WO2020253290A1 - 电磁屏蔽膜 - Google Patents

电磁屏蔽膜 Download PDF

Info

Publication number
WO2020253290A1
WO2020253290A1 PCT/CN2020/080120 CN2020080120W WO2020253290A1 WO 2020253290 A1 WO2020253290 A1 WO 2020253290A1 CN 2020080120 W CN2020080120 W CN 2020080120W WO 2020253290 A1 WO2020253290 A1 WO 2020253290A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
shielding film
electromagnetic shielding
layer
film according
Prior art date
Application number
PCT/CN2020/080120
Other languages
English (en)
French (fr)
Inventor
张晟
Original Assignee
昇印光电(昆山)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昇印光电(昆山)股份有限公司 filed Critical 昇印光电(昆山)股份有限公司
Publication of WO2020253290A1 publication Critical patent/WO2020253290A1/zh
Priority to US17/536,411 priority Critical patent/US11716837B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked

Definitions

  • the present invention relates to electronic technology, and more specifically, the present invention relates to an electromagnetic shielding film.
  • An electromagnetic shielding film which includes:
  • a bearing layer which includes a first side surface and a second side surface disposed oppositely;
  • N-layer conductive layer stacked on the first side and/or second side, N ⁇ 2;
  • the conductive layer has a conductive grid
  • the conductive grid includes a grid-like groove and a conductive material filled in the groove
  • at least two of the N-layer conductive layers have Shield conductive materials of different wavebands.
  • the aspect ratio of the groove is ⁇ 2.
  • the conductive materials of the N-layer conductive layers are all different.
  • the conductive grid is a random grid.
  • the grid shape and/or grid distribution of the conductive grid are randomly arranged.
  • the conductive grid of each conductive layer of the N-layer conductive layer is a random grid, and the random grids of any two layers are different.
  • the alignment deviation of the conductive grids of any two conductive layers in the N-layer conductive layer is not less than 20 ⁇ m.
  • the conductive grid includes a plurality of circular grids and/or oval grids.
  • the conductive grid includes a plurality of circular grids, and the plurality of circular grids after the superposition of the N conductive layers are arranged regularly.
  • the plurality of circular grids after the N-layer conductive layer is superimposed are arranged in a regular hexagon.
  • 3 ⁇ N ⁇ 20, and the total thickness is not greater than 180 ⁇ m.
  • the conductive material is metal, metal oxide, compound conductive material, or organic conductive material.
  • the types and/or contents of conductive materials of at least two conductive layers are different.
  • the average pore diameters of the conductive meshes of at least two of the N-layer conductive layers are different.
  • the cross-sectional shape of the groove is rectangular, inverted trapezoid, triangle, arc, or partial arc.
  • the supporting layer is glass, organic glass, PET, PC, PMMA or a composite board, and the supporting layer is a transparent substrate.
  • each of the N-layer conductive layers is provided with an external conductive portion.
  • the conductivity and/or permeability of the conductive grids of at least two conductive layers are different.
  • the groove includes two side walls and a bottom wall connecting the two side walls, and at least one of the side walls is inclined.
  • At least one of the side walls is an inclined arc side wall.
  • a fusion part between adjacent conductive layers there is a fusion part between adjacent conductive layers, and the conductive layer with the fusion part is an integral structure.
  • the trench is filled with two or more layers of filling materials, at least one of which is a conductive material.
  • the depth of the trench is in the range of 1-20 ⁇ m
  • the width of the trench is in the range of 1-20 ⁇ m
  • the thickness of the conductive layer is in the range of 3-50 ⁇ m.
  • the average filling depth of the conductive material in the trench does not exceed 4/5 of the depth of the trench.
  • Figure 1 is a schematic cross-sectional view of the electromagnetic shielding film of the present invention
  • FIG. 2 is a schematic plan view of a first conductive layer of the electromagnetic shielding film shown in FIG. 1;
  • FIG. 3 is a schematic plan view of a second conductive layer of the electromagnetic shielding film shown in FIG. 1;
  • FIG. 4 is a schematic plan view of the electromagnetic shielding film shown in FIG. 1;
  • Figure 5 is a schematic diagram of the principle of the electromagnetic shielding film of the present invention.
  • Fig. 6 is another schematic cross-sectional view of the electromagnetic shielding film of the present invention.
  • Fig. 7 is another schematic cross-sectional view of the electromagnetic shielding film of the present invention.
  • FIG. 8 is a schematic plan view of the first conductive layer of the electromagnetic shielding film shown in FIG. 7;
  • FIG. 9 is a schematic plan view of a second conductive layer of the electromagnetic shielding film shown in FIG. 7;
  • FIG. 10 is a schematic plan view of the third conductive layer of the electromagnetic shielding film shown in FIG. 7;
  • FIG. 11 is a schematic plan view of the electromagnetic shielding film shown in FIG. 7;
  • Figure 12 is another schematic cross-sectional view of the electromagnetic shielding film of the present invention.
  • Figure 13 is another schematic cross-sectional view of the electromagnetic shielding film of the present invention.
  • 16 is another schematic cross-sectional view of the electromagnetic shielding film of the present invention.
  • Figure 17 is another schematic cross-sectional view of the electromagnetic shielding film of the present invention.
  • Fig. 18 is another schematic plan view of the electromagnetic shielding film of the present invention.
  • Carrier layer 2. First conductive layer; 3. Second conductive layer; 11. First side surface; 12. Second side surface; 21. First groove; 22. First conductive material; 23. First conductive layer Grid; 31, second trench; 32, second conductive material; 33, second conductive grid; 100, electromagnetic shielding film; 101, electromagnetic shielding film; 1', carrier layer; 2', first conductive layer 3', the second conductive layer; 200, the electromagnetic shielding film; 4. the carrier layer; 5.
  • the present invention discloses an electromagnetic shielding film, which includes a bearing layer and an N-layer conductive layer.
  • the supporting layer includes a first side surface and a second side surface that are arranged oppositely, and N layers of conductive layers are stacked on the first side surface and/or the second side surface, where N ⁇ 2.
  • the conductive layer has a conductive grid
  • the conductive grid includes a grid-shaped groove and a conductive material filled in the groove
  • at least two conductive layers in the N-layer conductive layer have conductive materials shielding different wavebands. Different layers have different conductive materials, and different conductive materials have different absorption rates for different wavebands.
