WO2022255640A1 - 바이오 드라잉과 반탄화를 이용한 에너지화 시스템 - Google Patents

바이오 드라잉과 반탄화를 이용한 에너지화 시스템 Download PDF

Info

Publication number
WO2022255640A1
WO2022255640A1 PCT/KR2022/005729 KR2022005729W WO2022255640A1 WO 2022255640 A1 WO2022255640 A1 WO 2022255640A1 KR 2022005729 W KR2022005729 W KR 2022005729W WO 2022255640 A1 WO2022255640 A1 WO 2022255640A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
torrefaction
bio
drying
air
Prior art date
Application number
PCT/KR2022/005729
Other languages
English (en)
French (fr)
Inventor
성호진
김동주
Original Assignee
고등기술연구원연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고등기술연구원연구조합 filed Critical 고등기술연구원연구조합
Publication of WO2022255640A1 publication Critical patent/WO2022255640A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B33/00Discharging devices; Coke guides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/32Other processes in ovens with mechanical conveying means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • C10B49/04Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B5/00Coke ovens with horizontal chambers
    • C10B5/10Coke ovens with horizontal chambers with heat-exchange devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B51/00Destructive distillation of solid carbonaceous materials by combined direct and indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • C10B57/10Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to an energization system to which bio-drying technology and torrefaction technology are applied. It relates to an energy system using bio-drying and torrefaction of a process configuration.
  • biomass increases energy costs for drying due to its low energy, mass density and high moisture, and is difficult to store for a long time due to its hydrophilic nature, and generates severe smoke and large amounts of pollutants during conventional thermal treatment. Therefore, its use as an energy source is limited.
  • Torrefaction significantly improves biomass properties such as energy density, hydrophobicity, combustibility, reactivity, millability, combustion and gasification properties.
  • Biomass bantanization technology supplies high-temperature combustion gas or torrefaction gas into the torrefaction furnace according to the heat source supply method required for the reaction, and the direct heating method and heat exchange in which the high-temperature gas and biomass come into direct contact without going through a heat exchange facility It can be divided into an indirect heating method in which biomass is indirectly heat-treated after passing high-temperature gas through the facility.
  • torrefaction technology of an indirect heat exchange method capable of increasing the yield of torrefied fuel has become an issue.
  • a high-temperature zone is partially formed inside the torrefaction furnace, and a large reaction temperature gradient is sometimes formed, and the yield of the torrefaction product is reduced.
  • organic components are decomposed into carbon dioxide (CO 2 ), water (H 2 O), ammonia (NH 3 ), etc. by the metabolic action of aerobic microorganisms using oxygen (O 2 ) in the air. heat) is generated, and the drying process is performed by evaporating moisture by the generated metabolic heat.
  • CO 2 carbon dioxide
  • H 2 O water
  • NH 3 ammonia
  • O 2 oxygen
  • the drying process is performed by evaporating moisture by the generated metabolic heat.
  • an excessive amount of air is continuously passed through to decompose organic components of the material to be dried, and a large amount of exhaust gas is discharged.
  • the exhaust gas contains a small amount of pollutants such as ammonia, which is an odorous substance, and nitrogen and oxygen components, so a treatment facility for removing the pollutants is required.
  • pollutants such as ammonia
  • nitrogen and oxygen components so a treatment facility for removing the pollutants is required.
  • a method of treating odorous substances by reacting with microorganisms is widely used, but the above method has the disadvantage of complicated processes and high operating requirements. have.
  • Patent Document 1 is a first dryer for primary drying of the sludge mixture, a second dryer for producing a dry mixture by heating and drying the mixture dried in the first dryer, and a solid body by pressurizing and molding the dried mixture in the second dryer Disclosed is a sludge fueling system comprising a shaped body to produce. Patent Document 1 discloses a system that connects the bio-drying technology and the secondary drying technology of the indirect heating method, but efficiently removes odorous substances generated in the bio-drying process and effectively removes waste heat generated in the torrefaction process A description of how to recover and use it has not been disclosed.
  • the present invention is to solve the above problems, and an object of the present invention is to provide a simple and compact bio-drying and torrefaction energization system in which the bio-drying process and the torrefaction process are combined.
  • a system for generating energy using bio-drying and torrefaction that can be processed inside the system without separately building a facility to process a large amount of exhaust gas with high oxygen concentration and low pollutant concentration generated in the bio-drying process. is intended to provide
  • the present invention is a bio-drying unit 100 for drying raw materials; A torrefaction unit 200 for torrefying the raw material dried in the bio-drying unit 100; Combustion unit 400 for producing high-temperature hot air for indirectly heating the torrefaction unit 200; and a control unit 700 controlling the operation of the bio-drying unit 100, the torrefaction unit 200, and the combustion unit 400, and the exhaust gas discharged from the bio-drying unit 100 is Provided is an energization system using bio-drying and torrefaction that burns in the combustion unit 400 and treats odorous substances contained in the exhaust gas.
  • the combustion unit 400 may use the torrefaction gas produced in the torrefaction unit 200 as fuel.
  • the exhaust gas produced in the bio-drying unit 100 may be supplied to the combustion unit 400 for combustion.
  • the present invention includes a heat exchanger, and in the heat exchanger, air preheated through heat exchange with the high-temperature product produced in the torrefaction unit 200 is supplied to the bio-drying unit 100 Using bio-drying and torrefaction An energization system can be provided.
  • the heat exchanger is a torrefied fuel heat exchanger 310, and the air is preheated by heat exchange between the high-temperature torrefied fuel produced in the torrefaction unit 200 and the torrefied fuel heat exchanger 310, and then the bio It may be supplied to the drying unit 100 .
  • the hot air discharged after heating the torrefaction unit 200 may be supplied to the heat exchanger 320 for preheating the air supplied to the combustion unit 400, thereby preheating the air.
  • the exhaust gas discharged from the bio-drying unit 100 may be supplied to the heat exchanger 320 and mixed with the introduced air to be preheated.
  • the present invention can also be provided with possible combinations that can combine the means for solving the above problems.
  • the present invention can improve the overall process efficiency by providing an energy system using bio-drying and torrefaction of a compact configuration in which the bio-drying process and the torrefaction process are combined.
  • FIG. 1 is a schematic diagram of an energy generation system using bio-drying and torrefaction according to the present invention.
  • Figure 2 is a schematic diagram of the material flow in the energization system using bio-drying and torrefaction according to the present invention.
  • FIG. 3 is a schematic diagram of a torrefaction unit according to the present invention.
  • FIG. 1 is a schematic diagram of an energization system using bio-drying and torrefaction according to the present invention
  • FIG. 2 is a schematic diagram of a material flow in an energization system using bio-drying and torrefaction according to the present invention
  • FIG. 3 is a schematic diagram of the present invention It is an overview of the torrefaction section according to.
  • a bio-drying unit 100 As an energy system using bio-drying and torrefaction, a bio-drying unit 100, a torrefaction unit 200, a torrefied fuel heat exchange unit 310, a combustion unit 400, and a bio-drying exhaust gas gas-liquid separator ( 500) may be included.
  • bio-drying unit 100 First, the bio-drying unit 100 will be described in detail.
  • a raw material supply unit may be located at the front end of the bio-drying unit 100, and may be a screw feeder type, and the raw material supply unit can stably supply raw materials into the bio-drying unit 100. It is not particularly limited.
  • the bio-drying unit 100 includes a reactor body (not shown) capable of accommodating raw materials containing moisture, an air supply unit capable of supplying air from one side of the reactor body, and bio An exhaust gas discharge unit for discharging the drying exhaust gas to the outside from the reactor body, a control unit for adjusting the air supply amount and / or exhaust gas discharge amount, and temperature and gas concentration data applied in the control process of the control unit.
  • Can provide It may include a temperature sensor and a gas analyzer.
  • air preheated in the torrefied fuel heat exchanger 310 may be used as the air supply. By using preheated air, it is advantageous to evaporate moisture in the input material and improve the overall bio-drying efficiency.
  • the material to be dried can be dried to a moisture content of about 35%.
  • the dry raw material F1 dried in the bio-drying unit 100 is supplied to the torrefaction unit 200 to undergo a torrefaction reaction.
  • the dry raw material F1 undergoes a torrefaction reaction in the torrefaction unit 200 to produce solid torrefied fuel and gaseous torrefied gas.
