WO2020251031A1 - 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置 - Google Patents

有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置 Download PDF

Info

Publication number
WO2020251031A1
WO2020251031A1 PCT/JP2020/023263 JP2020023263W WO2020251031A1 WO 2020251031 A1 WO2020251031 A1 WO 2020251031A1 JP 2020023263 W JP2020023263 W JP 2020023263W WO 2020251031 A1 WO2020251031 A1 WO 2020251031A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
ring
organic electroluminescent
formula
Prior art date
Application number
PCT/JP2020/023263
Other languages
English (en)
French (fr)
Inventor
飯田 宏一朗
良子 梶山
和弘 長山
延軍 李
石橋 孝一
一毅 岡部
中井 敏光
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020217040500A priority Critical patent/KR20220024000A/ko
Priority to CN202080042912.9A priority patent/CN113966553A/zh
Priority to JP2021526164A priority patent/JPWO2020251031A1/ja
Publication of WO2020251031A1 publication Critical patent/WO2020251031A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom

Definitions

  • the present invention relates to a composition for an organic electroluminescent device that is useful for forming a light emitting layer of an organic electroluminescent device (hereinafter, may be referred to as an "organic EL device").
  • the present invention also relates to an organic electroluminescent device having a light emitting layer formed by using the composition for an organic electroluminescent device, a method for manufacturing the same, and a display device and a lighting device having the organic electroluminescent device.
  • organic EL elements such as organic EL lighting and organic EL displays have been put into practical use. Since the applied voltage of the organic electroluminescent element is low, the power consumption is low and it is possible to emit three primary colors. Therefore, it has begun to be applied not only to large display monitors but also to small and medium-sized displays such as mobile phones and smartphones. ..
  • An organic electroluminescent device is manufactured by stacking a plurality of layers such as a light emitting layer, a charge injection layer, and a charge transport layer.
  • a light emitting layer such as a light emitting layer, a charge injection layer, and a charge transport layer.
  • organic electroluminescent devices are manufactured by depositing organic materials under vacuum. In the vacuum vapor deposition method, the vapor deposition process becomes complicated and the productivity is inferior. It is extremely difficult to increase the size of lighting and display panels with organic electroluminescent devices manufactured by the vacuum deposition method.
  • a wet film formation method (coating method) has been studied as a process for efficiently manufacturing an organic electroluminescent element that can be used for a large display or lighting. Since the wet film deposition method has an advantage that a stable layer can be easily formed as compared with the vacuum film deposition method, it is expected to be applied to mass production of displays and lighting devices and to large devices.
  • an organic electroluminescent device In order to manufacture an organic electroluminescent device by the wet film formation method, all the materials used must be soluble in an organic solvent and can be used as ink. If the material used is inferior in solubility, operations such as heating for a long time are required, so that the material may deteriorate before use. Further, if the uniform state cannot be maintained for a long time in the solution state, the material is precipitated from the solution, and the film formation by an inkjet device or the like becomes impossible.
  • the material used in the wet film forming method is required to have solubility in two meanings: that it dissolves quickly in an organic solvent and that it does not precipitate after being dissolved and maintains a uniform state.
  • Another advantage of the wet film deposition method over the vacuum film deposition method is that more material types can be used in one layer.
  • the vacuum vapor deposition method it becomes difficult to control the vapor deposition rate to be constant as the number of material types increases.
  • the wet film forming method even if the number of material types increases, it is possible to prepare an ink having a constant component ratio and form a layer as long as each material is dissolved in an organic solvent.
  • An object of the present invention is to provide a composition for an organic electroluminescent device capable of producing an organic electroluminescent device having a lower driving voltage, higher luminous efficiency, and a longer driving life by a wet film forming method. And.
  • the present inventor has diligently studied in view of the above problems in order to take advantage of the wet film formation method in which more material types can be used in one layer.
  • an iridium complex having high solubility in an organic solvent into which a specific substituent is introduced is used as a luminescent dopant, and as a host material, a triazine ring or a pyrimidine ring responsible for electron transport is used in addition to a polymer containing a fluorene structure. It was found that the performance of the organic electroluminescent element is improved by preparing a composition for an organic electroluminescent element in which a specific compound containing fluorene is used and these are dissolved in a solvent and the organic electroluminescent element is produced using the composition. It was.
  • composition for an organic electroluminescent device of the present invention uses an iridium complex having high solubility in an organic solvent into which a specific substituent is introduced as a light emitting dopant, precipitation of the light emitting material is unlikely to occur and the storage stability is excellent.
  • it contains a specific compound containing a triazine ring or a pyrimidine ring responsible for electron transport, the electron transport capacity in the light emitting layer is improved, the drive voltage is low, the luminous efficiency is high, and the drive life is long. It is possible to create an element.
  • the gist of the present invention is as follows.
  • R 1 and R 2 are independently an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and carbon.
  • a is an integer from 0 to 4.
  • b is an integer from 0 to 3.
  • m is an integer from 1 to 20.
  • n is an integer of 0 to 2.
  • Ring A is any one of a pyridine ring, a pyrazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, an azatriphenylene ring, and a carboline ring. Ring A may have a substituent.
  • the substituents are a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkoxy group having 3 to 20 carbon atoms.
  • (Hetero) aryloxy group alkylsilyl group having 1 to 20 carbon atoms, arylsilyl group having 6 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, arylcarbonyl group having 7 to 20 carbon atoms, 2 carbon atoms It is any one of an alkylamino group having an alkylamino group of about 20, an arylamino group having 6 to 20 carbon atoms, and a (hetero) aryl group having 3 to 20 carbon atoms, or a combination thereof.
  • Adjacent substituents bonded to ring A may be bonded to each other to form a ring that condenses with ring A.
  • Z 1 represents a direct bond or an m + 1 valent aromatic linking group.
  • L 1 represents an auxiliary ligand. l is an integer of 1 to 3. When there are a plurality of co-ligands, they may be different or the same. ]
  • R 3 and R 4 are independently alkyl groups having 1 to 20 carbon atoms, (hetero) aralkyl groups having 7 to 40 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, and carbon atoms. 3 to 20 (hetero) aryloxy groups, 1 to 20 carbons alkylsilyl groups, 6 to 20 carbons arylsilyl groups, 2 to 20 carbons alkylcarbonyl groups, 7 to 20 carbons arylcarbonyl groups , An alkylamino group having 1 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, and a (hetero) aryl group having 3 to 30 carbon atoms, or a combination thereof. These groups may further have a substituent. ]
  • R 5 to R 7 are independently alkyl groups having 1 to 20 carbon atoms, (hetero) aralkyl groups having 7 to 40 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, and (hetero) having 3 to 20 carbon atoms.
  • R 5 there are a plurality the plurality of R 5 may be the same or may be different.
  • R 5 adjacent bonded to the benzene ring may form a ring fused to the benzene ring bonded to each other.
  • c is an integer from 0 to 5. However, when c is 0, R 6 and R 7 are not unsubstituted phenyl groups at the same time.
  • Z 2 represents a direct bond or a p + 1 valent aromatic linking group.
  • Z 3 represents a direct bond or a q + 1 valent aromatic linking group.
  • p and q are integers from 1 to 10.
  • R 1 , R 2 , a, b, n, m, rings A, L 1 , l are R 1 , R 2 , a, b, m, n, rings A, L 1 , l in the formula (1). It is synonymous.
  • composition for an organic electroluminescent device according to [1] or [2], wherein the compound represented by the formula (1) is a compound represented by the formula (1-2).
  • R 1 , a, m, n, ring A, Z 1 , L 1 , l are R 1 , a, m, n, ring A, Z 1 , in formula (1). It is synonymous with L 1 and l. R 15 to R 17 are substituents. ]
  • Ar 21 to Ar 23 represent divalent (hetero) arylene groups having 3 to 30 carbon atoms, which may independently have a substituent.
  • Ar 24 and Ar 25 each independently represent a (hetero) aryl group having 3 to 30 carbon atoms which may have a substituent.
  • r represents an integer of 0 to 2.
  • R 5 to R 7 in the compound represented by the above formula (3) are independent of each other, and a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, an indolocarbazolyl group, and an indenocarbazoly.
  • a method for producing an organic electroluminescent device which comprises a step of forming a light emitting layer by a wet film forming method using the organic electroluminescent device composition according to any one of [1] to [8].
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of the organic electroluminescent device of the present invention.
  • the (hetero) aralkyl group, the (hetero) aryloxy group, and the (hetero) aryl group are an aralkyl group which may contain a heteroatom, an aryloxy group which may contain a heteroatom, and a hetero, respectively.
  • May contain a heteroatom means that one or more carbon atoms forming the main skeleton of an aryl group, an aralkyl group or an aryloxy group are substituted with a heteroatom. ..
  • the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom, and a silicon atom. Of these, a nitrogen atom is preferable from the viewpoint of durability. The same applies to the (hetero) arylene group.
  • the "aromatic linking group” has not only an aromatic hydrocarbon linking group, that is, a linking group having an aromatic hydrocarbon ring, but also a heteroaromatic linking group, that is, a heteroaromatic ring. Represents an aromatic linking group in a broad sense including a linking group.
  • composition for an organic electroluminescent device of the present invention contains a compound represented by the following formula (1) as a light emitting dopant.
  • R 1 and R 2 are independently an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and carbon.
  • a is an integer from 0 to 4.
  • b is an integer from 0 to 3.
  • m is an integer from 1 to 20.
  • n is an integer of 0 to 2.
  • Ring A is any one of a pyridine ring, a pyrazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, an azatriphenylene ring, and a carboline ring. Ring A may have a substituent.
  • the substituents are a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • (Hetero) aryloxy group alkylsilyl group having 1 to 20 carbon atoms, arylsilyl group having 6 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, arylcarbonyl group having 7 to 20 carbon atoms, 2 carbon atoms It is any one or a combination of an alkylamino group having up to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, and a (hetero) aryl group having 3 to 20 carbon atoms.
  • Adjacent substituents bonded to ring A may be bonded to each other to form a ring that condenses with ring A.
  • Z 1 represents a direct bond or an m + 1 valent aromatic linking group.
  • L 1 represents an auxiliary ligand. l is an integer of 1 to 3. When there are a plurality of co-ligands, they may be different or the same. ]
  • R 1 and R 2 independently have an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, and 6 to 20 carbon atoms, respectively, from the viewpoint of durability.
  • Arylamino group, or (hetero) aryl group having 3 to 30 carbon atoms preferably an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or 3 to 20 carbon atoms. More preferably, it is a (hetero) aryl group of.
  • Two R 2 adjacent, may form a ring.
  • a is preferably 0 in terms of ease of production, preferably 1 or 2 in terms of enhancing solubility, and even more preferably 1.
  • b is preferably 0 in terms of ease of production, preferably 1 or 2 in terms of enhancing durability and solubility, and even more preferably 1. If two adjacent R 2 are bonded to each other to form a ring, b is preferably 2 or 3.
  • m is preferably 2 or more. Since a phenyl group having a t-butyl group at the terminal has little involvement in charge transport and light emission, if it is too large, there is a concern that the drive voltage may increase or the luminous efficiency may decrease. Therefore, m is preferably 8 or less, and more preferably 4 or less.
  • the compound represented by the formula (1) has such a terminal t-butyl group as 4 or more, particularly 6 or more, and 48 or less, particularly 24 or less as a whole, which is high in solubility, low driving voltage, and high. It is preferable in terms of compatibility with luminous efficiency.
  • N is preferably 0 or 1 because it is easy to manufacture. It is preferable that n is 0 in that there is little concern that the drive voltage will increase. N is preferably 1 or 2 in terms of increasing solubility.
  • the ring A is preferably a pyridine ring, a pyrimidine ring, or an imidazole ring, and more preferably a pyridine ring.
  • the hydrogen atom on the ring A has an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, and a (hetero) having 3 to 20 carbon atoms in terms of durability and enhanced solubility. ) It is preferably substituted with an aryl group. It is preferable that the hydrogen atom on the ring A is not substituted because it is easy to produce. When the hydrogen atom on the ring A is substituted with a phenyl group or a naphthyl group which may have a substituent, excitons are easily generated when it is used in an organic electroluminescent element, so that the emission efficiency Is preferable in that
  • Ring A forms a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, an azatriphenylene ring, and a carboline ring by forming a fused ring in which the substituents on the ring A are bonded to each other and condensed into the ring A.
  • the ring A preferably has a quinoline ring, an isoquinoline ring, and a quinazoline ring formed in terms of durability and red light emission.
  • Z 1 is preferably a direct bond because it is easy to manufacture.
  • Z 1 is preferably an m + 1 valent aromatic linking group in that there is little concern that the driving voltage will increase.
  • Z 1 is preferably a phenylene group, a biphenylene group, a terphenylene group, or a fluorinatedyl group, and particularly preferably a p-phenylene group in terms of durability.
