WO2020251132A1 - 연소방열판을 이용한 바이오촤 제조장치 - Google Patents
연소방열판을 이용한 바이오촤 제조장치 Download PDFInfo
- Publication number
- WO2020251132A1 WO2020251132A1 PCT/KR2020/001775 KR2020001775W WO2020251132A1 WO 2020251132 A1 WO2020251132 A1 WO 2020251132A1 KR 2020001775 W KR2020001775 W KR 2020001775W WO 2020251132 A1 WO2020251132 A1 WO 2020251132A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biochar
- manufacturing apparatus
- unit
- combustion
- fuel
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/02—Multi-step carbonising or coking processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B27/00—Arrangements for withdrawal of the distillation gases
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B3/00—Coke ovens with vertical chambers
- C10B3/02—Coke ovens with vertical chambers with heat-exchange devices
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B47/00—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/40—Solid fuels essentially based on materials of non-mineral origin
- C10L5/44—Solid fuels essentially based on materials of non-mineral origin on vegetable substances
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/40—Solid fuels essentially based on materials of non-mineral origin
- C10L5/44—Solid fuels essentially based on materials of non-mineral origin on vegetable substances
- C10L5/447—Carbonized vegetable substances, e.g. charcoal, or produced by hydrothermal carbonization of biomass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/30—Details, accessories, or equipment peculiar to furnaces of these types
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/30—Details, accessories, or equipment peculiar to furnaces of these types
- F27B9/39—Arrangements of devices for discharging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/30—Details, accessories, or equipment peculiar to furnaces of these types
- F27B9/3005—Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases
- F27B9/3011—Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases arrangements for circulating gases transversally
- F27B2009/3016—Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases arrangements for circulating gases transversally with arrangements to circulate gases through the charge
Definitions
- the present invention relates to a biochar manufacturing apparatus, and more particularly, to a biochar manufacturing apparatus using a combustion heat sink capable of efficiently producing biochar and biogas using biomass.
- biochar refers to a carbon mass that remains after converting and extracting volatiles into biogas by applying heat to biomass, and carbon dioxide (CO2), a climate change material, is used before the combustion reaction.
- CO2 carbon dioxide
- the biochar is representative of charcoal used for barbecue or air purification, and can be produced from all types of biomass.
- CO2 removal facilities are mostly technologies that separate and remove carbon dioxide (CO2) generated after carbon combustion (CC(U)S, Carbon Capture(Utilization) & Storage), which separates and purifies carbon dioxide (CO2). , Compression, transport, storage, etc. all process requires a lot of energy and cost.
- the current carbon dioxide (CO2) separation technology has a limitation that is difficult to realize because it has air leakage and acidification of water and soil even after storage.
- Biochar has a high adsorption power, so it contains moisture equivalent to three times the weight of charcoal and can promote the growth of biomass by improving soil quality. In addition, it has the ability to adsorb organic substances such as various hydrocarbons and warming/polluting substances such as heavy metals.
- carbon separates carbon from hydrocarbons and acts as a catalyst to produce hydrogen, so it has the advantage of generating high concentration of hydrogen during high temperature pyrolysis.
- the biochar can be a high value-added product because its adsorption capacity is further increased.
- pyrolysis has a problem that it is difficult to commercialize due to difficulties in normal operation, such as clogging the flow of raw materials in the reaction furnace due to the high viscosity of the generated tar.
- the present invention was conceived to solve the above-described problems, and an object thereof is to provide a biochar manufacturing apparatus using a combustion heat sink to efficiently produce biochar and biogas using biomass.
- the biochar manufacturing apparatus may further include a gas fuel supply unit that supplies at least a part of the biogas generated during the production of the biochar as fuel of the heating unit.
- the inlet is provided in the upper portion of the receiving space, and the outlet is provided in the lower portion of the receiving space, so that the biomass injected into the upper portion of the receiving space through the inlet is gradually increased by gravity. In addition to being moved downward, it can be separated into biochar and biogas while being heated by the heating unit.
- combustion heat sink may be disposed to face at least both sides with the receiving space therebetween.
- the combustion heat sink includes a plate-shaped housing in which a combustion space is provided;
- An oxidizing agent injection unit provided on one side of the housing and configured to input and circulate an oxidizing agent in an inner and outer circumference of the combustion space through an oxidizer injection nozzle to form a first circulation region;
- a gas discharge unit provided on the other side of the housing and discharging some of the gas circulating in the combustion space;
- a fuel supply unit installed so that the tip of the fuel injection nozzle is positioned in the second circulation area so that fuel can be injected into the second circulation area formed in the center of the combustion space by circulation of the oxidizing agent in the first circulation area. It may include.
- a heat exchanger for heating the oxidizing agent and fuel respectively input through the oxidizing agent injection unit and the fuel supply unit using heat of the gas discharged through the gas discharge unit may be further provided.
- the discharge unit may further include a water cooling jacket that is installed at the outlet of the lower part of the pyrolysis reactor, and cools the biochar discharged by circulating cooling water therein.
- the biochar manufacturing apparatus may further include a hot water storage unit for storing water heated to a predetermined temperature while being used as cooling water in the water cooling jacket to be used as hot water.
- the biochar manufacturing apparatus may further include an electric power generation unit for generating electricity by installing a thermoelectric element between the water cooling jacket and the discharged biochar.
- the biochar manufacturing apparatus further includes a biogas purification unit that purifies the remaining biogas used as fuel of the heating unit through the gas fuel supply unit and transfers it to an external use place or stores it in a separate storage tank; I can.
- the combustion heat sink is disposed opposite to each other on at least both sides of the pyrolysis reactor, and the biomass is uniformly distributed and injected into the receiving space therebetween, and the combustion By heating the biomass inputted through the heat sink to a temperature of at least 800° C. or higher, biochar and biogas can be efficiently separated and manufactured.
- FIG. 1 is an internal configuration diagram of a biochar manufacturing apparatus according to the present invention
- FIG. 3 is a perspective view showing a combustion heat sink of a heating unit according to the present invention.
- Figure 4 is a front cross-sectional view showing the internal configuration of the combustion heat sink according to the present invention.
- FIG. 5 is a front cross-sectional view showing another embodiment of the combustion heat sink according to the present invention.
- FIG. 6 is a front view showing an embodiment in which the combustion heat sink of FIG. 5 is connected in series;
- FIG. 7 is another embodiment showing a state in which a plurality of fuel injection nozzles are provided on the combustion heat sink of FIG. 4;
- FIG. 8 is another embodiment showing a state in which a heat exchanger is provided in the combustion heat sink of FIG. 4,
- 9 and 10 are data showing the results of the computational analysis of the combustion heat sink according to the present invention.