  • the composition of the torrefaction gas (TG) is different depending on the properties of the input dry raw material (F1), but may generally include components such as H 2 , CO, CH 4 , C 2+ , CO 2 , O 2 .
  • the torrefaction unit 200 may mainly include a torrefaction unit 280 , an internal heating unit 210 , an external heating unit 220 and a driving unit 250 .
  • the torrefaction unit 280 has a cylindrical shape, can be continuously rotated by the drive of the driving unit 250, and heat loss can be prevented by providing an insulating material on the inner wall surface of the cylinder.
  • the torrefaction unit 280 has a cylindrical shape and is a main reaction zone in which raw materials are injected to proceed with the torrefaction reaction.
  • the torrefaction unit 280 may be positioned horizontally, and in detail, a front end connected to a raw material supply unit (not shown) located at the front end may be positioned in an inclined state relatively higher than the rear end.
  • a plurality of rib units (not shown) may be positioned on the inner wall surface of the torrefaction unit 280 .
  • the rib unit may be spirally positioned on the inner wall surface of the torrefaction unit 280 in the form of a long plate having a predetermined width, formed in the shape of a specimen, and spaced apart by a predetermined interval.
  • the rib unit moves the dry raw material F1 obtained through the bio-drying process introduced into the torrefaction unit 280 to a predetermined height of the torrefaction unit 280, and then moves the torrefaction unit 280 to a predetermined height. Rotation causes the dry raw material (F1) to fall downward, and is dispersed inside the torrefaction unit 280 to effectively carry out a torrefaction reaction.
  • the torrefaction gas (TG) generated in the torrefaction unit 280 is discharged through the torrefaction gas discharge unit 201 located at the front end of the torrefaction unit 280, and the generated solid torrefaction fuel is It is discharged through the torrefied fuel discharge unit 202 located at the rear end of the torrefaction unit 280 .
  • the torrefied gas discharge unit 201 and the torrefied fuel discharge unit 202 are coupled while being sealed with the anti-carbonization reaction unit 208, respectively.
  • the torrefaction unit 280 includes an internal heating unit 210 and an external heating unit 220 for heating the inside.
  • the internal heating unit 210 may include a plurality of pipes disposed in parallel with the torrefaction unit 280 .
  • the internal heating unit 210 horizontally penetrates the inside of the torrefaction unit 280, and has a front end (not shown) located outside the front and rear ends of the torrefaction unit 280 and It may include a rear end (not shown).
  • a hot air discharge unit 212 is located at the front end of the internal heating unit 210 adjacent to the raw material supply unit located at the front end of the torrefaction unit 280, and facing the front end of the internal heating unit 210.
  • a hot air supply unit 211 may be located at the rear end.
  • the high-temperature hot air FG1 supplied from the combustion unit 400, which will be described later, is supplied to the hot air supply unit 211 and then flows through the pipes of the internal heating unit 210.
  • the anti-carbonization reaction unit 280 has an anti-carbonization gas discharge unit 201 located at the front end, and a solid anti-carbonization fuel discharge unit 202 located at the rear end of the torrefaction unit 280 .
  • the bantan gas discharge unit 201 has a structure that is hermetically coupled to the front end of the torrefaction unit 280, and may be located at the rear end of the hot air discharge unit 212.
  • a front end connection unit may be positioned between the torrefaction gas discharge unit 201 and the hot air discharge unit 212, and the internal heating unit 210 extending to the outside of the front end of the torrefaction unit 280 is the front end connection unit. can penetrate the inside of In addition, the front end connection unit is coupled while being sealed with the hot air discharge unit 212 and the torrefaction gas discharge unit 201.
  • a rear end connection unit may be located between the torrefaction fuel discharge unit 202 and the hot air supply unit 211, and the internal heating unit 210 extending to the outside of the rear end of the torrefaction unit 280 controls the inside of the rear connection unit. can penetrate
  • the rear connection part is hermetically coupled to the hot air supply part 211 and the torrefied fuel discharge part 202.
  • the hot air transport pipes constituting the internal heating unit 210 are arranged horizontally while being spaced apart by a predetermined distance inside the torrefaction unit 280, and a control valve may be disposed in each pipe, and the control valve The degree of opening may be controlled by the controller 700 .
  • the internal heating unit 210 may include a first pipe 213 disposed at the center and a second pipe 214 radially disposed around the first pipe 213 .
  • the outer wall surface of the first pipe 213 includes a vane unit 260 extending in an external extension direction.
  • the vane unit 260 is made of a material having excellent thermal conductivity, and may be spirally coupled to the outer wall surface of the first pipe 213 in the form of a long plate having a predetermined thickness.
  • the thin vane unit 260 having excellent thermal conductivity and extending outwardly is advantageous in rapidly transferring the energy of the hot air inside the first pipe 213 to the inside of the torrefaction unit 280, and uniformizing the internal temperature.
  • the first pipe 213 is rotatable by a separately provided driving unit and rotates in the opposite direction to the torrefaction unit 280 .
  • the vane unit 260 may move the dry raw material (F1) inside the torrefaction unit 280 to the rear end, and the solid raw materials that are accumulated in some locations at the bottom of the torrefaction unit 280 and move slowly It can be dispersed and moved to the rear end.
  • the vane unit 260 may have a concave shape in the rotational direction of the first pipe 213 . This is advantageous in stably moving the internal material of the torrefaction unit 280 to the rear end of the torrefaction unit 280 .
  • support plates 231 and 232 supporting pipes constituting the internal heating unit 210 may be included.
  • the support plate (not shown) may be a circular plate in which a plurality of through holes (not shown) are radially positioned, and pipes constituting the internal heating unit 210 may pass through the through holes.
  • the support plate penetrates the pipes constituting the internal heating unit 210 to prevent deformation such as bending of the pipes inside the torrefaction unit 280 .
  • the support plate may be made of a material having high thermal conductivity and may have a circular plate shape. As described above, by being composed of a material with high thermal conductivity, the heat of the internal heating unit 210 is efficiently transferred to the inside of the torrefaction unit 280 through the support plate, and the temperature inside the torrefaction unit 280 is uniform. Beneficial for intestinal formation.
  • the support plate may include one or more first support plates 231 located outside the torrefaction unit 280 and one or more second support plates 232 located inside the torrefaction unit 280.
  • the first support plate 231 may be located at the torrefaction gas discharge unit 201 or the front end connection portion (not shown) disposed between the torrefaction gas discharge unit 201 and the hot air discharge unit 212, and It may be located at a rear end connection part (not shown) disposed between the torrefied fuel discharge unit 202 or the hot air supply unit 211, and the location is not particularly limited.
  • a plurality of second support plates 232 may be located inside the torrefaction unit 280 and spaced apart by a predetermined distance.
  • An outer periphery of the second support plate 232 and an inner wall surface of the torrefaction unit 280 may be connected by a support 240 .
  • the support 240 is made of a material having excellent thermal conductivity, and one end of the support 240 may be fixedly coupled by a coupling member provided on an inner wall surface of the torrefaction unit 280 .
  • a bearing structure may be positioned at the other end of the support 240 coupled to the inner wall surface of the torrefaction unit 280 and coupled to the outer periphery of the second support plate 232 to enable relative movement.
  • a rail-shaped structure with a concave central portion may be positioned on the outer periphery of the second support plate 232 to be combined with the ball-shaped structure of the support 240 .
  • the support 240 rotates together with the torrefaction unit 280, and the second support plate 232 does not rotate.
  • the internal heating unit 210 is fixed and only the torrefaction unit 280 can be rotated, it is advantageous to operate the torrefaction unit easily and to make the internal heat distribution uniform.
  • the external heating unit 220 After the hot air that has passed through the internal heating unit 210 is discharged through the hot air discharge unit 212, the external heating unit 220 passes through the circulation hot air inlet 221 located in the external heating unit 220. ), and is discharged to the outside through the circulating hot air outlet part 222.
  • the contaminant processing unit 270 may be located inside the torrefaction gas discharge unit 201 .
  • the torrefaction gas generated in the torrefaction unit 280 sequentially passes through the contaminant processing unit 270 and the torrefaction gas discharge unit 201 .
  • the contaminant treatment unit 270 and the torrefaction gas discharge unit 201 are sealed and coupled.
