WO2020253431A1 - 有机电致发光器件的封装结构及方法 - Google Patents

有机电致发光器件的封装结构及方法 Download PDF

Info

Publication number
WO2020253431A1
WO2020253431A1 PCT/CN2020/090721 CN2020090721W WO2020253431A1 WO 2020253431 A1 WO2020253431 A1 WO 2020253431A1 CN 2020090721 W CN2020090721 W CN 2020090721W WO 2020253431 A1 WO2020253431 A1 WO 2020253431A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
sinx
thin
oled
layer
Prior art date
Application number
PCT/CN2020/090721
Other languages
English (en)
French (fr)
Inventor
杨建兵
彭劲松
刘腾飞
张阳
马金阳
Original Assignee
南京国兆光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京国兆光电科技有限公司 filed Critical 南京国兆光电科技有限公司
Publication of WO2020253431A1 publication Critical patent/WO2020253431A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to the technical field of organic electroluminescent devices, and in particular to a packaging structure of organic electroluminescent devices and a packaging method thereof.
  • OLEDs organic electroluminescent devices
  • OLED flat panel display technology is at a critical stage where mass production technology is becoming more mature and market demand is growing rapidly. Since the OLED is particularly sensitive to water vapor and oxygen in the environment, the water vapor and oxygen that penetrates into the device will corrode the electrode and the organic layer materials, and seriously reduce the working life of the OLED. Therefore, in order to achieve the purpose of prolonging the life of the device, how to efficiently package the device is very important.
  • the atomic layer deposition (ALD) technology alternately passes the precursor into the reaction chamber in the form of pulses, uniformly adsorbs on the surface of the substrate, and simultaneously reacts and forms bonds. Since only one layer of atoms is generated in each cycle, the film prepared by this process has the advantages of smoothness, uniformity, and density. Therefore, people often use atomic layer deposition technology to encapsulate OLEDs.
  • ALD atomic layer deposition
  • the deposition speed of atomic layer deposition technology is relatively slow, and it usually takes more than ten hours for a film with a thickness of 100 nm. Therefore, how to improve the production efficiency of the packaging film and reduce the time consumption of the packaging process while ensuring good water vapor barrier performance is one of the difficulties to be overcome in the industrial development of OLED.
  • the purpose of the present invention is to invent a new packaging structure for organic light emitting devices to solve the problems of slow packaging speed and low production efficiency of the existing organic electroluminescent devices.
  • a packaging structure of an organic light emitting device which is characterized by comprising: a base substrate, an OLED, a thin film packaging layer, an organic resin layer and a glass cover sheet, the OLED is formed on the base substrate, and the thin film packaging layer Is formed on the OLED, the organic resin layer is formed on a thin-film encapsulation layer, the glass cover sheet is formed on the organic resin layer, and the thin-film encapsulation layer includes Al 2 O 3 thin films stacked, SiNx film and organic silicon film; grow Al 2 O 3 film on the OLED layer, grow SiNx film again, grow Al 2 O 3 film again, and then SiNx film, it is Al 2 O 3 /SiNx film with multiple periodic structures; An organic silicon film is grown on the Al 2 O 3 /SiNx film periodic film; an Al 2 O 3 film or SiNx film is re-grown on the organic silicon film.
  • the SiNx film is a SiN film or a Si 3 N 4 film.
  • the number of overlapping periods of the Al 2 O 3 film and the SiNx film is an integer greater than or equal to 3 and less than or equal to 10.
  • the thickness of the Al 2 O 3 film is 10 nm to 50 nm; the thickness of the SiNx film in the first alternating period is 300 nm to 1500 nm, and the thickness in the remaining alternating periods is 300 nm to 1000 nm.
  • the thickness of the organic silicon film is 300 nm to 1500 nm.
  • the packaging method of the organic light emitting device of the present invention is as follows: the Al 2 O 3 film is prepared by the atomic layer deposition method, the SiNx film is deposited by plasma enhanced chemical vapor deposition, and the organic silicon film is prepared by the liquid spin coating method. It mainly includes the following steps:
  • the thin film encapsulation layer is formed by sequentially overlapping Al 2 O 3 thin films and SiNx thin films, and the overlapping sequence may be to prepare the Al 2 O 3 thin films first and then prepare the SiNx thin films;
  • the Al 2 O 3 thin film is prepared by atomic layer deposition, the precursors used in the deposition process are trimethylaluminum (TMA) and water vapor (H2O) or ozone (O3), and nitrogen (N2) is injected as the purification gas
  • TMA trimethylaluminum
  • H2O water vapor
  • O3 ozone
  • N2 nitrogen
  • the injection time of the trimethylaluminum is 0.02s ⁇ 0.1s
  • the injection time of the water vapor or ozone is 0.02s ⁇ 0.1s
  • the injection time of the nitrogen is 10s ⁇ 30s
  • the chamber pressure is 20Pa ⁇ 80pa
  • the deposition temperature is 60°C ⁇ 80°C;
  • the SiNx film is prepared by a plasma-enhanced chemical vapor deposition (PECVD) method, the gas sources used in the deposition process are silane (SiH4) and ammonia (NH3), and the flow rate of the silane is 20sccm-50sccm.
  • the air flow is 130sccm ⁇ 190sccm; the working pressure is 10Pa ⁇ 80pa, and the power is 40 ⁇ 60W;
  • the organic silicon film is prepared by a liquid spin coating method, and the spin coating speed is 500-3000 rpm;
  • a layer of organic resin solution is formed by dispensing, spin coating or inkjet printing; then a layer of flattening and stress-treated glass cover sheet is attached to the surface of the organic resin solution; Finally, heating or UV curing is performed.
  • the OLED packaging structure provided by the present invention is composed of a thin film packaging layer, an organic resin layer, and a glass cover sheet; the thin film packaging layer is composed of a periodic inorganic layer and an organic layer.
