WO2013097533A1 - 一种外热型微波等离子气化炉及合成气生产方法 - Google Patents

一种外热型微波等离子气化炉及合成气生产方法 Download PDF

Info

Publication number
WO2013097533A1
WO2013097533A1 PCT/CN2012/083566 CN2012083566W WO2013097533A1 WO 2013097533 A1 WO2013097533 A1 WO 2013097533A1 CN 2012083566 W CN2012083566 W CN 2012083566W WO 2013097533 A1 WO2013097533 A1 WO 2013097533A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
bed
gasifier
plasma
external heat
Prior art date
Application number
PCT/CN2012/083566
Other languages
English (en)
French (fr)
Inventor
陈义龙
张岩丰
夏明贵
张亮
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2014007866A priority Critical patent/MX2014007866A/es
Priority to SG11201403663WA priority patent/SG11201403663WA/en
Priority to EP12862129.9A priority patent/EP2799523B1/en
Priority to IN1474MUN2014 priority patent/IN2014MN01474A/en
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Priority to CA2861813A priority patent/CA2861813A1/en
Priority to RU2014131270/05A priority patent/RU2588212C2/ru
Priority to DK12862129.9T priority patent/DK2799523T3/en
Priority to KR1020147020550A priority patent/KR101625140B1/ko
Priority to BR112014016143A priority patent/BR112014016143B1/pt
Priority to AP2014007829A priority patent/AP2014007829A0/xx
Priority to AU2012362084A priority patent/AU2012362084B2/en
Priority to JP2014549317A priority patent/JP6238907B2/ja
Publication of WO2013097533A1 publication Critical patent/WO2013097533A1/zh
Priority to US14/315,304 priority patent/US10119076B2/en
Priority to ZA2014/05495A priority patent/ZA201405495B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B21/00Heating of coke ovens with combustible gases
    • C10B21/10Regulating and controlling the combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/18Continuous processes using electricity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0861Methods of heating the process for making hydrogen or synthesis gas by plasma
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0969Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0993Inert particles, e.g. as heat exchange medium in a fluidized or moving bed, heat carriers, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • C10J2300/1238Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment
    • C10J2300/1631Ash recycling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1637Char combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the invention is mainly directed to the field of gasification process using biomass and solid waste as raw materials, and specifically relates to utilizing external energy source to provide heat energy for microwave plasma gasification, thereby achieving efficient use of biomass fuel and solid waste garbage.
  • Gasification unit and process for high quality syngas are mainly directed to the field of gasification process using biomass and solid waste as raw materials, and specifically relates to utilizing external energy source to provide heat energy for microwave plasma gasification, thereby achieving efficient use of biomass fuel and solid waste garbage.
  • the conventional biomass fixed bed gasification process has the characteristics of simple structure, flexible operation, long residence time of solid fuel on the bed, high cracking rate, etc., especially the fixed bed can be simply broken and the particle size is uniform, and it is suitable for biomass fuel.
  • Industrial use but at the same time there are problems such as low gasification temperature, uneven temperature distribution, large tar content, low content of active components of synthesis gas, low efficiency, etc., which restricts its application in biomass fuel gasification process.
  • the object of the present invention is to provide a high-quality synthesis gas external heat type biomass gasification furnace and a synthesis gas production method, to solve a series of problems in the above-mentioned biomass production synthesis gas, and to prepare and synthesize biomass fuel.
  • Gas provides an economical and efficient industrial utilization device and process.
  • An external heat type microwave plasma gasification furnace mainly comprises a vertically disposed gasification furnace body, a feeding device communicating with the body and located in a middle portion of the gasification furnace body, an upper steam nozzle located in the clearance area, and a bed layer area a lower carbon dioxide/steam jet, a syngas outlet at the top of the gasifier body, and a monitoring unit disposed on the outlet, and a microwave plasma generator located at the upper end of the upper vapor vent at the headspace; the microwave plasma generator is arranged in 1 to 2 layers, each The layer is uniformly arranged with 3 to 4 plasma working gas access points, and the plasma gas stream is sprayed into the gas cleaning furnace clearance zone radially or tangentially; and characterized in that: an external heat device for heating by an external heat source is further provided, The external heat device is integrated with the gasifier body or separated from the gasifier body; the external heat device is provided with a slag port for discharging the ash.
  • the bottom end of the gasifier body is provided with a circulating bed material outlet, and the top end is provided with a circulating bed material inlet; or the circulating bed material outlet and the inlet are disposed at the side of the gasifier body; and the gas bed is disposed between the circulating bed material outlet and the inlet
  • the externally separated external heat device enables the circulating bed material to be circulated from the outlet through the external heat device and through the inlet into the gasifier body; the heat source of the external heat device is microwave heating, high temperature microwave plasma, laser, One or more of arc plasma and solar concentrating light energy.
  • the external heat device is disposed at the bottom of the gasifier body and integrated with the gasification furnace; the heat source of the external heat device is microwave, high temperature microwave plasma, laser, arc plasma, solar concentrating light energy, and CFB boiler One or more of the high temperature bed materials.
  • the microwave plasma generator adopts a plasma generator with large electrode spacing, strong plasma activity and wide volume range; the microwave plasma generator has a microwave power source frequency of 2.45 GHz and a single power of less than 200 kW.
  • the synthesis gas production method using the above gasification furnace utilizes external energy as a heat source of the biomass gasification process to realize biomass fuel gasification, and is characterized in that it mainly comprises the following steps:
  • Biomass fuel, garbage and other materials are fed into the gasifier body through the feeding device, rapidly gasification on the high temperature bed, and complex and efficient pyrolysis reaction; mainly carbon monoxide, hydrogen, carbon dioxide, and a small amount of methane, tar High temperature syngas;
  • the high-temperature synthesis gas is pumped up to the clean room of the gasifier, and the pyrolysis reaction is rapidly carried out under the action of the high-temperature plasma oxidant in the non-equilibrium state, which is generated by the microwave plasma generator, and the upper layer is sprayed.
  • the finished syngas is introduced from the gasification furnace syngas outlet to the subsequent process.