  • Z 1 includes a benzene ring having a bond position at the 1,3,5-position or a triazine ring having a bond position at the 2,4,6-position in terms of durability. Is preferable.
  • Z 1 preferably contains a trivalent group represented by the following formula (1-2A) or (1-2B).
  • the group represented by the formula (1-2A) or (1-2B) is bonded to a benzene ring or ring A bonded to iridium.
  • the compound represented by the formula (1) is preferably a compound represented by the following formula (1-1).
  • Z 2 represents a direct bond or a p + 1 valent aromatic linking group.
  • Z 3 represents a direct bond or a q + 1 valent aromatic linking group.
  • p and q are integers from 1 to 10.
  • R 1 , R 2 , a, b, n, m, rings A, L 1 , l are R 1 , R 2 , a, b, m, n, rings A, L 1 , l in the formula (1). It is synonymous.
  • Z 2 and Z 3 are preferably directly bonded because they are easy to manufacture.
  • Z 2 and Z 3 are preferably p + 1-valent and q + 1-valent aromatic linking groups in that there is little concern that the drive voltage will increase.
  • Z 2 and Z 3 are preferably a phenylene group, a biphenylene group, a terphenylene group, or a fluoreneyl group, and in particular, a p-phenylene group. Is preferable.
  • Z 2 when p is 2 or more and Z 3 when q is 2 or more are a benzene ring having a bond position at the 1,3,5-position or 2,4,6-. It preferably contains a triazine ring whose position is the bond position. That is, Z 2 and Z 3 preferably contain a trivalent group represented by the following formula (1-2A) or (1-2B).
  • L 1 is an co-ligand.
  • L 1 is preferably a monovalent bidentate ligand, and is more preferably selected from the ligands represented by the following formulas (1A), (1B), and (1C). ..
  • the broken lines in the following formulas (1A) to (1C) represent coordination bonds.
  • the co-ligands L 1 may be the same as each other or have different structures.
  • L 1 does not exist.
  • R 9 and R 10 are selected from the same group as R 1 and R 2, and the preferred examples are also the same.
  • g is an integer from 0 to 4.
  • h is an integer from 0 to 4.
  • g and h are preferably 0 in terms of ease of production, preferably 1 or 2 in terms of enhancing solubility, and even more preferably 1.
  • Ring B is any one of a pyridine ring, a pyrimidine ring, an imidazole ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, an azatriphenylene ring, a carboline ring, a benzothiazole ring, and a benzoxazole ring, and these have substituents. You may have. From the viewpoint of durability, the ring B is preferably a pyridine ring, a pyrimidine ring, or an imidazole ring, and more preferably a pyridine ring.
  • the hydrogen atom on ring B has an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, and a (hetero) having 3 to 20 carbon atoms in terms of durability and enhanced solubility. ) It is preferably substituted with an aryl group. It is preferable that the hydrogen atom on the ring B is not substituted because it is easy to produce. When the hydrogen atom on the ring B is substituted with a phenyl group or a naphthyl group which may have a substituent, excitons are easily generated when it is used in an organic electroluminescent element, so that the emission efficiency Is preferable in that
  • Ring B forms a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, an azatriphenylene ring, and a carboline ring by forming a condensed ring in which the substituents on the ring B are bonded to each other and condensed into the ring B.
  • the emission efficiency is improved because excitons are easily generated on the assist dopant.
  • the ring B preferably has a quinoline ring, an isoquinoline ring, and a quinazoline ring formed in terms of durability and red emission.
  • R 11 to R 13 are independently substituted with an alkyl group having 1 to 20 carbon atoms and an alkyl group having 1 to 20 carbon atoms, which may be substituted with a hydrogen atom and a fluorine atom, respectively. Also represents a good phenyl group or halogen atom. More preferably, R 11 and R 13 are methyl or t-butyl groups, and R 12 is a hydrogen atom, an alkyl or phenyl group having 1 to 20 carbon atoms.
  • the compound represented by formula (1) is also preferably bonded is what adjacent R 2 to form a fluorene ring, a compound represented by the following formula (1-2).
  • R 1 , a, m, n, ring A, Z 1 , L 1 , l are R 1 , a, m, n, ring A, Z 1 , in formula (1). It is synonymous with L 1 and l. R 15 to R 17 are substituents. ]
  • R 15 examples include substituents that R 2 may have. More preferably, R 15 is alkyl group, one or two aromatic hydrocarbon group which may having 6 to 30 carbon atoms optionally substituted with an alkyl group having 1 to 20 carbon atoms having 1 to 20 carbon atoms.
  • the aromatic hydrocarbon group having 6 to 30 carbon atoms is a group in which a plurality of monocyclic, dicyclic or tricyclic condensed rings, or monocyclic, dicyclic or tricyclic fused rings are linked.
  • R 15 is more preferably an alkyl group having 1 to 20 carbon atoms, and particularly preferably an alkyl group having 1 to 8 carbon atoms.
  • R 16 and R 17 are a part of the R 2 or a substituent that the R 2 may have, preferably independently of each other, an alkyl group having 1 to 12 carbon atoms, or one or two carbon atoms.
  • the aromatic hydrocarbon group having 6 to 20 carbon atoms is a group in which a plurality of monocyclic, dicyclic or tricyclic condensed rings, or monocyclic, dicyclic or tricyclic fused rings are linked.
  • R 16 and R 17 are more preferably independently substituted with an alkyl group having 1 to 8 carbon atoms or an alkyl group having 1 or 2 carbon atoms to 6 or 12 carbon atoms.
  • an aromatic group having 1 to 8 carbon atoms or an aromatic group having 6 carbon atoms which may be substituted with one or two alkyl groups having 1 to 8 carbon atoms. It is a hydrocarbon group.
  • the aromatic hydrocarbon structure having 6 carbon atoms has a benzene structure
  • the aromatic hydrocarbon structure having 12 carbon atoms has a biphenyl structure.
  • composition for an organic electroluminescent device of the present invention contains a polymer compound having a repeating unit (hereinafter, may be referred to as "repeating unit (2)") containing a structure represented by the following formula (2). ..
  • R 3 and R 4 are independently alkyl groups having 1 to 20 carbon atoms, (hetero) aralkyl groups having 7 to 40 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, and carbon atoms. 3 to 20 (hetero) aryloxy groups, 1 to 20 carbons alkylsilyl groups, 6 to 20 carbons arylsilyl groups, 2 to 20 carbons alkylcarbonyl groups, 7 to 20 carbons arylcarbonyl groups , An alkylamino group having 1 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, and a (hetero) aryl group having 3 to 30 carbon atoms, or a combination thereof. These groups may further have a substituent. ]
  • R 3 and R 4 are preferably an alkyl group having 1 to 20 carbon atoms and a (hetero) aralkyl group having 7 to 40 carbon atoms, respectively, independently from the viewpoint of solubility.
  • R 3 and R 4 are independent of each other, and a (hetero) aryl group having 3 to 30 carbon atoms is preferable in terms of heat resistance.
  • the polymer compound contained in the composition for an organic electroluminescent device of the present invention has a structure represented by the following formula (2-1) in addition to the repeating unit (2) in that the charge transportability is enhanced. It is preferable to include a repeating unit (hereinafter, may be referred to as a “repeating unit (2-1)”). In this case, the repeating unit (2) may be included in the following repeating unit (2-1).
  • Ar 21 to Ar 23 represent divalent (hetero) arylene groups having 3 to 30 carbon atoms, which may independently have a substituent.
  • Ar 24 and Ar 25 each independently represent a (hetero) aryl group having 3 to 30 carbon atoms which may have a substituent.
  • r represents an integer of 0 to 2.
  • Ar 21 to Ar 23 have a phenylene group, a biphenylene group, a terphenylene group, a fluoreneyl group, or an arbitrarily selected and linked group having 30 or less carbon atoms.
  • a divalent group is preferable, and a p-phenylene group and a biphenylene group are particularly preferable. These groups may have substituents.
  • the equation (2-1) includes the structure represented by the equation (2), at least one selected from Ar 21 , Ar 22 , or at least one Ar 23 when r is 1 or more is the equation (2). It is a fluorenyl group represented by 2) which may have a substituent at the 9,9'position.
  • Ar 24 and Ar 25 are independently preferably a phenyl group, a biphenyl group, a terphenyl group and a fluorenyl group, and particularly preferably a phenyl group and a fluorenyl group. These groups may have substituents.
  • the polymer compound contained in the composition for an organic electroluminescent device of the present invention may contain only one type of the repeating unit (2), or may contain two or more types. Further, it may contain only one type of repeating unit (2-1), or may contain two or more types.
  • the weight average molecular weight (Mw) of the polymer compound contained in the composition for an organic electroluminescent device of the present invention is usually 2,000,000 or less, preferably 500,000 or less, more preferably 100,000 or less, still more preferable. Is 50,000 or less, usually 2,500 or more, preferably 5,000 or more, more preferably 10,000 or more, still more preferably 20,000 or more.
  • the weight average molecular weight is not more than the above upper limit value, the solubility in a solvent is excellent and the film forming property is also excellent.
  • the weight average molecular weight is at least the above lower limit, the glass transition temperature, melting point and vaporization temperature of the polymer compound are high, and the heat resistance is excellent.
  • the number average molecular weight (Mn) of the polymer compound contained in the composition for an organic electroluminescent element of the present invention is usually 1,000,000 or less, preferably 250,000 or less, more preferably 50,000 or less, still more preferably. Is 25,000 or less, usually 2,000 or more, preferably 4,000 or more, more preferably 8,000 or more, still more preferably 15,000 or more.
  • the dispersity (Mw / Mn) of the polymer compound contained in the composition for an organic electroluminescent device of the present invention is preferably 3.5 or less, more preferably 2.5 or less, and particularly preferably 2.0 or less. Is. The smaller the value of the dispersion, the better, so the lower limit is ideally 1. When the dispersity of the polymer compound is not more than the above upper limit value, purification is easy, and solubility in a solvent and charge transporting ability are good.
  • the weight average molecular weight of a polymer compound is determined by SEC (size exclusion chromatography) measurement.
  • SEC size exclusion chromatography
  • the weight average molecular weight is calculated by converting the elution time of the sample into the molecular weight using the calibration curve calculated from the elution time of polystyrene (standard sample) having a known molecular weight. The number average molecular weight can be obtained in the same manner.
  • the method for producing the polymer compound contained in the composition for the organic electroluminescent element of the present invention is not particularly limited, and is arbitrary as long as the polymer compound having the repeating unit (2) can be obtained.
  • it can be produced by a polymerization method by Suzuki reaction, a polymerization method by Grignard reaction, a polymerization method by Yamamoto reaction, a polymerization method by Ullmann reaction, a polymerization method by Buchwald-Hartwig reaction, or the like.
  • repeating units of the polymer compound having the repeating unit (2) contained in the composition for an organic electroluminescent device of the present invention other than those shown in the examples and combinations thereof are shown.
  • the present invention is not limited thereto.
  • the composition for an organic electroluminescent device of the present invention contains a compound represented by the following formula (3) as a charge transporting material.
  • R 5 to R 7 are independently alkyl groups having 1 to 20 carbon atoms, (hetero) aralkyl groups having 7 to 40 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, and (hetero) having 3 to 20 carbon atoms.
  • R 5 there are a plurality the plurality of R 5 may be the same or may be different.
  • R 5 adjacent bonded to the benzene ring may form a ring fused to the benzene ring bonded to each other.
  • c is an integer from 0 to 5. However, when c is 0, R 6 and R 7 are not unsubstituted phenyl groups at the same time.
  • R 5 to R 7 have an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, and 6 to 20 carbon atoms independently from the viewpoint of durability.
  • Arylamino group, or (hetero) aryl group having 3 to 30 carbon atoms preferably an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or a (hetero) arylyl group having 3 to 20 carbon atoms.
  • a (hetero) aryl group is more preferable, and an aryl group having 6 to 20 carbon atoms is further preferable.
  • R 5 to R 7 are independently (hetero) aryl groups having 3 to 20 carbon atoms.
  • the (hetero) aryl group having 3 to 20 carbon atoms is a structure in which a plurality of monocyclic or condensed ring aryl groups, monocyclic or condensed ring heteroaryl groups, monocyclic or condensed ring aryl groups are linked, monocyclic rings, or It includes a structure in which a plurality of heteroaryl groups of a fused ring are linked, and a structure in which an aryl group of a monocycle or a fused ring or a heteroaryl group of a monocyclic or a fused ring is optionally linked.
  • R 5 to R 7 are independently selected from a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, an indolocarbazolyl group, an indenocarbazolyl group, and an indenofluorenyl group.
  • an indolocarbazolyl group is particularly preferred, an indolocarbazolyl group, an indenocarbazolyl group, an indenofluorenyl group, a phenyl group or a group in which two or three phenyl groups are linked. These groups may further have a substituent.