  • the thin film packaging layer has high density and can be Effectively prevent oxygen and water vapor in the environment from entering the inside of the OLED, causing erosion of the electrodes and organic materials; an organic resin layer is also set on the thin film encapsulation layer, and the full coverage effect of the organic resin layer can effectively compensate for the inability of the thin film encapsulation layer. Good coverage of the shortcomings of dust particles, thereby further improving the life of the device; Finally, a layer of flattened and stress-treated glass cover sheet is attached to prevent damage to the device caused by external forces;
  • a low deposition temperature atomic layer deposition techniques OLED encapsulation method of the present invention provides the use, to avoid damage to the OLED performance can be precisely controlled while the thickness and composition of Al 2 O 3 film, Al 2 O 3 films formed It has the advantages of smoothness, uniformity and compactness;
  • the OLED packaging method provided by the present invention adopts plasma-enhanced chemical vapor deposition technology, and the produced SiNx film has good compactness, strong adhesion, and fast film formation speed, which can greatly reduce the process time;
  • the layer deposition technology is used in conjunction with each other, which can effectively improve the efficiency of thin film packaging while ensuring high packaging performance;
  • the spin coating preparation method of the organic layer provided by the present invention can realize the planarization of the surface of the film encapsulation layer and the coverage and protection of particles.
  • the OLED packaging structure provided by the present invention has a water vapor permeability of 10-6 g/m2 ⁇ day.
  • the Al 2 O 3 film is prepared by atomic layer deposition technology
  • the SiNx film is prepared by plasma chemical vapor deposition
  • the organic silicon film is prepared by a liquid spin coating method.
  • the thin-film encapsulation layer not only has high density, but also can control the stress of the thin-film encapsulation layer, and can effectively prevent the corrosion of OLED caused by water vapor.
  • an organic resin layer and a glass cover sheet are further arranged on the film encapsulation layer, and the full coverage effect of the organic resin layer and the protective effect of the glass cover sheet are used to further improve the use strength of the device.
  • FIG. 1 is a schematic diagram of an OLED packaging structure provided by Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the OLED packaging structure provided by the second embodiment of the present invention.
  • FIG. 1 is a schematic diagram of the packaging structure of the organic electroluminescent device in the first embodiment.
  • the packaging structure includes a base substrate, an OLED light emitting element, a thin film packaging layer, an organic resin layer and a glass cover sheet.
  • the packaging method in this embodiment includes the following steps:
  • Atomic layer deposition method is used to form Al 2 O 3 thin film on the base substrate of the OLED.
  • the precursors used in the deposition process are trimethyl aluminum (TMA) and water vapor (H2O), and nitrogen (N2) is injected.
  • TMA trimethyl aluminum
  • H2O water vapor
  • N2 nitrogen
  • the injection time of trimethylaluminum is 0.02s
  • the injection time of water vapor is 0.02s
  • the injection time of nitrogen is 30s
  • the chamber pressure is 20Pa
  • the deposition temperature is 80°C
  • the thickness of the Al2O3 film is 30nm;
  • Plasma-enhanced chemical vapor deposition is used to form SiNx film on the surface of Al 2 O 3 film.
  • the gas sources used in the deposition process are silane (SiH4) and ammonia (NH3).
  • the flow rate of silane is 30 sccm.
  • the flow rate of ammonia gas is 150sccm; the working pressure is 20Pa, the power is 40W; the thickness of the SiNx film is 1200nm;
  • Steps (2) and (3) are alternately repeated three times to complete the production of the thin-film encapsulation layer; it should be specially noted that the thickness of the SiNx film in the first alternating period is 1200 nm, and the thickness in the remaining alternating periods is 800 nm;
  • a liquid spin coating method is used to prepare the organic silicon film, the spin coating speed is 2000 rpm, and the film thickness is 1 ⁇ m;
  • an Al 2 O 3 film is formed by atomic layer deposition.
  • the precursors used in the deposition process are trimethyl aluminum (TMA) and water vapor (H2O), and nitrogen (N2) ) As a purification gas; the injection time of trimethylaluminum is 0.02s, the injection time of water vapor is 0.02s, and the injection time of nitrogen is 30s; the chamber pressure is 20Pa, the deposition temperature is 80°C; the thickness of the Al2O3 film is 30nm ;
  • a layer of organic resin layer is formed on the surface of the film encapsulation layer by dispensing
  • the OLED device adopting the above-mentioned packaging structure has a water vapor permeability (WVTR) of 8.57 ⁇ 10-6 g/m2 ⁇ day in an environment with a temperature of 25° C. and a humidity of 80%.
  • WVTR water vapor permeability
  • the packaging structure includes a base substrate, an OLED light emitting element, a thin film packaging layer, an organic resin layer and a glass cover sheet.
  • the packaging method in this embodiment includes the following steps:
  • a plasma-enhanced chemical vapor deposition method is used to form a SiNx film on the surface of the organic silicon film.
  • the gas sources used in the deposition process are silane (SiH4) and ammonia (NH3).
  • the flow rate of silane is 30 sccm.
  • the flow rate is 150sccm; the working pressure is 20Pa, the power is 40W; the thickness of the SiNx film is 800nm;
  • the OLED device adopting the above-mentioned packaging structure has a water vapor permeability (WVTR) of 8.13 ⁇ 10-6 g/m2 ⁇ day in an environment with a temperature of 25° C. and a humidity of 80%.
  • WVTR water vapor permeability