  • the difference means that one kind of conductive material has a higher absorption rate for one waveband than other wavebands, and the two conductive materials have a higher absorption rate for the waveband If the range is different, it is considered that the effective shielding band of the electromagnetic shielding film is the superposition of the shielding bands of these two conductive materials, thus widening the shielding band of the electromagnetic shielding film and better meeting the market demand.
  • the aspect ratio of each layer of trenches is ⁇ 2, and a large aspect ratio setting can reduce resistance and increase transmittance.
  • the conductive materials of the N-layer conductive layers are all different, and the conductive materials of each layer are different, and the bands that can be shielded are different, so that the entire electromagnetic shielding film has a wider band.
  • the conductive grid is a random grid. Specifically, the grid shape and/or grid distribution of the conductive grid are randomly set.
  • the conductive grid in each conductive layer of the N-layer conductive layer is a random grid, and the random grids of any two layers are different, the production is simple, and the transmittance of each layer is guaranteed.
  • the alignment deviation of the conductive grids of any two conductive layers in the N-layer conductive layer is not less than 20 ⁇ m, for example, 30 ⁇ m, 50 ⁇ m, or 70 ⁇ m.
  • the conductive grid includes a plurality of circular grids and/or oval grids.
  • the conductive grid includes a plurality of circular grids, and the circular grids are arranged according to a regular triangle, a regular quadrilateral or a regular hexagon; each circular grid is distributed on each vertex of a regular triangle, a regular quadrilateral or a regular hexagon, and can be filled
  • Each vertex may not occupy each vertex, and the circular grids of the laminated conductive layers do not overlap, partially overlap or completely overlap; preferably, the circular grids of each layer are distributed at each vertex in a complementary manner, that is, the superimposed plural
  • the circular grids are arranged regularly, for example, the plural circular grids after N-layer conductive layers are superimposed are arranged in a regular hexagon.
  • the conductive grid includes a plurality of elliptical grids, the conductive grid of each conductive layer includes large ellipses and small ellipses alternately arranged at intervals, and the elliptical grids of the laminated conductive layers do not overlap, partially overlap, or completely overlap.
  • the total thickness is not more than 180 ⁇ m. Within this range, a reasonable shielding band can be obtained without making the electromagnetic shielding film too thick.
  • the thickness of the N-layer conductive layer is not more than 100 ⁇ m. If it is matched with a low-thickness carrier layer, such as PET or PC, the thickness of the entire electromagnetic shield is not more than 180 ⁇ m.
  • the carrier layer is a glass layer, the thickness of the glass layer can be 0.1 mm, 3 mm, or 10 mm, and the thickness of the electromagnetic shielding film is correspondingly larger.
  • the conductive material filled in each layer may be completely different or partly different.
  • the conductive material includes one or a combination of metal, metal oxide, compound conductive material, or organic conductive material.
  • the metal is Ag, Gu, Al, Zn, Ni, Fe
  • the metal oxide is Al 2 O 3
  • the compound conductive material is ITO
  • the organic conductive material is PEDOT.
  • the conductive layer materials of the at least two conductive layers have different types and/or contents. Different types of conductive materials can shield different wavebands. The same type of conductive material but different content of each component can also shield different wavebands.
  • the average pore diameters of the conductive grids of at least two of the conductive layers in the N-layer conductive layer are different.
  • random grids, honeycomb grids, circular grids, etc., with different average apertures can affect the shielding band of each layer.
  • the cross-sectional shape of the groove is rectangular, inverted trapezoid, triangular, arc or partial arc, and the cross-sectional shape of each layer may be the same or different.
  • the groove includes two side walls and a bottom wall connecting the two side walls, wherein at least one of the side walls is arranged obliquely, so as to facilitate demolding after imprinting.
  • the supporting layer is glass, organic glass, PET, PC, PMMA or a composite board, and the supporting layer is a transparent substrate.
  • each conductive layer of the N-layer conductive layer is respectively provided with an external conductive part, and the electrical connection can be realized through an external FPC soft board or a separate lap part.
  • the overlapping part is formed by silk printing, inkjet printing, sputtering, vapor deposition, etc.
  • the absorptivity for the same waveband is different, and the shielding waveband is also different.
  • a fusion part between adjacent conductive layers there is a fusion part between adjacent conductive layers, and the conductive layer with the fusion part is an integral structure.
  • a first conductive layer and a second conductive layer are laminated on the first side, and UV glue is coated on the first side.
  • the mold is released to form a grid-like groove.
  • the trench is filled with a first conductive material to form a first conductive grid to form a first conductive layer; the first conductive layer is coated with UV glue on the side away from the first side surface, imprinted and cured, and demolded to form a grid-like groove
  • the boundary portion of the UV glue of the first conductive layer and the UV glue of the second conductive layer are fused with each other, the first conductive grid is embedded in the conductive layer, and the first conductive layer and the second conductive layer are integrated.
  • the thickness of the electromagnetic shielding film can also be controlled.
  • the trench is filled with two or more layers of filling material, and at least one layer is a conductive material.
  • the trench is filled with active polymer and conductive metal material in sequence.
  • the depth of the trench is in the range of 1-20 ⁇ m
  • the width of the trench is in the range of 1-20 ⁇ m
  • the thickness of the conductive layer is in the range of 3-50 ⁇ m.
  • the thickness and trench size of each layer may be the same or different.
  • the thickness of each conductive layer is 3 ⁇ m
  • the trench width is 1 ⁇ m
  • the depth is 2 ⁇ m.
  • the conductive grids of the N-layer conductive layer are set on the projection surface to completely overlap within the error range. Due to alignment errors, it is difficult to achieve complete overlap of the conductive grids of the N-layer conductive layer, so complete overlap is within the error range.
  • the average filling depth of the conductive material in the trench does not exceed 4/5 of the trench depth, and the conductive material does not fill the trench.
  • the electromagnetic shielding film 100 includes a carrier layer 1, a first conductive layer 2 and a second conductive layer 3.
  • the carrier layer 1 includes a first side surface 11 and a second side surface 12 opposite to each other, and the first conductive layer 2 and the second conductive layer 3 are stacked on the first side surface 11.