  • the terminals of R 5 to R 7 are independently phenyl group, naphthyl group, fluorenyl group, carbazolyl group, and indolocarbazolyl group.
  • Indenocarbazolyl group, or indenofluorenyl group is more preferable, and when these groups are present, the following aspect (i) is preferable, the following aspect (ii) is more preferable, and the following ( The aspect of iii) is more preferable.
  • R 6 and R 7 when c is 1 or more only one or two have a naphthyl group, a fluorenyl group, a carbazolyl group or an indolocarbazolyl at the end. Includes groups, indenocarbazolyl groups, or indenofluorenyl groups.
  • R 5 , R 6 and R 7 when c is 1 or more only one or two contain a naphthyl group, a fluorenyl group, or a carbazolyl group at the end, or Only one contains an indolocarbazolyl group, an indenocarbazolyl group, or an indenofluorenyl group.
  • the terminal of R 5 to R 7 referred to here may be a substituent contained in R 5 to R 7 .
  • These structures may further have substituents.
  • Examples of these terminal structures include the structures shown in the figure below.
  • Ar 20 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • R 14 represents a substituent. These structures may further have substituents. ]
  • Ar 20 is preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms, more preferably a phenyl group or a biphenyl group, and even more preferably a phenyl group.
  • R 14 is preferably an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and an alkyl having 1 to 20 carbon atoms. It is substituted with a silyl group, an arylsilyl group having 6 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms which may be substituted with an alkyl group having 1 to 8 carbon atoms, or an alkyl group having 1 to 8 carbon atoms.
  • It may be a heteroaryl group having 3 to 30 carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 6 to 6 carbon atoms. It is an aryl group having 6 to 30 carbon atoms which may be substituted with an aryloxy group of 20 and an alkyl group having 1 to 8 carbon atoms, and more preferably an alkyl group having 1 to 8 carbon atoms and 7 to 20 carbon atoms.
  • An aryl group having 6 to 14 carbon atoms which may be substituted with an aralkyl group having 1 to 8 carbon atoms, an aryloxy group having 6 to 14 carbon atoms, and an alkyl group having 1 to 8 carbon atoms.
  • c is of R 5, R 6, and R 7 1 s in the case of 1 or more, at least one 1,2-phenylene group Alternatively, it preferably has a 1,3-phenylene group, and more preferably contains at least one 1,3-phenylene group from the viewpoint of ease of synthesis.
  • C is preferably an integer of 0 to 2 from the viewpoint of durability.
  • the compound represented by the formula (3) contained as the charge transporting material is a low molecular weight compound, and the molecular weight thereof is preferably 400 or more, more preferably 450 or more, further preferably 500 or more, further preferably 600 or more, and 3000 or more.
  • the following is preferable, 2000 or less is more preferable, 1500 or less is further preferable, and 1200 or less is further preferable.
  • the alkyl group having 1 to 20 carbon atoms may be a linear, branched or cyclic alkyl group, and specifically, a methyl group, an ethyl group, an n-propyl group, an n-butyl group or an n-pentyl group. Examples thereof include a group, an n-hexyl group, an n-octyl group, an isopropyl group, an isobutyl group, an isopentyl group, a t-butyl group and a cyclohexyl group.
  • a linear alkyl group having 1 to 8 carbon atoms such as a methyl group, an ethyl group, an n-butyl group, an n-hexyl group and an n-octyl group is preferable.
  • the (hetero) aralkyl group having 7 to 40 carbon atoms refers to a group in which a part of hydrogen atoms constituting a linear, branched or cyclic alkyl group is substituted with a (hetero) aryl group.
  • Specific examples thereof include 2-phenyl-1-ethyl group, cumyl group, 5-phenyl-1-pentyl group, 6-phenyl-1-hexyl group, 7-phenyl-1-heptyl group and tetrahydronaphthyl group. Be done. Of these, 5-phenyl-1-pentyl group, 6-phenyl-1-hexyl group and 7-phenyl-1-heptyl group are preferable.
  • alkoxy group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a hexyloxy group, a cyclohexyloxy group, an octadecyloxy group and the like. Of these, a hexyloxy group is preferable.
  • the (hetero) aryloxy group having 3 to 20 carbon atoms include a phenoxy group and a 4-methylphenyloxy group. Of these, a phenoxy group is preferable.
  • alkylsilyl group having 1 to 20 carbon atoms include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a dimethylphenyl group, a t-butyldimethylsilyl group, a t-butyldiphenylsilyl group and the like.
  • a triisopropylsilyl group, a t-butyldimethylsilyl group, and a t-butyldiphenylsilyl group are preferable.
  • arylsilyl group having 6 to 20 carbon atoms include a diphenylpyridylsilyl group and a triphenylsilyl group. Of these, a triphenylsilyl group is preferable.
  • alkylcarbonyl group having 2 to 20 carbon atoms include an acetyl group, a propionyl group, a pivaloyl group, a caproyl group, a decanoyl group, a cyclohexylcarbonyl group and the like. Of these, an acetyl group and a pivaloyl group are preferable.
  • arylcarbonyl group having 7 to 20 carbon atoms include a benzoyl group, a naphthoyl group, an antryl group and the like. Of these, a benzoyl group is preferable.
  • alkylamino group having 1 to 20 carbon atoms include a methylamino group, a dimethylamino group, a diethylamino group, an ethylmethylamino group, a dihexylamino group, a dioctylamino group, a dicyclohexylamino group and the like. Of these, a dimethylamino group and a dicyclohexylamino group are preferable.
  • arylamino group having 6 to 20 carbon atoms include a phenylamino group, a diphenylamino group, a di (4-tolyl) amino group, a di (2,6-dimethylphenyl) amino group and the like. Of these, a diphenylamino group and a di (4-tolyl) amino group are preferable.
  • the (hetero) aryl group having 3 to 30 carbon atoms is an aromatic hydrocarbon group and an aromatic heterocyclic group having one free valence, or a linked aromatic group in which a plurality of aromatic hydrocarbon groups are linked.
  • a hydrocarbon group, a linked aromatic heterocyclic group in which a plurality of aromatic heterocyclic groups are linked, or a group in which one or a plurality of aromatic hydrocarbon groups and one or a plurality of aromatic heterocyclic groups are arbitrarily linked. means.
  • the (hetero) aryl group having 3 to 30 carbon atoms include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, and a benzpyrene ring, which have one free valence.
  • a benzene ring, a naphthalene ring, a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, a pyridine ring, a pyrimidine ring, and a triazine ring have one free valence. preferable.
  • an aryl group having 6 to 18 carbon atoms such as a benzene ring, a naphthalene ring or a phenanthrene ring, which has one free valence and may be substituted with an alkyl group having 1 to 8 carbon atoms, or 1
  • a pyridine ring having 1 free valence and may be substituted with an alkyl group having 1 to 4 carbon atoms is more preferable, and an alkyl group having 1 free valence and 1 to 8 carbon atoms. It is more preferably an aryl group having 6 to 18 carbon atoms, such as a benzene ring, a naphthalene ring or a phenanthrene ring which may be substituted with.
  • the divalent (hetero) arylene group having 3 to 30 carbon atoms is the same as the above-mentioned example of the (hetero) aryl group having 3 to 30 carbon atoms, except that it has two free valences. The same applies to preferred ones.
  • a combination of an aryl group and an alkyl group for example, a combination of an aryl group and an aralkyl group, or a combination of an aryl group and an alkyl group or an aralkyl group can be used.
  • a combination of the aryl group and the aralkyl group for example, a combination of a phenyl group, a biphenyl group, or a terphenyl group and a 5-phenyl-1-pentyl group or a 6-phenyl-1-hexyl group can be used. it can.
  • the substituents that may be contained in ⁇ R 13 , Ar 21 to Ar 25 , ring A, and ring B are an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, and 1 carbon number.
  • the alkyl group having 1 to 20 carbon atoms may be a linear, branched or cyclic alkyl group, and specifically, a methyl group, an ethyl group, an n-propyl group, an n-butyl group or an n-pentyl group. Examples thereof include a group, an n-hexyl group, an n-octyl group, an isopropyl group, an isobutyl group, an isopentyl group, a t-butyl group and a cyclohexyl group.
  • a linear alkyl group having 1 to 8 carbon atoms such as a methyl group, an ethyl group, an n-butyl group, an n-hexyl group and an n-octyl group is preferable.
  • the (hetero) aralkyl group having 7 to 40 carbon atoms refers to a group in which a part of hydrogen atoms constituting a linear, branched or cyclic alkyl group is substituted with a (hetero) aryl group, and specifically.
  • Examples thereof include 2-phenyl-1-ethyl group, cumyl group, 5-phenyl-1-pentyl group, 6-phenyl-1-hexyl group, 7-phenyl-1-heptyl group, tetrahydronaphthyl group and the like. Of these, 5-phenyl-1-pentyl group, 6-phenyl-1-hexyl group and 7-phenyl-1-heptyl group are preferable.
  • alkoxy group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a hexyloxy group, a cyclohexyloxy group, an octadecyloxy group and the like. Of these, a hexyloxy group is preferable.
  • the (hetero) aryloxy group having 3 to 20 carbon atoms include a phenoxy group and a 4-methylphenyloxy group. Of these, a phenoxy group is preferable.
  • alkylsilyl group having 1 to 20 carbon atoms include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a dimethylphenyl group, a t-butyldimethylsilyl group, a t-butyldiphenylsilyl group and the like.
  • a triisopropylsilyl group, a t-butyldimethylsilyl group, and a t-butyldiphenylsilyl group are preferable.
  • arylsilyl group having 6 to 20 carbon atoms include a diphenylpyridylsilyl group and a triphenylsilyl group. Of these, a triphenylsilyl group is preferable.
  • alkylcarbonyl group having 2 to 20 carbon atoms include an acetyl group, a propionyl group, a pivaloyl group, a caproyl group, a decanoyl group, a cyclohexylcarbonyl group and the like. Of these, an acetyl group and a pivaloyl group are preferable.
  • arylcarbonyl group having 7 to 20 carbon atoms include a benzoyl group, a naphthoyl group, an antryl group and the like. Of these, a benzoyl group is preferable.
  • alkylamino group having 1 to 20 carbon atoms include a methylamino group, a dimethylamino group, a diethylamino group, an ethylmethylamino group, a dihexylamino group, a dioctylamino group, a dicyclohexylamino group and the like. Of these, a dimethylamino group and a dicyclohexylamino group are preferable.
  • arylamino group having 6 to 20 carbon atoms include a phenylamino group, a diphenylamino group, a di (4-tolyl) amino group, a di (2,6-dimethylphenyl) amino group and the like. Of these, a diphenylamino group and a di (4-tolyl) amino group are preferable.
  • the (hetero) aryl group having 3 to 30 carbon atoms is an aromatic hydrocarbon group and an aromatic heterocyclic group having one free valence, or a linked aromatic group in which a plurality of aromatic hydrocarbon groups are linked.
  • a hydrocarbon group, a linked aromatic heterocyclic group in which a plurality of aromatic heterocyclic groups are linked, or a group in which one or a plurality of aromatic hydrocarbon groups and one or a plurality of aromatic heterocyclic groups are arbitrarily linked. means.
  • the (hetero) aryl group having 3 to 30 carbon atoms include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, and a benzpyrene ring, which have one free valence.
  • a benzene ring, a naphthalene ring, a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, a pyridine ring, a pyrimidine ring, and a triazine ring have one free valence. preferable.
  • an aryl group having 6 to 18 carbon atoms such as a benzene ring, a naphthalene ring or a phenanthrene ring, which has one free valence and may be substituted with an alkyl group having 1 to 8 carbon atoms, or 1
  • a pyridine ring having 1 free valence and may be substituted with an alkyl group having 1 to 4 carbon atoms is more preferable, and an alkyl group having 1 free valence and 1 to 8 carbon atoms. It is more preferably an aryl group having 6 to 18 carbon atoms, such as a benzene ring, a naphthalene ring or a phenanthrene ring which may be substituted with.
  • a combination of an aryl group and an alkyl group for example, a combination of an aryl group and an aralkyl group, or a combination of an aryl group and an alkyl group or an aralkyl group can be used.
  • a combination of the aryl group and the aralkyl group for example, a combination of a phenyl group, a biphenyl group, or a terphenyl group and a 5-phenyl-1-pentyl group or a 6-phenyl-1-hexyl group can be used. it can.
  • an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 3 to 20 carbon atoms, and 1 to 20 carbon atoms are preferable.
  • Particularly preferred are an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a (hetero) aryl group having 3 to 30 carbon atoms.
  • the specific structure and preferable carbon number of each of these preferred substituents are as described in the specific examples of the substituents.
  • substituents include the above-mentioned exemplary substituents.
  • the light emitting layer of the organic electroluminescent element produced by using the composition for an organic electroluminescent element of the present invention contains a repeating unit containing a light emitting dopant represented by the formula (1) and a structure represented by the formula (2).