  • the pollutant treatment unit 270 is configured in a module form and has a module frame unit, and the module frame unit has a coupling member and can be coupled with a coupling member formed on an inner wall surface of the torrefaction gas discharge unit, , A sealing member is added so that the torrefied gas generated in the torrefaction unit 280 can flow only into the pollutant processing unit 270.
  • the contaminant processing unit 270 may include a multi-stage catalyst layer for removing trace pollutants in product gas such as volatile substances (VOCs), NH 3 , and H 2 S at a high temperature.
  • VOCs volatile substances
  • NH 3 NH 3
  • H 2 S high temperature
  • the contaminant processing unit 270 has a module type and is configured to be replaced after a predetermined period of operation.
  • the high-temperature torrefaction fuel (F2) having a temperature of about 250 ° C. produced in the torrefaction unit 200 is discharged through the torrefaction fuel discharge unit, and then in the torrefaction fuel heat exchanger 310, the first air supplier Heat is exchanged with the first air (A1-1) supplied from (610).
  • the torrefied fuel (F3) cooled through heat exchange in the torrefied fuel heat exchanger 310 may be supplied to a storage tank (not shown) at a later stage and stored stably.
  • the preheated first air (A1-2) is supplied to the bio-drying unit 100 and used for the bio-drying reaction.
  • the preheating first air (A1-2) is preferably preheated at a temperature of 60°C or less. When the temperature is 60° C. or higher, a problem of inhibiting the bio-drying reaction in the bio-drying unit 100 and lowering the bio-drying efficiency may occur.
  • biomass is decomposed into carbon dioxide (CO 2 ), water (H 2 O), ammonia (NH 3 ), etc. by the metabolic action of aerobic microorganisms using oxygen (O 2 ) in the air.
  • CO 2 carbon dioxide
  • H 2 O water
  • NH 3 ammonia
  • Metabolic heat is generated, and the drying process is performed by evaporating moisture by the generated metabolic heat.
  • the bio-drying unit 100 produces exhaust gas (BG1) during the bio-drying process of the input raw material.
  • the exhaust gas (BG1) includes N 2 in the supplied air, unreacted O 2 , carbon dioxide (CO 2 ) generated in the bio-drying process, water (H 2 O), ammonia (NH 3 ), and Other contaminants may be included, and substances such as VOCs may also be included depending on the nature of the input raw material.
  • the ammonia (NH 3 ), VOCs and other contaminants are regulated substances that can cause odor and are classified as very harmful to health, and treatment to remove the substances must be necessarily performed.
  • the concentration of O 2 in the exhaust gas BG1 may be about 20%.
  • the exhaust gas (BG1) produced in the bio-drying unit 100 is passed through the gas-liquid separator 500 to remove moisture contained in the exhaust gas (BG1).
  • a separate cooling structure may be provided in the gas-liquid separator 500, and it is not particularly limited as long as it can efficiently and easily remove moisture in the exhaust gas BG1.
  • the wastewater separated in the gas-liquid separator 500 is supplied to the downstream wastewater treatment facility and treated.
  • combustion unit 400 Next, the combustion unit 400 will be described in detail.
  • the dry exhaust gas BG2 from which moisture is removed may be supplied to the combustion unit 400 to participate in a combustion reaction of the torrefaction gas TG.
  • O 2 having a concentration of 20% in the dry exhaust gas (BG2) is used as an oxidizing agent, and ammonia (NH 3 ) reacts with O 2 to decompose into NOx and H 2 O to remove odorous substances.
  • NH 3 ammonia
  • the dry exhaust gas (BG2) is mixed with the second air (A2-1) supplied from the second air supply unit (620) to form preheated mixed air (A2-2) preheated in the heat exchanger (320) to form the combustion unit. (400).
  • a portion of the torrefaction gas (TG) produced in the torrefaction unit 200 is supplied to the combustion unit 400 and combusted to generate high-temperature hot air (FG1) at a temperature of about 700°C.
  • the high-temperature hot air (FG1) is supplied to the torrefaction unit 200 again and used as an indirect heat source of the torrefaction unit 200.
  • the high-temperature hot air (FG1) having a temperature of about 700 ° C. heats the inside of the torrefaction section of the torrefaction section 200 while passing through the internal heating section and the external heating section of the torrefaction section 200, thereby heating the torrefaction section.
  • the dry raw material (F1) accommodated therein is torrefied.
  • the medium-temperature hot air (FG2) cooled to a temperature of about 300° C. through the internal heating unit and the external heating unit is supplied to the hot air heat exchanger (320).
  • the medium-temperature hot air (FG2) supplied from the torrefaction unit 200 and the second air (A2-1) supplied from the second air supplier 620 are preheated mixed air (A2) through heat exchange. -2) is discharged and supplied to the combustion unit 400.
  • the medium-temperature hot air (FG2) is cooled through heat exchange, and the low-temperature hot air (FG3) is supplied to a downstream exhaust gas treatment system (not shown).
  • control unit 700 will be described in detail.
  • control unit 700 including the control unit 700, it is possible to control the air supply amount, the flow rate of counter gas (TG), and the like.
  • the control unit 700 is electrically connected to the first air supplier 610 and the second air supplier 620 of the present invention, and can adjust the air supply amount of the first air supplier 610 and the second air supplier 620. have.
  • the preheated first air (A1-2) preheated in the torrefied fuel heat exchanger 310 supplied to the bio-drying unit 100 and the exhaust pipe for discharging the produced exhaust gas (BG1) are respectively temperature sensors (T1) , T2) is arranged to measure the temperature and transmit the measured temperature data to the controller 700.
  • An exhaust gas analyzer 820 is located at the rear end of the gas-liquid separator 500 to analyze the gas composition in the exhaust gas and the concentrations of each composition, and transmits the analyzed gas concentration data to the control unit 700.
  • a control valve 910 may be disposed in a pipe (not shown) supplying the first preheated air (A1-2) to the bio-drying unit 100, and the control valve 910 controls the control unit 700 ) is electrically connected to
  • the control unit 700 analyzes the transmitted gas concentration data and temperature data, calculates the air supply amount to be supplied to the bio-drying unit 100 by applying the data, and controls the first air supplier 610 to obtain the necessary The supply amount of the first air (A1-1) is supplied.
  • the control unit 700 adjusts the degree of opening of the control valve 910 located in the pipe supplying the preheating first air (A1-2) to the bio-drying unit 100, thereby preheating supplied to the bio-drying unit 100
  • the supply amount of the first air (A1-2) can be adjusted according to the operating conditions.
  • a torrefaction gas analyzer 810 is connected to a torrefaction gas pipe (not shown) for transporting the torrefaction gas (TG) at the rear end of the torrefaction unit 200 to analyze the composition of the torrefaction gas and the concentration of each composition.
  • the torrefaction gas pipe may be provided with a temperature sensor T3 to measure the temperature of the torrefaction gas (TG) introduced into the post combustion unit 400 .
  • a temperature sensor (not shown) is placed in a pipe supplying the preheated mixed air (A2-2) preheated in the hot air heat exchanger 320 to the combustion unit 400 to measure the temperature of the mixed air A2-2.
  • Temperature data measured by the temperature sensor is transmitted to the controller 700 .
  • the high-temperature hot air FG1 generated in the combustion unit 400 is supplied to the internal heating unit and the external heating unit of the torrefaction unit 200, and a temperature sensor T4 is disposed to measure the temperature of the high-temperature hot air FG1. and transmits the measured temperature data to the control unit 700.
  • a control valve 920 may be disposed in a torrefaction gas pipe (not shown) that supplies torrefaction gas (TG) to the combustion unit 400, and the control valve 920 and the control unit 700 are electrically Connected.
  • the control unit 700 may adjust the supply amount of the torrefaction gas (TG) supplied to the combustion unit 400 by adjusting the degree of opening of the control valve 920 .
  • control unit 700 high-temperature hot air to be supplied according to the weight and moisture content of the dry raw material (F1) introduced into the torrefaction unit 200 in the present invention, and the physical property conditions of the target torrefaction fuel (F3) Calculate the flow rate and temperature conditions of (FG1).
  • the temperature data of the torrefaction gas (TG) supplied to the combustion unit 400 and the gas analysis data of the torrefaction gas analyzer 810 are applied, torrefaction gas (TG) to be supplied to the combustion unit 400 supply can be calculated.
  • a flow meter capable of measuring the flow rate of the dry exhaust gas BG2 flowing into the hot air heat exchanger 320 is disposed, and transmits the measured flow rate data of the dry exhaust gas BG2 to the control unit 700.
  • a temperature sensor T5 capable of measuring the temperature of the medium-temperature hot air FG2 flowing into the hot air heat exchanger 320 may be disposed.
  • the controller 700 analyzes and calculates the transmitted data to calculate the supply amount of the second air A2-1 and controls the second air supplier 620.
  • control unit 700 control unit
  • T1, T2, T3, T4, T5 Temperature sensor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Drying Of Solid Materials (AREA)
  • Public Health (AREA)