  • the separated bed material is transported to the inlet of the circulating bed material and enters the gasification furnace, which is countercurrent to the high temperature flue gas, and continues to descend when exposed to the fuel substance on the bed, and the temperature is lowered to the temperature of the reaction zone of the bed. 600 ° C ⁇ 1000 ° C; the bed material after cooling is then sent to the heating device again, so that the cycle is repeated; the circulating bed material outlet temperature is about 750 ° C ⁇ 1200 ° C; the heated high temperature bed material temperature is higher than the bed The temperature of the layer reaction zone;
  • the syngas outlet monitoring unit is used to monitor the temperature and composition of the syngas, and the microwave plasma power and the supply amount of carbon dioxide and steam are adjusted in real time to ensure smooth and economic operation of the process.
  • the residence time of the synthesis gas in the plasma range of the clearance zone is 3 to 6 seconds.
  • the residence time of the synthesis gas in the plasma range of the clearance zone is 4 to 6 seconds.
  • the temperature of the reaction zone of the gasification furnace bed is controlled at 600 ° C to 850 ° C.
  • the synthesis gas production method of the above other gasification furnace utilizes an external energy source as a heat source of the biomass gasification process to realize biomass fuel gasification, and is characterized in that it mainly comprises the following steps:
  • Biomass fuel, garbage and other materials are fed into the gasifier body through the feeding device, rapidly high-temperature gasification on the bottom bed, and because the bed is similar to a fixed bed, solid particulate matter stays on the bed. Long time, can carry out complex and high-efficiency pyrolysis reaction on the bed. First, the fuel particles burst and pyrolyze at high temperature, and the volatiles of the main components are precipitated, and the remaining carbon materials are retained, and then the volatiles are cracked under high temperature and high heat.
  • a series of complex chemical reactions mainly producing carbon monoxide, hydrogen, carbon dioxide, and a small amount of high-temperature synthesis gas such as methane and tar; the remaining ash from the combustion is discharged by the slag port provided by the external heat device;
  • the high-temperature synthesis gas is pumped up to the clean room of the gasifier, and the cracking reaction is rapidly carried out under the action of the high-temperature plasma oxidant in the non-equilibrium state, which is generated by the microwave plasma generator, and the upper layer
  • the nozzle is sprayed with steam, and the process control clearance area temperature range is 1000 ° C ⁇ 1200 ° C, and the control gas flow is carried out at a slower flow rate to ensure that the synthesis gas stays in the plasma range of the clearance zone for about 3 to 10 seconds; or plasma gas flow
  • the tangential staggered injection is used to increase the turbulence and enhance the heat transfer and mass transfer in the flow field.
  • the tar content in the syngas at the synthesis gas outlet at the top of the gasifier can be minimized, even without tar.
  • the external heat device at the bottom of the gasifier body is continuously heated to ensure that the reaction temperature of the bed reaction zone is 600 ° C to 1000 ° C, and the temperature range of the clearance reaction zone is controlled within the range of 750 ° C to 1600 ° C.
  • syngas outlet temperature control It is in the range of 900 ° C to 1200 ° C.
  • the microwave plasma generator is arranged in the clearance area of the gasifier to perform non-equilibrium cracking reaction on the tar in the syngas, so that the tar content is extremely small, even without tar, and the industrial direct utilization level can be achieved, and the economy is good.
  • FIG. 1 is a schematic view showing an ionic gasification furnace and a process flow according to a preferred embodiment of the present invention
  • Figure 2 is a view taken along line A-A of Figure 1.
  • feeding device 1 gasification furnace body 2; microwave plasma generator 3; lower layer carbon dioxide/steam nozzle 4; upper steam outlet 5; monitoring unit 6; circulating bed material outlet 7; gasification furnace clearance area 8; Device 9; circulating bed inlet 10.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the external heat type microwave plasma gasification furnace mainly comprises a vertically arranged cylindrical gasification furnace body 2, a feeding device communicating with the body 2, an upper steam outlet 5 located in the clearance area, and a bed zone. a lower carbon dioxide/steam nozzle 4, a microwave plasma generator 3 at the upper end of the upper steam vent 5, a syngas outlet at the top of the gasifier body 2, and a monitoring unit 6 disposed at the outlet; characterized in that: the gasifier body 2 The bottom end is provided with a circulating bed material outlet 7, the top end is provided with a circulating bed material inlet 10, and between the circulating bed material outlet 7 and the inlet 10, an external heat device 9 is provided which is separated from the gasifier body 2, so that the circulating bed material can be discharged from the outlet 7 After the external heat device 9 enters the gasifier body 2 through the inlet 10 to perform a plurality of cycles; the external heat device 9 is provided with a slag port for discharging the ash.
  • the circulating bed material outlet 7 and the inlet 10 may also be provided at the side of the gasifier body 2.
  • the feeding device 1 is located in the middle section of the gasifier body 2, and the microwave plasma generator 3 is arranged in the gas cleaning furnace clearance area 8, and 1 to 2 layers are arranged, and each layer is uniformly arranged with 3 to 4 plasma working gas access points.
  • the plasma gas stream is sprayed into the gas cleaning furnace headspace 8 in a radial or tangential direction; the microwave plasma generator 3 uses a plasma generator having a large electrode spacing, a strong plasma activity, and a wide volume range; the microwave plasma generator 3 is a microwave power source.
  • the frequency is 2.45GHz, and the single power is less than 200kW.
  • the bed material discharged in the process is heated by microwave heating, high temperature microwave plasma, laser, arc plasma, solar concentrating light energy, or even some industrial waste heat or waste to generate heat.
  • the high temperature cycle, wherein the external heat device 9 can achieve complete oxidation combustion of the fixed carbon material and separation of the bed material from the biomass slag.
  • the synthesis gas production method using the above gasification furnace mainly comprises the following steps:
  • Materials such as biomass fuel, garbage, etc. are fed into the gasifier body 2 through the feeding device 1, and rapidly gasified at a high temperature on the bottom bed, and since the bed is a fixed bed, the solid particulate matter is in the bed.
  • the long residence time is long, and the complex and high-efficiency pyrolysis reaction can be carried out completely on the bed.
  • the fuel particles burst and pyrolyze at high temperature, and the volatiles of the main components are precipitated, and the remaining carbon materials are retained, and then the volatiles occur under high temperature and high heat.