  • the electroluminescence compound (polymer compound having the repeating unit (2)) and the compound represented by the formula (3) are included.
  • the polymer compound having the repeating unit (2) is mainly responsible for hole transport.
  • the repeating unit (2) since it has an arylamine structure, the hole transportability is greatly improved.
  • the compound represented by the formula (3) has high electron transportability. Therefore, the charge transportability in the light emitting layer is improved, and the voltage is lowered. In addition, it is considered that the charge balance between holes and electrons is improved and the luminous efficiency is improved.
  • the light emitting dopant represented by the formula (1) has an alkyl group containing a t-butyl group. Since the t-butyl group is bulky, it causes steric hindrance.
  • the compound that transports the electric charge is usually present at a position some distance from the portion that receives the electric charge of the light emitting dopant, and it is difficult for the electric charge to move from the compound that transports the electric charge to the light emitting dopant.
  • the material responsible for hole transport is mainly a polymer compound, and holes easily move on the polymer chain, so that holes are present in a relatively wide range of the polymer chains.
  • a site where holes are relatively easy to move to the luminescent dopant represented by the formula (1) there is a site where holes are relatively easy to move to the luminescent dopant represented by the formula (1), and holes are generated from the site in the formula (1). It is believed to move to the light emitting dopant represented.
  • holes first move to the neutral luminescent dopant in the light emitting layer of the organic electroluminescent device of the present invention. Then, it is considered that electrons from the compound represented by the formula (3) move to the light emitting dopant and recombine to emit light.
  • the light emitting dopant represented by the formula (1) has low durability against electrons, but has high durability against holes, so that it is considered that the life of the device is extended.
  • the compound represented by the formula (3) has the same three partial structures of [phenylene- (R 5 ) c], R 6 and R 7 , including their substituents, if any. It is preferably not a structure. More preferably, these three partial structures are different from each other. In the present invention, such a structure is referred to as an asymmetric structure.
  • the compound represented by the formula (3) among the R 5 ⁇ R 7, 1 or 2 only a naphthyl group at the terminal, a fluorenyl group, a carbazolyl group, indolocarbazole carbazolyl group, indeno carbazolyl It is more preferable to have an asymmetric structure containing a group and an indenofluorenyl group.
  • an asymmetric structure By adopting such an asymmetric structure, the amorphous property is improved and a uniform and stable film is formed, and it is easy to form a film uniformly mixed with other materials, and the solubility in a solvent is high. It is preferable from the viewpoint of improving and improving the stability in the solution.
  • the fact that it is easy to mix uniformly with other materials is particularly effective when a polymer material is included as a further charge transport material.
  • the compound represented by the formula (3) is asymmetric in a state where the solvent at the time of drying is volatilized and the composition for forming a light emitting layer is being concentrated, so that the repeating unit (2) It is considered that this is because it is easy to form a film in a state of being uniformly mixed with the polymer chain ring of the polymer compound having).
  • At least one of one or more R 5 , R 6 , and R 7 has a carbazolyl group, an indolocarbazolyl group, an indenocarbazolyl group, or an indenofluorenyl group at the end.
  • the carbazolyl group, the indolocarbazolyl group, the indenocarbazolyl group, or the indenofluorenyl group has a hole-transporting ability to a greater or lesser extent, and thus has a hole-transporting ability. It has a high affinity with polymer compounds and is thought to be likely to be mixed uniformly with hole-transporting polymer compounds to form a stable film.
  • the carbazolyl group is preferable because it has a moderately small structure and is considered to be easier to mix with the polymer compound.
  • the luminous efficiency of the compound represented by the formula (1), which is a light emitting dopant can be improved by the asymmetry of the compound represented by the formula (3), which is a charge transport material. The reason is described below.
  • the light emitting dopant represented by the formula (1) has an alkyl group containing a t-butyl group. Since the t-butyl group usually causes steric hindrance, the charge-transporting material exists at a position some distance from the luminescent dopant represented by the formula (1). In the present invention, since the material responsible for hole transport is mainly a polymer compound, holes are present in a relatively wide range of sites on the polymer chain, so the holes are represented by the formula (1). Easy to move to light emitting dopants.
  • the t-butyl group of the light emitting dopant represented by the formula (1) is sterically hindered, the low molecular weight compound is usually present at a position some distance from the light emitting dopant, and the low molecular weight compound is charged to the light emitting dopant. Is difficult to move.
  • the electron-transporting material represented by the formula (3) of the present invention has an asymmetric structure, the distribution of LUMO is biased, and it is considered that there is a portion where electrons easily move.
  • At least one of the terminals of R 5 to R 7 has a carbazolyl group, an indolocarbazolyl group, an indenocarbazolyl group, or an indenofluorenyl group.
  • the compound represented by the above formula (3) is likely to receive holes as well as electrons, and is likely to receive both electrons and holes to form an excited state.
  • the excitation energy is directly transferred to the light emitting dopant, and it is considered that the excitation energy is efficiently transferred even to the light emitting dopant having a t-butyl group as in the formula (1).
  • the luminous efficiency is increased and the drive life of the element is extended.
  • the compound represented by the formula (3) is a symmetric type, when all the terminals of R 5 to R 7 are carbazolyl groups, the luminous efficiency is high for the same reason, and the drive life of the device is increased. Is considered to be long, which is preferable. Since the carbazolyl group has a relatively small molecular structure, even if it has all the terminals of R 5 to R 7 , it is preferable because it has little influence on the three-dimensional structure of the compound represented by the above formula (3).
  • the compound represented by the formula (1) contained as a light emitting dopant in the composition for an organic electroluminescent device of the present invention is an iridium complex.
  • the method for synthesizing this iridium complex is shown below.
  • the ligand of the iridium complex can be synthesized by a combination of known methods or the like.
  • the ligand is a Suzuki-Miyaura coupling reaction between arylboronic acids and halogenated heteroaryls, a Friedlayer cyclization reaction with 2-formyl or acylaniline, or acyl-aminopyridines at ortho positions with each other (Chem). It can be synthesized by a known reaction such as Rev. 2009, 109, 2652, or Organic Reactions, 28 (2), 37-201).
  • the iridium complex can be synthesized by a combination of known methods using a ligand and iridium chloride n hydrate as raw materials. This will be described below.
  • a chlorine-crosslinked iridium binuclear complex is synthesized by a reaction of 2 equivalents of the first ligand and 1 equivalent of iridium chloride n hydrate.
  • the solvent a mixed solvent of 2-ethoxyethanol and water is usually used, but a solvent-free solvent or another solvent may be used.
  • the reaction can be promoted by using an excessive amount of the ligand or by using an additive such as a base.
  • Other crosslinkable anionic ligands such as bromine can be used instead of chlorine.
  • the reaction temperature is not particularly limited, but usually 0 ° C. or higher is preferable, 50 ° C. or higher is more preferable, 250 ° C. or lower is preferable, and 150 ° C. or lower is more preferable. When the reaction temperature is within this range, only the desired reaction proceeds without accompanying by-products or decomposition reactions, and high selectivity tends to be obtained.
  • a halogen ion scavenger such as silver trifluoromethanesulfonate is added and brought into contact with the second ligand to obtain the desired complex.
  • ethoxyethanol or diglyme is usually used as the solvent, no solvent or other solvent can be used depending on the type of ligand, and a plurality of solvents can be mixed and used. It is not always necessary because the reaction may proceed without the addition of a halogen ion scavenger, but the scavenger is used to increase the reaction yield and selectively synthesize facial isomers having a higher quantum yield. Is advantageous.
  • the reaction temperature is not particularly limited, but is usually carried out in the range of 0 ° C. to 250 ° C.
  • the first stage dinuclear complex can be synthesized in the same manner as in the formula [A].
  • one equivalent or more of a 1,3-dione compound such as acetylacetone and a basic compound capable of extracting active hydrogen of the 1,3-dione compound such as sodium carbonate are added to the dinuclear complex.
  • a 1,3-dione compound such as acetylacetone and a basic compound capable of extracting active hydrogen of the 1,3-dione compound such as sodium carbonate
  • it is converted into a mononuclear complex in which the 1,3-dionat ligand is coordinated.
  • a solvent such as ethoxyethanol or dichloromethane that can dissolve the dinuclear complex of the raw material is used, but if the ligand is liquid, it can be carried out without a solvent.
  • the reaction temperature is not particularly limited, but is usually carried out in the range of 0 ° C. to 200 ° C.
  • the second ligand is reacted by 1 equivalent or more.
  • the type and amount of the solvent are not particularly limited, and may be solvent-free as long as the second ligand is liquid at the reaction temperature.
  • the reaction temperature is also not particularly limited, but since the reactivity is slightly poor, the reaction is often carried out at a relatively high temperature of 100 ° C. to 300 ° C. Therefore, a solvent having a high boiling point such as glycerin is preferably used.
  • purification is performed to remove unreacted raw materials, reaction by-products and solvents. Purification operations in ordinary synthetic organic chemistry can be applied, but purification is mainly performed by normal phase silica gel column chromatography as described in the above non-patent documents. A single or mixed solution of hexane, heptane, dichloromethane, chloroform, ethyl acetate, toluene, methyl ethyl ketone, and methanol can be used as the developing solution. Purification may be performed multiple times under different conditions.
  • composition for an organic electroluminescent device of the present invention contains a solvent.
  • the solvent contained in the composition for an organic electroluminescent device of the present invention is a volatile liquid component used for forming a layer containing a light emitting dopant by wet film formation.
  • the solvent contains a compound represented by the formula (1) as a luminescent dopant as a solute, a polymer compound having a repeating unit (2), a compound represented by the formula (3), and if necessary. It is not particularly limited as long as it is a solvent in which other light emitting materials and charge transporting materials described below are dissolved well.
  • Preferred solvents include, for example, alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin, bicyclohexane; aromatic hydrocarbons such as toluene, xylene, methicylene, cyclohexylbenzene (phenylcyclohexane), tetralin; chlorobenzene, di.
  • alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin, bicyclohexane
  • aromatic hydrocarbons such as toluene, xylene, methicylene, cyclohexylbenzene (phenylcyclohexane), tetralin
  • chlorobenzene di.
  • Halogenized aromatic hydrocarbons such as chlorobenzene and trichlorobenzene; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetol, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3 -Aromatic ethers such as dimethylanisole, 2,4-dimethylanisole and diphenyl ether; aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate and n-butyl benzoate; Alicyclic ketones such as cyclohexanone, cyclooctanone and fencon; alicyclic alcohols such as cyclohexanol and cyclooctanol; aliphatic ketones such as methyl ethyl ketone and dibutyl ketone;
  • One type of these solvents may be used alone, or two or more types may be used in any combination and ratio.
  • the boiling point of the solvent is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 150 ° C. or higher, particularly preferably 200 ° C. or higher, usually 270 ° C. or lower, preferably 250 ° C. or lower, more preferably 240 ° C. or lower. is there. If the boiling point is lower than this range, the film formation stability may decrease due to solvent evaporation from the composition during wet film formation.
  • composition for an organic electroluminescent device of the present invention is usually used for forming a layer or a film by a wet film forming method, and is particularly preferably used for forming a light emitting layer of an organic electroluminescent device.
  • the content of the compound represented by the above formula (1), which is a light emitting dopant, in the composition for an organic electroluminescent device is usually 0.01% by mass or more, preferably 0.1% by mass or more, and usually 20% by mass or less. It is preferably 10% by mass or less.
  • layers having adjacent excitation energies for example, a hole transport layer or a positive. It is less likely to move to the hole blocking layer), and it is less likely to be extinguished by the interaction between excitons, so that the emission efficiency can be improved.
  • composition for an organic electroluminescent device of the present invention may contain only one kind of the compound represented by the formula (1), or may contain two or more kinds in combination.
  • the content of the polymer compound having the repeating unit (2) in the composition for an organic electroluminescent element of the present invention is usually 0.01% by mass or more, preferably 0.1% by mass or more, and usually 20% by mass or less. It is preferably 10% by mass or less.
  • composition for an organic electroluminescent device of the present invention may contain only one kind of polymer compound having a repeating unit (2), or may contain two or more kinds in combination.
  • the content of the compound represented by the formula (3) in the composition for an organic electroluminescent device of the present invention is usually 0.005% by mass or more, preferably 0.05% by mass or more, and usually 10% by mass or less, preferably. Is 5% by mass or less.
  • composition for an organic electroluminescent device of the present invention may contain only one kind of the compound represented by the formula (3), or may contain two or more kinds in combination.
  • composition for an organic electroluminescent element of the present invention is represented by the formula (1) with respect to a total of 100 parts by mass of the polymer compound having the repeating unit (2) and the compound represented by the formula (3). It is preferable to contain the compound in an amount of 5 to 100 parts by mass, particularly 15 to 60 parts by mass, from the viewpoint of light emission efficiency. If the amount of the compound represented by the formula (1) responsible for light emission is too small, the efficiency is lowered, and if it is too large, the light is easily extinguished and the efficiency is lowered.