Abstract

본원발명은 반탄화연료의 품질이 안정적이고 오염물질 외부 배출을 줄일 수 바이오 드라잉과 반탄화를 이용한 에너지화 시스템에 관한 것으로, 구체적으로 원료를 건조하는 바이오 드라잉부(100); 상기 바이오 드라잉부(100)에서 건조된 원료를 반탄화 시키는 반탄화부(200); 상기 반탄화부(200)를 간접가열하는 고온열풍을 생산하는 연소부(400); 및 상기 바이오 드라잉부(100), 상기 반탄화부(200) 및 상기 연소부(400)의 운전을 제어하는 제어부(700);를 포함하고, 상기 바이오 드라잉부(100)에서 배출되는 배출가스는 상기 연소부(400)에서 연소되어 상기 배출가스 내 포함되는 악취성 물질을 처리하는 바이오 드라잉과 반탄화를 이용한 에너지화 시스템에 관한 것이다.

Description

바이오 드라잉과 반탄화를 이용한 에너지화 시스템
본원발명은 바이오 드라잉 기술과 반탄화 기술을 적용한 에너지화 시스템에 관한 것으로서, 구체적으로 품질이 우수한 반탄화 고형연료를 생산하면서, 악취성 물질 배출 및 건조에 소요되는 에너지를 저감시킬 수 있는 컴팩트한 공정 구성의 바이오 드라잉과 반탄화를 이용한 에너지화 시스템에 관한 것이다.
세계에서 가장 많은 신재생에너지로서 바이오매스는 낮은 에너지와 질량 밀도, 고수분으로 건조에 에너지 비용이 증대되고, 친수성 성질로서 장기저장이 어려우며, 종래의 열적처리 시에 심한 연기 및 다량의 오염물질 발생으로 에너지원으로서 이용의 한계가 있다.
최근에 200-300℃의 조건에서 바이오매스를 처리하는 반타화에 대한 개발이 고조 되고 있다. 반탄화는 에너지 밀도, 소수성, 가연성, 반응성, 분쇄성, 연소, 가스화 특성 등의 바이오매스 성질을 현저하게 향상한다.
바이오매스 반타화 기술은 반응에 필요한 열원의 공급 방식에 따라 고온의 연소가스 혹은 반탄화 가스를 반탄화로 내에 공급하여 고온의 가스와 바이오매스가 열교환설비를 거치지 않고 직접 접촉하는 직접가열방식과 열교환설비에 고온의 가스를 통과시킨 후 바이오매스를 간접적으로 열처리하는 간접가열방식으로 나눌수 있다.
상기 직접가열방식은 별도의 열교환설비를 거치지 않기 때문에 바이오매스로의 열전달 효율은 높지만, 가열가스 내 산소가 존재할 경우 연소반응에 의한 반탄화물 수율 감소로 반탄화 공정의 효율이 저감되고, NOx, SOx 등과 같은 대기오염물질 발생량이 증가하는 문제점이 있다.
따라서 최근에는 반탄화 연료의 수율을 높일 수 있는 간접열교환방식의 반탄화 기술이 이슈화가 되고 있다. 그러나 바이오매스를 간접적으로 가열하는 구조의 경우는 반탄화로 내부에서 부분적으로 고온부가 형성되고, 반응온도 구배가 크게 형성되는 경우가 있으며 반탄화 제품의 수율이 감소된다.
또한, 간접열교환방식의 반탄화공정에서는 투입되는 원료의 수분함량이 높을 경우, 전체 공정 에너지 효율이 낮고, 생산된 반탄화 연료의 품질이 낮고 안정적이지 않으며, 반탄화 가스 성상이 복잡해지고, COS, VOCs, NH3, H2S 등 오염물질이 발생할 뿐만 아니라 악취가 발생하는 문제점이 있다.
또한, 생산된 고온의 반탄화 연료를 저장하기 위해서는 별도의 냉각 시설이 추가로 구축되어야 함으로, 공정이 복잡해지고 전체 에너지 효율이 낮아지는 문제가 있다.
바이오 드라잉 공정은 유기성분이 공기 중의 산소(O2)를 이용하여 호기성 미생물의 대사 작용에 의해 이산화탄소(CO2), 물(H2O), 암모니아(NH3) 등으로 분해되면서 대사열(Metabolic heat)이 발생하고, 발생된 대사열에 의해 수분이 증발됨으로써 건조 공정이 수행된다. 바이오 드라잉 공정에서는 과량의 공기를 연속적으로 통과시키면서 건조대상 물질의 유기성분을 분해하고, 대량의 배출가스를 배출하게 된다.
상기 배출가스에는 악취성 물질인 암모니아 등 소량의 오염물질과 질소 및 산소성분을 포함하고 있어 상기 오염물질을 제거하기 위한 처리시설이 필요하다. 일반적으로 바이오 드라잉 공정에서 발생하는 악취성 물질을 제거하기 위하여 악취성 물질을 미생물과 반응시켜 처리하는 방법을 많이 이용하고 있으나, 상기와 같은 방법은 공정이 복잡하고, 운전 요구조건이 높은 단점이 있다.
특허문헌 1은 슬러지 혼합물을 1차 건조하는 제1건조기, 상기 제1건조기에서 건조된 혼합물을 가열 건조하여 건조 혼합물을 생산하는 제2건조기 및 상기 제2건조기에서 건조된 혼합물을 가압 성형하여 고형체를 생산하는 성형체를 포함하는 슬러지 연료화 시스템을 개시하였다. 특허문헌 1에서는 바이오 드라잉 기술과 간접 가열방식의 2차건조기술을 연결하는 시스템을 개시하였으나, 바이오 드라잉 공정에서 발생하는 악취성 물질을 효율적으로 제거하고, 반탄화 공정에서 발생하는 폐열을 효과적으로 회수 이용할 수 있는 방법에 대한 기술은 개시되지 않았다.
따라서, 본원발명에서 중요한 문제로 인식하고 바이오 드라잉 공정에서 발생하는 고농도 산소를 포함하는 배출가스를 효율적으로 처리하고, 배출가스 내의 악취성 물질을 시스템 내부에서 처리하며, 반탄화 공정에서 발생하는 폐열을 효율적으로 회수이용하여 전체 에너지 효율을 향상시킬 수 있는 고효율의 바이오 드라잉 및 반탄화를 결합한 컴팩트한 에너지화 시스템에 관한 기술은 아직까지 제시되지 않았다.
(선행문헌)
대한민국 등록특허공보 제10-2168289호 (2020.10.15) ('특허문헌 1')
본원발명은 상기와 같은 문제를 해결하기 위한 것으로서, 바이오 드라잉 공정과 반탄화 공정이 결합된 공정 구성이 간단하고 컴팩트한 바이오 드라잉과 반탄화를 이용한 에너지화 시스템을 제공하는 것을 목적으로 한다.
또한, 바이오 드라잉 공정에서 발생하는 산소 농도가 높고, 오염물질 농도가 낮은 대량의 배출가스를 처리하는 설비를 별도로 구축하지 않고 시스템 내부에서 처리 할 수 있는 바이오 드라잉과 반탄화를 이용한 에너지화 시스템을 제공하는 것을 목적으로 한다.
또한, 반탄화 공정에 생산되는 반탄화 고형연료와 반탄화가스의 폐열을 회수하여 바이오 드라잉 공정과 반탄화 공정에 순환 이용함으로써, 전체공정의 에너지 효율을 향상시킬 수 있는 바이오 드라잉과 반탄화를 이용한 에너지화 시스템을 제공하는 것을 목적으로 한다.
고수분의 원료물질에 대한 건조 및 반탄화를 연속적으로 수행함으로써, 건조된 원료물질의 수분 재흡착을 방지하고, 생산된 반탄화 연료의 품질을 향상킬 수 있는 바이오 드라잉과 반탄화를 이용한 에너지화 시스템을 제공하는 것을 목적으로 한다.
이러한 목적을 달성하기 위해서 본원발명은 원료를 건조하는 바이오 드라잉부(100); 상기 바이오 드라잉부(100)에서 건조된 원료를 반탄화 시키는 반탄화부(200); 상기 반탄화부(200)를 간접가열하는 고온열풍을 생산하는 연소부(400); 및 상기 바이오 드라잉부(100), 상기 반탄화부(200) 및 상기 연소부(400)의 운전을 제어하는 제어부(700);를 포함하고, 상기 바이오 드라잉부(100)에서 배출되는 배출가스는 상기 연소부(400)에서 연소되어 상기 배출가스내 포함되는 악취성 물질을 처리하는 바이오 드라잉과 반탄화를 이용한 에너지화 시스템을 제공한다.
상기 연소부(400)는 상기 반탄화부(200)에서 생산되는 반탄화가스를 연료로 사용할 수 있다.
상기 바이오 드라잉부(100)에서 생산되는 배출가스를 상기 연소부(400)에 공급하여 연소할수 있다.
본원발명은 열교환기를 포함하고, 상기 열교환기서 상기 반탄화부(200)에서 생산되는 고온 생산물과의 열교환을 통하여 예열된 공기가 상기 바이오 드라잉부(100)에 공급되는 바이오 드라잉과 반탄화를 이용한 에너지화 시스템을 제공할 수 있다.
상기 열교환기는 반탄화연료 열교환기(310)이고, 상기 공기는 상기 반탄화부(200)에서 생산되는 고온반탄화연료와 상기 반탄화연료 열교환기(310)에서 열교환을 하여 예열된 후, 상기 바이오 드라잉부(100)에 공급될 수 있다.
상기 반탄화부(200)를 가열한 후 배출되는 열풍은 상기 연소부(400)에 공급되는 공기를 예열하는 열교환기(320)에 공급되어, 공기를 예열할 수 있다.