  • a series of complex chemical reactions such as cracking, mainly producing carbon monoxide, hydrogen, carbon dioxide, and a small amount of high temperature synthesis gas such as methane and tar;
  • the plasma gas flow can also be tangentially staggered, increasing the turbulence, enhancing the heat transfer and mass transfer in the flow field, and the tar content in the syngas at the synthesis gas outlet at the top of the gasifier can be achieved, even without tar. ;
  • the combustion of the residual carbon, the heating of the bed material and the separation of the bed material and the slag are realized in the external heat device 9, and the separated ash is discharged from the slag port provided by the external heat device; the high temperature bed material after the separation
  • the material is sent to the circulating bed inlet 10 and enters the gasifier body 2, and the countercurrent heat exchange with the syngas in the headspace reaction zone is raised to raise the temperature of the syngas to a temperature range of 1000 ° C to 1200 ° C;
  • the substance continues to descend when it contacts the fuel substance on the bed, and the temperature is lowered to the bed reaction zone temperature of 600 ° C ⁇ 1000 ° C, and the bed material after cooling is then sent again to the heating.
  • this cycle is not complete; the temperature of the circulating bed outlet 7 is in the range of approximately 750 ° C to 1200 ° C.
  • the syngas outlet monitoring unit 6 is used to monitor the temperature and composition of the syngas, and the microwave plasma power and the supply amount of carbon dioxide and steam are adjusted in real time to ensure smooth and economic operation of the process; It is in the range of 800 ° C to 1200 ° C.
  • the residence time of the synthesis gas in the plasma range of the clearance zone is 3 to 6 seconds, and the optimum time period is 4 to 6 seconds.
  • the temperature of the reaction zone of the gasifier bed is controlled at 600 ° C to 850 ° C.
  • the working gas injected during redox is high-temperature carbon dioxide gas or high-temperature steam; mainly depends on the requirements of the syngas composition in the subsequent process.
  • the gasifier bed material of this example consists of a high temperature resistant bed material having a strong heat storage capacity. After the circulating heating, the biomass fuel and the high-temperature flue gas are countercurrently dried, and then descended to the high temperature bed to be rapidly heated. According to the biofuel having high oxygen content and low fixed carbon content, the biomass fuel is on the hot bed. A strong pyrolysis reaction occurs, and the pyrolysis product is volatile and semi-coke. Since the pyrolysis reaction zone has a high control temperature, and a suitable amount of high-temperature steam/CO 2 is sprayed as an oxidant in the pyrolysis reaction zone, the volatile matter is at a high temperature.
  • the bed material after heating and heating is then sent into the gasifier from the top of the gasifier or the upper part, and the countercurrent heat exchange with the high temperature synthesis gas in the furnace
  • the temperature of the synthesis gas at the outlet of the gasifier is lowered, and the temperature of the bed material continues to rise.
  • the high-temperature bed material finally falls to the bed to provide a large amount of heat energy for the biomass fuel to maintain the temperature of the cracking reaction zone.
  • the bed material after the cooling is continuously sent to the external heat device to continue the heating separation, and the cycle can be based on the fuel. Different characteristics, select the appropriate bed material cycle rate.
  • the synthesis gas containing a small amount of tar vapor and fly ash is carried up to the clearance area of the gasifier, where a high-temperature microwave plasma generator is arranged, and the high-temperature synthesis is carried out under the action of a plasma oxidant rich in activity, high ionization and non-equilibrium.
  • the tar-like vapor material in the gas is rapidly subjected to a cracking reaction to completely remove the tar, and the synthesis gas at the outlet of the gasifier can be directly utilized by cooling and ash removal.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the gasification furnace of this example is basically the same as that of the first example, and the difference from the first example is that: (A) the external heat device 9 is no longer separated from the gasifier body 2, but becomes a whole together with the bottom of the gasifier body 2.
  • the functional zone at the same time, omits the circulating bed outlet 7 provided at the bottom end of the gasifier body 2, and the circulating bed inlet 10 provided at the top end; thus, the external energy source can be directly introduced into the gasifier in the form of heat energy, so that the bed can be eliminated.
  • the material circulation process has simple system, high operability and high efficiency.
  • the external heat device 9 most suitable for this example includes a microwave, a high temperature microwave plasma, a laser, an arc plasma, a solar concentrating light, and a high temperature bed material of a circulating fluidized bed boiler (CFB boiler for short). Wait.
  • Materials such as biomass fuel, garbage, etc. are fed into the gasifier body 2 through the feeding device 1, and rapidly gasified at a high temperature on the bottom bed, and since the bed is a fixed bed, the solid particulate matter is in the bed.
  • the long residence time is long, and the complex and high-efficiency pyrolysis reaction can be carried out completely on the bed.
  • the fuel particles burst and pyrolyze at high temperature, and the volatiles of the main components are precipitated, and the remaining carbon materials are retained, and then the volatiles occur under high temperature and high heat.
  • a series of complex chemical reactions such as cracking, mainly producing carbon monoxide, hydrogen, carbon dioxide, and a small amount of high-temperature synthesis gas such as methane and tar; the remaining ash from the combustion is discharged by the slag port provided by the external heat device;
  • the plasma gas flow can also be tangentially staggered, increasing the turbulence, enhancing the heat transfer and mass transfer in the flow field, and the tar content in the syngas at the synthesis gas outlet at the top of the gasifier can be achieved, even without tar. ;
  • the external heat device 9 at the bottom of the gasifier body 2 is continuously heated to ensure that the reaction temperature of the bed reaction zone is 600 ° C to 1000 ° C, and the temperature range of the clearance reaction zone is controlled within the range of 750 ° C to 1600 ° C.
  • the syngas outlet monitoring unit 6 is used to monitor the temperature and composition of the syngas, and the microwave plasma power and the supply amount of carbon dioxide and steam are adjusted in real time to ensure smooth and economic operation of the process;
  • the control is in the range of 900 ° C to 1200 ° C.
  • the key in the design is to control the bed temperature, adjust the circulating bed material rate, and adjust the microwave plasma power and the supply of carbon dioxide and steam in real time.
  • the control of the above-mentioned key factors can be achieved by the syngas outlet monitoring unit, and the interlock control can be realized, and the fully automated operation can be performed to improve the operational stability.