  • the composition for an organic electroluminescent element of the present invention is a polymer having a repeating unit (2) in a total of 100 parts by mass of a polymer compound having a repeating unit (2) and a compound represented by the formula (3). It is preferable to contain the compound in an amount of 20 to 98 parts by mass, particularly 50 to 90 parts by mass, from the viewpoint of appropriate charge balance and increased efficiency.
  • the solvent content of the composition for an organic electroluminescent element of the present invention is preferably 10 parts by mass or more, more preferably 50 parts by mass or more, and particularly preferably 80 parts by mass or more in 100 parts by mass of the composition. It is preferably 99.95 parts by mass or less, more preferably 99.9 parts by mass or less, and particularly preferably 99.8 parts by mass or less.
  • the thickness of the light emitting layer is usually about 3 to 200 nm, but if the solvent content is equal to or higher than the above lower limit, the viscosity of the composition does not become too high and the film forming workability is improved. On the other hand, when the content of the solvent is not more than the above upper limit, the thickness of the film obtained by removing the solvent after the film formation can be increased, so that the film formation tends to be easy.
  • composition for an organic electroluminescent device of the present invention may contain only one kind of solvent, or may contain two or more kinds in combination.
  • Organic electroluminescent device includes a light emitting layer formed by a wet film formation method using the composition for an organic electroluminescent device of the present invention.
  • the organic electroluminescent device of the present invention preferably has at least an anode, a cathode, and at least one organic layer between the anode and the cathode on a substrate, and the present invention is used as at least one of the organic layers. It includes a light emitting layer formed by a wet film forming method using the composition for an organic electroluminescent device of the present invention.
  • the wet film forming method is a film forming method, that is, as a coating method, for example, a spin coating method, a dip coating method, a die coating method, a bar coating method, a blade coating method, a roll coating method, a spray coating method, and a capillary.
  • a coating method for example, a spin coating method, a dip coating method, a die coating method, a bar coating method, a blade coating method, a roll coating method, a spray coating method, and a capillary.
  • a coating method for example, a spin coating method, a dip coating method, a die coating method, a bar coating method, a blade coating method, a roll coating method, a spray coating method, and a capillary.
  • We adopt methods such as coating method, inkjet method, nozzle printing method, screen printing method, gravure printing method, flexographic printing method, etc., and dry the film formed by these methods to form a film. The way to do it.
  • FIG. 1 is a schematic cross-sectional view showing a structural example suitable for the organic electroluminescent device 10 of the present invention.
  • reference numeral 1 is a substrate
  • reference numeral 2 is an anode
  • reference numeral 3 is a hole injection layer
  • reference numeral 4 is a hole transport layer
  • reference numeral 5 is a light emitting layer
  • reference numeral 6 is a hole blocking layer
  • reference numeral 7 is an electron transport layer.
  • Reference numeral 8 represents an electron injection layer
  • reference numeral 9 represents a cathode.
  • the substrate 1 serves as a support for an organic electroluminescent element, and usually a quartz or glass plate, a metal plate or a metal foil, a plastic film, a sheet, or the like is used. Of these, a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • the substrate 1 is preferably made of a material having a high gas barrier property because the organic electroluminescent element is unlikely to be deteriorated by the outside air. In particular, when a material having a low gas barrier property such as a synthetic resin substrate is used, it is preferable to provide a dense silicon oxide film or the like on at least one surface of the substrate 1 to improve the gas barrier property.
  • the anode 2 has a function of injecting holes into the layer on the light emitting layer side.
  • the anode 2 is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum; a metal oxide such as an oxide of indium and / or tin; a metal halide such as copper iodide; carbon black or poly (3). -Methylthiophene), polypyrrole, polyaniline and other conductive polymers.
  • the anode 2 is usually formed by a dry method such as a sputtering method or a vacuum vapor deposition method.
  • a dry method such as a sputtering method or a vacuum vapor deposition method.
  • metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc.
  • it is dispersed in an appropriate binder resin solution. It can also be formed by applying it on a substrate.
  • the anode 2 can be formed by directly forming a thin film on the substrate by electrolytic polymerization or by applying the conductive polymer on the substrate (Appl. Phys. Lett., Volume 60, p. 2711, 1992).
  • the anode 2 usually has a single-layer structure, but may have a laminated structure as appropriate. When the anode 2 has a laminated structure, different conductive materials may be laminated on the first-layer anode.
  • the thickness of the anode 2 may be determined according to the required transparency, material, and the like. When particularly high transparency is required, a thickness having a visible light transmittance of 60% or more is preferable, and a thickness having a visible light transmittance of 80% or more is more preferable.
  • the thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less. When transparency is not required, the thickness of the anode 2 may be arbitrarily set according to the required strength and the like. In this case, the anode 2 may have the same thickness as the substrate 1.
  • impurities on the anode are removed and the ionization potential thereof is adjusted by performing treatments such as ultraviolet + ozone, oxygen plasma, and argon plasma before the film formation. It is preferable to improve the hole injection property.
  • the layer having a function of transporting holes from the anode 2 side to the light emitting layer 5 side is usually called a hole injection transport layer or a hole transport layer.
  • the layer closer to the anode 2 side may be referred to as the hole injection layer 3.
  • the hole injection layer 3 is preferably used because it enhances the function of transporting holes from the anode 2 to the light emitting layer 5.
  • the hole injection layer 3 is usually formed on the anode 2.
  • the film thickness of the hole injection layer 3 is usually 1 nm or more, preferably 5 nm or more, usually 1000 nm or less, preferably 500 nm or less.
  • the hole injection layer 3 may be formed by either a vacuum vapor deposition method or a wet film deposition method. In terms of excellent film forming property, it is preferably formed by a wet film forming method.
  • the hole injection layer 3 preferably contains a hole transporting compound, and more preferably contains a hole transporting compound and an electron accepting compound. Further, the hole injection layer 3 preferably contains a cation radical compound, and particularly preferably contains a cation radical compound and a hole transporting compound.
  • the composition for forming a hole injection layer usually contains a hole transporting compound that becomes the hole injection layer 3.
  • the composition for forming a hole injection layer has high hole transportability and can efficiently transport the injected holes. For this reason, it is preferable that the hole mobility is high and impurities that serve as traps are unlikely to be generated during production or use. Further, it is preferable that the stability is excellent, the ionization potential is small, and the transparency to visible light is high. In particular, when the hole injection layer 3 is in contact with the light emitting layer 5, those that do not quench the light emitted from the light emitting layer 5 or those that form an exciplex with the light emitting layer 5 and do not reduce the luminous efficiency are preferable.
  • hole transporting compound a compound having an ionization potential of 4.5 eV to 6.0 eV is preferable from the viewpoint of a charge injection barrier from the anode 2 to the hole injection layer 3.
  • hole-transporting compounds include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, compounds in which a tertiary amine is linked with a fluorene group, and hydrazone. Examples thereof include system compounds, silazane compounds, and quinacridone compounds.
  • an aromatic amine compound is preferable, and an aromatic tertiary amine compound is particularly preferable from the viewpoint of amorphousness and visible light transmission.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and also includes a compound having a group derived from an aromatic tertiary amine.
  • the type of the aromatic tertiary amine compound is not particularly limited, but a polymer compound having a weight average molecular weight of 1,000 or more and 1,000,000 or less (a polymerized compound in which repeating units are continuous) is easy to obtain uniform light emission due to the surface smoothing effect. Is preferably used.
  • Preferred examples of the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following formula (I).
  • Ar 1 and Ar 2 each independently represent an aromatic group which may have a substituent or a heteroaromatic group which may have a substituent.
  • Ar 3 to Ar 5 each independently represent an aromatic group which may have a substituent or a heteroaromatic group which may have a substituent.
  • Q represents a linking group selected from the following linking group group. Further, of Ar 1 to Ar 5 , two groups bonded to the same N atom may be bonded to each other to form a ring.
  • the linking group is shown below.
  • Ar 6 to Ar 16 each independently represent an aromatic group which may have a substituent or a heteroaromatic group which may have a substituent.
  • R a to R b each independently represent a hydrogen atom or an arbitrary substituent.
  • the aromatic groups and heteroaromatic groups of Ar 1 to Ar 16 include benzene ring, naphthalene ring, phenanthrene ring, thiophene ring, and pyridine ring from the viewpoint of solubility, heat resistance, and hole injection transportability of the polymer compound. Derived groups are preferable, and groups derived from benzene rings and naphthalene rings are more preferable.
  • aromatic tertiary amine polymer compound having a repeating unit represented by the formula (I) include those described in Pamphlet No. 2005/089024.
  • the hole injection layer 3 preferably contains an electron accepting compound because the conductivity of the hole injection layer 3 can be improved by oxidizing the hole transporting compound.
  • the electron-accepting compound a compound having an oxidizing power and an ability to accept one electron from the hole-transporting compound described above is preferable. Specifically, a compound having an electron affinity of 4 eV or more is preferable, and a compound having an electron affinity of 5 eV or more is more preferable.
  • Such an electron-accepting compound includes, for example, a triarylboron compound, a metal halide, a Lewis acid, an organic acid, an onium salt, a salt of an arylamine and a metal halide, and a salt of an arylamine and a Lewis acid.
  • examples thereof include one or more compounds selected from the group.
  • onium salts substituted with organic groups such as 4-isopropyl-4'-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium tetrafluoroborate (International Publication No. 2005/089024); chloride.
  • High valence inorganic compounds such as iron (III) (Japanese Patent Laid-Open No. 11-251067), ammonium peroxodisulfate; cyano compounds such as tetracyanoethylene; tris (pentafluorophenyl) borane (Japanese Patent Laid-Open No. 2003-31365) Such as aromatic boron compounds; fullerene derivatives, iodine and the like.
  • cation radical compound an ionic compound composed of a cation radical, which is a chemical species obtained by removing one electron from a hole transporting compound, and a counter anion is preferable.
  • the cation radical is derived from a hole-transporting polymer compound, the cation radical has a structure in which one electron is removed from the repeating unit of the polymer compound.
  • the cation radical is preferably a chemical species obtained by removing one electron from the above-mentioned compound as a hole transporting compound.
  • a chemical species obtained by removing one electron from a preferable compound as a hole transporting compound is preferable from the viewpoints of amorphousness, visible light transmittance, heat resistance, solubility and the like.
  • the cationic radical compound can be produced by mixing the hole transporting compound and the electron accepting compound described above. By mixing the above-mentioned hole-transporting compound and electron-accepting compound, electron transfer occurs from the hole-transporting compound to the electron-accepting compound, and the hole-transporting compound consists of a cation radical and a counter anion. A cationic ion compound is produced.
  • Cationic radical compounds derived from polymer compounds such as PEDOT / PSS (Adv. Mater., 2000, Vol. 12, p. 481) and emeraldine hydrochloride (J. Phys. Chem., 1990, Vol. 94, p. 7716) It is also produced by oxidative polymerization (dehydrogenation polymerization).
  • the oxidative polymerization referred to here is to chemically or electrochemically oxidize a monomer in an acidic solution using peroxodisulfate or the like.
  • the material to be the hole injection layer 3 is usually mixed with a soluble solvent (solvent for the hole injection layer) to form a composition for film formation (positive).
  • a composition for forming a hole injection layer) is prepared, and this composition for forming a hole injection layer is formed on a layer corresponding to the lower layer of the hole injection layer 3 (usually, an anode 2) by a wet film forming method. , Formed by drying.
  • the film formed can be dried in the same manner as the drying method in forming the light emitting layer 5 by the wet film forming method.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is arbitrary as long as the effect of the present invention is not significantly impaired. This concentration is preferably low in terms of film thickness uniformity, and is preferably high in terms of preventing defects from occurring in the hole injection layer 3.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and 70% by mass. % Or less is preferable, 60% by mass or less is further preferable, and 50% by mass or less is particularly preferable.
  • solvent examples include ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents and the like.
  • ether-based solvent examples include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA), and 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole. , Fenetol, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole and other aromatic ethers.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA), and 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole.
  • PGMEA propylene glycol-1-monomethyl ether acetate
  • Fenetol 2-methoxyto
  • ester-based solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, methylnaphthalene and the like.
  • amide-based solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • dimethyl sulfoxide and the like can also be used.
  • the formation of the hole injection layer 3 by the wet film formation method is usually performed on the layer corresponding to the lower layer of the hole injection layer 3 (usually, the anode 2) after preparing the composition for forming the hole injection layer. It is carried out by applying a film to the film and drying it. In the hole injection layer 3, the coating film is usually dried by heating, vacuum drying, or the like after the film formation.
  • the hole injection layer 3 is formed on the anode 2 on the substrate placed facing the crucible.