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光器件的封装结构,其特征在于,包括:衬底基板、OLED、薄膜封装层、有机树脂层和玻璃盖片,所述OLED形成于所述衬底基板上,所述薄膜封装层形成于所述OLED上,所述有机树脂层形成于薄膜封装层上,所述玻璃盖片形成于所述有机树脂层之上,所述薄膜封装层包括交叠堆叠的Al 2O 3薄膜、SiNx薄膜和有机硅薄膜;在OLED层上先生长Al 2O 3薄膜,再生长SiNx薄膜,再生长Al 2O 3薄膜,再SiNx薄膜,为多个周期结构的Al 2O 3/SiNx薄膜;在Al 2O 3/SiNx薄膜周期薄膜上生长有机硅薄膜;在有机硅薄膜上再生长Al 2O 3薄膜或SiNx薄膜。本发明采用的原子层沉积技术的沉积温度低,避免了对OLED性能的损害,同时可以精确控制Al 2O 3薄膜的厚度和成分,制成的Al 2O 3薄膜具有平滑、均匀、致密等优点。

Description

有机电致发光器件的封装结构及方法 技术领域
本发明涉及有机电致发光器件技术领域,尤其涉及一种有机电致发光器件的封装结构及其封装方法。
背景技术
众所周知,有机电致发光器件(OLED)由于具有自发光、低能耗、宽视角、响应速度快及实现可弯曲等优点,受到学术界和商业界的广泛关注。目前,随着显示行业各大厂商不断投入大量经费进行技术研发,OLED平板显示技术正处于量产技术日渐成熟与市场需求高速增长的关键阶段。由于OLED对环境中的水汽和氧气特别敏感,渗入器件内部的水汽和氧气会腐蚀电极和有机层材料,严重降低了OLED的工作寿命。因此,为了达到延长器件寿命的目的,如何对器件进行高效地封装,是至关重要的。
近年来,国内外研究者们把焦点集中在薄膜封装方面,即通过形成结构致密的薄膜对封装区域的器件进行物理保护,是一种无间隙的封装手段。实现薄膜封装的现有技术中,原子层沉积(ALD)技术是通过将前驱体以脉冲的形式交替通入反应腔,在衬底表面均匀吸附,同时发生反应并成键。由于每次循环只生成一层原子,使得该工艺制备的薄膜具有平滑、均匀、致密等优点。因此人们常使用原子层沉积技术对OLED进行薄膜封装。但是,原子层沉积技术的沉积速度相对缓慢,通常100nm厚度的薄膜需要十几个小时。因此,如何在保证获得良好水汽阻隔性能的同时,提高封装薄膜的制作效率,减少封装工艺的耗时,是OLED产业化发展需要克服的困难之一。
发明内容
本发明的目的是针对现有的有机电致发光器件封装速度慢,生产效率低的问题,发明一种新的有机发光器件的封装结构。
本发明的技术方案是:
一种有机发光器件的封装结构,其特征在于,包括:衬底基板、OLED、薄膜封装层、有机树脂层和玻璃盖片,所述OLED形成于所述衬底基板上,所述薄膜封装层形成于所述OLED上,所述有机树脂层形成于薄膜封装层上,所述玻璃盖片形成于所述有机树脂层之上,所述薄膜封装层包括交叠堆叠的Al 2O 3薄膜、SiNx薄膜和有机硅薄膜;在OLED层上先生长 Al 2O 3薄膜,再生长SiNx薄膜,再生长Al 2O 3薄膜,再SiNx薄膜,为多个周期结构的Al 2O 3/SiNx薄膜;在Al 2O 3/SiNx薄膜周期薄膜上生长有机硅薄膜;在有机硅薄膜上再生长Al 2O 3薄膜或SiNx薄膜。
所述SiNx薄膜为SiN薄膜或Si 3N 4薄膜。
所述Al 2O 3薄膜和所述SiNx薄膜交叠周期数为大于等于3且小于等于10的整数。