Abstract

本发明涉及一种外热型微波等离子气化炉及合成气生产方法,主要包括竖直设置的圆柱体气化炉本体、与本体连通且位于气化炉本体中段的给料装置、位于净空区的上层蒸汽喷口、位于床层区的下层二氧化碳/蒸汽喷口、气化炉本体顶部的合成气出口以及出口上设置的监测单元、以及位于净空区且处于上层蒸汽喷口上端的微波等离子发生器;还设置有利用外部热源对气化炉本体进行加热的外热装置,所述外热装置与气化炉本体设为一体或者与气化炉本体分离设置。由于采用外部热源供热,生物质化学能转化为热能的份额减少,甚至不额外增加氧化剂进行氧化反应,使得合成气中有效成份含量高,后续利用工艺高效而经济,且能结合各种形式能源综合利用。

Description

一种外热型微波等离子气化炉及合成气生产方法 技术领域
本发明主要针对采用生物质、固废垃圾为原料的气化工艺领域,具体来说是一种利用外部能源为微波等离子气化来提供热能,达到高效利用生物质燃料、固废垃圾来制取高品质合成气的气化装置及工艺。
背景技术
随着作为主要能源来源的常规优质化石燃料却迅速地减少,人类对低热值燃料利用的关注将日益增加,如生物质燃料、煤泥、城市固废等,尤其是生物质燃料,因为它是植物通过光合作用生成的有机物,它的最初来源是太阳能,同时是可再生的、且来源丰富、广泛。
目前,在生物质能源的多种转化利用方式中,利用生物质来制取合成气是一种最高效、最多元化的利用方式,同时如何高效获取高品质合成气也一直是工业化利用的难题。
常规生物质固定床气化工艺具有结构简单、操作灵活、固体燃料在床层上停留时间长、裂解率高等特点,特别是固定床对燃料只需简单破碎,粒度均匀即可,适合生物质燃料的工业化利用,但是同时也存在着气化温度低,温度分布不均匀,焦油含量大,合成气有效成份含量低、效率低等难题,制约了其在生物质燃料气化工艺中的应用。
技术问题
本发明的目的是提出一种制取高品质合成气外热型生物质气化炉及合成气生产方法,解决上述生物质制取合成气中存在的一系列问题,为生物质燃料制取合成气提供一种经济、高效的工业利用装置和工艺。
技术解决方案
本发明要解决的上述技术问题,其基本流程如下:
一种外热型微波等离子气化炉,主要包括竖直设置的气化炉本体、与本体连通且位于气化炉本体中段的给料装置、位于净空区的上层蒸汽喷口、位于床层区的下层二氧化碳/蒸汽喷口、气化炉本体顶部的合成气出口以及出口上设置的监测单元、以及位于净空区且处于上层蒸汽喷口上端的微波等离子发生器;微波等离子发生器布置1~2层,每层均匀布置3~4个等离子工作气体接入点,等离子气流采用径向或切向喷入气化炉净空区中;其特征在于:还设置有利用外部热源进行加热的外热装置,所述外热装置与气化炉本体设为一体或者与气化炉本体分离设置;外热装置设置用于排出灰渣的渣口。
气化炉本体的底端设置循环床料出口、顶端设置循环床料入口;或者循环床料出口和入口设置在气化炉本体的侧部;循环床料出口和入口之间设置与气化炉本体分离的外热装置,使得循环床料物质能够从出口经过外热装置再经过入口进入气化炉本体进行多次循环;所述外热装置的热源为微波加热、高温微波等离子体、激光、电弧等离子体、太阳能聚光光能中的一种或多种。
所述外热装置设于气化炉本体底部与气化炉合为一体;所述外热装置的热源为微波、高温微波等离子体、激光、电弧等离子体、太阳能聚光光能、及CFB锅炉的高温床料中的一种或多种。
微波等离子发生器采用电极间距大、等离子体活性强、体积范围广的等离子发生器;微波等离子发生器微波功率源主频2.45GHz,单台功率约200kW以内。
采用上述一种气化炉的合成气生产方法,利用外部能源作为生物质气化工艺的热源来实现生物质燃料气化,其特征在于主要包括如下步骤:
1 )生物质燃料、垃圾等物料通过给料装置送入气化炉本体内,在高温床层上快速气化,进行复杂高效的热解反应;主要生成一氧化碳、氢气、二氧化碳,及少量甲烷,焦油等的高温合成气;
2 )高温合成气上行至气化炉净空区,在微波等离子发生器产生的富含活性的、电离度高的、处于非平衡态的高温等离子体氧化剂的作用下迅速进行裂解反应,同时上层喷口喷入蒸汽,控制净空反应区温度1000℃~1200℃;控制控制等离子气体速度保证合成气在净空区等离子体范围内停留时间3~10秒,增加扰流,强化流场内传热与传质;生成合成气成品由气化炉合成气出口引至后续工艺。
3 )床层上剩余部分固定碳残存在床料物质中,通过下层喷口喷入高温CO 2 / 高温蒸汽气体,进行氧化还原反应,消耗部分固定碳;
4 )最后,剩余少部分未完全反应残炭及残渣与床料物质通过循环床料出口一起输送至外热装置中,在外热装置中实现残炭的燃烧、床料加热及床料与渣的分离,分离后的灰渣由外热装置设置的渣口排出;
5 )分离后的床料被输送至循环床料入口并进入气化炉中,与高温烟气逆流换热,继续下行当接触到床层上燃料物质时放热,温度降低至床层反应区温度600℃~1000℃;降温后的床料物质随即再次送入加热装置中,如此循环多次;循环床料出口温度大约在750℃~1200℃范围内;加热后的高温床料温度高于床层反应区的温度;
6 )在上述各步骤进行的同时通过合成气出口监测单元来监测合成气温度、成份等,实时调节微波等离子功率及二氧化碳、蒸汽的供给量,确保工艺平稳经济运行。
上述步骤(2)中,合成气在净空区等离子体范围内停留时间为3~6秒。
上述步骤(2)中,合成气在净空区等离子体范围内停留时间为4~6秒。
上述步骤(3)-(5)中,气化炉床层反应区温度控制在600℃~850℃。
采用上述另一种气化炉的合成气生产方法,利用外部能源作为生物质气化工艺的热源来实现生物质燃料气化,其特征在于主要包括如下步骤:
主要包括的步骤为:
(1)生物质燃料、垃圾等物料通过给料装置送入气化炉本体内,在底部的床层上快速高温气化,且由于床层为类似固定床,固体颗粒物质在床层上停留时间长,能完全在床层上进行复杂高效的热解反应,首先燃料颗粒在高温下爆裂热解,析出占主要成分的挥发份,剩余固定碳物质,然后挥发份在高温高热下发生裂解等一系列复杂化学反应,主要生成一氧化碳、氢气、二氧化碳,及少量甲烷,焦油等的高温合成气;燃烧剩余的灰渣由外热装置设置的渣口排出;
(2)高温合成气上行至气化炉净空区,在微波等离子发生器产生的富含活性的、电离度高的、处于非平衡态的高温等离子体氧化剂的作用下迅速进行裂解反应,同时上层喷口喷入蒸汽,工艺控制净空反应区温度范围为1000℃~1200℃,且控制气流以较慢流速上行,确保合成气在净空区等离子体范围内停留时间为3~10秒左右;或者等离子气流采用切向交错喷入,增加扰流,强化流场内传热与传质,能实现在气化炉顶部合成气出口的合成气中焦油含量极少,甚至没有焦油产生;
(3)气化炉本体底部的外热装置持续加热,保证床层反应区温度600℃~1000℃,净空反应区温度范围控制在750℃~1600℃范围内,
(4)在上述各步骤进行的同时通过合成气出口监测单元来监测合成气温度、成份等,实时调节微波等离子功率及二氧化碳、蒸汽的供给量,确保工艺平稳经济运行;而合成气出口温度控制在900℃~1200℃范围内。
有益效果
本工艺的有益效果是:
1. 由于采用外部热源供热,生物质化学能转化为热能的份额减少,甚至不额外增加氧化剂,使得合成气中有效成份(CO+H 2 )体积含量能达到90%以上。
2. 在气化炉净空区布置微波等离子发生器对合成气中焦油等进行非平衡裂解反应,达到焦油含量极少,甚至无焦油,能达到工业化直接利用水平,经济性好。
3. 对原料粒径无特殊要求,只需简单破碎,无需复杂处理,经济性好。
4. 采用外部热源提供热能,能充分结合各种形式能源,特别是工业废热,能实现能源综合利用。
附图说明
下面结合附图和实施例来说明本发明。
图1为本发明优选实施例的离子气化炉及工艺流程示意图;
图2为图1的A-A视图。
其中:给料装置1;气化炉本体2;微波等离子发生器3;下层二氧化碳/蒸汽喷口4;上层蒸汽喷口5;监测单元6;循环床料出口7;气化炉净空区8;外热装置9;循环床料入口10。