상기 바이오 드라잉부(100)에서 배출되는 배출가스는 상기 열교환기(320)에 공급되어, 유입되는 공기와 혼합되어 예열될 수 있다.
본원발명은 또한 상기 과제의 해결 수단을 조합할 수 있는 가능한 조합으로도 제공이 가능하다.
이상에서 설명한 바와 같이, 본원발명은 바이오 드라잉 공정과 반탄화 공정이 결합된 컴팩트한 구성의 바이오 드라잉과 반탄화를 이용한 에너지화 시스템을 제공함으로써 전체 공정 효율을 향상 시킬 수 있다.
또한, 바이오 드라잉 공정에서 발생하는 산소 농도가 높고, 오염물질 농도가 낮은 배출가스를 처리하는 설비를 별도로 구축하지 않고, 상기 오염물질을 처리함과 동시에 고농도의 산소를 이용할 수 있으므로, 설비 건설비를 절감하고 운영비를 절감할 수 있는 효과가 있다.
또한, 반탄화 공정에 생산되는 반탄화 고형연료와 반탄화가스의 폐열을 회수하여 바이오 드라잉 공정과 반탄화 공정에 순환 이용함으로써, 전체공정의 에너지 효율을 향상시킬 수 있는 효과가 있다.
또한, 고수분의 원료물질을 건조한 후 바로 반탄화 공정에 공급함으로써 수분의 재흡착을 방지하고, 최종 반탄화 연료의 품질을 향상시켜 전체 공정효율을 향상시킬 수 있는 효과가 있다.
또한, 반탄화 공정에서 발생하는 오염물질은 추가 설비 구축이 필요 없이 설비 자체내에서 처리할 수 있으므로, 추가 설비 건설비 및 운영비를 절감할 수 있는 효과가 있다.
도 1은 본원발명에 따른 바이오 드라잉과 반탄화를 이용한 에너지화 시스템 개요도이다.
도 2는 본원발명에 따른 바이오 드라잉과 반탄화를 이용한 에너지화 시스템에서 물질 흐름 개요도이다.
도 3은 본원발명에 따른 반탄화부 개요도이다.
이하 첨부된 도면을 참조하여 본원발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본원발명을 쉽게 실시할 수 있는 실시예를 상세히 설명한다. 다만, 본원발명의 바람직한 실시예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본원발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 구성요소를 한정하거나 부가하여 구체화하는 설명은, 특별한 제한이 없는 한 모든 발명에 적용될 수 있으며, 특정한 발명에 대한 설명으로 한정되지 않는다.
또한, 본원의 발명의 설명 및 청구범위 전반에 걸쳐서 단수로 표시된 것은 별도로 언급되지 않는 한 복수인 경우도 포함한다.
또한, 본원의 발명의 설명 및 청구범위 전반에 걸쳐서 "또는"은 별도로 언급되지 않는 한 "및"을 포함하는 것이다. 그러므로 "A 또는 B를 포함하는"은 A를 포함하거나, B를 포함하거나, A 및 B를 포함하는 상기 3가지 경우를 모두 의미한다.
도 1은 본원발명에 따른 바이오 드라잉과 반탄화를 이용한 에너지화 시스템 개요도이고, 도 2는 본원발명에 따른 바이오 드라잉과 반탄화를 이용한 에너지화 시스템에서 물질 흐름 개요도이며, 도 3은 본원발명에 따른 반탄화부 개요도이다.
이하, 본원발명을 도면에 따라 상세한 실시예와 같이 설명한다.
바이오 드라잉과 반탄화를 이용한 에너지화 시스템으로서, 바이오 드라잉부(100), 반탄화부(200), 반탄화연료 열교환부(310), 연소부(400) 및 바이오 드라잉 배출가스 기액분리기(500)를 포함할 수 있다.
우선 바이오 드라잉부(100)에 관해서 상세하게 설명한다.
바이오 드라잉부(100)의 전단에는 원료물질 공급부(미도시)가 위치할 수 있고, 스크류 피더 방식일 수 있고, 상기 원료공급부는 원료물질을 바이오 드라잉부(100)의 내부로 안정적으로 공급할 수 있다면 특히 제한되지 않는다.
바이오 드라잉부(100)는 수분함유 원료물질을 수용할 수 있는 반응기 본체(미도시)와 상기 반응기 본체의 일측면에서 공기를 공급할 수 공기공급부, 상기 반응기 본체 내부에서 바이오 드라잉 과정에서 발생하는 바이오 드라잉 배출가스를 상기 반응기 본체로부터 외부로 배출시키는 배출가스 배출부 및 상기 공기 공급량 및/또는 배출가스 배출량을 조절하는 제어부 및 상기 제어부의 제어 과정에서 적용되는 온도 및 가스 농도 데이터를 제공할 수 있는 온도센서 및 가스분석기를 포함할 수 있다. 여기서 상기 공기공급은 후술 반탄화연료 열교환기(310)에서 예열된 공기를 이용할 수 있다. 예열된 공기를 사용함으로써, 투입 원료 내의 수분을 증발 시키는데 유리하고 전체 바이오 드라잉 효율을 향상 시키는 데 유리하다.
본원발명의 바이오 드라잉 공정을 통하여 건조대상 물질은 수분함량 약 35%로 건조될 수 있다.
다음은 반탄화부(200)에 관해서 상세하게 설명한다.
바이오 드라잉부(100)에서 건조된 건조원료(F1)는 반탄화부(200)에 공급되어 반탄화 반응을 한다. 건조원료(F1)는 반탄화부(200)에서 반탄화 반응을 하여 고형 반탄화연료와 기상의 반탄화가스를 생산한다. 여기서 상기 반탄화가스(TG)의 조성은 투입되는 건조원료(F1) 성상에 따라 상이하지만, 대체적으로 H2, CO, CH4, C2+, CO2, O2 등 성분을 포함할 수 있다.
반탄화부(200)는 주로 반탄화반응부(280), 내부가열부(210), 외부가열부(220) 및 구동부(250)를 포함할 수있다. 상기 반탄화반응부(280)는 원통형의 형상으로 구성되고, 구동부(250)의 구동에 의해 연속적으로 회전이 가능하며, 원통형 내벽면에는 단열재를 구비하여 열손실을 방지할 수 있다.
반탄화반응부(280)는 원통형 형상으로 내부에 원료물질이 투입되어 반탄화 반응을 진행시키는 주요 반응 구역이다. 반탄화반응부(280)는 수평으로 위치할 수 있고, 상세하게는 전단에 위치하는 원료공급부(미도시)와 연결되는 전단부가 후단부보다 상대적으로 높은 기울어진 상태로 위치할 수 있다. 여기서 반탄화반응부(280)의 내벽면에는 다수의 리브 유닛(미도시)이 위치할 수 있다. 상기 리브 유닛은 소정의 폭을 가지는 긴 플레이트 형태로 상기 반탄화반응부(280)의 내벽면에 나선형으로 위치할 수 있고, 시편의 형태로 형성되고 소정간격만큼 이격되면서 배치될 수 있다. 상기 리브 유닛은 상기 반탄화반응부내(280)에 투입된 바이오 드라잉 공정을 통하여 얻어진 건조원료(F1)를 반탄화반응부(280)의 소정높이까지 이동시킨 후, 반탄화반응부(280)의 회전에 의해 상기 건조원료(F1)가 아래로 떨어지게 하여, 반탄화반응부(280)의 내부에서 분산되어 효과적으로 반탄화 반응하는데 유리하다.
반탄화반응부(280)에서 생성된 반탄화가스(TG)는 반탄화반응부(280)의 전단에 위치하는 반탄화가스 배출부(201)를 통해 배출되고, 생성된 고형의 반탄화연료는 반탄화반응부(280)의 후단에 위치하는 반탄화연료 배출부(202)를 통해 배출된다. 또한, 반탄화가스 배출부(201)와 반탄화연료 배출부(202)는 각각 상기 반타화반응부(208)와 실링되면서 결합된다.
반탄화반응부(280)는 내부를 가열시키는 내부가열부(210)와 외부가열부(220)를 포함한다.
상기 내부가열부(210)는 상기 반탄화반응부(280)와 평행으로 배치되는 다수개의 배관을 포함할 수 있다. 상기 내부가열부(210)는 상기 반탄화반응부(280)의 내부를 수평으로 관통하고, 상기 반탄화반응부(280)의 전단측 및 후단측의 외부에 위치하는 전단부(미도시)와 후단부(미도시)를 포함할 수 있다.
상기 반탄화반응부(280)의 전단에 위치하는 원료공급부와 인접하는 내부가열부(210)의 전단부에는 열풍 배출부(212)가 위치하고, 상기 내부가열부(210)의 전단부와 대면하는 후단부에는 열풍 공급부(211)가 위치할 수 있다.
후술 연소부(400)에서 공급되는 고온열풍(FG1)은 열풍 공급부(211)에 공급된 후, 상기 내부가열부(210)의 배관들의 내부를 흐른다.
반타화반응부(280)의 전단에는 반타화가스 배출부(201)가 위치하고, 반탄화반응부(280)의 후단에는 고형 반타화연료 배출부(202)가 위치한다. 상기 반타화가스 배출부(201)는 상기 반탄화반응부(280)의 전단과 밀폐 결합되는 구조이고, 상기 열풍 배출부(212)의 후단에 위치할 수 있다.