  • the first conductive layer 2 includes a grid-shaped first trench 21 and a first conductive material 22 filled in the first trench 21 to form a first conductive grid 23 (please refer to FIG. 2).
  • the second conductive layer 3 includes a grid-shaped second trench 31 and a second conductive material 32 filled in the second trench 31 to form a second conductive grid 33 (please refer to FIG. 3).
  • the first conductive grid 23 is a random grid
  • the second conductive grid 33 is a random grid
  • the random grid after the first conductive grid 23 and the second conductive grid 33 are superimposed is shown in FIG. 4.
  • the first conductive material 22 is Ag
  • the second conductive material is Gu.
  • the shielding band of the first conductive layer 2 is different from the shielding band of the second conductive layer 3, and the shielding band of the electromagnetic shielding film 100 is the superposition of the shielding bands of the first conductive layer 2 and the second conductive layer 3. Therefore, the effective shielding band of the electromagnetic shielding film 100 can be increased, and the electromagnetic shielding film 100 has more market value.
  • the first conductive layer 2 uses the first conductive material 22 to form the first conductive grid 23, and the absorption rate of the wavelength band is shown in line c1, where the range is shown in L1
  • the internal absorption rate is greater than other wavelength bands, and the shielding band of the first conductive layer 2 can be set to L1
  • the second conductive layer 3 uses the second conductive material 32 to form a second conductive grid, and the absorption rate of the band is shown in line c2 , Where the absorptivity in the range shown by L2 is greater than other wavebands, and the shielding waveband of the second conductive layer 3 can be set to L2.
  • the band absorption rate of the electromagnetic shielding film 100 can be regarded as the superimposed c3 line, and the shielding band of the electromagnetic shielding film 100 can be regarded as L3.
  • the layering of conductive layers and the use of different conductive materials can strengthen the shielding of the electromagnetic shielding film 100. effect.
  • the depth of the first trench 21 is h and the width is w, and the aspect ratio of the first trench 21 is 2.
  • the aspect ratio of the second trench 32 is also 2. The larger aspect ratio can ensure conductivity, high transmittance and low resistance.
  • the carrier layer 1 is PET
  • UV glue is coated on the PET
  • the first groove 21 is formed after imprinting, curing and releasing
  • the first conductive material 22 is filled in the first groove 21 to form a first conductive mesh
  • the first conductive layer 2 of the grid 23; UV glue is coated on the first conductive layer 2
  • the second trench 31 is formed after imprinting, curing, and releasing.
  • the second trench 31 is filled with a second conductive material 32 to form a The second conductive layer 3 of the second conductive grid 33.
  • the UV glue at the lamination of the first conductive layer 2 and the second conductive layer 3 is fused with each other, that is, there may not be a particularly obvious interface between the first conductive layer 2 and the second conductive layer 3, so that the first conductive layer 2 and the second conductive layer 3
  • the two conductive layers 3 are an integral structure, and the first conductive grid 23 is embedded in the UV glue.
  • the average pore size of the first conductive grid 23 is equal to the average pore size of the second conductive grid 33.
  • the electromagnetic shielding film 101 includes a carrier layer 1', a first conductive layer 2', and a second conductive layer 3', wherein the first conductive layer 2'and the second conductive layer 3'are respectively located on the carrier layer 1' On both sides.
  • the electromagnetic shielding film 200 includes a carrier layer 4, a first conductive layer 5, a second conductive layer 6 and a third conductive layer 7.
  • the supporting layer 4 includes a first side surface 41 and a second side surface 42 that are arranged oppositely, and the first conductive layer 5, the second conductive layer 6 and the third conductive layer 7 are stacked on the first side surface 41.
  • the first conductive layer 5 includes a grid-shaped first trench 51 and a first conductive material 52 filled in the first trench 51 to form a first conductive grid 53 (please refer to FIG. 8).
  • the second conductive layer 6 is laminated on the first conductive layer 5.
  • the second conductive layer 6 includes a grid-shaped second trench 61 and a second conductive material 62 filled in the second trench 61 to form a second conductive network Grid 63 (please refer to Figure 9).
  • the third conductive layer 7 is laminated on the second conductive layer 6.
  • the third conductive layer 7 includes a grid-shaped third trench 71 and a third conductive material 72 filled in the third trench 71 to form a third conductive network Grid 73 (please refer to Figure 10).
  • the first conductive grid 53 is a random grid
  • the second conductive grid 63 is a random grid
  • the third conductive grid 73 is a random grid. Please refer to FIG. 11 for the superimposed random grid.
  • the first conductive material 52 is Ag
  • the second conductive material 62 is Gu
  • the third conductive material 72 is Al.
  • the first conductive layer 5, the second conductive layer 6 and the third conductive layer 7 have different shielding bands, so that the shielding band of the electromagnetic shielding film 200 can be increased.
  • the electromagnetic shielding film 201 includes a carrier layer 4', a first conductive layer 5', a second conductive layer 6', and a third conductive layer 7'.
  • the carrier layer 4' includes a first side 41' and On the second side 42', the first conductive layer 5'is located on the second side 42', the second conductive layer 6'is located on the first side 41', and the third conductive layer 7'is laminated on the second conductive layer 6'.
  • the cross section of the groove of the electromagnetic shielding film 202 is an inverted trapezoid with inclined side walls, which facilitates the demolding during imprinting and ensures the yield.
  • the conductive material filled in the trench of the electromagnetic shielding film 203 does not exceed 4/5 of the trench to ensure conductivity.
  • the 6 conductive layers 82 are filled with different conductive materials.
  • the electromagnetic shielding film 400 includes 6 conductive layers 91, 92, 93, 94, 95, and 96.
  • the conductive mesh of each conductive layer includes a plurality of circular meshes. A grid, a plurality of circular grids are distributed at each vertex of a regular hexagon, and each conductive layer has a circular grid of 1-6.
  • the 6 conductive layers are superimposed to form a honeycomb-shaped conductive grid on the projection surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Textile Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开一种电磁屏蔽膜,其包括承载层和N层导电层。承载层包括相对设置的第一侧面和第二侧面,N层导电层层叠设置于第一侧面和/或第二侧面,其中N≥2,其中,导电层具有导电网格,导电网格包括网格状沟槽及填充于沟槽内的导电材料,N层导电层中至少有两层导电层具有屏蔽不同波段的导电材料。不同层具有不同的导电材料从而具有不同的屏蔽波段,从而加宽了电磁屏蔽膜的屏蔽波段,更能满足市场需求。