本发明的最佳实施方式
实施例一:
本发明实施的外热型微波等离子气化炉,主要包括竖直设置的圆柱体气化炉本体2、与本体2连通的给料装置1、位于净空区的上层蒸汽喷口5、位于床层区的下层二氧化碳/蒸汽喷口4、位于上层蒸汽喷口5上端的微波等离子发生器3,气化炉本体2顶部的合成气出口以及出口上设置的监测单元6;其特征在于:气化炉本体2的底端设置循环床料出口7、顶端设置循环床料入口10,循环床料出口7和入口10之间设置与气化炉本体2分离的外热装置9,使得循环床料物质能够从出口7经过外热装置9再经过入口10进入气化炉本体2进行多次循环;外热装置9设置渣口用于灰渣的排出。
循环床料出口7和入口10也可以设置在气化炉本体2的侧部。
给料装置1位于气化炉本体2的中段,微波等离子发生器3布置于气化炉净空区8,且应布置1~2层,每层均匀布置3~4个等离子工作气体接入点,等离子气流采用径向或切向喷入气化炉净空区8中;微波等离子发生器3采用电极间距大、等离子体活性强、体积范围广的等离子发生器;微波等离子发生器3微波功率源主频2.45GHz,单台功率约200kW以内。
在外热装置9中,采用微波加热、高温微波等离子体、激光、电弧等离子体、太阳能聚光光能、甚至是某些工业废热或废弃物产生热量等将本工艺中排出的床料物质加热至高温循环,其中,外热装置9能实现固定碳物质的完全氧化燃烧,及床料与生物质渣的分离。
采用上述气化炉的合成气生产方法,主要包括如下步骤:
(1)生物质燃料、垃圾等物料通过给料装置1送入气化炉本体2内,在底部的床层上快速高温气化,且由于床层为类似固定床,固体颗粒物质在床层上停留时间长,能完全在床层上进行复杂高效的热解反应,首先燃料颗粒在高温下爆裂热解,析出占主要成分的挥发份,剩余固定碳物质,然后挥发份在高温高热下发生裂解等一系列复杂化学反应,主要生成一氧化碳、氢气、二氧化碳,及少量甲烷,焦油等的高温合成气;
(2)高温合成气上行至气化炉净空区8,在微波等离子发生器3产生的富含活性的、电离度高的、处于非平衡态的高温等离子体氧化剂的作用下迅速进行裂解反应,同时上层喷口5喷入适量蒸汽,工艺控制净空反应区温度范围为1000℃~1200℃,且控制气流以较慢流速上行,确保合成气在净空区等离子体范围内停留时间为3~10秒左右;且等离子气流亦可采用切向交错喷入,增加扰流,强化流场内传热与传质,能实现在气化炉顶部合成气出口的合成气中焦油含量极少,甚至没有焦油产生;
(3)最后床层上剩余部分固定碳残存在床料物质中,此时依据具体燃料特性,如果固定碳含量高,且床层反应区热量充足(也即外热装置9供给的外热源充足),可通过下层喷口4适当喷入工作气体,进行氧化还原反应,消耗部分固定碳,提高合成气中一氧化碳含量或氢气含量;最后剩余少部分未完全反应残炭及残渣与床料物质一起输送至外热装置9中,在外热装置9中实现残炭的燃烧、床料加热及床料与渣的分离,分离出来的灰渣由外热装置设置的渣口排出;分离后的高温床料物质被输送至循环床料入口10中并进入气化炉本体2中,在净空反应区与合成气逆流换热,使合成气温度升高到净空反应区温度范围1000℃~1200℃;床料物质继续下行当接触到床层上燃料物质时放热,且温度降低至床层反应区温度600℃~1000℃,降温后的床料物质随即再次送入加热装置9中,如此循环不已;循环床料出口7温度大约在750℃~1200℃范围内。
(4)在上述各步骤进行的同时通过合成气出口监测单元6来监测合成气温度、成份等,实时调节微波等离子功率及二氧化碳、蒸汽的供给量,确保工艺平稳经济运行;合成气出口温度控制在800℃~1200℃范围内。
上述步骤中,(2)中,合成气在净空区等离子体范围内停留时间为3~6秒,最佳时间段为4~6秒。
(3)中,气化炉床层反应区温度控制在600℃~850℃。
(3)中,氧化还原时喷入工作气体为高温二氧化碳气体或高温蒸汽;主要取决于后续工艺对合成气成分的要求。
本实例的气化炉床层物料由具有较强蓄热能力的耐高温床料物质组成。循环加热后入炉的生物质燃料与高温烟气逆流干燥后,下行至高温床层上迅速被加热,依据生物燃料具有含氧量高,固定碳含量低的特点,在炽热床层上生物质燃料发生强烈热解反应,热解产物为挥发份及半焦,由于本工艺热解反应区控制温度高,且在热解反应区喷入适量高温蒸汽/CO2作为氧化剂,挥发份物质在高温下进行快速复杂的化学反应,挥发份大量分解为有益气体(CO+H2),并携带少量焦油蒸气上行至气化炉净空区域。剩余未完全反应的含碳残渣随同床料物质一起大量输送至外热装置,在外热装置中利用外部能源加热该床料及含碳残渣混合物,并鼓入氧化剂,充分反应将混合物中残碳物质完全燃尽,并在外热装置中完成床料与渣的分离,加热升温后的床料物质随后从气化炉顶部或上段侧部送入气化炉内,在炉内与高温合成气逆流换热,降低气化炉出口合成气温度,同时床料物质温度继续升高。高温床料物质最后降至床层为入炉生物质燃料提供大量热能,以维持裂解反应区温度,降温后的床料物质连续被送入外热装置中继续加热分离,如此循环,可根据燃料特性的不同,选取合适床料循环倍率。
含有少量焦油蒸气、飞灰的合成气上行至气化炉净空区域,在此处布置有高温微波等离子发生器,在富含活性、处于高电离度、非平衡态的等离子氧化剂作用下,高温合成气中焦油类蒸气物质迅速进行裂解反应,完全去除焦油,在气化炉出口合成气可经降温、除灰后达到直接利用水平。
本发明的实施方式
实施例二:
该实例的气化炉基本与实例一相同,与实例一的区别在于:(A)外热装置9不再与气化炉本体2分离设置,而与气化炉本体2的底部一起成为一个整体功能区,并同时省略气化炉本体2的底端设置的循环床料出口7、顶端设置的循环床料入口10;这样可直接将外部能源以热能形式引入气化炉内,这样可取消床料物质循环流程,系统简单,可操作性强,效率高。
(B)最适宜该实例的外热装置9加热能源形式包括微波、高温微波等离子体、激光、电弧等离子体、太阳能聚光光能、及循环流化床锅炉(简称CFB锅炉)的高温床料等。
另外,在采用本实例的化炉的合成气生产方法,主要包括的步骤为:
(1)生物质燃料、垃圾等物料通过给料装置1送入气化炉本体2内,在底部的床层上快速高温气化,且由于床层为类似固定床,固体颗粒物质在床层上停留时间长,能完全在床层上进行复杂高效的热解反应,首先燃料颗粒在高温下爆裂热解,析出占主要成分的挥发份,剩余固定碳物质,然后挥发份在高温高热下发生裂解等一系列复杂化学反应,主要生成一氧化碳、氢气、二氧化碳,及少量甲烷,焦油等的高温合成气;燃烧剩余的灰渣由外热装置设置的渣口排出;
(2)高温合成气上行至气化炉净空区8,在微波等离子发生器3产生的富含活性的、电离度高的、处于非平衡态的高温等离子体氧化剂的作用下迅速进行裂解反应,同时上层喷口5喷入适量蒸汽,工艺控制净空反应区温度范围为1000℃~1200℃,且控制气流以较慢流速上行,确保合成气在净空区等离子体范围内停留时间为3~10秒左右;且等离子气流亦可采用切向交错喷入,增加扰流,强化流场内传热与传质,能实现在气化炉顶部合成气出口的合成气中焦油含量极少,甚至没有焦油产生;
(3)气化炉本体2底部的外热装置9持续加热,保证床层反应区温度600℃~1000℃,净空反应区温度范围控制在750℃~1600℃范围内,
(4)在上述各步骤进行的同时通过合成气出口监测单元6来监测合成气温度、成份等,实时调节微波等离子功率及二氧化碳、蒸汽的供给量,确保工艺平稳经济运行;而合成气出口温度控制在900℃~1200℃范围内。
为了使本工艺达到最佳工作效果,满足工艺整体性能要求,设计中关键是控制床层温度,调节好循环床料倍率,实时调节微波等离子功率及二氧化碳、蒸汽的供给量。通过对合成气出口监测单元来达到对上述关键因素的控制,也能实现连锁控制,进行全自动化操作,提高运行稳定性。
以上所揭露的仅为本发明的较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等效变化,仍属本发明的保护范围。