- biochar manufacturing apparatus 100 pyrolysis reactor
- combustion heat sink 210 housing
- combustion space A first circulation zone
- oxidizer injection part 221 oxidizer injection nozzle
- FIG. 1 is an internal configuration diagram of a biochar manufacturing apparatus according to the present invention.
- a biochar manufacturing apparatus 1 may include a pyrolysis reactor 100, a heating unit 200, and a discharge unit 300.
- the pyrolysis reactor 100 constitutes the main body of the biochar manufacturing apparatus 1, and an accommodation space S is provided therein, and an inlet 101 and an outlet 103 may be provided.
- an inlet 101 is provided in the upper portion of the receiving space S, and the outlet 103 is provided in the lower portion of the receiving space S. Therefore, the biomass, which is a heating object, input through the inlet 101 is gradually moved downwards by gravity, and is heated by the heating unit 200 to be described later and separated into biochar and biogas, and then the outlet ( 103) can be discharged to the outside.
- the heating unit 200 is installed inside the pyrolysis reactor 100 and heats the biomass that moves downward in the receiving space S through the inlet 101 to about 800°C or higher to It is separated by gas.
- the heating unit 200 does not burn the biomass, but separates the biomass into biochar and biogas while undergoing a thermal decomposition process through heating.
- carbon of the hydrocarbon is attached to the surface of the biochar, and the hydrogen concentration is modified to be high and then discharged.
- Carbon attached to the biochar can further increase the adsorption performance by creating a nano-carbon structure.
- the heating unit 200 may include a combustion heat sink 201 disposed opposite at least on both sides with the receiving space S interposed therebetween.
- a combustion heat sink 201 disposed opposite at least on both sides with the receiving space S interposed therebetween.
- the present invention is not limited thereto, and any structure capable of increasing the efficiency of the heating unit 200 may be changed and applied in various ways.
- a plurality of the combustion heat sinks 201 may be spaced apart, and an accommodation space S of the pyrolysis reactor 100 may be provided between the plurality of combustion heat sinks 201.
- an example in which the combustion heat sink 201 is disposed opposite to both sides with the receiving space (S) therebetween will be illustrated and described.
- the combustion heat sink 201 may include a housing 210, an oxidizer injection unit 220, a gas discharge unit 230, and a fuel supply unit 240.
- the housing 210 constitutes the main body of the combustion heat sink 201, and the housing 210 may be formed in a plate shape in which the combustion space 211 is provided.
- the housing 210 may be made of stainless steel or ceramic material that can withstand high temperatures, and when the size of the combustion heat sink 201 is increased, the housing 210 may be fabricated by masonry with a refractory brick.
- the housing 210 may be formed in any one of a circle, an oval, a square, and a polygon.
- an example in which the housing 210 is formed in a rectangular plate shape will be illustrated and described.
- the present invention is not limited thereto, and any structure in which the oxidizing agent and fuel injected into the internal combustion space 211 of the housing 210 can be smoothly circulated may be changed in various ways.
- the housing 210 is formed in a plate shape as described above, only two-dimensional flow is possible in the combustion space 211 inside the housing 210, and three-dimensional flow in the thickness direction of the housing 210 can be made impossible. have.
- the plate-shaped combustion heat sink 201 has a relatively thin thickness over a large area, two-dimensional flow is possible, and thus uniform thermal efficiency of the combustion heat sink 201 can be realized.
- an oxidizing agent injection unit 220 is provided on one side of the housing 210 and forms a first circulation region A by introducing and circulating an oxidizing agent in the inner and outer circumferences of the combustion space 211.
- the oxidizing agent injection unit 220 has an oxidizing agent injection nozzle of a predetermined length to smoothly inject the oxidizing agent supplied through the oxidizing agent supply unit (not shown) to a predetermined point in the combustion space 211 in the housing 210 ( 221) may be provided.
- the oxidizing agent injection nozzle 221 has a side and a side of the housing 210 formed in a square shape so as to form the first circulation region A by injecting an oxidizing agent into the inner and outer circumference of the combustion space 211 It can be installed so as to be biased to the point, that is, the corner.
- the oxidant injection nozzle 221 may be installed to be inclined at a predetermined angle in a tangential direction of a circle. Accordingly, it is possible to smoothly form the first circulation region A by introducing an oxidizing agent into the inner and outer circumferences of the circular combustion space 211.
- the gas discharge unit 230 may be provided on the other side of the housing 210 and discharges some of the gas circulating in the combustion space 211 to the outside.
- the oxidizer injection unit 220 and the gas discharge unit 230 may be disposed in a manner that is spaced apart from each other in parallel to one side of the housing 210.
- the oxidizing agent injection unit 220 and the gas discharge unit 230 face each side of the housing 210 in a line with the fuel supply unit 240 to be described later between them. Can be installed.
- a plurality of combustion heat sinks 201 according to the present invention
- the lateral heat sink system can be configured by installing them in series.
- the gas discharge unit 230 provided on the other side of the first combustion heat sink 201 may be connected to the oxidant injection unit 220 provided on one side of the other neighboring combustion heat sink 201 ′.
- the first gas discharge unit 230 of the combustion heat sink 201 becomes the oxidant injection unit 220 of the combustion heat sink 201 connected to each other.
- the first gas discharged through the gas discharge unit 230 of the combustion heat sink 201 can be re-introduced through the oxidant injection unit 220 of the other neighboring combustion heat sink 201, and accordingly, the long heat sink is It can be formed, and the efficiency of the combustion heat sink 201 can be improved by distributing fuel.
- the oxidizing agent is supplied to the combustion space 211 inside the housing 210 constituting the combustion heat sink 201 so that the oxidizing agent introduced through the oxidizing agent injection unit 220 can be circulated in one direction of the combustion space 211.
- a guide member 213 for guiding may be provided.
- the flow direction of the oxidizing agent injected into the combustion space 211 through the oxidizing agent inlet 220 can be changed to a desired direction (for example, clockwise). There is a need.
- the guide member 213 in the vicinity of the internal combustion space 211 of the housing 210 in which the oxidant injection part 220 is installed, it is injected into the combustion space 211 through the oxidant injection nozzle 221
- the flow direction of the oxidant to be used may be changed to a desired direction, and accordingly, the first circulation region A may be smoothly formed.
- the fuel supply unit 240 injects fuel into the second circulation region B formed near the central portion of the combustion space 211 by the circulation of the oxidizing agent in the first circulation region A.
- Such a fuel supply unit 240 may be installed such that the tip of the fuel injection nozzle 241 is located in the second circulation region B.
- At least one of the fuel injection nozzles 241 of the fuel supply unit 240 may be positioned between the oxidant injection unit 220 and the gas discharge unit 230.