所述Al 2O 3薄膜的厚度为10nm~50nm;所述SiNx薄膜在第一个交替周期内的厚度为300nm~1500nm,在其余交替周期内的厚度为300nm~1000nm。所述有机硅薄膜的厚度为300nm~1500nm。
本发明的有机发光器件的封装方法是:采用原子层沉积的方法制备Al 2O 3薄膜,采用等离子体增强化学气相沉积SiNx薄膜,采用液体旋涂方法制备有机硅薄膜。主要包括以下步骤:
在所述衬底基板上形成OLED;
在所述OLED上形成薄膜封装层;
所述薄膜封装层为Al 2O 3薄膜和SiNx薄膜依次交叠而成,交叠顺序可以是先制备所述Al 2O 3薄膜、后制备所述SiNx薄膜;
所述Al 2O 3薄膜采用原子层沉积的方法制备,沉积过程中采用的前驱体为三甲基铝(TMA)和水蒸气(H2O)或臭氧(O3),注入氮气(N2)作为净化气体;所述三甲基铝的注入时间为0.02s~0.1s,所述水蒸气或臭氧的注入时间为0.02s~0.1s,所述氮气的注入时间为10s~30s;腔室压强为20Pa~80pa,沉积温度为60℃~80℃;
所述SiNx薄膜采用等离子体增强化学气相沉积(PECVD)方法制备,沉积过程中采用的气源为为硅烷(SiH4)和氨气(NH3),所述硅烷的流量为20sccm~50sccm,所述氨气的流量为130sccm~190sccm;工作压强为10Pa~80pa,功率为40~60W;
所述有机硅薄膜采用液体旋涂方法制备,旋涂速度为500~3000rpm;
在所述薄膜封装层上方,通过点胶、旋涂或喷墨打印的方法形成一层有机树脂溶液;随后在所述有机树脂溶液表面贴合一层经过平整处理和应力处理的玻璃盖片;最后,进行加热或UV固化。
本发明的有益效果是:
1、本发明提供的OLED封装结构是由薄膜封装层、有机树脂层、玻璃盖片组成;薄膜封装层由周期性的无机层和有机层组成,该薄膜封装层具有很高的致密性,可以有效地阻 止环境中的氧气和水汽进入OLED内部,造成对电极和有机材料的侵蚀;在薄膜封装层上还设置了有机树脂层,有机树脂层的全覆盖效果可以有效地弥补薄膜封装层不能很好的覆盖灰尘颗粒的缺点,从而进一步提高器件的寿命;最后再贴合一层经过平整处理和应力处理的玻璃盖片,防止外力对器件造成的损害;
2、本发明提供的OLED封装方法采用的原子层沉积技术的沉积温度低,避免了对OLED性能的损害,同时可以精确控制Al 2O 3薄膜的厚度和成分,制成的Al 2O 3薄膜具有平滑、均匀、致密等优点;
3、本发明提供的OLED封装方法采用的等离子体增强化学气相沉积技术,制成的SiNx薄膜具有良好的致密性、附着力强,且成膜速度快,可以大大地减少工艺耗时;与原子层沉积技术相互配合使用,在保证高封装性能的同时,可以有效地提高薄膜封装的效率;
4、本发明提供的有机层旋涂制备方法,可以实现对薄膜封装层表面进行平坦化,对颗粒进行覆盖保护。
5、本发明提供的OLED封装结构,其水汽渗透率达到10-6g/m2·day级别。
6、本发明同时提供的封装方法中,所述Al 2O 3薄膜利用原子层沉积技术制备,所述SiNx薄膜由等离子体化学气相沉积制备,所述有机硅薄膜由液体旋涂方法制备,因此薄膜封装层不仅具有很高的致密性,同时还可以控制薄膜封装层的应力,可以有效地防止水汽对OLED造成的侵蚀。本发明在薄膜封装层之上还设置了有机树脂层和玻璃盖片,利用有机树脂层的全覆盖效果和玻璃盖片的保护作用,进一步提高了器件的使用强度。
附图说明
图1是本发明实施例一提供的OLED封装结构的示意图。