Description

电磁屏蔽膜 技术领域
本发明涉及电子技术,更具体地讲,本发明涉及一种电磁屏蔽膜。
背景技术
近年来,伴随着信息化社会的快速发展,与信息相关联的电子设备急速发展,对航天航空设备、先进光学仪器、通讯设备、医疗诊断仪器等的电磁屏蔽要求越来越高。然而,现有的电磁屏蔽膜的屏蔽波段窄,随着电磁干扰技术的不断更新,容易被干扰信号击透而失去屏蔽效果。
发明内容
基于此,有必要提供一种电磁屏蔽膜以解决上述的技术问题。
本发明的一个技术方案是:
一种电磁屏蔽膜,其包括:
承载层,其包括相对设置的第一侧面和第二侧面;
N层导电层,层叠设置于所述第一侧面和/或第二侧面,N≥2;
其中,所述导电层具有导电网格,所述导电网格包括网格状沟槽及填充于所述沟槽内的导电材料,所述N层导电层中至少有两层所述导电层具有屏蔽不同波段的导电材料。
在其中一实施例中,所述沟槽的深宽比≥2。
在其中一实施例中,所述N层导电层的导电材料均不同。
在其中一实施例中,所述导电网格为随机网格。
在其中一实施例中,所述导电网格的网格形状和/或网格分布随机设置。
在其中一实施例中,所述N层导电层中每一层导电层的导电网格均为随机网格,任意两层的随机网格均不同。
在其中一实施例中,所述N层导电层中任意两层的导电层的导电网格的对准偏离不小于20μm。
在其中一实施例中,所述导电网格包括复数圆形格和/或椭圆形格。
在其中一实施例中,所述导电网格包括复数圆形格,所述N层导电层叠加后的复数所述圆形格规则排布。
在其中一实施例中,所述N层导电层叠加后的复数所述圆形格按正六边形排布。
在其中一实施例中,3≤N≤20,且总厚度不大于180μm。
在其中一实施例中,所述导电材料为金属、金属氧化物、化合物导电材料或有机导电材料。
在其中一实施例中,至少两层所述导电层的导电材料的种类和/或含量不同。
在其中一实施例中,所述N层导电层中至少其中两层的所述导电层的导电网格的平均孔径不同。
在其中一实施例中,所述沟槽的截面形状为矩形、倒梯形、三角形、弧形或部分弧形。
在其中一实施例中,所述承载层为玻璃、有机玻璃、PET、PC、PMMA或复合板材,所述承载层为透明基材。
在其中一实施例中,所述N层导电层中每一层所述导电层分别设有外接导电部。
在其中一实施例中,至少两层所述导电层的导电网格的电导率和/或磁导率不同。
在其中一实施例中,所述沟槽包括两侧壁及连接两侧壁的底壁,其中至少一所述侧壁倾斜设置。
在其中一实施例中,其中至少一所述侧壁为倾斜弧形侧壁。
在其中一实施例中,相邻所述导电层之间具有融合部分,具有融合部分的导电层为一体结构。
在其中一实施例中,所述沟槽中填充有两层或以上填充材料,其中至少一层为导电材料。
在其中一实施例中,所述沟槽的深度范围为1-20μm,所述沟槽的宽度范围为1-20μm,所述导电层的厚度范围为3-50μm。
在其中一实施例中,所述导电材料在所述沟槽的平均填充深度不超过所述沟槽深度的4/5。
本发明的有益效果:不同层具有不同的导电材料从而具有不同的屏蔽波段,从而加宽了电磁屏蔽膜的屏蔽波段,更能满足市场需求。
附图说明
图1为本发明电磁屏蔽膜的截面示意图;
图2为图1所示电磁屏蔽膜的第一导电层的平面示意图;
图3为图1所示电磁屏蔽膜的第二导电层的平面示意图;
图4为图1所示电磁屏蔽膜的平面示意图;
图5为本发明电磁屏蔽膜的原理示意图;
图6为本发明电磁屏蔽膜的另一种截面示意图;
图7为本发明电磁屏蔽膜的另一种截面示意图;
图8为图7所示电磁屏蔽膜的第一导电层的平面示意图;
图9为图7所示电磁屏蔽膜的第二导电层的平面示意图;
图10为图7所示电磁屏蔽膜的第三导电层的平面示意图;
图11为图7所示电磁屏蔽膜的平面示意图;
图12为本发明电磁屏蔽膜的另一种截面示意图;
图13为本发明电磁屏蔽膜的另一种截面示意图;
图14为本发明电磁屏蔽膜的另一种截面示意图;
图15为本发明电磁屏蔽膜的另一种截面示意图;
图16为本发明电磁屏蔽膜的另一种截面示意图;
图17为本发明电磁屏蔽膜的另一种截面示意图;
图18为本发明电磁屏蔽膜的另一种平面示意图。
主要组件符号说明:
1、承载层;2、第一导电层;3、第二导电层;11、第一侧面;12、第二侧面;21、第一沟槽;22、第一导电材料;23、第一导电网格;31、第二沟槽;32、第二导电材料;33、第二导电网格;100、电磁屏蔽膜;101、电磁屏蔽膜;1’、承载层;2’、第一导电层;3’、第二导电层;200、电磁屏蔽膜;4、承载层;5、第一导电层;6、第二导电层;7、第三导电层;41、第一侧面;42、第二侧面;51、第一沟槽;52、第一导电材料;53、第一导电网格;61、第二沟槽;62、第二导电材料;63、第二导电网格;71、第三沟槽;72、第三导电材料;73、第三导电网格;4’、承载层;5’、第一导电层;6’、第二导电层;7’、第三导电层;41’、第一侧面;42’、第二侧面;201、电磁屏蔽膜;202、电磁屏蔽膜;203、电磁屏蔽膜;301、电磁屏蔽膜;81、承载层;82、导电层;302、电磁屏蔽膜;83、承载层;84、承载层;303、电磁屏蔽膜;85、承载层;86、导电层;400、电磁屏蔽膜;91、导电层;92、导电层;93、导电层;94、导电层;95、导电层;96、导电层;h、深度;w、宽度。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以通过许多不同的形式来实现,并不限于下面所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明揭示一种电磁屏蔽膜,其包括承载层和N层导电层。承载层包括相对设置的第一侧面和第二侧面,N层导电层层叠设置于第一侧面和/或第二侧面,其中N≥2。其中,导电层具有导电网格,导电网格包括网格状沟槽及填充于沟槽内的导电材料,N层导电层中至少有两层导电层具有屏蔽不同波段的导电材料。不同层具有不同的导电材料,不同导电材料对于不同波段的吸收率不同,此处不同,是指一种导电材料对于一波段的吸收率大于其他波段,则两种导电材料对于吸收率大的波段范围不同,则认为电磁屏蔽膜的有效屏蔽波段就是这两种导电材料的屏蔽波段的叠加,从而加宽了电磁屏蔽膜的屏蔽波段,更能满足市场需求。
其中一个实施例中,每一层沟槽的深宽比≥2,大的深宽比设置可减少电阻并增加透过率。
其中一个实施例中,N层导电层的导电材料均不同,每层的导电材料不同,能屏蔽的波段不同,从而使得整个电磁屏蔽膜的波段较宽。
其中一个实施例中,导电网格为随机网格,具体的,导电网格的网格形状和/或网格分布随机设置。N层导电层中每一层导电层中的导电网格均为随机网格,且任意两层的随机网格均不同,制作简单,保证每层的透过率。
其中一个实施例中,N层导电层中任意两层的导电层的导电网格的对准偏离不小于 20μm,比如为30μm、50μm或70μm。
其中一个实施例中,导电网格包括复数圆形格和/或椭圆形格。比如,导电网格包括复数圆形格,各圆形格按照正三角形、正四边形或正六边形排布;各圆形格分布于正三角形、正四边形或正六边形的各顶点,可以占满各顶点,也可以不占满各顶点,层叠的导电层的圆形格不重合、部分重合或完全重合;优选的,各层的圆形格互补式分布于各顶点,也即叠加后的复数圆形格规则排布,例,N层导电层叠加后的复数圆形格按正六边形排布。又比如,导电网格包括复数椭圆形格,每层导电层的导电网格包括间隔交替设置的大椭圆和小椭圆,层叠的导电层的椭圆形格不重合、部分重合或完全重合。
其中一个实施例中,3≤N≤20,且总厚度不大于180μm,在该范围内,可以得到合理的屏蔽波段,也不会使电磁屏蔽膜的厚度太大。进一步的,N层导电层厚度不大于100μm,如果配合低厚度的承载层,比如PET或PC,则整个电磁屏蔽的厚度不大于180μm。当然,在某些应用领域,比如承载层为玻璃层,玻璃层的厚度可以为0.1mm、3mm或10mm,电磁屏蔽膜的厚度则相应较大。
其中一个实施例中,每一层填充的导电材料可以完全不同,也可以部分不同,导电材料包括金属、金属氧化物、化合物导电材料或有机导电材料中的一种或几种的组合。金属比如为Ag、Gu、Al、Zn、Ni、Fe,金属氧化物比如为Al 2O 3,化合物导电材料比如为ITO,有机导电材料比如为PEDOT。