- the fuel injection nozzle 241 has at least one pair on the upper and lower or left and right sides relative to the center of the housing 210 so as to increase the fuel injection efficiency of the fuel supply unit 240.
- the fuel injected through the fuel supply unit 240 may receive at least a part of the separated biogas through the pyrolysis process of biomass in the pyrolysis reactor 100.
- a heat exchanger 250 may be provided on one side of the housing 210.
- the heat exchanger 250 may raise the temperature of the oxidizing agent and fuel respectively input through the oxidizing agent input unit 220 and the fuel supply unit 240 by using the heat of the gas discharged through the gas discharge unit 230.
- the thermal efficiency of the combustion heat sink 201 can be improved.
- the housing 100 was formed in a size of 5 m in width, 2.5 m in length, and 1 m in thickness so that the combustion heat sink 201 according to the present invention can be used for computational analysis.
- the thickness of the metal plate constituting the housing 210 is 0.1 m, and the fuel injection nozzle 241 enters 0.7 m from the wall surface of the housing 210.
- the residence time of the gas in the housing 210 was 2 seconds, and the equivalent ratio was 0.9, which was set as a condition in which 10% of excess air was added.
- methane was used as fuel supplied through the fuel supply unit 240.
- the computational analysis code used was ANSYS-FLUENT 17.0, the standard k-e model for the turbulence model, the Discrete-Ordinate model for the radiation model, and the skeletal model of 46 steps for the chemical reaction.
- the combustion heat sink 201 is a combustion space through the oxidant injection unit 220 installed in the housing 210, the gas discharge unit 230 and the fuel supply unit 240 It can be seen that the first circulation region (A) and the second circulation region (B) are formed in (211).
- the fuel-rich region and the reaction activation region in the first circulation region (A) and the second circulation region (B) of the combustion space 211 can be confirmed from the distribution of CO and OH concentrations, respectively.
- the combustion heat sink 201 can secure a uniform temperature distribution in the entire region except for air and fuel jets in the combustion space 211 as in the above computational analysis results.
- the discharge unit 300 serves to separate and discharge the biochar and biogas produced by heating biomass through the pyrolysis reactor 100 through the discharge port 103.
- the discharge port 103 is provided with a screw 301 rotatably installed by receiving power from a motor (not shown), so that the manufactured biochar can be continuously discharged in one direction.
- the discharge unit 300 may include a water cooling jacket 310 installed in the discharge port 103 provided under the pyrolysis reactor 100.
- the water cooling jacket 310 may cool the biochar discharged through the discharge port 103 by circulating cooling water in the internal space 311.
- a hot water storage unit 320 for storing water heated to a predetermined temperature while being used as cooling water in the water cooling jacket 310 may be used as hot water.
- the hot water storage unit 320 may be maintained at approximately 60°C or higher.
- the discharge unit 300 may include an electric power generation unit 330 that is provided with a thermoelectric element 331 between the water cooling jacket 310 and the discharged biochar to generate electricity.
- an electric power generation unit 330 that is provided with a thermoelectric element 331 between the water cooling jacket 310 and the discharged biochar to generate electricity.
- the biochar manufacturing apparatus 1 may include a gas fuel supply unit (not shown) to supply at least a part of the biogas generated during the biochar manufacturing as fuel of the heating unit 200.
- the gas fuel supply unit may be connected to the fuel supply unit 240 (see FIG. 3) of the heating unit 300 to supply the biogas to the combustion heat sink 201.
- the remaining biogas is supplied as fuel from the heating unit 200 through the gas fuel supply unit, and the remaining biogas passes through a predetermined purification process through the biogas purification unit (not shown) and then transferred to an external use place, or It can be stored in a storage tank (not shown).
- the biomass to be heated is uniformly distributed and injected into the receiving space S through the inlet 101 of the pyrolysis reactor 100 (see FIG. 1).
- the biomass input into the pyrolysis reactor 100 through the inlet 101 is gradually moved downward along the receiving space S by gravity.
- the biomass moving downward is heated to a temperature of at least 800° C. or higher by the combustion heat sink 201 of the heating unit 200 disposed opposite both sides of the receiving space S, and is separately manufactured into biochar and biogas.
- the manufactured biochar may be discharged to the outside through the discharge port 103 under the pyrolysis reactor 100 in a way that is transferred in one direction by a screw 301 provided in the discharge part 300.
- a water cooling jacket 310 may be provided at the outlet 103 to cool and discharge the biochar.
- biogas produced together with the biochar may be used as fuel for the heating unit 200, and the remaining biogas may be used as fuel from the outside through the biogas purification unit (not shown).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Processing Of Solid Wastes (AREA)
- Fuel Cell (AREA)
Abstract
본 발명은 바이오매스를 이용하여 바이오촤와 바이오가스를 효율적으로 생산할 수 있도록 한 연소방열판을 이용한 바이오촤 제조장치에 관한 것이다.
Description
본 발명은 바이오촤 제조장치에 관한 것으로, 보다 상세하게는 바이오매스를 이용하여 바이오촤(Biochar)와 바이오가스를 효율적으로 생산할 수 있는 연소방열판을 이용한 바이오촤 제조장치에 관한 것이다.
일반적으로, 바이오촤(Biochar)는 바이오매스(Biomass)에 열을 가하여 휘발분을 바이오가스로 전환 및 추출하고 난 후 잔류하게 되는 탄소 덩어리를 의미하며, 기후변화물질인 이산화탄소(CO2)를 연소반응 전에 고정탄소로 분리하여 저장하거나, 또는 연소를 제외한 타용도, 예컨대 토질개선제, 활성탄 대체, 유기오염물질 흡착제거, 중금속 흡착제거 등으로 사용하여 지구온난화 완화를 목적으로 한다.
상기 바이오촤는 바베큐나 공기정화용 등으로 사용하는 숯이 대표적이며, 모든 종류의 바이오매스로부터 생산할 수 있다.
기존의 이산화탄소(CO2) 제거시설은 카본 연소 후 발생하는 이산화탄소(CO2)를 분리제거하는 기술(CC(U)S, Carbon Capture(Utilization) & Storage)이 대부분인데, 이산화탄소(CO2)의 분리와 정제, 압축, 이송, 저장 등의 모든 과정에서 많은 에너지와 비용이 소요된다. 저장 이후에도 대기누출과 수질 및 토질의 산성화문제를 가지고 있어 현재 이산화탄소(CO2) 분리기술은 현실화하기 어려운 한계를 가지고 있다.