图2是本发明实施例二提供的OLED封装结构的示意图。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,下面结合附图与较佳实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一。
如图1所示。
图1是实施例一中的有机电致发光器件的封装结构的示意图。
如图1所示,该封装结构包括衬底基板、OLED发光元件、薄膜封装层、有机树脂层和 玻璃盖片。
具体地,本实施例中的封装方法包括如下步骤:
(1)在衬底基板上形成OLED;
(2)在形成OLED的衬底基板上利用原子层沉积方法形成Al 2O 3薄膜,沉积过程中采用的前驱体为三甲基铝(TMA)和水蒸气(H2O),注入氮气(N2)作为净化气体;三甲基铝的注入时间为0.02s,水蒸气的注入时间为0.02s,氮气的注入时间为30s;腔室压强为20Pa,沉积温度为80℃;Al2O3薄膜的厚度为30nm;
(3)在Al 2O 3薄膜表面利用等离子体增强化学气相沉积方法形成SiNx薄膜,沉积过程中采用的气源为为硅烷(SiH4)和氨气(NH3),硅烷的流量为30sccm,所述氨气的流量为150sccm;工作压强为20Pa,功率为40W;SiNx薄膜的厚度为1200nm;
(4)交替重复步骤(2)和(3)三次,完成薄膜封装层的制作;需要特别说明的是,第一个交替周期内的SiNx薄膜厚度为1200nm,其余交替周期内的厚度为800nm;
(5)在SiNx薄膜上,采用液体旋涂方法制备有机硅薄膜,旋涂速度为2000rpm,薄膜厚度为1μm;
(6)在有机硅薄膜上,再利用原子层沉积方法形成一层Al 2O 3薄膜,沉积过程中采用的前驱体为三甲基铝(TMA)和水蒸气(H2O),注入氮气(N2)作为净化气体;三甲基铝的注入时间为0.02s,水蒸气的注入时间为0.02s,氮气的注入时间为30s;腔室压强为20Pa,沉积温度为80℃;Al2O3薄膜的厚度为30nm;
(7)在薄膜封装层表面通过点胶的方式形成一层有机树脂层;
(8)在有机树脂层上方,贴合一层经过平整处理和应力处理的玻璃盖片,最后经UV固化。
采用上述封装结构的OLED器件,在温度为25℃、湿度为80%的环境中,水汽渗透率(WVTR)达到了8.57×10-6g/m2·day。
实施例二。
如图2所示,该封装结构包括衬底基板、OLED发光元件、薄膜封装层、有机树脂层和玻璃盖片。
具体地,本实施例中的封装方法包括如下步骤:
(1)、(2)、(3)、(4)、(5)同实施例一;
(6)在有机硅薄膜表面利用等离子体增强化学气相沉积方法形成SiNx薄膜,沉积过程中采用的气源为为硅烷(SiH4)和氨气(NH3),硅烷的流量为30sccm,所述氨气的流量为150sccm;工作压强为20Pa,功率为40W;SiNx薄膜的厚度为800nm;
(7)、(8)步骤同实施例一;
采用上述封装结构的OLED器件,在温度为25℃、湿度为80%的环境中,水汽渗透率(WVTR)达到了8.13×10-6g/m2·day。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但本发明并不局限于此。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。
本发明未涉及部分与现有技术相同或可采用现有技术加以实现。