其中一个实施例中,至少两层导电层的导电层材料的种类和/或含量不同。导电材料的种类不同可以屏蔽的波段不同,导电材料的种类相同但各组份的含量不同也可以屏蔽不同的波段。
其中一个实施例中,N层导电层中至少其中两层的导电层的导电网格的平均孔径不同。比如,随机网格、蜂窝网格、圆形网格等等,平均孔径不同,可影响各层的屏蔽波段。
其中一个实施例中,沟槽的截面形状为矩形、倒梯形、三角形、弧形或部分弧形,各层的截面形状可相同或不同。沟槽包括两侧壁及连接两侧壁的底壁,其中至少一所述侧壁倾斜设置,从而方便压印后的脱模。
其中一个实施例中,承载层为玻璃、有机玻璃、PET、PC、PMMA或复合板材,所述承载层为透明基材。
其中一个实施例中,N层导电层中每一层导电层分别设有外接导电部,可通过外接FPC软板或另设的搭接部实现电性连接。搭接部通过丝印、喷墨打印、溅射、蒸镀等方 式形成。
其中一个实施例中,至少两层导电层的导电网格的电导率和/或磁导率不同,则对相同波段的吸收率不同,也可认为屏蔽波段不同。
其中一个实施例中,相邻导电层之间具有融合部分,具有融合部分的导电层为一体结构。比如,以层叠的两层为例,第一侧面上层叠有第一导电层和第二导电层,在第一侧面上涂布UV胶,压印固化后脱模形成网格状沟槽,在沟槽中填充第一导电材料形成第一导电网格,形成第一导电层;第一导电层远离第一侧面的一侧涂布UV胶,压印固化后脱模形成网格状凹槽,在沟槽中填充第二导电材料形成第二导电网格,形成第二导电层。第一导电层的UV胶和第二导电层的UV胶的交界部分相互融合,第一导电网格内嵌于导电层中,第一导电层和第二导电层为一体结构。以方便各导电层的叠加,也能控制电磁屏蔽膜的厚度。
其中一个实施例中,沟槽中填充有两层或以上填充材料,其中至少一层为导电材料。比如,沟槽中依次填充活性聚合物和导电金属材料。
其中一个实施例,沟槽的深度范围为1-20μm,所述沟槽的宽度范围为1-20μm,导电层的厚度范围为3-50μm。各层的厚度和沟槽大小可相同或不同,例如,每一层导电层的厚度为3μm,沟槽宽度为1μm,深度为2μm。
其中一个实施例中,N层导电层的导电网格于投影面上设置为在误差范围内的完全重合。因存在对准误差,很难达到N层导电层的导电网格的完全重合,故完全重合是在误差范围内。
其中一个实例中,导电材料在沟槽的平均填充深度不超过沟槽深度的4/5,导电材料未填充满沟槽。
以下,请参图示,举例描述本发明的电磁屏蔽膜。
请参图1-图4,电磁屏蔽膜100包括承载层1、第一导电层2和第二导电层3。承载层1包括相对设置的第一侧面11和第二侧面12,第一导电层2和第二导电层3层叠设置于第一侧面11。第一导电层2包括网格状第一沟槽21及填充于第一沟槽21内的第一导电材料22,从而形成第一导电网格23(请参图2)。第二导电层3包括网格状第二沟槽31及填充于第二沟槽31内的第二导电材料32,从而形成第二导电网格33(请参图3)。第一导电网格23为随机网格,第二导电网格33为随机网格,第一导电网格23和第二导电网格33叠加后的随机网格请参图4所示。比如,第一导电材料22为Ag,第二导电材料为Gu。第一导电层2的屏蔽波段不同于第二导电层3的屏蔽波段,电磁 屏蔽膜100的屏蔽波段为第一导电层2和第二导电层3的屏蔽波段的叠加。从而可增加电磁屏蔽膜100的有效屏蔽波段,电磁屏蔽膜100更具市场价值。
其原理说明,请参图5所示的示意图,第一导电层2采用第一导电材料22形成第一导电网格23,对波段的吸收率如图c1线所示,其中在L1所示范围内吸收率大于其他波段,可以设定第一导电层2的屏蔽波段为L1;第二导电层3采用第二导电材料32形成第二导电网格,对波段的吸收率如图c2线所示,其中在L2所示范围内的吸收率大于其他波段,可以设定第二导电层3的屏蔽波段为L2。而电磁屏蔽膜100对波段吸收率可以认为是叠加后的c3线,电磁屏蔽膜100的屏蔽波段可以认为是L3,通过导电层的分层且采用不同的导电材料能加强电磁屏蔽膜100的屏蔽效果。
优选的,第一沟槽21的深度为h,宽度为w,则第一沟槽21的深宽比为2。第二沟槽32的深宽比也为2。较大的深宽比能保证导电性、高透过率和低电阻。
优选的,承载层1为PET,在PET上涂布UV胶,压印固化脱模后形成第一沟槽21,在第一沟槽21中填充第一导电材料22,形成具有第一导电网格23的第一导电层2;在第一导电层2上涂布UV胶,压印固化脱模后形成第二沟槽31,在第二沟槽31中填充第二导电材料32,形成具有第二导电网格33的第二导电层3。第一导电层2和第二导电层3的层叠处的UV胶相互融合,也即第一导电层2和第二导电层3之间可能没有特别明显的界面,从而第一导电层2和第二导电层3为一体结构,第一导电网格23嵌设于UV胶内部。
优选的,第一导电网格23的平均孔径等于第二导电网格33的平均孔径。
请参图6,电磁屏蔽膜101包括承载层1’、第一导电层2’和第二导电层3’,其中第一导电层2’和第二导电层3’分别位于承载层1’的两侧。
请参图7-图11,电磁屏蔽膜200包括承载层4、第一导电层5、第二导电层6和第三导电层7。承载层4包括相对设置的第一侧面41和第二侧面42,第一导电层5、第二导电层6和第三导电层7层叠设置于第一侧面41。第一导电层5包括网格状第一沟槽51及填充于第一沟槽51内的第一导电材料52,从而形成第一导电网格53(请参图8)。第二导电层6层叠于第一导电层5上,第二导电层6包括网格状第二沟槽61及填充于第二沟槽61内的第二导电材料62,从而形成第二导电网格63(请参图9)。第三导电层7层叠于第二导电层6上,第三导电层7包括网格状第三沟槽71及填充于第三沟槽71内的第三导电材料72,从而形成第三导电网格73(请参图10)。第一导电网格53为随机网格、第二导电网格63为随机网格,第三导电网格73为随机网格,叠加后的随 机网格请参图11所示。第一导电材料52为Ag,第二导电材料62为Gu,第三导电材料72为Al。第一导电层5、第二导电层6和第三导电层7的屏蔽波段不同,从而可增加电磁屏蔽膜200的屏蔽波段。
请参图12,电磁屏蔽膜201包括承载层4’、第一导电层5’、第二导电层6’、第三导电层7’,承载层4’包括相对设置的第一侧面41’和第二侧面42’,第一导电层5’位于第二侧面42’,第二导电层6’位于第一侧面41’,第三导电层7’层叠于第二导电层6’上。
请参图13,电磁屏蔽膜202的沟槽截面为倒梯形,具有倾斜侧壁,有利于压印时的脱模,保证良率。
请参图14,电磁屏蔽膜203的沟槽中填充的导电材料不超过沟槽的4/5,保证导电性能。
请参图15,电磁屏蔽膜301包括承载层81及位于承载层81上的N层导电层82,其中N=6,且N层导电层82位于承载层81的一侧。优选的,6层导电层82填充有不同的导电材料。
请参图16,电磁屏蔽膜302包括承载层83及位于承载层83上的N层导电层84,其中N=12,且N层导电层84位于承载层84的一侧。
请参图17,电磁屏蔽膜303包括承载层85及位于承载层85上的N层导电层86,其中N=12,其中6层导电层86位于承载层85的一侧,另6层导电层86位于承载层85的另一侧。
请参图18,电磁屏蔽膜400包括6层导电层91、导电层92、导电层93、导电层94、导电层95、导电层96,每层导电层的导电网格均包括复数圆形网格,复数圆形网格分布于正六边形的各顶点,各导电层具有1-6的圆形网格。6层导电层叠加后在投影面形成蜂窝状的导电网格。
为使本发明的上述目的、特征和优点能够更加明显易懂,上面结合附图对本发明的具体实施方式做详细的说明。在上面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于上面描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受上面公开的具体实施例的限制。并且,以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (24)