이에 비해, 연소반응 이전에 카본을 촤(Char) 형태로 분리하면 안정된 고체형태로 지표면에 쉽게 저장할 수 있다. 바이오촤는 높은 흡착력을 가지고 있어 촤 무게의 3배에 해당하는 수분을 함유하여 토질개선으로 바이오매스의 성장을 촉진할 수 있다. 또한 각종 탄화수소 등 유기물질과 중금속 등과 같은 온난화/공해물질을 흡착할 수 있는 능력이 있다.
아울러 800℃ 이상의 고온에서 카본은 탄화수소로부터 카본을 분리하고 수소를 생산하는 촉매역할을 하기에 고온 열분해 시 고농도의 수소를 발생시킬 수 있는 장점이 있다. 이 과정에서 카본은 바이오촤에 부착되고, 표면에 나노 카본구조물을 만들게 됨에 따라 상기 바이오촤는 흡착능력이 더욱 증가하기에 고부가가치의 생산품이 될 수 있다.
그러나 바이오매스를 이용하기 위한 기술 중 열분해는 발생하는 타르의 점성이 높아 반응로 내 원료의 흐름이 막히게 되는 등 정상운전이 어려워 상용화가 어려운 문제점이 있다.
이에 따라 바이오매스 활용기술의 한계를 뛰어넘기 위한 기술이 요구되고 있다.
본 발명은 상술한 문제점을 해결하고자 안출된 것으로, 바이오매스를 이용하여 바이오촤와 바이오가스를 효율적으로 생산할 수 있도록 한 연소방열판을 이용한 바이오촤 제조장치를 제공하는 데 그 목적이 있다.
상술한 바와 같은 목적을 구현하기 위한 본 발명에 따른 연소방열판을 이용한 바이오촤 제조장치는, 내부에 수용공간이 마련되며, 투입구와 배출구가 구비되는 열분해 반응로; 상기 열분해 반응로 내부에 설치되며, 상기 투입구를 통해 수용공간으로 투입되는 바이오매스를 가열해주는 연소방열판이 구비되는 가열부; 및 상기 열분해 반응로를 통해 상기 바이오매스를 가열하여 제조된 바이오촤 및 바이오가스를 상기 배출구를 통해 분리 배출시켜주는 배출부;를 포함할 수 있다.
이 경우 상기 바이오촤 제조장치는, 상기 바이오촤의 제조 시 발생하는 바이오가스의 적어도 일부를 상기 가열부의 연료로 공급해주는 가스연료공급부;를 더 포함할 수 있다.
또한 상기 열분해 반응로는, 상기 투입구가 상기 수용공간의 상부에 구비되고, 상기 배출구는 상기 수용공간의 하부에 구비되어, 상기 투입구를 통해 상기 수용공간의 상부에 투입되는 바이오매스가 중력에 의해 점진적으로 하향 이동됨과 아울러, 상기 가열부에 의해 가열되면서 바이오촤와 바이오가스로 분리되도록 할 수 있다.
또한 상기 연소방열판은, 상기 수용공간을 사이에 두고 적어도 양측에 대향되게 배치될 수 있다.
또한 상기 연소방열판은, 내부에 연소공간이 마련되는 판 형상의 하우징; 상기 하우징의 일측에 구비되며, 산화제투입노즐을 통해 상기 연소공간의 내측 외둘레에 산화제를 투입 순환시켜 제1순환영역을 형성해주는 산화제투입부; 상기 하우징의 타측에 구비되며, 상기 연소공간 내에서 순환되는 가스 일부를 배출시켜주는 가스배출부; 및 상기 제1순환영역에서 산화제의 순환에 의해 상기 연소공간의 중심부에 형성되는 제2순환영역에 연료를 분사시킬 수 있도록 상기 제2순환영역 내에 연료분사노즐의 선단이 위치하도록 설치되는 연료공급부;를 포함할 수 있다.
또한 상기 하우징의 일측에는, 상기 가스배출부를 통해 배출되는 가스의 열을 이용하여 상기 산화제투입부와 연료공급부를 통해 제각기 투입되는 산화제와 연료를 승온시켜주는 열교환기;가 구비된 것을 더 포함할 수 있다.
또한 상기 배출부는, 상기 열분해 반응로 하부의 배출구에 설치되며, 내부에 냉각수를 순환시켜 배출되는 바이오촤를 냉각시켜주는 수냉각자켓;을 더 포함할 수 있다.
또한 상기 바이오촤 제조장치는, 상기 수냉각자켓에 냉각수로 사용되면서 소정 온도로 가열된 물을 온수로 사용할 수 있도록 저장해주는 온수저장부;를 더 포함할 수 있다.
또한 상기 바이오촤 제조장치는, 상기 수냉각자켓과 배출되는 바이오촤 사이에 열전소자가 설치되어 전기를 생산해주는 전기발전부;를 더 포함할 수 있다.
또한 상기 바이오촤 제조장치는, 상기 가스연료공급부를 통해 상기 가열부의 연료로 사용되고 남은 나머지 바이오가스를 정제하여 외부 사용처로 이송하거나, 또는 별도의 저장탱크에 저장해주는 바이오가스정제부;를 더 포함할 수 있다.
이상과 같은 구성에 따른 본 발명에 따른 바이오촤 제조장치는, 열분해 반응로의 적어도 내부 양측에 연소방열판을 대향되게 배치하고, 그 사이의 수용공간으로 바이오매스를 균일하게 분산 투입해줌과 아울러 상기 연소방열판을 통해 투입되는 바이오매스를 적어도 800℃ 이상의 온도로 가열해줌으로써, 바이오촤와 바이오가스를 효율적으로 분리 제조할 수 있다.
또한 상기 제조된 바이오가스의 적어도 일부를 연소방열판의 연료로 사용함으로써 바이오촤 제조장치의 효율을 향상시킬 수 있다.
도 1은 본 발명에 따른 바이오촤 제조장치의 내부구성도,
도 2는 본 발명에 따른 바이오촤 제조장치의 부분 상세도,
도 3은 본 발명에 따른 가열부의 연소방열판을 보여주는 사시도,
도 4는 본 발명에 따른 연소방열판의 내부 구성을 보여주는 정단면도,
도 5는 본 발명에 따른 연소방열판의 다른 실시예를 보여주는 정단면도,
도 6은 도 5의 연소방열판을 직렬로 연결한 실시예를 보여주는 정면도,
도 7은 도 4의 연소방열판에 연료분사노즐이 복수 개 구비된 상태를 보여주는 다른 실시예,
도 8은 도 4의 연소방열판에 열교환기가 구비된 상태를 보여주는 또 다른 실시예,
도 9 및 도 10은 본 발명에 따른 연소방열판의 전산해석 결과를 보여주는 자료이다.