Claims (5)

  1. 一种有机发光器件的封装结构,其特征在于,包括:衬底基板、OLED、薄膜封装层、有机树脂层和玻璃盖片,所述OLED形成于所述衬底基板上,所述薄膜封装层形成于所述OLED上,所述有机树脂层形成于薄膜封装层上,所述玻璃盖片形成于所述有机树脂层之上,所述薄膜封装层包括交叠堆叠的Al 2O 3薄膜、SiNx薄膜和有机硅薄膜;在OLED层上先生长Al 2O 3薄膜,再生长SiNx薄膜,再生长Al 2O 3薄膜,再SiNx薄膜,为多个周期结构的Al 2O 3/SiNx薄膜;在Al 2O 3/SiNx薄膜周期薄膜上生长有机硅薄膜;在有机硅薄膜上再生长Al 2O 3薄膜或SiNx薄膜。
  2. 根据权利要求1所述的有机发光器件的封装结构,其特征在于,所述SiNx薄膜为SiN薄膜或Si 3N 4薄膜。
  3. 根据权利要求1所述的有机发光器件的封装结构,其特征在于,所述Al 2O 3薄膜和所述SiNx薄膜交叠周期数为大于等于3且小于等于10的整数。
  4. 根据权利要求1所述的有机发光器件的封装结构,其特征在于,所述Al 2O 3薄膜的厚度为10nm~50nm;所述SiNx薄膜在第一个交替周期内的厚度为300nm~1500nm,在其余交替周期内的厚度为300nm~1000nm。所述有机硅薄膜的厚度为300nm~1500nm。
  5. 一种有机发光器件的封装方法,其特征在于,所述Al 2O 3薄膜采用原子层沉积的方法制备,所述SiNx薄膜采用等离子体增强化学气相沉积,所述有机硅薄膜采用液体旋涂方法制备。
PCT/CN2020/090721 2019-06-17 2020-05-17 有机电致发光器件的封装结构及方法 WO2020253431A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910519776.7 2019-06-17
CN201910519776.7A CN110212116A (zh) 2019-06-17 2019-06-17 有机电致发光器件的封装结构及方法

Publications (1)

Publication Number Publication Date
WO2020253431A1 true WO2020253431A1 (zh) 2020-12-24

Family

ID=67793014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090721 WO2020253431A1 (zh) 2019-06-17 2020-05-17 有机电致发光器件的封装结构及方法

Country Status (2)