  • a mixture thereof can be placed in a crucible and heated and evaporated to form the hole injection layer 3.
  • the degree of vacuum at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ 10 -6 Torr (0.13 ⁇ 10 -4 Pa) or more, 9.0 ⁇ 10 -6 Torr ( It is 12.0 ⁇ 10 -4 Pa) or less.
  • the vapor deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ / sec or more and 5.0 ⁇ / sec or less.
  • the film formation temperature at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is preferably 10 ° C. or higher and 50 ° C. or lower.
  • the hole transport layer 4 is a layer that has a function of transporting holes from the anode 2 side to the light emitting layer 5.
  • the hole transport layer 4 is not an essential layer in the organic electroluminescent device of the present invention, but it is preferable to provide this layer from the viewpoint of enhancing the function of transporting holes from the anode 2 to the light emitting layer 5.
  • the hole transport layer 4 is usually formed between the anode 2 and the light emitting layer 5.
  • the hole transport layer 4 is formed between the hole injection layer 3 and the light emitting layer 5.
  • the film thickness of the hole transport layer 4 is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the hole transport layer 4 may be formed by either a vacuum deposition method or a wet film deposition method. In terms of excellent film forming property, it is preferably formed by a wet film forming method.
  • the hole transport layer 4 usually contains a hole transport compound that becomes the hole transport layer 4.
  • the hole-transporting compound contained in the hole-transporting layer 4 include two or more tertiary compounds represented by 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl.
  • Aromatic diamine containing amine and having two or more condensed aromatic rings replaced with nitrogen atoms Japanese Patent Laid-Open No. 5-234681
  • Aromatic amine compounds having a starburst structure such as (J. Lumin., 72-74, pp.
  • the hole transport layer forming composition usually further contains a solvent.
  • a solvent used in the hole transport layer forming composition, the same solvent as the solvent used in the hole injection layer forming composition described above can be used.
  • the concentration of the hole-transporting compound in the composition for forming the hole-transporting layer can be in the same range as the concentration of the hole-transporting compound in the composition for forming the hole-injecting layer.
  • the hole transport layer 4 can be formed by the wet film formation method in the same manner as the hole injection layer 3 film formation method described above.
  • hole transport layer 4 is formed by the vacuum vapor deposition method
  • holes are usually used instead of the constituent materials of the hole injection layer 3 in the same manner as when the hole injection layer 3 is formed by the vacuum vapor deposition method. It can be formed using the constituent materials of the transport layer 4.
  • the film formation conditions such as the degree of vacuum, the vapor deposition rate, and the temperature at the time of vapor deposition can be the same as those at the time of vacuum vapor deposition of the hole injection layer 3.
  • the light emitting layer 5 is a layer having a function of emitting light by being excited by recombination of holes injected from the anode 2 and electrons injected from the cathode 9 when an electric field is applied between the pair of electrodes. ..
  • the light emitting layer 5 is a layer formed between the anode 2 and the cathode 9.
  • the light emitting layer 5 is formed between the hole injection layer 3 and the cathode 9 when the hole injection layer 3 is above the anode 2.
  • the hole transport layer 4 is above the anode 2
  • the light emitting layer 5 is formed between the hole transport layer 4 and the cathode 9.
  • the film thickness of the light emitting layer 5 is arbitrary as long as the effect of the present invention is not significantly impaired. A thick film is preferable in that defects are less likely to occur in the film, and a thin film is preferable in that a low drive voltage can be easily obtained.
  • the film thickness of the light emitting layer 5 is preferably 3 nm or more, more preferably 5 nm or more, usually 200 nm or less, and even more preferably 100 nm or less.
  • the light emitting layer 5 is preferably formed by a wet film forming method using the composition for an organic electroluminescent device of the present invention.
  • the composition for an organic electroluminescent element of the present invention is a compound represented by the above formula (1), which is repeated.
  • other luminescent materials and charge transporting materials may be included.
  • the light emitting material other than the compound represented by the formula (1) emits light at a desired light emitting wavelength, and is not particularly limited as long as the effect of the present invention is not impaired, and a known light emitting material can be applied.
  • the light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, but a material having good luminous efficiency is preferable.
  • a phosphorescent material is preferable from the viewpoint of internal quantum efficiency.
  • Examples of the fluorescent light emitting material include the following materials.
  • fluorescent light emitting material blue fluorescent light emitting material
  • examples of the fluorescent light emitting material that gives blue light emission include naphthalene, perylene, pyrene, anthracene, coumarin, chrysene, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
  • the fluorescent light-emitting material giving green luminescence for example, quinacridone derivatives, coumarin derivatives, aluminum complexes such as Al (C 9 H 6 NO) 3 and the like.
  • Examples of the fluorescent light emitting material that gives yellow light emission include rubrene, a perimidone derivative, and the like.
  • red fluorescent light emitting material examples include DCM (4- (dimethyanomethylene) -2-methyl-6- (p-dimethylaminostylyl) -4H-pyran) compounds, benzopyran derivatives, and rhodamine derivatives. , Benzothioxanthene derivatives, azabenzothioxanthene and the like.
  • the phosphorescent material for example, from the 7th to 11th groups of the long periodic table (hereinafter, unless otherwise specified, the term "periodic table” refers to the long periodic table).
  • the term "periodic table” refers to the long periodic table.
  • Examples thereof include an organic metal complex containing a selected metal.
  • the metal selected from Groups 7 to 11 of the periodic table is preferably ruthenium, rhodium, palladium, silver, renium, osmium, iridium, platinum, gold and the like.
  • a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand is linked to a pyridine, pyrazole, phenanthroline or the like is preferable.
  • a phenylpyridine ligand and a phenylpyrazole ligand are preferable.
  • the (hetero) aryl represents an aryl group or a heteroaryl group.
  • Specific preferred phosphorescent materials include tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, and tris (2).
  • -Phenylpyridine complexes such as osmium and tris (2-phenylpyridine) renium and porphyrin complexes such as octaethyl platinum porphyrin, octaphenyl platinum porphyrin, octaethyl palladium porphyrin and octaphenyl palladium porphyrin can be mentioned.
  • Polymer-based luminescent materials include poly (9,9-dioctylfluorene-2,7-diyl) and poly [(9,9-dioctylfluorene-2,7-diyl) -co- (4,4'-).
  • the charge-transporting material is a material having positive charge (hole) or negative charge (electron) transportability, and as a charge-transporting material other than the compound represented by the formula (3), the effect of the present invention is impaired. Unless otherwise specified, there are no particular restrictions, and known materials can be applied.
  • the charge transporting material a compound or the like conventionally used for the light emitting layer of the organic electroluminescent device can be used.
  • a compound used as a host material for the light emitting layer is preferable.
  • charge transporting material examples include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, and compounds in which a tertiary amine is linked with a fluorene group.
  • Hydrazone-based compounds silazane-based compounds, silanamine-based compounds, phosphamine-based compounds, quinacridone-based compounds, and other compounds exemplified as hole-transporting compounds in the hole injection layer 3, as well as anthracene-based compounds and pyrene-based compounds , Carbazole-based compounds, pyridine-based compounds, phenanthroline-based compounds, oxadiazole-based compounds, silol-based compounds and other electron-transporting compounds.
  • two or more fused aromatic rings containing two or more tertiary amines represented by 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl are used.
  • Aromatic amine compounds having a starburst structure such as aromatic diamines substituted with nitrogen atoms (Japanese Patent Laid-Open No. 5-234681), 4,4', 4''-tris (1-naphthylphenylamino) triphenylamine, etc. (J. Lumin., Vol. 72-74, pp. 985, 1997), Aromatic amine compounds consisting of tetraphenylamine tetramers (Chem.
  • the organic electroluminescent device of the present invention has a light emitting layer formed by a wet film forming method using the composition for an organic electroluminescent device of the present invention.
  • the organic electroluminescent device of the present invention may have a light emitting layer other than the light emitting layer formed by the wet film formation method using the composition for the organic electroluminescent device of the present invention as the light emitting layer 5.
  • the light emitting layer may be formed by either a vacuum vapor deposition method or a wet film forming method, but the wet film forming method is preferable because of its excellent film forming property.
  • the composition for the organic electroluminescent device of the present invention or the material to be the light emitting layer 5 is mixed with a soluble solvent (solvent for the light emitting layer) to prepare light emission.
  • the layer-forming composition is formed by using it in place of the hole-injection layer-forming composition in the same manner as in the case where the hole-injection layer 3 is formed by the wet film-forming method.
  • the solvent examples include the ether solvent, the ester solvent, the aromatic hydrocarbon solvent, the amide solvent mentioned for the formation of the hole injection layer 3, the alcan solvent, the halogenated aromatic hydrocarbon solvent, and the fat.
  • examples thereof include a group alcohol solvent, an alicyclic alcohol solvent, an aliphatic ketone solvent and an alicyclic ketone solvent.
  • the solvent used is as exemplified as the solvent of the composition for the organic electroluminescent device of the present invention. Specific examples of the solvent are given below, but the present invention is not limited thereto as long as the effect of the present invention is not impaired.
  • aliphatic ether solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetol, 2 -Aromatic ether solvents such as methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, diphenyl ether; phenyl acetate, phenyl propionate, methyl benzoate, benzoic acid Aromatic ester solvents such as ethyl, propyl benzoate, n-butyl benzoate; toluene, xylene, mesitylene, cyclohexylbenzene, tetralin, 3-isopropylbiphenyl, 1,2,3,4
  • the solvent evaporates at an appropriate rate from the liquid film immediately after the film formation. Therefore, as described above, the boiling point of the solvent used is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, usually 270 ° C. or lower, preferably 250 ° C. or lower, and more preferably 230 ° C. or lower. Is.
  • the amount of the solvent used is arbitrary as long as the effect of the present invention is not significantly impaired, but as described above, the total content in the light emitting layer forming composition, that is, the composition for the organic electroluminescent device is low viscosity.
  • the number of films is large because it is easy to perform the film forming work, and it is preferable that the film is formed in a thick film.
  • the content of the solvent is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, and preferably 99.99% by mass or less in the composition for an organic electroluminescent device. , More preferably 99.9% by mass or less, and particularly preferably 99% by mass or less.
  • heating or depressurization can be used as a method for removing the solvent after the wet film formation.
  • heating or depressurization can be used as the heating means used in the heating method.
  • a clean oven and a hot plate are preferable because heat is evenly applied to the entire film.
  • the heating temperature in the heating step is arbitrary as long as the effect of the present invention is not significantly impaired, but a high temperature is preferable in terms of shortening the drying time, and a low temperature is preferable in terms of less damage to the material.
  • the upper limit of the heating temperature is usually 250 ° C. or lower, preferably 200 ° C. or lower, and more preferably 150 ° C. or lower.
  • the lower limit of the heating temperature is usually 30 ° C. or higher, preferably 50 ° C. or higher, and more preferably 80 ° C. or higher.
  • a temperature at which the heating temperature exceeds the above upper limit is higher than the heat resistance of a commonly used charge transporting material or phosphorescent material, and may be decomposed or crystallized, which is not preferable.
  • the heating time in the heating step is appropriately determined by the boiling point and vapor pressure of the solvent in the composition for forming the light emitting layer, the heat resistance of the material, and the heating conditions.
  • Formation of light emitting layer 5 by vacuum vapor deposition method When the light emitting layer 5 is formed by the vacuum vapor deposition method, usually one or more kinds of constituent materials of the light emitting layer 5 (the above-mentioned light emitting material, charge transporting compound, etc.) are installed in a crucible in a vacuum vessel. (When using two or more types of materials, usually put each in a separate crucible), exhaust the inside of the vacuum vessel to about 10-4 Pa with a vacuum pump, and then heat the crucible (two or more types).
  • constituent materials of the light emitting layer 5 the above-mentioned light emitting material, charge transporting compound, etc.
  • each crucible When materials are used, each crucible is usually heated), and the material in the crucible is evaporated while controlling the amount of evaporation (when two or more kinds of materials are used, the amount of evaporation is usually controlled independently. Evaporate) to form a light emitting layer 5 on the hole injection layer 3 or the hole transport layer 4 placed facing the crucible.
  • a mixture thereof can be put in a crucible and heated and evaporated to form a light emitting layer 5.
  • the degree of vacuum at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ 10 -6 Torr (0.13 ⁇ 10 -4 Pa) or more, 9.0 ⁇ 10 -6 Torr ( It is 12.0 ⁇ 10 -4 Pa) or less.
  • the vapor deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ / sec or more and 5.0 ⁇ / sec or less.
  • the film formation temperature at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is preferably 10 ° C. or higher and 50 ° C. or lower.
  • a hole blocking layer 6 may be provided between the light emitting layer 5 and the electron injection layer 8 described later.
  • the hole blocking layer 6 is a layer laminated on the light emitting layer 5 so as to be in contact with the interface of the light emitting layer 5 on the cathode 9 side.