※ 부호의 설명 ※
1 : 바이오촤 제조장치 100 : 열분해 반응로
S : 수용공간 101 : 투입구
103 : 배출구 200 : 가열부
201 : 연소방열판 210 : 하우징
211 : 연소공간 A : 제1순환영역
B : 제2순환영역 213 : 가이드부재
220 : 산화제투입부 221 : 산화제투입노즐
230 : 가스배출부 240 : 연료공급부
241 : 연료분사노즐 250 : 열교환기
300 : 배출부 301 : 스크류
310 : 수냉각자켓 311 : 공간
320 : 온수저장부 330 : 전기발전부
331 : 열전소자
이하 첨부한 도면을 참조하여 본 발명의 구체적인 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.
여기서, 각 도면의 구성요소들에 대해 참조부호를 부가함에 있어서 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표기되었음에 유의하여야 한다.
도 1은 본 발명에 따른 바이오촤 제조장치의 내부구성도이다.
도 1을 참조하면, 본 발명의 바람직한 일 실시예에 따른 바이오촤 제조장치(1)는, 열분해 반응로(100), 가열부(200), 배출부(300)를 포함할 수 있다.
이러한 본 발명의 구성에 대해 구체적으로 설명하면 다음과 같다.
먼저, 열분해 반응로(100)는 바이오촤 제조장치(1)의 주된 본체를 구성하는 것으로, 내부에 수용공간(S)이 마련되며, 투입구(101)와 배출구(103)가 구비될 수 있다.
구체적으로, 열분해 반응로(100)는 투입구(101)가 수용공간(S)의 상부에 구비되고, 상기 배출구(103)는 수용공간(S)의 하부에 구비된다. 따라서, 상기 투입구(101)를 통해 투입되는 가열대상물인 바이오매스는 중력에 의해 점진적으로 하향 이동됨과 아울러, 후술할 가열부(200)에 의해 가열되면서 바이오촤와 바이오가스로 분리된 후 상기 배출구(103)를 통해 외부로 배출될 수 있다.
가열부(200)는 열분해 반응로(100)의 내부에 설치되는 것으로, 상기 투입구(101)를 통해 수용공간(S) 내에서 하향 이동되는 바이오매스를 대략 800℃ 이상으로 가열하여 바이오촤와 바이오가스로 분리해주게 된다.
상기 가열부(200)는 바이오매스를 연소시키는 것이 아닌, 가열을 통한 열분해 과정을 거치면서 바이오매스를 바이오촤와 바이오가스로 분리해주게 된다.
이 경우 상기 바이오가스는 수용공간(S)을 따라 하향 이동하면서 하부의 고온 바이오촤를 만나면 탄화수소의 탄소가 바이오촤 표면에 부착되고, 수소농도가 높게 개질되어 배출된다. 바이오촤에 부착된 탄소는 나노카본구조를 만들어서 흡착성능을 더욱 증가시킬 수 있다.
이러한 가열부(200)는 수용공간(S)을 사이에 두고 적어도 양측에 대향되게 배치되는 연소방열판(201)을 포함할 수 있다. 물론 이에 한정되는 것은 아니며, 상기 가열부(200)의 효율을 높일 수 있는 구조라면 다양하게 변경 적용할 수 있다. 예컨대 상기 연소방열판(201) 복수 개를 이격배치하고, 상기 복수 개의 연소방열판(201) 사이사이에 열분해 반응로(100)의 수용공간(S)을 마련해줄 수도 있다. 이하, 본 발명에서는 상기 연소방열판(201)이 수용공간(S)을 사이에 두고 양측에 대향되게 배치된 경우의 일례를 들어 도시하고 설명하기로 한다.
도 2를 참조하여 구체적으로 설명해보면, 상기 연소방열판(201)은, 하우징(210), 산화제투입부(220), 가스배출부(230), 연료공급부(240)를 포함할 수 있다.
먼저, 하우징(210)은 연소방열판(201)의 주된 몸체를 구성하는 것으로, 이러한 하우징(210)은 내부에 연소공간(211)이 마련되는 판 형상으로 형성될 수 있다.
이 경우 하우징(210)은 고온에서 견딜 수 있는 스테인레스나 세라믹 재질로 이루어질 수 있으며, 연소방열판(201)의 규모가 커지는 경우에는 하우징(210)을 내화벽돌로 조적하여 제작할 수 있다.
또한 상기 하우징(210)은 원형, 타원형, 사각형, 다각형 중 어느 하나의 형상으로 형성될 수 있다. 본 발명에서는 상기 하우징(210)이 사각의 판 형상으로 형성된 경우의 일례를 들어 도시하고 설명하기로 한다. 물론 이에 한정되는 것은 아니며, 상기 하우징(210)의 내부 연소공간(211)에 투입된 산화제와 연료가 원활하게 순환될 수 있는 구조라면 다양하게 변경 적용될 수 있다.
이와 같이 상기 하우징(210)이 판 형상으로 형성됨에 따라 하우징(210) 내부의 연소공간(211)에서 2차원 유동만이 가능하고, 하우징(210) 두께방향으로의 3차원 유동은 불가능하도록 할 수 있다.
즉 판 형상의 연소방열판(201)은 넓은 면적에 두께가 비교적 얇게 형성됨에 따라 2차원 유동이 가능하고, 이에 따라 연소방열판(201)의 균일한 열효율을 구현할 수 있다.
도 3을 참조하면, 산화제투입부(220)는 하우징(210)의 일측에 구비되어, 상기 연소공간(211)의 내측 외둘레에 산화제를 투입 순환시켜 제1순환영역(A)을 형성해준다.
구체적으로, 상기 산화제투입부(220)는 산화제공급부(미도시)를 통해 공급되는 산화제를 하우징(210) 내 연소공간(211)의 소정지점에 원활하게 투입해줄 수 있도록 소정 길이의 산화제투입노즐(221)이 구비될 수 있다.
이 경우 상기 산화제투입노즐(221)은 상기 연소공간(211)의 내측 외둘레에 산화제를 투입하여 제1순환영역(A)을 형성해줄 수 있도록 사각 형상으로 형성된 하우징(210)의 변과 변이 만나는 지점, 즉 모서리부위에 치우치도록 설치될 수 있다.
다른 실시예로, 상기 하우징(210)이 원형으로 형성된 경우(미도시)에는 상기 산화제투입노즐(221)은 원의 접선 방향으로 소정각도 기울어지게 설치될 수 있다. 이에 따라 원형의 연소공간(211) 내측 외둘레에 산화제를 투입하여 제1순환영역(A)을 원활하게 형성해줄 수 있다.
가스배출부(230)는 하우징(210)의 타측에 구비될 수 있으며, 상기 연소공간(211) 내에서 순환되는 가스 일부를 외부로 배출시켜준다.