  1. 一种电磁屏蔽膜,其中,其包括:
    承载层,其包括相对设置的第一侧面和第二侧面;
    N层导电层,层叠设置于所述第一侧面和/或第二侧面,N≥2;
    其中,所述导电层具有导电网格,所述导电网格包括网格状沟槽及填充于所述沟槽内的导电材料,所述N层导电层中至少有两层所述导电层具有屏蔽不同波段的导电材料。
  2. 根据权利要求1所述的电磁屏蔽膜,其中,所述沟槽的深宽比≥2。
  3. 根据权利要求1所述的电磁屏蔽膜,其中,所述N层导电层的导电材料均不同。
  4. 根据权利要求1所述的电磁屏蔽膜,其中,所述导电网格为随机网格。
  5. 根据权利要求4所述的电磁屏蔽膜,其中,所述导电网格的网格形状和/或网格分布随机设置。
  6. 根据权利要求4所述的电磁屏蔽膜,其中,所述N层导电层中每一层导电层的导电网格均为随机网格,任意两层的随机网格均不同。
  7. 根据权利要求1所述的电磁屏蔽膜,其中,所述N层导电层中任意两层的导电层的导电网格的对准偏离不小于20μm。
  8. 根据权利要求1所述的电磁屏蔽膜,其中,所述导电网格包括复数圆形格和/或椭圆形格。
  9. 根据权利要求8所述的电磁屏蔽膜,其中,所述导电网格包括复数圆形格,所述N层导电层叠加后的复数所述圆形格规则排布。
  10. 根据权利要求9所述的电磁屏蔽膜,其中,所述N层导电层叠加后的复数所述圆形格按正六边形排布。
  11. 根据权利要求1所述的电磁屏蔽膜,其中,3≤N≤20,且总厚度不大于180μm。
  12. 根据权利要求1所述的电磁屏蔽膜,其中,所述导电材料为金属、金属氧化物、化合物导电材料或有机导电材料。
  13. 根据权利要求1所述的电磁屏蔽膜,其中,至少两层所述导电层的导电材料的种类和/或含量不同。
  14. 根据权利要求1所述的电磁屏蔽膜,其中,所述N层导电层中至少其中两层的所述导电层的导电网格的平均孔径不同。
  15. 根据权利要求1所述的电磁屏蔽膜,其中,所述沟槽的截面形状为矩形、倒梯 形、三角形、弧形或部分弧形。
  16. 根据权利要求1所述的电磁屏蔽膜,其中,所述承载层为玻璃、有机玻璃、PET、PC、PMMA或复合板材,所述承载层为透明基材。
  17. 根据权利要求1所述的电磁屏蔽膜,其中,所述N层导电层中每一层所述导电层分别设有外接导电部。
  18. 根据权利要求1所述的电磁屏蔽膜,其中,至少两层所述导电层的导电网格的电导率和/或磁导率不同。
  19. 根据权利要求1所述的电磁屏蔽膜,其中,所述沟槽包括两侧壁及连接两侧壁的底壁,其中至少一所述侧壁倾斜设置。
  20. 根据权利要求19所述的电磁屏蔽膜,其中,其中至少一所述侧壁为倾斜弧形侧壁。
  21. 根据权利要求1所述的电磁屏蔽膜,其中,相邻所述导电层之间具有融合部分,具有融合部分的导电层为一体结构。
  22. 根据权利要求1所述的电磁屏蔽膜,其中,所述沟槽中填充有两层或以上填充材料,其中至少一层为导电材料。
  23. 根据权利要求1所述的电磁屏蔽膜,其中,所述沟槽的深度范围为1-20μm,所述沟槽的宽度范围为1-20μm,所述导电层的厚度范围为3-50μm。
  24. 根据权利要求1所述的电磁屏蔽膜,其中,所述导电材料在所述沟槽的平均填充深度不超过所述沟槽深度的4/5。
PCT/CN2020/080120 2019-06-18 2020-03-19 电磁屏蔽膜 WO2020253290A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/536,411 US11716837B2 (en) 2019-06-18 2021-11-29 Electromagnetic shielding film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910527460.2 2019-06-18
CN201910527460.2A CN112105247A (zh) 2019-06-18 2019-06-18 电磁屏蔽膜