  • the hole blocking layer 6 has a role of blocking holes moving from the anode 2 from reaching the cathode 9 and a role of efficiently transporting electrons injected from the cathode 9 toward the light emitting layer 5.
  • the physical properties required for the material constituting the hole blocking layer 6 are high electron mobility and low hole mobility, a large energy gap (difference between HOMO and LUMO), and an excited triplet level (T1). Is high.
  • Examples of the material of the hole blocking layer 6 satisfying such conditions include bis (2-methyl-8-quinolinolato) (phenolato) aluminum and bis (2-methyl-8-quinolinolato) (triphenylsilanorat) aluminum.
  • Mixed ligand complexes such as bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8-quinolinolato) aluminum dinuclear metal complexes and other metal complexes, distyrylbiphenyl derivatives, etc.
  • Triazole derivatives such as styryl compounds (Japanese Patent Laid-Open No.
  • the hole blocking layer 6 There is no limitation on the method of forming the hole blocking layer 6, and the hole blocking layer 6 can be formed in the same manner as the above-mentioned method of forming the light emitting layer 5.
  • the film thickness of the hole blocking layer 6 is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
  • the electron transport layer 7 is provided between the light emitting layer 5 or the hole element layer 6 and the electron injection layer 8 for the purpose of further improving the current efficiency of the element.
  • the electron transport layer 7 is formed of a compound capable of efficiently transporting electrons injected from the cathode 9 in the direction of the light emitting layer 5 between the electrodes to which an electric field is applied.
  • the electron-transporting compound used in the electron-transporting layer 7 the electron-injecting efficiency from the cathode 9 or the electron-injecting layer 8 is high, and the injected electrons can be efficiently transported with high electron mobility. It needs to be a compound.
  • Examples of the electron-transporting compound satisfying such conditions include a metal complex such as an aluminum complex of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), a metal complex of 10-hydroxybenzo [h] quinoline, and an oxa.
  • a metal complex such as an aluminum complex of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), a metal complex of 10-hydroxybenzo [h] quinoline, and an oxa.
  • the film thickness of the electron transport layer 7 is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the electron transport layer 7 is formed by laminating on the light emitting layer 5 or the hole blocking layer 6 by a wet film forming method or a vacuum vapor deposition method in the same manner as the light emitting layer 5. Usually, a vacuum deposition method is used.
  • the electron injection layer 8 plays a role of efficiently injecting the electrons injected from the cathode 9 into the electron transport layer 7 or the light emitting layer 5.
  • the material forming the electron injection layer 8 is preferably a metal having a low work function.
  • alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and the like are used.
  • the film thickness of the electron injection layer 8 is preferably 0.1 to 5 nm.
  • An ultra-thin insulating film such as LiF, MgF 2 , Li 2 O, Cs 2 CO 3 is inserted as an electron injection layer 8 at the interface between the cathode 9 and the electron transport layer 7. Also, it is an effective method for improving the efficiency of the device (Appl. Phys. Lett., Vol. 70, p. 152, 1997; JP-A-10-74586; IEEE Trans. Electron. Devices, Vol. 44, p. 1245, 1997; SID 04 Digest, p. 154).
  • an organic electron transport material typified by a nitrogen-containing heterocyclic compound such as basophenanthroline or a metal complex such as an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium, or rubidium ().
  • an alkali metal such as sodium, potassium, cesium, lithium, or rubidium ().
  • the film thickness is usually 5 nm or more, preferably 10 nm or more, usually 200 nm or less, preferably 100 nm or less.
  • the electron injection layer 8 is formed by laminating on the light emitting layer 5 or the hole blocking layer 6 or the electron transport layer 7 on the light emitting layer 5 by a wet film forming method or a vacuum vapor deposition method in the same manner as the light emitting layer 5.
  • the details of the wet film forming method are the same as those of the light emitting layer 5 described above.
  • the cathode 9 plays a role of injecting electrons into a layer on the light emitting layer 5 side (electron injection layer 8 or light emitting layer 5 or the like).
  • the material used for the anode 2 can be used.
  • a metal having a low work function As the material of the cathode 9, for example, a metal such as tin, magnesium, indium, calcium, aluminum, silver or an alloy thereof or an alloy thereof is used.
  • Examples of the material of the cathode 9 include alloy electrodes having a low work function such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • a metal layer having a high work function and stable with respect to the atmosphere on the cathode 9 to protect the cathode 9 made of a metal having a low work function.
  • the metal to be laminated include metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum.
  • the film thickness of the cathode is usually the same as that of the anode 2.
  • the electron blocking layer prevents electrons moving from the light emitting layer 5 from reaching the hole transporting layer 4, thereby increasing the recombination probability with holes in the light emitting layer 5 and producing excitons. It has a role of confining the holes in the light emitting layer 5 and a role of efficiently transporting the holes injected from the hole transport layer 4 in the direction of the light emitting layer 5.
  • the characteristics required for the electron blocking layer include high hole transportability, a large energy gap (difference between HOMO and LUMO), and a high excited triplet level (T1).
  • the electron blocking layer is also formed by the wet film forming method because the device can be easily manufactured. Therefore, it is preferable that the electron blocking layer also has wet film formation compatibility, and the material used for such an electron blocking layer is a copolymer of dioctylfluorene and triphenylamine represented by F8-TFB (international). Publication No. 2004/084260) and the like.
  • the present invention can be applied to any of a single element, an element having an array-arranged structure, and a structure in which an anode and a cathode are arranged in an XY matrix.
  • the display device and the lighting device of the present invention use the organic electroluminescent element of the present invention as described above.
  • the type and structure of the display device and the lighting device of the present invention are not particularly limited, and can be assembled according to a conventional method using the organic electroluminescent element of the present invention.
  • the display device of the present invention is formed by a method as described in "Organic EL Display” (Ohmsha, published on August 20, 2004, by Shizushi Tokito, Chihaya Adachi, Hideyuki Murata). be able to.
  • Example 1 An organic electroluminescent device was produced by the following method.
  • ITO indium tin oxide
  • An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate to a thickness of 50 nm was patterned into a 2 mm wide stripe using ordinary photolithography technology and hydrochloric acid etching to form an anode.
  • the substrate on which the ITO pattern is formed is washed in the order of ultrasonic cleaning with an aqueous surfactant solution, water washing with ultrapure water, ultrasonic cleaning with ultrapure water, and water washing with ultrapure water, and then dried with compressed air, and finally. Ultrasonic cleaning was performed.
  • a hole-transporting polymer compound represented by the following formula (P-1) at a concentration of 3.0% by mass is a compound represented by the following formula (HI-1).
  • This composition for forming a hole injection layer is spin-coated on the substrate in the atmosphere and dried in the air at 240 ° C. for 30 minutes on a hot plate to form a uniform thin film having a film thickness of 40 nm. It was used as an injection layer.
  • a composition for forming a hole transport layer prepared by dissolving 3% by mass of a charge transport polymer compound represented by the following structural formula (HT-1) in cyclohexylbenzene was applied to the hole injection layer.
  • the formed substrate was spin-coated in a nitrogen glove box and dried on a hot plate in the nitrogen glove box at 230 ° C. for 30 minutes to form a uniform thin film having a film thickness of 43 nm to form a hole transport layer.
  • This composition for forming a light emitting layer is spin-coated on a substrate on which the hole transport layer is formed in a nitrogen glove box, dried on a hot plate in the nitrogen glove box at 120 ° C. for 20 minutes, and has a film thickness of 70 nm. A uniform thin film was formed to form a light emitting layer.
  • the substrate on which the light emitting layer was formed was installed in a vacuum vapor deposition apparatus, and the inside of the apparatus was exhausted until it became 2 ⁇ 10 -4 Pa or less.
  • the compound represented by the following structural formula (HB-1) and 8-hydroxyquinolinola tritium were coexisted on the light emitting layer at a film thickness ratio of 2: 3 by a vacuum deposition method at a rate of 1 ⁇ / sec. It was vapor-deposited to form a hole blocking layer having a film thickness of 30 nm.
  • a striped shadow mask having a width of 2 mm was placed in close contact with the substrate so as to be orthogonal to the ITO stripe of the anode as a mask for cathode vapor deposition, and installed in another vacuum vapor deposition apparatus.
  • aluminum was molybdenum.
  • an aluminum layer having a thickness of 80 nm was formed at a vapor deposition rate of 1 to 8.6 ⁇ / sec to form a cathode.
  • a glass cap on which a moisture getter sheet was installed was installed so as to cover the vapor-deposited portion, and the periphery of the vapor-deposited portion and the glass cap were adhered with a UV curable resin and sealed.
  • an organic electroluminescent device having a light emitting area portion having a size of 2 mm ⁇ 2 mm was obtained.
  • the device was manufactured in the same manner.
  • the device was manufactured in the same manner.
  • the structural formula of (H-3) is shown below.
  • the external quantum efficiency (referred to as EQE) when the organic electroluminescent devices manufactured in Examples 1 to 3 and Comparative Example 1 were made to emit light at a brightness of 1000 cd / m 2 was obtained, and the EQE of Comparative Example 1 was set to 100.
  • the relative value was defined as relative EQE.
  • Table 1 As shown in Table 1, it was found that the organic electroluminescent device of the present invention has higher luminous efficiency and lower voltage than the organic electroluminescent device of the comparative example.
  • the device was manufactured in the same manner.
  • the device was manufactured in the same manner.
  • the relative value of the EQE of each element at that time was obtained and used as the relative EQE.
  • the relative value of the LT95 of each element when the LT95 (hr) of Comparative Example 2 was set to 100 was obtained and used as the relative drive life.
  • Example 9 The element was manufactured in the same manner as in Example 1.
  • the relative value of the LT95 of each element when the LT95 (hr) of Comparative Example 2 was set to 100 was obtained and used as the relative drive life.
  • Table 3 As shown in Table 3, it can be seen that the element of the present invention has a low voltage, a high luminous efficiency (EQE), and a high drive durability.
  • the element of Comparative Example 9 in which the polymer compound contained in the light emitting layer did not contain the structure represented by the formula (2) of the present invention had a high voltage and a low luminous efficiency.