상기 반탄화가스 배출부(201)와 상기 열풍 배출부(212) 사이에는 전단 연결부가 위치할 수 있고, 반탄화반응부(280)의 전단 외부로 연장된 내부가열부(210)는 상기 전단 연결부의 내부를 관통할 수 있다. 또한, 상기 전단 연결부는 열풍 배출부(212) 및 반탄화가스 배출부(201)와 실링되면서 결합된다.
반탄화연료 배출부(202)와 상기 열풍 공급부(211) 사이에는 후단 연결부가 위치할 수 있고, 반탄화반응부(280) 후단 외부로 연장된 내부가열부(210)는 상기 후단 연결부의 내부를 관통할 수 있다. 상기 후단 연결부는 열풍 공급부(211) 및 반탄화연료 배출부(202)와 밀폐 결합된다.
내부가열부(210)를 구성하는 열풍 수송 배관들은 상기 반탄화반응부(280)의 내부에서 소정거리만큼 이격되면서 수평으로 배치되고, 각각의 배관에는 컨트롤밸브가 배치될 수 있으며, 상기 컨트롤밸브의 개방정도는 제어부(700)에 의해 제어될 수 있다.
내부가열부(210)는 중심에 배치되는 제1 배관(213)과 상기 제1 배관(213) 주위에 방사형으로 배치되는 제2 배관(214)을 포함할 수 있다.
제1 배관(213)의 외벽면에는 외부 연장방향으로 연장되어 형성되는 베인 유닛(260)을 포함한다. 베인 유닛(260)은 열전도성이 우수한 재질이고, 소정의 두께를 가지는 긴 플레이트 형태로 제1 배관(213)의 외벽면에 나선형태로 결합될 수 있다.
열전도성이 우수하고 외부 방향으로 연장된 얇은 구성의 베인 유닛(260)은 제1 배관(213)의 내부 열풍의 에너지를 반탄화반응부(280)의 내부로 빠르게 전달하는데 유리하고, 내부 온도 균일화에 유리하다.
본원발명에서 제1 배관(213)은 별도로 구비된 구동부에 의해 회전 가능하고 반탄화반응부(280)와 반대방향으로 회전한다. 베인 유닛(260)은 반탄화반응부(280)의 내부의 건조원료(F1)를 후단으로 이동시킬 수 있고, 반탄화반응부(280)의 하부의 일부 위치에 축적되어 이동이 느린 고형원료들을 분산시키고 후단으로 이동시킬 수 있다. 또한, 베인 유닛(260)은 제1 배관(213)의 회전방향에서 오목한 형상으로 구성될 수 있다. 이는 반탄화반응부(280)의 내부 물질을 반탄화반응부(280)의 후단으로 안정적으로 이동시키는데 유리하다.
본원발명에서 내부가열부(210)를 구성하는 배관들을 지지하는 지지플레이트(231, 232)를 포함할 수 있다.
상기 지지플레이트(미도시)는 다수개의 관통홀(미도시)들이 방사형 형태로 위치하는 원형의 플레이트일 수 있고, 내부가열부(210)를 구성하는 배관들은 상기 관통홀을 통과할 수 있다. 상기 지지플레이트는 내부가열부(210)를 구성하는 배관들을 관통시킴으로써, 상기 배관들이 반탄화반응부(280)의 내부에서 휘어짐 등 변형을 방지할 수 있다.
상기 지지플레이트는 열전도율이 높은 재질로 구성될 수 있고, 원형의 플레이트 형상일 수 있다. 상기와 같이 열전도율이 높은 재질로 구성됨으로써 내부가열부(210)의 열을 지지플레이트를 통하여 반탄화반응부(280)의 내부로 효율적으로 전달하여, 반탄화반응부(280) 내부의 균일한 온도장 형성에 유리하다.
상기 지지플레이트는 반탄화반응부(280)의 외부에 위치하는 하나 이상의 제1 지지플레이트(231) 및 반탄화반응부(280)의 내부에 위치하는 하나 이상의 제2 지지플레이트(232)를 포함할 수 있다.
제1 지지플레이트(231)는 반탄화가스 배출부(201) 또는 반탄화가스 배출부(201)와 열풍 배출부(212) 사이에 배치되는 전단 연결부(미도시)에 위치할 수 있고, 또한, 반탄화연료 배출부(202) 또는 열풍 공급부(211) 사이에 배치되는 후단 연결부(미도시)에 위치할 수 있으며, 그 위치는 특히 한정되지 않는다.
제2 지지플레이트(232)는 반탄화반응부(280)의 내부에 소정거리만큼 이격되어 다수개 위치할 수 있다. 제2 지지플레이트(232)의 외주변과 반탄화반응부(280)의 내벽면은 지지대(240)에 의해 연결될 수 있다. 여기서, 지지대(240)는 열전도성이 우수한 재질이고, 지지대(240)의 일단은 반탄화반응부(280)의 내벽면에 구비되는 결합부재에 의해 고정결합 될 수 있다. 상기 반탄화반응부(280)의 내벽면과 결합되는 지지대(240)의 타단에는 베어링 구성이 위치하여 제2 지지플레이트(232)의 외주변과 상대이동이 가능하도록 결합될 수 있다. 여기서 제2 지지플레이트(232)의 외주변에는 중심부가 오목한 레일형태의 구성이 위치하여 상기 지지대(240)의 볼형태의 구성과 결합될 수 있다. 반탄화반응부(280)가 회전할 때, 상기 지지대(240)는 반탄화반응부(280)와 함께 회전하고, 상기 제2 지지플레이트(232)는 회전하지 않는다. 이와 같은 구성으로 본원발명에서 내부가열부(210)는 고정시키고 반탄화반응부(280)만 회전시킬 수 있으므로, 반탄화 장치 운전이 용이하고, 내부 열분포를 균일하게 하는데 유리하다.
상기 내부가열부(210)를 통과한 열풍은 상기 열풍 배출부(212)를 통해 배출된 후, 상기 외부가열부(220)에 위치하는 순환열풍 입구부(221)를 통해 상기 외부가열부(220)의 내부에 유입되고, 순환열풍 출구부(222)를 통해 외부로 배출된다.
본원발명에서 상기 반탄화가스 배출부(201)의 내부에 오염물질 처리부(270)가 위치할 수 있다. 반탄화반응부(280)에서 생성되는 반탄화가스는 상기 오염물질 처리부(270) 및 상기 반탄화가스 배출부(201)를 순차적으로 통과한다. 여기서 상기 오염물질 처리부(270)와 상기 반탄화가스 배출부(201) 사이는 실링되어 결합된다.
여기서, 상기 오염물질 처리부(270)는 모듈형태로 구성되고, 모듈 프레임부를 구비하며, 상기 모듈 프레임부는 결합부재가 구성되어 상기 반탄화가스 배출부의 내벽면에 형성되어 있는 결합부재와 결합될 수 있으며, 부가된 실링부재를 구비하여 상기 반탄화반응부(280)에서 생성된 반탄화 가스가 상기 오염물질 처리부(270)의 내부로만 흐를 수 있도록 구성된다.
상기 오염물질 처리부(270)에는 휘발성 물질(VOCs), NH3, H2S 등 생성가스 내의 미량 오염물질들을 고온에서 제거하기 위한 다단 촉매층이 구비될 수 있다. 또한, 상기 오염물질 처리부(270)는 모듈형태이고, 소정기간 운전 후, 교체 가능한 구성으로 되어있다.
이어서 반탄화연료 열교환부(310)에 관해서 상세하게 설명한다.
본원발명에서 반탄화부(200)에서 생산된 대략 250℃ 정도 온도의 고온반탄화연료(F2)는 상기 반탄화연료 배출부를 통해 배출된 후, 반탄화연료 열교환기(310)에서 제1공기공급기(610)에서 공급하는 제1공기(A1-1)와 열교환을 한다.
상기 반탄화연료 열교환기(310)에서 열교환을 통하여 냉각된 반탄화연료(F3)은 후단 저장조(미도시)에 공급되어 안정적으로 저장될 수 있다. 예열된 예열 제1공기(A1-2)는 바이오 드라잉부(100)에 공급되어 바이오 드라잉 반응에 사용된다. 여기서 상기 예열 제1공기(A1-2)는 60℃ 이하의 온도로 예옐되는 것이 바람직하다. 60℃ 이상이 되면 바이오 드라잉부(100)에서 바이오 드라잉 반응을 저해하여, 바이오 드라잉 효율을 저하시키는 문제가 발생할 수 있다.
다음은 바이오 드라잉 배출가스 기액분리기(500)에 관해서 상세하게 설명한다.
바이오 드라잉 과정에서 바이오매스가 공기 중의 산소(O2)를 이용하여 호기성 미생물의 대사 작용에 의해 이산화탄소(CO2), 물(H2O), 암모니아(NH3) 등으로 분해되면서 대사열(Metabolic heat)이 발생하고, 발생된 대사열에 의해 수분이 증발됨으로써 건조 공정이 수행된다.
본원발명에서 바이오 드라잉부(100)에서는 투입된 원료의 바이오 드라잉 과정에서 배출가스(BG1)를 생산한다. 상기 배출가스(BG1)에는 증발된 수분 외에, 공급된 공기 중의 N2, 미반응 O2, 바이오 드라잉 과정에서 생성되는 이산화탄소(CO2), 물(H2O), 암모니아(NH3) 및 기타 오염물질들을 포함될 수 있고, 투입되는 원료의 성상에 따라 VOCs 등 물질도 포함될 수 있다. 상기 암모니아(NH3), VOCs 및 기타 오염물질은 악취를 유발할 수 있고 건강에 매우 유해한 물질로 분류되는 규제대상 물질로서 상기 물질을 제거하기 위한 처리는 필수적으로 수행되어야 한다.