구체적으로, 상기 산화제투입부(220)와 가스배출부(230)는 하우징(210)의 일변에 평행하게 이격 설치되는 방식으로 배치될 수 있다.
다른 실시예로, 도 4에 도시된 바와 같이, 상기 산화제투입부(220)와 가스배출부(230)는 후술할 연료공급부(240)를 사이에 두고 하우징(210)의 양측변에 일렬로 대향되게 설치될 수 있다.
도 5를 참조하면, 상기와 같이 산화제투입부(220)와 가스배출부(230)가 하우징(210)의 양측변에 일렬로 대향되게 설치된 경우에는, 본 발명에 따른 연소방열판(201) 복수 개를 직렬로 연이어 설치하여 횡 방열판 시스템을 구성할 수 있다.
즉 맨 처음 배치된 연소방열판(201)의 타측변에 구비된 가스배출부(230)를 이웃하는 다른 연소방열판(201')의 일측변에 구비된 산화제투입부(220)와 연결해줄 수 있다.
다시 말해, 맨 처음 연소방열판(201)의 가스배출부(230)는 이웃하도록 연이어진 연소방열판(201)의 산화제투입부(220)가 되는 방식이다.
이에 따라 맨 처음 연소방열판(201)의 가스배출부(230)를 통해 배출되는 가스를 이웃하는 다른 연소방열판(201)의 산화제투입부(220)를 통해 다시 투입해줄 수 있고, 이에 따라 긴 방열판을 형성할 수 있으며, 연료의 분산투입으로 연소방열판(201)의 효율을 향상시킬 수 있다.
이 경우 상기 연소방열판(201)를 구성하는 하우징(210) 내부의 연소공간(211)에는 산화제투입부(220)를 통해 투입되는 산화제가 연소공간(211)의 일방향으로 순환될 수 있도록 상기 산화제를 유도해주는 가이드부재(213)가 구비될 수 있다.
즉 상기 연소방열판(201) 복수 개를 직렬로 연이어 설치하는 경우 상기 산화제투입부(220)를 통해 연소공간(211) 내부로 투입되는 산화제의 유동방향을 원하는 방향(일례로 시계방향)으로 바꿔줄 필요가 있다.
따라서, 상기 산화제투입부(220)가 설치된 하우징(210)의 내부 연소공간(211) 부근에 상기 가이드부재(213)를 설치해줌으로써, 산화제투입노즐(221)을 통해 연소공간(211) 내부로 투입되는 산화제의 유동 방향을 원하는 방향으로 바꿔줄 수 있으며, 이에 따라 제1순환영역(A)을 원활하게 형성해줄 수 있다.
연료공급부(240)는 상기 제1순환영역(A)에서 산화제의 순환에 의해 상기 연소공간(211)의 중심부 부근에 형성되는 제2순환영역(B)에 연료를 분사시켜주는 것으로, 이러한 연료공급부(240)는 제2순환영역(B) 내에 연료분사노즐(241)의 선단이 위치하도록 설치될 수 있다.
구체적으로, 상기 연료공급부(240)의 연료분사노즐(241)은 산화제투입부(220)와 가스배출부(230) 사이에 적어도 하나가 위치될 수 있다.
도 6을 참조하면, 다른 실시예로, 상기 연료분사노즐(241)은 연료공급부(240)의 연료분사효율을 높일 수 있도록 상기 하우징(210)의 중심부를 기준으로 상하 또는 좌우 측변에 적어도 한 쌍이 대칭으로 설치될 수 있다. 이러한 연료공급부(240)를 통해 분사되는 연료는 열분해 반응로(100) 내에서 바이오매스의 열분해 과정을 거쳐 분리된 바이오가스의 적어도 일부를 공급받을 수 있다.
도 7을 참조하면, 상기 하우징(210)의 일측에는 열교환기(250)가 구비될 수 있다. 열교환기(250)는 가스배출부(230)를 통해 배출되는 가스의 열을 이용하여 산화제투입부(220)와 연료공급부(240)를 통해 제각기 투입되는 산화제와 연료를 승온시켜줄 수 있으며, 이에 따라 연소방열판(201)의 열효율을 향상시킬 수 있다.
도 8 및 도 9는 본 발명에 따른 연소방열판(201)의 전산해석 결과이다.
먼저, 본 발명에 따른 연소방열판(201)을 전산해석에 사용할 수 있도록 하우징(100)을 가로 5m, 세로 2.5m, 두께 1m의 크기로 형성하였다. 이 경우 하우징(210)을 구성하는 금속 플레이트의 두께는 0.1m이고, 연료분사노즐(241)은 하우징(210)의 벽면에서 0.7m 내부로 들어와 있다.
그리고 하우징(210) 내 가스 체류 시간은 2초이고, 당량비는 0.9로써 과잉공기가 10% 더 들어가는 조건으로 설정하였다. 아울러 연료공급부(240)를 통해 공급되는 연료는 메탄을 사용하였다.
사용한 전산해석 코드는 ANSYS-FLUENT 17.0이며 난류모델은 standard k-e model, 복사모델은 Discrete-Ordinate model, 화학반응은 46steps의 skeletal model을 이용하였다.
그 결과 도 8에 도시된 바와 같이, 본 발명에 따른 연소방열판(201)은 하우징(210)에 설치된 산화제투입부(220)와, 가스배출부(230) 및 연료공급부(240)를 통해 연소공간(211) 내에 제1순환영역(A)과 제2순환영역(B)이 형성되는 것을 확인할 수 있다.
특히, 도 9에서와 같이, 연소공간(211)의 제1순환영역(A)과 제2순환영역(B) 내 연료 농후 영역과 반응활성화 영역을 각각 CO와 OH 농도분포로부터 확인할 수 있다.
즉 본 발명에 따른 연소방열판(201)은 상기와 같은 전산해석 결과에서와 같이 연소공간(211) 내 공기와 연료 제트를 제외한 전체 영역에서 균일한 온도분포를 확보할 수 있음을 알 수 있다.
도 10을 참조하면, 배출부(300)는 열분해 반응로(100)를 통해 바이오매스를 가열하여 제조된 바이오촤 및 바이오가스를 상기 배출구(103)를 통해 분리 배출시켜주는 역할을 한다.
구체적으로, 상기 배출구(103)에는 모터(미도시)의 동력을 전달받아 회전 가능하게 설치된 스크류(301)가 구비되어, 제조된 바이오촤를 일방향으로 연속적으로 배출시킬 수 있다.
아울러 상기 배출부(300)는 열분해 반응로(100)의 하부에 구비된 배출구(103)에 설치되는 수냉각자켓(310)을 포함할 수 있다. 수냉각자켓(310)은 내부의 공간(311)에 냉각수를 순환시켜 상기 배출구(103)를 통해 배출되는 바이오촤를 냉각시켜줄 수 있다.