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/536,411 Continuation US11716837B2 (en) 2019-06-18 2021-11-29 Electromagnetic shielding film

Publications (1)

Publication Number Publication Date
WO2020253290A1 true WO2020253290A1 (zh) 2020-12-24

Family

ID=73748783

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/080120 WO2020253290A1 (zh) 2019-06-18 2020-03-19 电磁屏蔽膜
PCT/CN2020/096796 WO2020253772A1 (zh) 2019-06-18 2020-06-18 电磁屏蔽膜

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096796 WO2020253772A1 (zh) 2019-06-18 2020-06-18 电磁屏蔽膜

Country Status (3)

Country Link
US (1) US11716837B2 (zh)
CN (1) CN112105247A (zh)
WO (2) WO2020253290A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113792516A (zh) * 2021-08-13 2021-12-14 深圳市志凌伟业光电有限公司 电磁屏蔽构件电路的优化方法和电磁屏蔽构件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148979A1 (ja) * 2010-05-26 2011-12-01 パナソニック電工株式会社 電磁波シールドフィルター
JP2012164885A (ja) * 2011-02-08 2012-08-30 Gunze Ltd 電磁波シールド材、その製造方法およびそれを装着してなるプラズマディスプレイパネル
CN106686965A (zh) * 2017-01-17 2017-05-17 东莞市道诚绝缘材料有限公司 双层高效电磁屏蔽膜及其制造方法
CN107835561A (zh) * 2017-10-26 2018-03-23 深圳市中欧新材料有限公司 一种包含电磁波屏蔽膜的线路板及其制作方法
CN108848660A (zh) * 2018-07-16 2018-11-20 苏州维业达触控科技有限公司 一种电磁屏蔽膜及其制作方法
CN109769387A (zh) * 2019-01-21 2019-05-17 中国科学院上海光学精密机械研究所 利用飞秒激光刻蚀的多层金属网栅电磁屏蔽光窗及其制备方法
CN210432328U (zh) * 2019-06-11 2020-04-28 苏州维业达触控科技有限公司 一种双层透明电磁屏蔽膜