여기서, 상기 배출가스(BG1) 내에서 O2 농도는 20% 정도 일 수 있다.
본원발명에서는 바이오 드라잉부(100)에서 생산되는 배출가스(BG1)를 기액분리기(500)에 통과시켜 배출가스(BG1)에 포함된 수분을 제거한다. 상기 기액분리기(500)에는 별도의 냉각구조가 구비될 수 있고, 상기 배출가스(BG1)내의 수분을 효율적으로, 용이하게 제거할 수 있다면 특히 한정되지 않는다.
또한, 기액분리기(500)에서 분리된 폐수는 후단 폐수처리설비에 공급되어 처리된다.
다음은 연소부(400)에 관해서 상세하게 설명한다
수분이 제거된 건조배출가스(BG2)는 연소부(400)에 공급되어 반탄화가스(TG)의 연소반응에 참여할 수 있다. 상기 건조배출가스(BG2) 내의 20% 종도의 농도인 O2는 산화제로 사용되고, 악취성 물질 암모니아(NH3)는 O2와 반응하여 NOx와 H2O로 분해되어 악취성 물질을 제거할 수 있다. 따라서 배출가스 내 악취성 물질을 처리함과 동시에 배출가스 내 고농도의 O2를 산화제로 사용함으로써 배출가스 처리 효율을 향상시키는데 유리하다.
상기 건조배출가스(BG2)는 제2 공기공급기(620)에서 공급된 제2공기(A2-1)와 혼합되면서 열교환기(320)에서 예열된 예열 혼합공기(A2-2)를 형성하여 연소부(400)에 공급될 수 있다.
반탄화부(200)에서 생산된 반탄화가스(TG)의 일부는 연소부(400)에 공급되어 연소되어 700℃ 정도 온도의 고온열풍(FG1)을 생성한다. 상기 고온열풍(FG1)는 다시 반탄화부(200)에 공급되어 반탄화부(200)의 간접열원으로 사용된다.
상기 700℃ 정도 온도의 고온열풍(FG1)은 반탄화부(200)의 상기 내부가열부 및 외부가열부를 통과하면서 반탄화부(200)의 상기 반탄화반응부의 내부를 가열하여 상기 반탄화반응부 내부에 수용된 건조원료(F1)를 반탄화시킨다. 상기 내부가열부 및 상기 외부가열부를 통과하여 300℃ 정도 온도로 냉각된 중온열풍(FG2)는 열풍 열교환기(320)에 공급한다.
열풍 열교환기(320)에서 상기 반탄화부(200)에서 공급되는 중온열풍(FG2)와 제2공기공급기(620)으로부터 공급되는 제2공기(A2-1)는 열교환을 통하여 예열 혼합공기(A2-2)를 배출하여 상기 연소부(400)에 공급한다. 또한, 중온열풍(FG2)은 열교환을 통하여 냉각되어 저온열풍(FG3)를 후단 배가스 처리 시스템(미도시)에 공급된다.
다음은 제어부(700)에 관하여 상세하게 설명한다.
본원발명에서는 제어부(700)를 포함하여, 공기 공급량, 반타화가스(TG)의 유량 등을 제어할 수 있다.
제어부(700)는 본원발명의 제1 공기공급기(610), 제2 공기공급기(620)와 전기적으로 연결되어, 제1 공기공급기(610) 및 제2 공기공급기(620)의 공기공급량을 조절할 수 있다.
바이오 드라잉부(100)에 공급되는 반탄화연료 열교환기(310)에서 예열된 예열 제1공기(A1-2) 공급 배관 및 생산된 배출가스(BG1)를 배출하는 배출 배관에는 각각 온도센서(T1, T2)가 배치되어 온도를 측정하고 측정된 온도데이터를 제어부(700)에 전송한다.
기액분리기(500)의 후단에는 배출가스 분석기(820)가 위치하여 배출가스 내 가스 조성 및 각 조성들의 농도를 분석하여 분석된 가스 농도 데이터를 제어부(700)에 전송한다.
또한, 상기 예열 제1공기(A1-2)를 바이오 드라잉부(100)로 공급하는 배관(미도시)에는 컨트롤밸브(910)가 배치될 수 있고, 상기 컨틀롤밸브(910)는 제어부(700)와 전기적으로 연결된다.
제어부(700)는 송신된 상기 가스 농도 데이터 및 온도데이터를 분석하고, 상기 데이터들을 적용하여 바이오 드라잉부(100)에 공급되어야 할 공기공급량을 연산하고, 제1 공기공급기(610)을 제어하여 필요한 제1공기(A1-1) 공급량을 공급한다.
상기 제어부(700)는 바이오 드라잉부(100)로 예열 제1공기(A1-2)를 공급하는 배관에 위치하는 컨트롤밸브(910)의 개방정도를 조절하여 바이오 드라잉부(100)에 공급되는 예열 제1공기(A1-2)의 공급량을 운전조건에 따라 조절할 수 있다.
반탄화부(200)의 후단 반탄화가스(TG)를 이송시키는 반탄화가스 배관(미도시)에는 반탄화가스 분석기(810)가 연결되어 반탄화가스의 조성 및 각 조성들의 농도를 분석할 수 있다. 상기 반탄화가스 배관에 온도센서(T3)를 구비하여 후단 연소부(400)에 투입되는 반탄화가스(TG)의 온도를 측정할 수 있다.
열풍 열교환기(320)에서 예열된 예열 혼합공기(A2-2)를 연소부(400)로 공급하는 배관에 온도센서(미도시)를 배치하여 예옐 혼합공기(A2-2)의 온도를 측정할 수 있다.
상기 온도센서에서 측정된 온도데이터들은 제어부(700)에 전송된다.
상기 연소부(400)에 생성된 고온열풍(FG1)은 반탄화부(200)의 내부가열부 및 외부가열부로 공급되고, 온도센서(T4)를 배치하여 상기 고온열풍(FG1)의 온도를 측정하고, 측정된 온도 데이터는 제어부(700)에 전송한다.
상기 연소부(400)로 반탄화가스(TG)를 공급하는 반탄화가스 배관(미도시)에는 컨트롤밸브(920)를 배치할 수 있고, 상기 컨트롤밸브(920)와 제어부(700)는 전기적으로 연결된다. 제어부(700)는 컨트롤밸브(920)의 개방정도를 조절하여 연소부(400)로 공급되는 반탄화가스(TG)의 공급량을 조절할 수 있다.
본원발명에서 제어부(700)에서는 본원발명에서 반탄화부(200)에 투입되는 건조원료(F1)의 중량 및 수분함량, 목표로 하는 반탄화연료(F3)의 물성치 조건에 따라 공급되어야 할 고온열풍(FG1)의 유량 및 온도 조건을 연산한다. 또한 상기 연산결과, 연소부(400)에 공급되는 반탄화가스(TG)의 온도 데이터 및 반탄화가스 분석기(810)의 가스 분석 데이터를 적용하여 연소부(400)에 공급할 반탄화가스(TG)의 공급량을 연산할 수 있다.
또한, 열풍 열교환기(320)로 유입되는 건조배출가스(BG2)의 유량을 측정할 수 있는 유량계가 배치되어, 측정된 건조배출가스(BG2)의 유량데이터를 제어부(700)에 전송한다.
또한, 열풍 열교환기(320)로 유입되는 중온열풍(FG2)의 온도를 측정할 수 있는 온도센서(T5)가 배치될 수 있다.
제어부(700)에서는 송신받은 상기 데이터들을 분석 및 연산하여 제2공기(A2-1)의 공급량을 연산하고, 제2 공기공급기(620)을 제어한다.
본원발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본원발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
(도면부호)
100: 바이오 드라잉부
200: 반탄화부
201: 반탄화가스 배출부
202: 반탄화연료 배출부
210: 내부가열부
211: 열풍 공급부
212: 열풍 배출부
213: 제1 배관
214: 제2 배관
220: 외부가열부
221: 순환열풍 입구부
222: 순환열풍 출구부
231: 제1 지지플레이트
232: 제2 지지플레이트
240: 지지대
250: 구동부
260: 베인 유닛
270: 오염물질 처리부
280: 반탄화반응부
310: 반탄화연료 열교환기
320: 열풍가스 열교환기
400: 연소부
500: 기액분리기
610: 제1 공기공급기
620: 제2 공기공급기
700: 제어부
810: 반탄화가스 분석기
820: 배출가스 분석기
910, 920: 컨트롤밸브
A1-1: 제1공기
A1-2: 예열 제1공기
A2-1: 제2공기
A2-2: 예열 혼합공기
BG1: 배출가스
BG2: 건조배출가스
F1: 건조원료
F2: 고온반탄화연료
F3: 반탄화연료
FG1: 고온열풍
FG2: 중온열풍
FG3: 저온열풍
T1, T2, T3, T4, T5: 온도센서
TG: 반탄화가스