Country Link
CN (1) CN110212116A (zh)
WO (1) WO2020253431A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212116A (zh) * 2019-06-17 2019-09-06 南京国兆光电科技有限公司 有机电致发光器件的封装结构及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718324A (zh) * 2011-07-14 2014-04-09 欧司朗光电半导体有限公司 用于光电子器件的封装结构和用于封装光电子器件的方法
CN104518165A (zh) * 2013-09-29 2015-04-15 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN104518120A (zh) * 2013-09-27 2015-04-15 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN105679964A (zh) * 2016-03-28 2016-06-15 中国电子科技集团公司第五十五研究所 有机电致发光器件的封装结构及方法
KR20160142939A (ko) * 2015-06-03 2016-12-14 삼성디스플레이 주식회사 유기 발광 표시 장치
CN106299153A (zh) * 2016-10-10 2017-01-04 昆山工研院新型平板显示技术中心有限公司 一种薄膜封装方法及其结构
CN108493351A (zh) * 2018-01-31 2018-09-04 云谷(固安)科技有限公司 薄膜封装结构、显示装置及显示装置的制备方法
CN110212116A (zh) * 2019-06-17 2019-09-06 南京国兆光电科技有限公司 有机电致发光器件的封装结构及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887530B (zh) * 2017-01-20 2019-06-21 南京国兆光电科技有限公司 一种有机电致发光器件的薄膜封装结构及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718324A (zh) * 2011-07-14 2014-04-09 欧司朗光电半导体有限公司 用于光电子器件的封装结构和用于封装光电子器件的方法
CN104518120A (zh) * 2013-09-27 2015-04-15 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN104518165A (zh) * 2013-09-29 2015-04-15 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
KR20160142939A (ko) * 2015-06-03 2016-12-14 삼성디스플레이 주식회사 유기 발광 표시 장치
CN105679964A (zh) * 2016-03-28 2016-06-15 中国电子科技集团公司第五十五研究所 有机电致发光器件的封装结构及方法
CN106299153A (zh) * 2016-10-10 2017-01-04 昆山工研院新型平板显示技术中心有限公司 一种薄膜封装方法及其结构
CN108493351A (zh) * 2018-01-31 2018-09-04 云谷(固安)科技有限公司 薄膜封装结构、显示装置及显示装置的制备方法
CN110212116A (zh) * 2019-06-17 2019-09-06 南京国兆光电科技有限公司 有机电致发光器件的封装结构及方法

Also Published As

Publication number Publication date
CN110212116A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
CN105679964A (zh) 有机电致发光器件的封装结构及方法
Wang et al. Hermetic seal for perovskite solar cells: An improved plasma enhanced atomic layer deposition encapsulation
CN101512728B (zh) 增加封装膜透光度的方法
US9748518B2 (en) Thin-film packaging method and organic light-emitting device
CN101697343B (zh) 一种薄膜封装方法
TWI427811B (zh) 供薄膜型太陽能電池用之半導體結構組合及其製造方法
CN103490019B (zh) 有机电致发光器件的封装结构及封装方法、显示装置
WO2020253431A1 (zh) 有机电致发光器件的封装结构及方法
CN111628010A (zh) 一种晶硅电池背钝化叠层结构及制备工艺
CN110112313B (zh) 一种柔性器件的超薄复合封装薄膜结构及制备方法
Muñoz-Rojas et al. Spatial atomic layer deposition
CN203573989U (zh) 有三氧化二铝钝化膜的晶体硅
CN203466226U (zh) 有机电致发光器件的封装结构、显示装置
EP4380337A1 (en) Packaging structure, display panel, and method for manufacturing display panel
CN104498908A (zh) 一种用于制备组件晶硅太阳能电池pecvd镀膜工艺
CN104846350A (zh) 一种有机无机杂化的高阻隔膜及其制备方法
CN103762321B (zh) 一种有机器件薄膜封装方法及装置
CN104733641B (zh) Oled器件的封装方法、封装结构及显示装置
CN104716270A (zh) 一种薄膜封装结构和具有该结构的有机发光装置
CN102296278A (zh) 一种氮化铝薄膜的制备方法
TW201721812A (zh) 複合阻障層及其製造方法
CN206490095U (zh) 一种显示面板及显示装置
CN109155343A (zh) 发光二极管的保护膜的沉积方法
CN104518165A (zh) 一种有机电致发光器件及其制备方法
TWI408249B (zh) 利用電漿增強化學氣相沉積技術在可撓式塑膠基板上連續沉積有機/無機多層水氣阻障層之方法及其製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826610

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20826610

Country of ref document: EP

Kind code of ref document: A1