电流在预设时间内趋近于所述直轴目标电流的第一电压调节量;
    第二电流环,用于获取所述电流分配单元输出的交轴目标电流和所述电流变换单元输出的交轴实测电流;比较所述交轴目标电流和所述交轴实测电流以生成使所述交轴实测电流在预设时间内趋近于所述交轴目标电流的第二电压调节量;
    信号生成单元,用于获取所述第一电压调节量、所述第二电压调节量和所述转子的位置;依据所述第一电压调节量、所述第二电压调节量和所述转子的位置生成驱动所述驱动电路的PWM信号以使所述驱动电机在预设时间内达到或基本达到所述操作组件设定的目标转矩。
  27. 根据权利要求15所述的草坪护理车,其中,所述驱动电机的定子磁链与转子磁链的夹角位于90°至135°之间。
  28. 根据权利要求15所述的草坪护理车,其中,所述控制模块还包括:
    转矩环,用于根据所述行走电机的目标转矩和实际转矩生成第一调节量;
    磁链环,用于根据所述行走电机的目标定子磁链和实际定子磁链生成第二调节量;
    控制信号生成单元,用于根据所述第一调节量和所述第二调节量生成控制信号,所述控制信号用于控制所述驱动电路。
  29. 一种骑乘式割草机,包括:
    行走电机机架;
    座椅,设置在所述机架的上方以支撑操作者;
    轮组,设置于所述机架下方且用于带动所述机架移动,所述轮组至少包括两个驱动轮;
    行走电机,用于驱动所述驱动轮转动,所述行走电机包括定子和转子;
    电源装置,至少用于为所述行走电机提供电能;
    驱动电路,用于将所述电源装置的电能加载至所述行走电机;
    操作装置,用于设置所述行走电机的目标转矩和目标转速中的至少一个;
    控制模块,被配置为输出控制信号至所述驱动电路使所述行走电机的输入电流或输入电压跟随所述行走电机的转子的位置变化而变化,使得所述行走电机的实际转矩在预设时间内达到或基本达到所述目标转矩。
  30. 根据权利要求29所述的骑乘式割草机,其中,预设时长的取值范围为小于等于100ms。
  31. 根据权利要求29所述的骑乘式割草机,还包括:
    目标转速检测模块,与所述操作装置关联连接,所述目标转速检测模块用于检测所述操作装置设置的所述行走电机的目标转速。
  32. 根据权利要求29所述的骑乘式割草机,其中,所述目标转速检测模块与所述控制模块通过总线连接,所述总线的通讯帧率的范围为100Hz-3000Hz。
  33. 根据权利要求29所述的骑乘式割草机,其中,所述驱动马达的定子磁链与转子磁链的夹角的处于90°-135°范围内。
  34. 根据权利要求29所述的骑乘式割草机,还包括:
    电流分配单元,用于根据第一转速环生成的所述行走电机的目标电流分配直轴目标电流和交轴目标电流;
    电流变换单元,用于根据所述行走电机的实际电流和所述行走电机的转子位置生成直轴实际电流和交轴实际电流;
    第一电流环,用于根据所述直轴目标电流和所述直轴实际电流生成第一电压调节量;
    第二电流环,用于根据所述交轴目标电流和所述交轴实际电流生成第二电 压调节量;
    控制信号生成单元,用于根据所述第一电压调节量和所述第二电压调节量生成控制信号,所述控制信号用于控制所述驱动电路。
  35. 根据权利要求29所述的骑乘式割草机,其中,所述控制模块包括:
    第二转速环,用于根据所述行走电机的目标转速和实际转速生成所述行走电机的所述目标转矩。
  36. 根据权利要求29所述的骑乘式割草机,其中,所述控制模块还包括:
    转矩环,用于根据所述行走电机的目标转矩和实际转矩生成第一调节量;
    磁链环,用于根据所述行走电机的目标定子磁链和实际定子磁链生成第二调节量;
    控制信号生成单元,用于根据所述第一调节量和所述第二调节量生成控制信号,所述控制信号用于控制所述驱动电路。
PCT/CN2020/097063 2019-06-21 2020-06-19 骑乘式割草机 WO2020253821A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080005338.XA CN113273078A (zh) 2019-06-21 2020-06-19 骑乘式割草机
EP20827316.9A EP3979488B1 (en) 2019-06-21 2020-06-19 Ride-on lawnmower
US17/556,049 US11999240B2 (en) 2019-12-30 2021-12-20 Riding lawn mower

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910543909.4 2019-06-21
CN201910543909 2019-06-21
CN201911389143.5 2019-12-30
CN201911389143.5A CN111756280A (zh) 2019-03-28 2019-12-30 骑乘式割草机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/556,049 Continuation US11999240B2 (en) 2019-12-30 2021-12-20 Riding lawn mower

Publications (1)

Publication Number Publication Date
WO2020253821A1 true WO2020253821A1 (zh) 2020-12-24

Family

ID=74036844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097063 WO2020253821A1 (zh) 2019-06-21 2020-06-19 骑乘式割草机

Country Status (3)

Country Link
EP (1) EP3979488B1 (zh)
CN (1) CN113273078A (zh)
WO (1) WO2020253821A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1014568S1 (en) 2022-02-14 2024-02-13 Techtronic Cordless Gp Lawn mower
USD1015381S1 (en) 2022-02-14 2024-02-20 Techtronic Cordless Gp Lawn mower