또한 상기 배출부(300)의 일측에는, 상기 수냉각자켓(310)에 냉각수로 사용되면서 소정 온도로 가열된 물을 온수로 사용할 수 있도록 저장해주는 온수저장부(320)를 포함할 수 있다. 이 경우 상기 온수저장부(320)는 대략 60℃ 이상으로 유지해줄 수 있다.
또한 상기 배출부(300)에는 수냉각자켓(310)과 배출되는 바이오촤 사이에 열전소자(331)가 구비되어 전기를 생산해주는 전기발전부(330)를 포함할 수 있다. 이 경우 상기 열전소자(331)를 이용하여 전기를 생산해주는 원리는 공개된 기술임에 따라 이에 대한 상세한 설명은 생략하기로 한다.
한편, 바이오촤 제조장치(1)는 바이오촤의 제조 시 발생하는 바이오가스의 적어도 일부를 가열부(200)의 연료로 공급해줄 수 있도록 가스연료공급부(미도시)를 포함할 수 있다.
이 경우 상기 가스연료공급부는 가열부(300)의 연료공급부(240)(도 3 참조)와 연결되어 상기 바이오가스를 연소방열판(201) 내부에 공급해줄 수 있다.
또한 상기 가스연료공급부를 통해 가열부(200)의 연료로 공급하고 남은 나머지 바이오가스는, 바이오가스정제부(미도시)를 통해 소정의 정제과정을 거친 후 외부 사용처로 이송해주거나, 또는 별도의 저장탱크(미도시)에 저장해줄 수 있다.
이 경우 상기 바이오가스를 외부에서 연료로 사용하기 위해서는 흡수제를 이용하여 산성가스를 제거하고, 집진장치로 분진을 제거한 이후에 사용하는 것이 바람직하다.
그러면, 이상과 같은 구성의 본 발명에 따른 바이오촤 제조장치(1)를 이용한 바이오촤 제조과정에 대하여 설명해보기로 한다.
먼저, 열분해 반응로(100)의 투입구(101)를 통해 가열대상인 바이오매스를 수용공간(S) 내에 균일하게 분산 투입해준다(도 1 참조).
투입구(101)를 통해 열분해 반응로(100) 내부로 투입되는 바이오매스는 중력에 의해 수용공간(S)을 따라 점진적으로 하향 이동된다.
하향 이동되는 바이오매스는 수용공간(S)의 양측에 대향되게 배치된 가열부(200)의 연소방열판(201)에 의해 적어도 800℃ 이상의 온도로 가열되면서 바이오촤와 바이오가스로 분리 제조된다.
상기 제조된 바이오촤는 배출부(300) 내에 구비된 스크류(301)에 의해 일방향으로 이송되는 방식으로 열분해 반응로(100) 하부의 배출구(103)를 통해 외부로 배출될 수 있다.
아울러 상기 배출구(103)에는 수냉각자켓(310)이 구비되어 상기 바이오촤를 냉각 배출시킬 수 있다.
이 경우 바이오촤와 함께 제조된 바이오가스의 적어도 일부는 가열부(200)의 연료로 사용될 수 있고, 나머지 바이오가스는 바이오가스정제부(미도시)를 거쳐 외부에서 연료로 사용될 수 있다.
이상에서는 본 발명을 특정의 구체적인 실시 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시 예에 한정되지 않으며 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양한 변경과 수정이 가능함은 물론이다.
Claims (10)
- 내부에 수용공간이 마련되며, 투입구와 배출구가 구비되는 열분해 반응로;상기 열분해 반응로 내부에 설치되며, 상기 투입구를 통해 수용공간으로 투입되는 바이오매스를 가열해주는 연소방열판이 구비되는 가열부; 및상기 열분해 반응로를 통해 상기 바이오매스를 가열하여 제조된 바이오촤 및 바이오가스를 상기 배출구를 통해 분리 배출시켜주는 배출부;를 포함하는 바이오촤 제조장치.
- 제1항에 있어서,상기 바이오촤 제조장치는,상기 바이오촤의 제조 시 발생하는 바이오가스의 적어도 일부를 상기 가열부의 연료로 공급해주는 가스연료공급부;를 더 포함하는 바이오촤 제조장치.
- 제1항에 있어서,상기 열분해 반응로는,상기 투입구가 상기 수용공간의 상부에 구비되고, 상기 배출구는 상기 수용공간의 하부에 구비되어, 상기 투입구를 통해 상기 수용공간의 상부에 투입되는 바이오매스가 중력에 의해 점진적으로 하향 이동됨과 아울러, 상기 가열부에 의해 가열되면서 바이오촤와 바이오가스로 분리되도록 한 것인 바이오촤 제조장치.
- 제1항에 있어서,상기 연소방열판은,상기 수용공간을 사이에 두고 적어도 양측에 대향되게 배치되는 것인 바이오촤 제조장치.
- 제1항에 있어서,상기 연소방열판은,내부에 연소공간이 마련되는 판 형상의 하우징;상기 하우징의 일측에 구비되며, 산화제투입노즐을 통해 상기 연소공간의 내측 외둘레에 산화제를 투입 순환시켜 제1순환영역을 형성해주는 산화제투입부;상기 하우징의 타측에 구비되며, 상기 연소공간 내에서 순환되는 가스 일부를 배출시켜주는 가스배출부; 및상기 제1순환영역에서 산화제의 순환에 의해 상기 연소공간의 중심부에 형성되는 제2순환영역에 연료를 분사시킬 수 있도록 상기 제2순환영역 내에 연료분사노즐의 선단이 위치하도록 설치되는 연료공급부;를 포함하는 바이오촤 제조장치.
- 제5항에 있어서,상기 하우징의 일측에는,상기 가스배출부를 통해 배출되는 가스의 열을 이용하여 상기 산화제투입부와 연료공급부를 통해 제각기 투입되는 산화제와 연료를 승온시켜주는 열교환기;가 구비된 것을 더 포함하는 바이오촤 제조장치.
- 제1항에 있어서,상기 배출부는,상기 열분해 반응로 하부의 배출구에 설치되며, 내부에 냉각수를 순환시켜 배출되는 바이오촤를 냉각시켜주는 수냉각자켓;을 더 포함하는 바이오촤 제조장치.
- 제7항에 있어서,상기 바이오촤 제조장치는,상기 수냉각자켓에 냉각수로 사용되면서 소정 온도로 가열된 물을 온수로 사용할 수 있도록 저장해주는 온수저장부;를 더 포함하는 바이오촤 제조장치.