Claims (9)

1 、 一种外热型微波等离子气化炉,主要包括竖直设置的气化炉本体、与本体连通且位于气化炉本体中段的给料装置、位于净空区的上层蒸汽喷口、位于床层区的下层二氧化碳/蒸汽喷口、气化炉本体顶部的合成气出口以及出口上设置的监测单元、以及位于净空区且处于上层蒸汽喷口上端的微波等离子发生器;微波等离子发生器布置1~2层,每层均匀布置3~4个等离子工作气体接入点,等离子气流采用径向或切向喷入气化炉净空区中;其特征在于:还设置有利用外部热源进行加热的外热装置,所述外热装置与气化炉本体设为一体或者与气化炉本体分离设置;外热装置设置用于排出灰渣的渣口。
2 、根据权利要求1所述的气化炉,其特征在于气化炉本体的底端设置循环床料出口、顶端设置循环床料入口;或者循环床料出口和入口设置在气化炉本体的侧部;循环床料出口和入口之间设置与气化炉本体分离的外热装置,使得循环床料物质能够从出口经过外热装置再经过入口进入气化炉本体进行多次循环;所述外热装置的热源为微波加热、高温微波等离子体、激光、电弧等离子体、太阳能聚光光能中的一种或多种。
3 、根据权利要求1所述的气化炉,其特征在于所述外热装置设于气化炉本体底部与气化炉合为一体;所述外热装置的热源为微波、高温微波等离子体、激光、电弧等离子体、太阳能聚光光能、及CFB锅炉的高温床料中的一种或多种。
4 、根据权利要求1-3之一所述的气化炉,其特征在于微波等离子发生器采用电极间距大、等离子体活性强、体积范围广的等离子发生器;微波等离子发生器微波功率源主频2.45GHz,单台功率约200kW以内。
5 、采用权利要求1、2、4之一所述气化炉的合成气生产方法,利用外部能源作为生物质气化工艺的热源来实现生物质燃料气化,其特征在于主要包括如下步骤:
1 )生物质燃料、垃圾等物料通过给料装置送入气化炉本体内,在高温床层上快速气化,进行复杂高效的热解反应;主要生成一氧化碳、氢气、二氧化碳,及少量甲烷,焦油等的高温合成气;
2 )高温合成气上行至气化炉净空区,在微波等离子发生器产生的富含活性的、电离度高的、处于非平衡态的高温等离子体氧化剂的作用下迅速进行裂解反应,同时上层喷口喷入蒸汽,控制净空反应区温度1000℃~1200℃;控制控制等离子气体速度保证合成气在净空区等离子体范围内停留时间3~10秒,增加扰流,强化流场内传热与传质;生成合成气成品由气化炉合成气出口引至后续工艺;
3 )床层上剩余部分固定碳残存在床料物质中,通过下层喷口喷入高温CO 2 / 高温蒸汽气体,进行氧化还原反应,消耗部分固定碳;
4 )最后,剩余少部分未完全反应残炭及残渣与床料物质通过循环床料出口一起输送至外热装置中,在外热装置中实现残炭的燃烧、床料加热及床料与渣的分离,分离出来的灰渣由外热装置设置的渣口排出;
5 )分离后的床料被输送至循环床料入口并进入气化炉中,与高温烟气逆流换热,继续下行当接触到床层上燃料物质时放热,温度降低至床层反应区温度600℃~1000℃;降温后的床料物质随即再次送入加热装置中,如此循环多次;循环床料出口温度大约在750℃~1200℃范围内;加热后的高温床料温度高于床层反应区的温度;
6 )在上述各步骤进行的同时通过合成气出口监测单元来监测合成气温度、成份等,实时调节微波等离子功率及二氧化碳、蒸汽的供给量,确保工艺平稳经济运行。
6 、根据权利要求5所述的合成气生产方法,其特征在于上述步骤(2)中,合成气在净空区等离子体范围内停留时间为3~6秒。
7 、根据权利要求6所述的合成气生产方法,其特征在于上述步骤(2)中,合成气在净空区等离子体范围内停留时间为4~6秒。
8 、根据权利要求5-7之一所述的合成气生产方法,其特征在于上述步骤(3)-(5)中,气化炉床层反应区温度控制在600℃~850℃。
9 、采用权利要求1、3、4之一所述气化炉的合成气生产方法,利用外部能源作为生物质气化工艺的热源来实现生物质燃料气化,其特征在于主要包括如下步骤:
主要包括的步骤为:
(1)生物质燃料、垃圾等物料通过给料装置送入气化炉本体内,在底部的床层上快速高温气化,且由于床层为类似固定床,固体颗粒物质在床层上停留时间长,能完全在床层上进行复杂高效的热解反应,首先燃料颗粒在高温下爆裂热解,析出占主要成分的挥发份,剩余固定碳物质,然后挥发份在高温高热下发生裂解等一系列复杂化学反应,主要生成一氧化碳、氢气、二氧化碳,及少量甲烷,焦油等的高温合成气;燃烧剩余的灰渣由外热装置设置的渣口排出;
(2)高温合成气上行至气化炉净空区,在微波等离子发生器产生的富含活性的、电离度高的、处于非平衡态的高温等离子体氧化剂的作用下迅速进行裂解反应,同时上层喷口喷入蒸汽,工艺控制净空反应区温度范围为1000℃~1200℃,且控制气流以较慢流速上行,确保合成气在净空区等离子体范围内停留时间为3~10秒左右;或者等离子气流采用切向交错喷入,增加扰流,强化流场内传热与传质,能实现在气化炉顶部合成气出口的合成气中焦油含量极少,甚至没有焦油产生;
(3)气化炉本体底部的外热装置持续加热,保证床层反应区温度600℃~1000℃,净空反应区温度范围控制在750℃~1600℃范围内;
(4)在上述各步骤进行的同时通过合成气出口监测单元来监测合成气温度、成份等,实时调节微波等离子功率及二氧化碳、蒸汽的供给量,确保工艺平稳经济运行;而合成气出口温度控制在900℃~1200℃范围内。
PCT/CN2012/083566 2011-12-29 2012-10-26 一种外热型微波等离子气化炉及合成气生产方法 WO2013097533A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
RU2014131270/05A RU2588212C2 (ru) 2011-12-29 2012-10-26 Микроволновой плазменный газификатор с внешним нагревом и способ получения синтез-газа
EP12862129.9A EP2799523B1 (en) 2011-12-29 2012-10-26 Externally heated microwave plasma gasifier and synthesis gas production method
IN1474MUN2014 IN2014MN01474A (zh) 2011-12-29 2012-10-26
KR1020147020550A KR101625140B1 (ko) 2011-12-29 2012-10-26 외적으로 가열된 극초단파 플라즈마 가스화기 및 합성가스 제조 방법
CA2861813A CA2861813A1 (en) 2011-12-29 2012-10-26 Externally heated microwave plasma gasifier and synthesis gas production method
SG11201403663WA SG11201403663WA (en) 2011-12-29 2012-10-26 Externally heated microwave plasma gasifier and synthesis gas production method
DK12862129.9T DK2799523T3 (en) 2011-12-29 2012-10-26 EXTERNAL HEATED MICROWAVELY PLASMA GASATING DEVICE AND PROCEDURE FOR SYNTHESE GAS PRODUCTION
MX2014007866A MX2014007866A (es) 2011-12-29 2012-10-26 Gasificador de plasma de microondas, calentado externamente, y metodo para producir gas de sintesis.
BR112014016143A BR112014016143B1 (pt) 2011-12-29 2012-10-26 gaseificador de plasma de micro-ondas aquecido externamente e método de produção de gás de síntese
AP2014007829A AP2014007829A0 (en) 2011-12-29 2012-10-26 Externally heated microwave plasma gasifier and synthesis gas production method
AU2012362084A AU2012362084B2 (en) 2011-12-29 2012-10-26 Externally heated microwave plasma gasifier and synthesis gas production method
JP2014549317A JP6238907B2 (ja) 2011-12-29 2012-10-26 外部加熱型マイクロ波プラズマガス化炉及び合成ガス製造方法
US14/315,304 US10119076B2 (en) 2011-12-29 2014-06-25 Gasifier and method of using the same for gasification of biomass and solid waste
ZA2014/05495A ZA201405495B (en) 2011-12-29 2014-07-25 Externally heated microwave plasma gasifier and synthesis gas production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011104494897A CN102530859B (zh) 2011-12-29 2011-12-29 一种外热型微波等离子气化炉及合成气生产方法
CN201110449489.7 2011-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/315,304 Continuation-In-Part US10119076B2 (en) 2011-12-29 2014-06-25 Gasifier and method of using the same for gasification of biomass and solid waste