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080117509A1 (en) * 2004-06-30 2008-05-22 Zeon Corporation Electromagnetic Wave Shielding Grid Polarizer and Its Manufacturing Method and Grid Polarizer Manufacturing Method
KR101110992B1 (ko) * 2004-07-27 2012-06-08 다이니폰 인사츠 가부시키가이샤 전자파 차폐장치
KR20090052005A (ko) * 2007-11-20 2009-05-25 삼성코닝정밀유리 주식회사 디스플레이 장치용 필터 및 이의 제조 방법
KR20110103835A (ko) * 2008-12-02 2011-09-21 다이니폰 인사츠 가부시키가이샤 전자기파 차폐재, 및 그 제조 방법
CN103425341B (zh) * 2013-07-30 2016-10-26 南昌欧菲光科技有限公司 单层多点式触控屏及其单层多点式导电膜
CN203934168U (zh) * 2014-07-04 2014-11-05 楚炜 一种带有电磁屏蔽层的机壳
CN104853576A (zh) * 2015-05-13 2015-08-19 东莞市万丰纳米材料有限公司 超高屏蔽性能的电磁屏蔽膜及其生产工艺
JP6511382B2 (ja) * 2015-10-16 2019-05-15 富士フイルム株式会社 導電性フィルム、及びこれを備える表示装置
KR101813161B1 (ko) * 2016-03-11 2017-12-28 한국과학기술연구원 투광성 전자파 차폐 및 흡수 필름
KR20170136064A (ko) * 2016-05-30 2017-12-11 주식회사 아모그린텍 플렉시블 전자파 차폐시트 및 그를 구비한 전자기기
CN106739324B (zh) * 2016-12-13 2019-02-22 北京元六鸿远电子科技股份有限公司 多层电磁屏蔽膜及其制备方法
CN208029314U (zh) * 2018-04-11 2018-10-30 江西蓝沛泰和新材料有限公司 一种电磁屏蔽膜
CN109089406A (zh) * 2018-10-18 2018-12-25 吴江友鑫新材料科技有限公司 一种内陷式透明金属网格电磁屏蔽膜及其制备方法
CN111148418A (zh) * 2018-11-05 2020-05-12 苏州大学 一种屏蔽膜及其制造方法
CN210641254U (zh) * 2019-06-18 2020-05-29 昇印光电(昆山)股份有限公司 电磁屏蔽膜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148979A1 (ja) * 2010-05-26 2011-12-01 パナソニック電工株式会社 電磁波シールドフィルター
JP2012164885A (ja) * 2011-02-08 2012-08-30 Gunze Ltd 電磁波シールド材、その製造方法およびそれを装着してなるプラズマディスプレイパネル
CN106686965A (zh) * 2017-01-17 2017-05-17 东莞市道诚绝缘材料有限公司 双层高效电磁屏蔽膜及其制造方法
CN107835561A (zh) * 2017-10-26 2018-03-23 深圳市中欧新材料有限公司 一种包含电磁波屏蔽膜的线路板及其制作方法
CN108848660A (zh) * 2018-07-16 2018-11-20 苏州维业达触控科技有限公司 一种电磁屏蔽膜及其制作方法
CN109769387A (zh) * 2019-01-21 2019-05-17 中国科学院上海光学精密机械研究所 利用飞秒激光刻蚀的多层金属网栅电磁屏蔽光窗及其制备方法
CN210432328U (zh) * 2019-06-11 2020-04-28 苏州维业达触控科技有限公司 一种双层透明电磁屏蔽膜

Also Published As

Publication number Publication date
US20220087081A1 (en) 2022-03-17
WO2020253772A1 (zh) 2020-12-24
CN112105247A (zh) 2020-12-18
US11716837B2 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
KR101226226B1 (ko) 프라이버시 보호필터 및 그 제조방법
JP5308782B2 (ja) 周波数選択型の電磁波シールド材の製造方法、及びそれを用いた電磁波吸収体
KR101200349B1 (ko) 투명도전성 필름과 그 제조 방법
WO2014063417A1 (zh) 透明导电膜中的导电结构、透明导电膜及制作方法
CN108461648A (zh) 薄膜封装体及显示面板
WO2020253290A1 (zh) 电磁屏蔽膜
CN113066604A (zh) 一种导电膜及制备方法
KR101245178B1 (ko) 프라이버시 필름
CN210641254U (zh) 电磁屏蔽膜
CN203386174U (zh) 滤光片模块及使用该滤光片模块的触摸显示屏
WO2021017202A1 (zh) 电子设备及其盖板
CN210986877U (zh) 电磁屏蔽膜
CN111459327A (zh) 触控面板、触控显示面板及玻璃盖板贴合方法
CN210641253U (zh) 电磁屏蔽膜
CN203012673U (zh) 触控显示屏
CN111452552A (zh) 装饰膜和电子装置
US9536819B2 (en) Transparent substrate having nano pattern and method of manufacturing the same
EP4210445A1 (en) Electromagnetic wave shielding film
CN210986878U (zh) 电磁屏蔽膜
CN209607431U (zh) 导电膜
CN103336623B (zh) 滤光片组件及使用该滤光片组件的触摸显示屏
US9313896B2 (en) Double-layered transparent conductive film and manufacturing method thereof
CN106956530B (zh) 一种印刷薄膜
US20200233252A1 (en) Substrate
CN203178989U (zh) 一种触控显示屏

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825602

Country of ref document: EP

Kind code of ref document: A1