- 제7항에 있어서,상기 바이오촤 제조장치는,상기 수냉각자켓과 배출되는 바이오촤 사이에 열전소자가 설치되어 전기를 생산해주는 전기발전부;를 더 포함하는 바이오촤 제조장치.
- 제2항에 있어서,상기 바이오촤 제조장치는,상기 가스연료공급부를 통해 상기 가열부의 연료로 사용되고 남은 나머지 바이오가스를 정제하여 외부 사용처로 이송하거나, 또는 별도의 저장탱크에 저장해주는 바이오가스정제부;를 더 포함하는 바이오촤 제조장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2020291320A AU2020291320B2 (en) | 2019-06-12 | 2020-02-07 | Apparatus for producing biochar using combustion heat generator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0069630 | 2019-06-12 | ||
KR1020190069630A KR102199489B1 (ko) | 2019-06-12 | 2019-06-12 | 연소방열판을 이용한 바이오촤 제조장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020251132A1 true WO2020251132A1 (ko) | 2020-12-17 |
Family
ID=73781023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/001775 WO2020251132A1 (ko) | 2019-06-12 | 2020-02-07 | 연소방열판을 이용한 바이오촤 제조장치 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102199489B1 (ko) |
AU (1) | AU2020291320B2 (ko) |
WO (1) | WO2020251132A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022092697A1 (ko) | 2020-10-29 | 2022-05-05 | 주식회사 엘지에너지솔루션 | S-o계 고리형 화합물을 함유하는 전해질을 포함하는 리튬-황 이차전지 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007238701A (ja) * | 2006-03-07 | 2007-09-20 | Kurimoto Ltd | ガス化炉 |
JP2009242248A (ja) * | 2008-03-28 | 2009-10-22 | National Institute Of Advanced Industrial & Technology | ジメチルエーテルの製造方法および製造装置 |
KR20140070273A (ko) * | 2012-11-30 | 2014-06-10 | 서울시립대학교 산학협력단 | 바이오촤의 제조 방법 및 제조 장치 |
KR20150096349A (ko) * | 2014-02-14 | 2015-08-24 | (주)케이에프 | 바이오촤 생산 시스템 |
US20150368562A1 (en) * | 2014-06-19 | 2015-12-24 | Suzhou GreenGen Tech Energy Inc. | Biomass gas and biomass charcoal preparation system |
US20160053182A1 (en) * | 2013-03-20 | 2016-02-25 | Diacarbon Technologies Inc. | Method & Apparatus for Producing Biochar |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102063708B1 (ko) * | 2017-11-29 | 2020-01-09 | 한국생산기술연구원 | 타르 회수를 통한 바이오촤 펠릿 생산 시스템 |
-
2019
- 2019-06-12 KR KR1020190069630A patent/KR102199489B1/ko active IP Right Grant
-
2020
- 2020-02-07 AU AU2020291320A patent/AU2020291320B2/en active Active
- 2020-02-07 WO PCT/KR2020/001775 patent/WO2020251132A1/ko active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007238701A (ja) * | 2006-03-07 | 2007-09-20 | Kurimoto Ltd | ガス化炉 |
JP2009242248A (ja) * | 2008-03-28 | 2009-10-22 | National Institute Of Advanced Industrial & Technology | ジメチルエーテルの製造方法および製造装置 |
KR20140070273A (ko) * | 2012-11-30 | 2014-06-10 | 서울시립대학교 산학협력단 | 바이오촤의 제조 방법 및 제조 장치 |
US20160053182A1 (en) * | 2013-03-20 | 2016-02-25 | Diacarbon Technologies Inc. | Method & Apparatus for Producing Biochar |
KR20150096349A (ko) * | 2014-02-14 | 2015-08-24 | (주)케이에프 | 바이오촤 생산 시스템 |
US20150368562A1 (en) * | 2014-06-19 | 2015-12-24 | Suzhou GreenGen Tech Energy Inc. | Biomass gas and biomass charcoal preparation system |
Also Published As
Publication number | Publication date |
---|---|
KR20200142395A (ko) | 2020-12-22 |
KR102199489B1 (ko) | 2021-01-07 |
AU2020291320B2 (en) | 2022-09-08 |
AU2020291320A1 (en) | 2022-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021230562A1 (ko) | 암모니아 기반 고체산화물 연료전지(sofc) 시스템 | |
US8936886B2 (en) | Method for generating syngas from biomass including transfer of heat from thermal cracking to upstream syngas | |
WO2013094879A1 (ko) | 액체금속을 이용한 열분해 장치 | |
WO2013097533A1 (zh) | 一种外热型微波等离子气化炉及合成气生产方法 | |
WO2017078225A1 (ko) | 플라즈마 열풍을 이용한 바이오오일 회수장치 | |
WO2010150966A1 (ko) | 폐가스에 포함된 암모니아를 제거하기 위한 가스 스크러버 | |
WO2012144700A1 (ko) | 바이오매스 고형체 제조시스템 및 제조방법 | |
WO2020251132A1 (ko) | 연소방열판을 이용한 바이오촤 제조장치 | |
WO2015137683A1 (ko) | 연료 저감형 버너 장치 | |
WO2010005165A2 (en) | Fuel processor of fuel cell system | |
WO2017111430A1 (ko) | 버너장치 | |
WO2013094878A1 (ko) | 액체금속을 이용한 열분해 장치 | |
WO2015026023A1 (ko) | 바이오매스를 이용한 가스화 반응장치 | |
WO2014069840A1 (ko) | 니켈 분배판을 구비한 이중 바이오매스 가스화 반응기 및 이를 구비한 바이오매스 가스화 장치 | |
WO2011090260A2 (ko) | 연속식 활성탄 제조장치 | |
WO2022255640A1 (ko) | 바이오 드라잉과 반탄화를 이용한 에너지화 시스템 | |
WO2017111415A1 (ko) | 열풍로를 이용한 이산화탄소 분해 및 재활용 방법 | |
WO2022255639A1 (ko) | 내외부 복합 열교환식 반탄화 장치 | |
WO2012129814A1 (zh) | 一种有机物热解制取活性炭方法 | |
CN101978030A (zh) | 气化设备的气化炉结构 | |
WO2012134125A2 (ko) | 마이크로웨이브를 이용한 이산화탄소 분해장치와 방법 | |
WO2017222253A1 (ko) | 연료극 가스 또는 연료극 배가스를 이용한 열교환기를 포함하는 연료전지 시스템 | |
WO2011059230A2 (ko) | 바이오매스 고체연료 보일러용 버너 | |
WO2013183853A1 (ko) | 연료전지 시스템 | |
US10316419B2 (en) | System for utilizing excess heat for carrying out electrochemical reactions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20822408 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20822408 Country of ref document: EP Kind code of ref document: A1 |