Publications (1)

Publication Number Publication Date
WO2013097533A1 true WO2013097533A1 (zh) 2013-07-04

Family

ID=46339090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083566 WO2013097533A1 (zh) 2011-12-29 2012-10-26 一种外热型微波等离子气化炉及合成气生产方法

Country Status (16)

Country Link
US (1) US10119076B2 (zh)
EP (1) EP2799523B1 (zh)
JP (1) JP6238907B2 (zh)
KR (1) KR101625140B1 (zh)
CN (1) CN102530859B (zh)
AP (1) AP2014007829A0 (zh)
AU (1) AU2012362084B2 (zh)
BR (1) BR112014016143B1 (zh)
CA (1) CA2861813A1 (zh)
DK (1) DK2799523T3 (zh)
IN (1) IN2014MN01474A (zh)
MX (1) MX2014007866A (zh)
MY (1) MY171598A (zh)
SG (1) SG11201403663WA (zh)
WO (1) WO2013097533A1 (zh)
ZA (1) ZA201405495B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444188A (zh) * 2014-08-29 2016-03-30 南京三乐微波技术发展有限公司 一种医疗垃圾微波处理方法及处理设备

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102530859B (zh) * 2011-12-29 2013-11-06 武汉凯迪工程技术研究总院有限公司 一种外热型微波等离子气化炉及合成气生产方法
CN103205279B (zh) * 2013-04-24 2015-07-15 中山市赛科环保科技有限公司 一种废轮胎固定床气化炉及气化方法
CN103589459B (zh) * 2013-11-20 2015-01-21 北京环宇冠川等离子技术有限公司 采用等离子体炬加热技术的煤气化方法及装置
CN103666580B (zh) * 2013-11-29 2015-07-22 武汉凯迪工程技术研究总院有限公司 一种耦合式生物质加压热解工艺及系统
KR101594350B1 (ko) * 2015-06-30 2016-02-16 주식회사 윈테크에너지 스팀 플라즈마를 이용한 수소 제조장치 및 수소 제조방법
CN105419869A (zh) * 2015-11-16 2016-03-23 昆明理工大学 一种利用微波等离子体火炬处理紫茎泽兰的方法
CN108463540B (zh) * 2016-01-15 2021-02-02 洋马动力科技有限公司 气化炉以及气化炉的运转方法
CN105861006B (zh) * 2016-06-17 2019-12-03 东阳市琰安建筑工程有限公司 一种基于高电压电解式生物质加压热解工艺
CN107674709A (zh) * 2017-10-31 2018-02-09 天津渤化永利化工股份有限公司 碎煤气化采用部分二氧化碳作为气化剂的装置及处理工艺
CN107824602B (zh) * 2017-11-21 2023-10-31 清华大学 一种生活垃圾微波等离子气化和回收一体化系统
KR102251314B1 (ko) * 2018-03-30 2021-05-12 한국화학연구원 가역적 산화-환원 변환제를 사용하여 이산화탄소 및 물로부터 일산화탄소와 수소를 생산하는 시스템 및 그 방법
CN108834296B (zh) * 2018-06-27 2020-07-10 安徽航天环境工程有限公司 一种微波等离子装置
CN113401869B (zh) * 2021-08-03 2023-07-25 辽宁科技大学 一种处理污泥生物质固废的双塔板化学链制氢装置及方法
CN115287098B (zh) * 2022-08-30 2023-07-07 昆明理工大学 一种等离子体气化固体废物处理装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906326A (zh) * 2010-07-20 2010-12-08 武汉凯迪控股投资有限公司 生物质双炉连体裂解气化工艺及其设备
CN201770675U (zh) * 2010-07-20 2011-03-23 武汉凯迪控股投资有限公司 生物质双炉连体裂解气化设备
GB2480752A (en) * 2010-05-28 2011-11-30 Gen Electric Sensing and control for plasma-assisted waste gasification
CN102260537A (zh) * 2011-06-10 2011-11-30 杨清萍 一种等离子热解及富氧助燃物料制取可燃气的装置
CN102530859A (zh) * 2011-12-29 2012-07-04 武汉凯迪工程技术研究总院有限公司 一种外热型微波等离子气化炉及合成气生产方法
CN102559273A (zh) * 2011-12-29 2012-07-11 武汉凯迪工程技术研究总院有限公司 一种微波等离子生物质气化固定床气化炉及工艺
CN202465607U (zh) * 2011-12-29 2012-10-03 武汉凯迪工程技术研究总院有限公司 一种外热型微波等离子气化炉
CN202465606U (zh) * 2011-12-29 2012-10-03 武汉凯迪工程技术研究总院有限公司 一种微波等离子生物质气化固定床气化炉