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4233169A4 (en) * 2021-10-15 2023-12-13 Nanjing Chervon Industry Co., Ltd. RIDING LAWN MOWER

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401493A (zh) * 2013-08-09 2013-11-20 固高科技(深圳)有限公司 永磁同步电主轴驱动控制系统和方法
CN207219443U (zh) * 2017-08-30 2018-04-13 宁波朗辉工具有限公司 电动骑式割草机
EP3326443A1 (en) * 2016-11-25 2018-05-30 Honda Motor Co., Ltd. Electric power equipment
CN108418502A (zh) * 2018-01-19 2018-08-17 江苏大学 一种基于改进式svpwm的永磁同步电机开绕组容错直接转矩控制方法
CN108443419A (zh) * 2018-02-01 2018-08-24 宁波大叶园林设备股份有限公司 一种草坪割草机用安全过载缩后空转单片割草刀
EP3401153A1 (en) * 2017-05-12 2018-11-14 Kubota Corporation Electric work vehicle
CN208159349U (zh) * 2018-04-13 2018-11-30 宁波朗辉工具有限公司 一种骑乘式割草机档位调节机构
CN109067285A (zh) * 2018-08-16 2018-12-21 哈尔滨工业大学 基于零矢量电流微分的永磁同步电机无位置传感器的控制方法
CN109861605A (zh) * 2019-01-29 2019-06-07 东南大学 一种永磁同步电机无差拍转矩预测控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048608A (ja) * 2011-08-31 2013-03-14 Kokusan Denki Co Ltd 電動式作業車両
EP2639128B1 (en) * 2012-03-13 2023-09-06 Kanzaki Kokyukoki Mfg. Co., Ltd. Work vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401493A (zh) * 2013-08-09 2013-11-20 固高科技(深圳)有限公司 永磁同步电主轴驱动控制系统和方法
EP3326443A1 (en) * 2016-11-25 2018-05-30 Honda Motor Co., Ltd. Electric power equipment
EP3401153A1 (en) * 2017-05-12 2018-11-14 Kubota Corporation Electric work vehicle
CN207219443U (zh) * 2017-08-30 2018-04-13 宁波朗辉工具有限公司 电动骑式割草机
CN108418502A (zh) * 2018-01-19 2018-08-17 江苏大学 一种基于改进式svpwm的永磁同步电机开绕组容错直接转矩控制方法
CN108443419A (zh) * 2018-02-01 2018-08-24 宁波大叶园林设备股份有限公司 一种草坪割草机用安全过载缩后空转单片割草刀
CN208159349U (zh) * 2018-04-13 2018-11-30 宁波朗辉工具有限公司 一种骑乘式割草机档位调节机构
CN109067285A (zh) * 2018-08-16 2018-12-21 哈尔滨工业大学 基于零矢量电流微分的永磁同步电机无位置传感器的控制方法
CN109861605A (zh) * 2019-01-29 2019-06-07 东南大学 一种永磁同步电机无差拍转矩预测控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3979488A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1014568S1 (en) 2022-02-14 2024-02-13 Techtronic Cordless Gp Lawn mower
USD1015381S1 (en) 2022-02-14 2024-02-20 Techtronic Cordless Gp Lawn mower

Also Published As

Publication number Publication date
EP3979488A1 (en) 2022-04-06
EP3979488B1 (en) 2023-05-10
CN113273078A (zh) 2021-08-17
US20220111737A1 (en) 2022-04-14
EP3979488A4 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
WO2020253821A1 (zh) 骑乘式割草机
CN111756280A (zh) 骑乘式割草机
CN107878554B (zh) 马达控制装置和电动助力转向系统
CN112996379B (zh) 骑乘式割草机及其控制方法
JP3559258B2 (ja) ステアリング制御装置
US7053581B2 (en) Electrically operated drive controller, electrically operated drive control method and its program
JP6211353B2 (ja) 電気自動車の制御装置
JP5818965B2 (ja) 車両の操作方法
CN103079933A (zh) 电动转向装置
CN112740892B (zh) 骑乘式割草机
WO2015080021A1 (ja) 電気自動車の制御装置
US7047116B2 (en) Electric drive control apparatus, electric drive control method and program therefor
JP3240888B2 (ja) モータ制御装置、モータ制御方法、およびそれを用いた電気車
JP4749941B2 (ja) 電動機の制御装置
WO2014188963A1 (ja) 電気自動車の制御装置
US20190363658A1 (en) Motor controlling method, motor controlling system, and electronic power steering system
JP5561515B2 (ja) モータ制御装置
US11999240B2 (en) Riding lawn mower
WO2021135720A1 (zh) 电动工具与电动工具的控制方法及电机控制方式的切换方法
KR101694213B1 (ko) 차량의 모터 제어 장치 및 그 제어방법
JP5595437B2 (ja) モータ制御装置
WO2023039872A1 (en) Riding lawn mower
JP2018098975A (ja) 電動パワーステアリング装置
JP2015035875A (ja) 電気自動車の制御装置
KR101494030B1 (ko) 전기자동차용 인버터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020827316

Country of ref document: EP

Effective date: 20211227