Claims (7)

  1. 원료를 건조하는 바이오 드라잉부(100);
    상기 바이오 드라잉부(100)에서 건조된 원료를 반탄화 시키는 반탄화부(200);
    상기 반탄화부(200)를 간접가열하는 고온열풍을 생산하는 연소부(400); 및
    상기 바이오 드라잉부(100), 상기 반탄화부(200) 및 상기 연소부(400)의 운전을 제어하는 제어부(700);를 포함하고,
    상기 바이오 드라잉부(100)에서 배출되는 배출가스는 상기 연소부(400)에서 연소되어 상기 배출가스내 포함되는 악취성 물질을 처리하는 바이오 드라잉과 반탄화를 이용한 에너지화 시스템.
  2. 제1항에 있어서,
    상기 연소부(400)는 상기 반탄화부(200)에서 생산되는 반탄화가스를 연료로 사용하는 바이오 드라잉과 반탄화를 이용한 에너지화 시스템.
  3. 제1항에 있어서,
    상기 바이오 드라잉부(100)에서 생산되는 배출가스를 상기 연소부(400)에 공급하여 연소하는 바이오 드라잉과 반탄화를 이용한 에너지화 시스템.
  4. 제1항에 있어서,
    열교환기를 포함하고,
    상기 열교환기는 상기 반탄화부(200)에서 생산되는 고온 생산물과의 열교환을 통하여 예열된 공기가 상기 바이오 드라잉부(100)에 공급되는 바이오 드라잉과 반탄화를 이용한 에너지화 시스템.
  5. 제4항에 있어서,
    상기 열교환기는 반탄화연료 열교환기(310)이고,
    상기 공기는 상기 반탄화부(200)에서 생산되는 고온 반탄화연료와 상기 반탄화연료 열교환기(310)에서 열교환을 하여 예열된 후, 상기 바이오 드라잉부(100)에 공급되는 바이오 드라잉과 반탄화를 이용한 에너지화 시스템.
  6. 제1항에 있어서,
    상기 반탄화부(200)를 가열한 후 배출되는 열풍은 상기 연소부(400)에 공급되는 공기를 예열하는 열교환기(320)에 공급되어, 공기를 예열하는 바이오 드라잉과 반탄화를 이용한 에너지화 시스템.
  7. 제6항에 있어서,
    상기 바이오 드라잉부(100)에서 배출되는 배출가스는 상기 열교환기(320)에 공급되어, 유입되는 공기와 혼합되어 예열되는 바이오 드라잉과 반탄화를 이용한 에너지화 시스템.
PCT/KR2022/005729 2021-06-01 2022-04-21 바이오 드라잉과 반탄화를 이용한 에너지화 시스템 WO2022255640A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0071124 2021-06-01
KR1020210071124A KR102316543B1 (ko) 2021-06-01 2021-06-01 바이오 드라잉과 반탄화를 이용한 에너지화 시스템

Publications (1)

Publication Number Publication Date
WO2022255640A1 true WO2022255640A1 (ko) 2022-12-08

Family

ID=78258523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005729 WO2022255640A1 (ko) 2021-06-01 2022-04-21 바이오 드라잉과 반탄화를 이용한 에너지화 시스템

Country Status (2)

Country Link
KR (1) KR102316543B1 (ko)
WO (1) WO2022255640A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102316543B1 (ko) * 2021-06-01 2021-10-25 고등기술연구원연구조합 바이오 드라잉과 반탄화를 이용한 에너지화 시스템
KR102588115B1 (ko) * 2022-08-30 2023-10-13 주식회사 케이아그로 발전소 폐열을 이용한 탄소중립형 가축분뇨 바이오차 제조 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101189588B1 (ko) * 2011-04-20 2012-10-10 전남대학교산학협력단 바이오매스 고형체 제조시스템 및 제조방법
KR101287184B1 (ko) * 2012-12-17 2013-07-17 한국생산기술연구원 연료 농후형 바이오매스 반탄화 장치
KR101619357B1 (ko) * 2014-11-28 2016-05-11 삼양에코너지 주식회사 목질계 바이오매스의 건조 및 반탄화 시스템
KR102316543B1 (ko) * 2021-06-01 2021-10-25 고등기술연구원연구조합 바이오 드라잉과 반탄화를 이용한 에너지화 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102168289B1 (ko) 2020-02-19 2020-10-21 (주)진에너텍 바이오 드라잉 장치를 포함하는 슬러지 연료화 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101189588B1 (ko) * 2011-04-20 2012-10-10 전남대학교산학협력단 바이오매스 고형체 제조시스템 및 제조방법
KR101287184B1 (ko) * 2012-12-17 2013-07-17 한국생산기술연구원 연료 농후형 바이오매스 반탄화 장치
KR101619357B1 (ko) * 2014-11-28 2016-05-11 삼양에코너지 주식회사 목질계 바이오매스의 건조 및 반탄화 시스템
KR102316543B1 (ko) * 2021-06-01 2021-10-25 고등기술연구원연구조합 바이오 드라잉과 반탄화를 이용한 에너지화 시스템

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANG JUNGSHIK *, YOUNGBAE KWON, JAEKYUNG YANG : "Current Status and Prospect of Carbonization of Organic Sludges", JOURNAL OF KOREAN SOCIETY OF ENVIRONMENTAL ENGINEERS, vol. 30, no. 5, 5 May 2008 (2008-05-05), pages 482 - 488, XP093009816 *
TOM ASHA P.; PAWELS RENU; HARIDAS AJIT: "Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content", WASTE MANAGEMENT., ELSEVIER, NEW YORK, NY., US, vol. 49, 1 January 1900 (1900-01-01), US , pages 64 - 72, XP029452415, ISSN: 0956-053X, DOI: 10.1016/j.wasman.2016.01.004 *

Also Published As

Publication number Publication date
KR102316543B1 (ko) 2021-10-25

Similar Documents

Publication Publication Date Title
WO2022255640A1 (ko) 바이오 드라잉과 반탄화를 이용한 에너지화 시스템
WO2019088399A1 (ko) 순환증기 재가열 슬러지 건조시스템
CA2727827C (en) Generating clean syngas from biomass
BRPI0717650B1 (pt) "processo para produção de um gas de produto rico em hidrogênio".
WO2009136737A9 (ko) 가연성 폐기물의 열분해시스템 및 열분해방법
WO2015122688A1 (ko) 바이오 촤 생산 시스템 및 바이오 촤 생산 방법
BRPI0607812A2 (pt) processo para o tratamento de resÍduo e aparelho para realizar o processo
RU2002102447A (ru) Способ пиролиза и газификации органических веществ или смесей органических веществ и устройство для осуществления способа
WO2022255639A1 (ko) 내외부 복합 열교환식 반탄화 장치
WO2010150966A1 (ko) 폐가스에 포함된 암모니아를 제거하기 위한 가스 스크러버
WO2023075265A1 (ko) 소화액 처리수와 유기물 건조물질의 혼합액을 이용하여 바이오가스를 생산하는 시스템
JP4394654B2 (ja) 高含水有機物炭化処理システムの熱分解ガス処理方法及びその装置
CN114307033B (zh) 一种废盐干燥热解系统及方法
HU216861B (hu) Eljárás és berendezés laza állagú hulladék termikus ártalmatlanítására
JP4156483B2 (ja) 汚泥のガス化溶融方法
RU2697274C1 (ru) Способ переработки твердых коммунальных и промышленных отходов
WO2022092422A1 (ko) 고온 플라즈마를 이용한 배치식 복합온도 처리기 및 이의 배가스 처리 방법
PL190985B1 (pl) Sposób i urządzenie do wytwarzania gazu palnego z surowca bogatego w substancje organiczne
CN109923192B (zh) 用于制备生物炭的方法及其装置
WO2013124658A1 (en) Treatment of a feedstock material
CA2149188A1 (en) Process for the thermal production of energy from waste material, particularly refuse
WO2020251132A1 (ko) 연소방열판을 이용한 바이오촤 제조장치
CN219346462U (zh) 一种废盐中有机物热脱除系统
WO2024128715A1 (ko) 유기물을 이용한 에너지 절감형 바이오차 생산 시스템
CN104445482A (zh) 一种利用熄焦热能处理焦化污水的工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816299

Country of ref document: EP

Kind code of ref document: A1