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483002A (en) * 1977-12-15 1979-07-02 Ishikawajima Harima Heavy Ind Co Ltd Device for thermal decomposition of organic solid waste
FR2555392B1 (fr) * 1983-11-17 1986-08-22 Air Liquide Procede de traitement thermique, notamment de coupage, par un jet de plasma
JPS63146400A (ja) * 1986-12-08 1988-06-18 バブコツク日立株式会社 プラズマト−チ
JPH08236293A (ja) * 1994-10-26 1996-09-13 Matsushita Electric Ind Co Ltd マイクロ波プラズマトーチおよびプラズマ発生方法
US6018471A (en) * 1995-02-02 2000-01-25 Integrated Environmental Technologies Methods and apparatus for treating waste
US5900224A (en) * 1996-04-23 1999-05-04 Ebara Corporation Method for treating wastes by gasification
DE19814812C2 (de) * 1998-04-02 2000-05-11 Mut Mikrowellen Umwelt Technol Plasmabrenner mit einem Mikrowellensender
NO314691B1 (no) * 2000-05-05 2003-05-05 Statoil Asa I & K Ir Pat Fremgangsmåte og reaktor for fremstilling av hydrogen og syntesegass
US7622693B2 (en) * 2001-07-16 2009-11-24 Foret Plasma Labs, Llc Plasma whirl reactor apparatus and methods of use
JP2003147373A (ja) * 2001-11-13 2003-05-21 Eco Technos:Kk プラズマによる有機物のガス化方法
EP1896553A4 (en) * 2005-06-03 2010-09-01 Plascoenergy Ip Holdings Slb SYSTEM FOR CONVERTING CARBON FEEDSTOCKS TO A GAS OF A SPECIFIC COMPOSITION
KR20080028409A (ko) * 2005-06-03 2008-03-31 플라스코 에너지 그룹 인코포레이티드 석탄을 특정 조성의 가스로 변환하기 위한 시스템
NZ573217A (en) * 2006-05-05 2011-11-25 Plascoenergy Ip Holdings S L Bilbao Schaffhausen Branch A facility for conversion of carbonaceous feedstock into a reformulated syngas containing CO and H2
EP2043951A4 (en) * 2006-05-05 2010-04-14 Plascoenergy Ip Holdings Slb GAS REFORMULATION SYSTEM WITH PLASMA BURST HEAT
MY156047A (en) * 2006-05-05 2015-12-31 Plascoenergy Ip Holdings S L A control system for the conversion of a carbonaceous feedstock into gas
AR066535A1 (es) * 2007-05-11 2009-08-26 Plasco Energy Group Inc Un sistema de reformulacion de gas inicial en un gas reformulado y procedimiento para dicha reformulacion.
MX2007008317A (es) * 2007-07-06 2009-02-26 Aba Res Sa De Cv Gasificador por microondas.
US9074152B2 (en) * 2007-09-12 2015-07-07 General Electric Company Plasma-assisted waste gasification system
EP2247347A4 (en) * 2008-02-08 2013-08-14 Peat International Inc METHOD AND APPARATUS FOR PROCESSING WASTE
CN101665704B (zh) * 2008-07-25 2013-05-15 许永捷 一种快速、规模化生产生物燃料方法
CN101649215B (zh) * 2009-08-18 2012-11-07 吴启成 油页岩外燃式干馏工艺热载体制取和加热装置
CN201530805U (zh) * 2009-08-24 2010-07-21 武汉凯迪控股投资有限公司 套筒式等离子气化炉
CN101823073B (zh) * 2010-03-13 2012-01-04 周开根 生活垃圾气化-液化处置的方法、系统及设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2480752A (en) * 2010-05-28 2011-11-30 Gen Electric Sensing and control for plasma-assisted waste gasification
CN101906326A (zh) * 2010-07-20 2010-12-08 武汉凯迪控股投资有限公司 生物质双炉连体裂解气化工艺及其设备
CN201770675U (zh) * 2010-07-20 2011-03-23 武汉凯迪控股投资有限公司 生物质双炉连体裂解气化设备
CN102260537A (zh) * 2011-06-10 2011-11-30 杨清萍 一种等离子热解及富氧助燃物料制取可燃气的装置
CN102530859A (zh) * 2011-12-29 2012-07-04 武汉凯迪工程技术研究总院有限公司 一种外热型微波等离子气化炉及合成气生产方法
CN102559273A (zh) * 2011-12-29 2012-07-11 武汉凯迪工程技术研究总院有限公司 一种微波等离子生物质气化固定床气化炉及工艺
CN202465607U (zh) * 2011-12-29 2012-10-03 武汉凯迪工程技术研究总院有限公司 一种外热型微波等离子气化炉
CN202465606U (zh) * 2011-12-29 2012-10-03 武汉凯迪工程技术研究总院有限公司 一种微波等离子生物质气化固定床气化炉

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2799523A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444188A (zh) * 2014-08-29 2016-03-30 南京三乐微波技术发展有限公司 一种医疗垃圾微波处理方法及处理设备
CN105444188B (zh) * 2014-08-29 2017-10-13 南京三乐微波技术发展有限公司 一种医疗垃圾微波处理方法及处理设备

Also Published As

Publication number Publication date
AU2012362084B2 (en) 2016-06-23
ZA201405495B (en) 2015-11-25
MX2014007866A (es) 2015-05-15
RU2014131270A (ru) 2016-02-20
IN2014MN01474A (zh) 2015-04-24
EP2799523B1 (en) 2018-12-12
CN102530859B (zh) 2013-11-06
US20140305784A1 (en) 2014-10-16
US10119076B2 (en) 2018-11-06
CA2861813A1 (en) 2013-07-04
EP2799523A1 (en) 2014-11-05
SG11201403663WA (en) 2014-10-30
AP2014007829A0 (en) 2014-07-31
BR112014016143B1 (pt) 2020-01-21
EP2799523A4 (en) 2015-11-11
JP2015507673A (ja) 2015-03-12
CN102530859A (zh) 2012-07-04
DK2799523T3 (en) 2019-04-01
MY171598A (en) 2019-10-21
BR112014016143A2 (pt) 2017-07-04
KR20140121409A (ko) 2014-10-15
KR101625140B1 (ko) 2016-05-27
JP6238907B2 (ja) 2017-11-29
AU2012362084A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2013097533A1 (zh) 一种外热型微波等离子气化炉及合成气生产方法
WO2013097534A1 (zh) 一种微波等离子生物质气化固定床气化炉及工艺
CN103305285B (zh) 一种生物质三段式气化制取低焦油高热值可燃气的装置及方法
JP5959665B2 (ja) 高温且つ常圧でのバイオマスガス化アイランド法
CN102703131B (zh) 一种用于宽粒径分布燃料的两段气化方法及其气化装置
CN201678647U (zh) 一种分步式生物质气化装置
CN103666580B (zh) 一种耦合式生物质加压热解工艺及系统
CA2501841A1 (en) Carbonization and gasification of biomass and power generation system
CN101638590A (zh) 一种可燃固体废弃物化学链气化制合成气的方法及串行流化床反应器
TW200948951A (en) Process and device for the production of synthesis gas from biomass
JP2015507673A5 (zh)
CN105542806A (zh) 一种生物质连续炭化生产清洁燃气和生物质炭的装置及方法
CN108707478A (zh) 多级循环流化床固体燃料制取富氢合成气的装置及方法
WO2012129814A1 (zh) 一种有机物热解制取活性炭方法
CN211227042U (zh) 一种用于生物质催化制氢发电的装置
CN108774548A (zh) 一种高温空气水蒸气气化系统及制取高品质合成气的方法
CN109294625A (zh) 流态化气化的预氧化反应器
CN107858177A (zh) 一种煤快速热解及气化的一体化系统及方法
CN208266125U (zh) 一种煤快速热解及气化的一体化系统
CN209210727U (zh) 一种高温空气水蒸气气化系统
CN202465607U (zh) 一种外热型微波等离子气化炉
CN113150832A (zh) 一种自热三段式生物质低焦油炭气联产调控装置
CN203582820U (zh) 一种耦合式生物质加压热解系统
CN115109606B (zh) 一种生物质废弃物制取纯氢及多联产耦合系统
CN114736700B (zh) 热解系统和热解方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2861813

Country of ref document: CA

Ref document number: 2014549317

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/007866

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147020550

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012862129

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014131270

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014016143

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2012362084

Country of ref document: AU

Date of ref document: 20121026

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112014016143

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140627