Abstract

下記式(1)で表される化合物と、下記式(2)で表される構造を含む繰り返し単位を有する高分子化合物と、下記式(3)で表される化合物、及び、溶媒を含む有機電界発光素子用組成物。この有機電界発光素子組成物を用いて形成された発光層を有する有機電界発光素子。

Description

有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
 本発明は有機電界発光素子(以下、「有機EL素子」と称す場合がある。)の発光層を形成するために有用な有機電界発光素子用組成物に関する。本発明はまた、該有機電界発光素子用組成物を用いて形成された発光層を有する有機電界発光素子及びその製造方法と、該有機電界発光素子を有する表示装置及び照明装置に関する。
 有機EL照明や有機ELディスプレイなど、有機EL素子を利用した各種電子デバイスが実用化されている。有機電界発光素子は、印加電圧が低いため消費電力が小さく、三原色発光も可能であるため、大型のディスプレイモニターだけではなく、携帯電話やスマートフォンに代表される中小型ディスプレイへの応用が始まっている。
 有機電界発光素子は発光層や電荷注入層、電荷輸送層など複数の層を積層することにより製造される。現在、有機電界発光素子の多くは、有機材料を真空下で蒸着することにより製造されている。
 真空蒸着法では、蒸着プロセスが煩雑となり、生産性に劣る。
 真空蒸着法で製造された有機電界発光素子では照明やディスプレイのパネルの大型化が極めて難しい。
 近年、大型のディスプレイや照明に用いることのできる有機電界発光素子を効率よく製造するプロセスとして、湿式成膜法(塗布法)が研究されている。湿式成膜法は、真空蒸着法に比べて安定した層を容易に形成できる利点があるため、ディスプレイや照明装置の量産化や大型デバイスへの適用が期待されている。
 有機電界発光素子を湿式成膜法で製造するためには、使用される材料はすべて有機溶媒に溶解してインクとして使用できるものである必要がある。使用材料が溶解性に劣ると、長時間加熱するなどの操作を要するため、使用前に材料が劣化してしまう可能性がある。さらに、溶液状態で長時間均一状態を保持することができないと、溶液から材料の析出が起こり、インクジェット装置などによる成膜が不可能となる。湿式成膜法に使用される材料には、有機溶媒に速やかに溶解することと、溶解した後析出せず均一状態を保持する、という2つの意味での溶解性が求められる。
 近年、発光ドーパントとして広く用いられているイリジウムを中心金属とした有機金属錯体構造に特定の置換基を導入して、有機溶媒への溶解性を向上させた化合物と、フルオレン構造を含む高分子化合物を含むインクを用い、有機電界発光素子の発光効率を高めたり、駆動電圧を低めたりして、有機電界発光素子の性能を改善しようとする試みがなされている(例えば、特許文献1及び2)。
 湿式成膜法の真空蒸着法に対する別の利点として、1つの層により多くの材料種を使用することができる点が挙げられる。真空蒸着法では材料種が増加すると蒸着速度を一定にコントロールすることが困難になる。一方、湿式成膜法では材料種が増加しても各材料が有機溶媒に溶解しさえすれば、一定の成分比のインクを調製して層形成が可能である。
 近年、発光層を形成するためのインクに含まれる複数の成分の一つとして、電子輸送を担う目的でトリアジン環またはピリミジン環を含む特定の化合物を用いることが試みられている(例えば、特許文献3及び4)。
国際公開第2017/154884号 特開2018-83941号公報 国際公開第2014/024889号 国際公開第2017/178311号
 しかしながら、前述の先行技術では、特定の置換基の導入で発光ドーパントの溶解性が向上し、インクの安定性は向上しているものの、当該特定の置換基の導入によって発光材料の電子輸送性が低下している。このため、ディスプレイや照明用途に対して、有機電界発光素子の性能の点で十分とは言えず、さらなる駆動電圧の低減、発光効率及び駆動寿命の改善が求められていた。
 本発明は、湿式成膜法により、従来よりも駆動電圧が低く、発光効率が高く、駆動寿命の長い有機電界発光素子を作成することができる有機電界発光素子用組成物を提供することを課題とする。
 本発明者は、1つの層により多くの材料種を使用することができる湿式成膜法の利点を生かすべく、上記課題に鑑み鋭意検討した。その結果、発光ドーパントとして、特定の置換基を導入した有機溶媒への溶解性が高いイリジウム錯体を用い、ホスト材料として、フルオレン構造を含む高分子に加えて、電子輸送を担うトリアジン環またはピリミジン環を含む特定の化合物を用い、これらを溶媒に溶解させた有機電界発光素子用組成物とし、これを用いて有機電界発光素子を作成することで、有機電界発光素子の性能が向上することを見出した。
 本発明の有機電界発光素子用組成物は、発光ドーパントとして特定の置換基を導入した有機溶媒への溶解性が高いイリジウム錯体を用いるため、発光材料の析出が起こりにくく保存安定性に優れる。また、電子輸送を担うトリアジン環またはピリミジン環を含む特定の化合物を含むため、従来よりも発光層における電子輸送能が向上し、駆動電圧が低く、発光効率が高く、駆動寿命の長い有機電界発光素子の作成が可能である。
 本発明の要旨は、以下の通りである。
[1] 下記式(1)で表される化合物と、
 下記式(2)で表される構造を含む繰り返し単位を有する高分子化合物と、
 下記式(3)で表される化合物、及び、溶媒を含む有機電界発光素子用組成物。
Figure JPOXMLDOC01-appb-C000007
[式(1)中、R、Rは、それぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~30の(ヘテロ)アリール基のうちのいずれか、あるいはこれらの組み合わせである。これらの基はさらに置換基を有していても良い。R、Rが複数存在する場合、複数のR、Rは同一でも良く、異なっていても良い。ベンゼン環に結合する隣り合うRまたはRは、互いに結合して当該ベンゼン環に縮合する環を形成していても良い。
 aは0~4の整数である。bは0~3の整数である。
 mは1~20の整数である。
 nは0~2の整数である。
 環Aは、ピリジン環、ピラジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、カルボリン環のいずれかである。
 環Aは、置換基を有していても良い。該置換基は、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基のうちのいずれか、あるいはこれらの組み合わせである。環Aに結合する隣り合う置換基どうしが結合して環Aに縮合する環を形成しても良い。
 Zは、直接結合またはm+1価の芳香族連結基を表す。
 Lは補助配位子を表す。lは1~3の整数である。補助配位子が複数ある場合は、それぞれ異なっていても良く、同一であっても良い。]
Figure JPOXMLDOC01-appb-C000008
[式(2)中、R、Rはそれぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~30の(ヘテロ)アリール基のうちのいずれか、あるいはこれらの組み合わせである。これらの基はさらに置換基を有していても良い。]
Figure JPOXMLDOC01-appb-C000009
[式(3)中、XはCまたはNを表す。
 R~Rはそれぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~30の(ヘテロ)アリール基のうちのいずれか、あるいはこれらの組み合わせである。これらの基はさらに置換基を有していても良い。Rが複数存在する場合、複数のRは同一でも良く、異なっていても良い。ベンゼン環に結合する隣り合うRは、互いに結合して当該ベンゼン環に縮合する環を形成していても良い。
 cは0~5の整数である。
 ただし、cが0の場合、RとRは同時に無置換フェニル基ではない。]
[2] 前記式(1)中のZが直接結合である、[1]に記載の有機電界発光素子用組成物。
[3] 前記式(1)で表される化合物が下記式(1-1)で表される化合物である、[1]に記載の有機電界発光素子用組成物。
Figure JPOXMLDOC01-appb-C000010
[式(1-1)中、
 3つのXは、同時にCまたはNを表す。
 Zは、直接結合またはp+1価の芳香族連結基を表す。
 Zは、直接結合またはq+1価の芳香族連結基を表す。
 p、qは1~10の整数である。
 R、R、a、b、n、m、環A、L、lは、式(1)におけるR、R、a、b、m、n、環A、L、lと同義である。]
[4] 前記式(1)で表される化合物が、式(1-2)で表される化合物である[1]または[2]に記載の有機電界発光素子用組成物。
Figure JPOXMLDOC01-appb-C000011
[式(1-2)中、R、a、m、n、環A、Z、L、lは、式(1)におけるR、a、m、n、環A、Z、L、lと同義である。
 R15~R17は置換基である。]
[5] 前記式(1)中のlが3である、[1]~[4]のいずれかに記載の有機電界発光素子用組成物。
[6] 前記式(2)で表される構造を含む繰り返し単位を有する高分子化合物が、下記式(2-1)で表される繰返し単位を含む、[1]~[5]のいずれかに記載の有機電界発光素子用組成物。
Figure JPOXMLDOC01-appb-C000012
[式(2-1)中、Ar21~Ar23は、それぞれ独立して、置換基を有していても良い、炭素数3~30の2価の(ヘテロ)アリーレン基を表す。
 Ar24、Ar25は、それぞれ独立して、置換基を有していてもよい炭素数3~30の(ヘテロ)アリール基を表す。
 rは0~2の整数を表す。]
[7] 前記式(3)で表される化合物において、[フェニレン-(R)c]、R及びRの3つの部分構造が、当該部分構造が置換基を有する場合はその置換基も含めて、同一の構造ではない、[1]~[6]のいずれかに記載の有機電界発光素子用組成物。
[8] 前記式(3)で表される化合物におけるR~Rの末端がそれぞれ独立して、フェニル基、ナフチル基、フルオレニル基、カルバゾリル基、インドロカルバゾリル基、インデノカルバゾリル基、又はインデノフルオレニル基を含む、[1]~[7]のいずれかに記載の有機電界発光素子用組成物。
[9] [1]~[8]のいずれかに記載の有機電界発光素子組成物を用いて湿式成膜法により発光層を形成する工程を含む、有機電界発光素子の製造方法。
[10] [1]~[8]のいずれかに記載の有機電界発光素子組成物を用いて形成された発光層を有する有機電界発光素子。
[11] [10]に記載の有機電界発光素子を有する表示装置。
[12] [10]に記載の有機電界発光素子を有する照明装置。
 本発明により、湿式成膜法によって、従来よりも駆動電圧が低く、発光効率が高く、かつ駆動寿命の長い有機電界発光素子を提供することができる。
図1は、本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。
 以下に、本発明の実施の形態を詳細に説明する。本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。
 本明細書において(ヘテロ)アラルキル基、(ヘテロ)アリールオキシ基、(ヘテロ)アリール基とは、それぞれヘテロ原子を含んでいてもよいアラルキル基、ヘテロ原子を含んでいてもよいアリールオキシ基、ヘテロ原子を含んでいてもよいアリール基を表す。「ヘテロ原子を含んでいてもよい」とは、アリール基、アラルキル基又はアリールオキシ基の主骨格を形成する炭素原子のうち1又は2以上の炭素原子がヘテロ原子に置換されていることを表す。ヘテロ原子としては窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子等が挙げられる。中でも耐久性の観点から窒素原子が好ましい。(ヘテロ)アリーレン基についても同様である。
 本明細書において、「芳香族連結基」とは、芳香族炭化水素連結基、即ち、芳香族炭化水素環を有する連結基のみならず、複素芳香族連結基、即ち、複素芳香族環を有する連結基を含む広義の芳香族連結基を表す。
[発光ドーパント]
 本発明の有機電界発光素子用組成物は、下記式(1)で表される化合物を発光ドーパントとして含む。
Figure JPOXMLDOC01-appb-C000013
[式(1)中、R、Rは、それぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~30の(ヘテロ)アリール基のうちのいずれか、あるいはこれらの組み合わせである。これらの基はさらに置換基を有していても良い。R、Rが複数存在する場合、複数のR、Rは同一でも良く、異なっていても良い。ベンゼン環に結合する隣り合うRまたはRは、互いに結合して当該ベンゼン環に縮合する環を形成していても良い。
 aは0~4の整数である。bは0~3の整数である。
 mは1~20の整数である。
 nは0~2の整数である。
 環Aは、ピリジン環、ピラジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、カルボリン環のいずれかである。
 環Aは、置換基を有していても良い。該置換基は、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、炭素数3~20の(ヘテロ)アリール基のいずれか、またはこれらの組み合わせである。環Aに結合する隣り合う置換基どうしが結合して環Aに縮合する環を形成しても良い。
 Zは、直接結合またはm+1価の芳香族連結基を表す。
 Lは補助配位子を表す。lは1~3の整数である。補助配位子が複数ある場合は、それぞれ異なっていても良く、同一であっても良い。]
 式(1)において、R、Rは、耐久性の点から、それぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基であることが好ましく、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、または炭素数3~20の(ヘテロ)アリール基であることがより好ましい。
 隣接する2つのRは、互いに連結して環を形成してもよい。
 aは製造が容易な点で0であることが好ましく、溶解性が高められる点で1又は2であることが好ましく、1であることがさらに好ましい。
 bは製造が容易な点で0であることが好ましく、耐久性及び溶解性が高められる点で1又は2であることが好ましく、1であることがさらに好ましい。
 隣接する2つのRが互いに連結して環を形成する場合、bは2又は3であることが好ましい。
 末端にt-ブチル基を有するフェニル基が有機溶媒への溶解性を高めるため、mは2以上であることが好ましい。末端にt-ブチル基を有するフェニル基は電荷輸送や発光への関与が小さいため、多すぎると、駆動電圧が高くなったり、発光効率が低くなったりする懸念がある。このため、mは8以下であることが好ましく、4以下であることがさらに好ましい。
 式(1)で表される化合物は、このような末端t-ブチル基を、化合物全体として4以上、特に6以上で、48以下、特に24以下有することが、溶解性と低駆動電圧、高い発光効率との両立の面で好ましい。
 nは製造が容易な点で0または1が好ましい。駆動電圧が高くなる懸念が小さい点で、nは0であることが好ましい。溶解性が高められる点でnは1または2であることが好ましい。
 環Aは、耐久性の点から、ピリジン環、ピリミジン環、イミダゾール環であることが好ましく、ピリジン環であることがさらに好ましい。
 環A上の水素原子は、耐久性の点及び溶解性が高められる点で、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数3~20の(ヘテロ)アリール基で置換されていることが好ましい。
 環A上の水素原子は、置換されていないことが製造が容易な点で好ましい。
 環A上の水素原子は、置換基を有しても良いフェニル基又はナフチル基で置換されていることが、有機電界発光素子に用いられたときに励起子が生成しやすくなるため、発光効率が高められる点で好ましい。
 環Aは、環A上の置換基が互いに結合して環Aに縮合する縮合環を形成することで、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、カルボリン環を形成することが、発光波長が長くなるため、赤色発光の用途で有用である。中でも、耐久性の点及び赤色発光を示す点で、環Aはキノリン環、イソキノリン環、キナゾリン環を形成したものが好ましい。
 Zは、製造が容易な点で、直接結合であることが好ましい。
 Zは、駆動電圧が高くなる懸念が小さい点で、m+1価の芳香族連結基であることが好ましい。
 mが1である場合、Zは、耐久性の点で、フェニレン基、ビフェニレン基、テルフェニレン基、フルオレンジイル基が好ましく、特に、p-フェニレン基が好ましい。
 mが2以上である場合、Zは、耐久性の点で、1,3,5-位が結合位置であるベンゼン環又は2,4,6-位が結合位置であるトリアジン環を含むことが好ましい。
 Zは、下記式(1-2A)又は(1-2B)で表される3価の基を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(1-2A)又は(1-2B)で表される基はイリジウムに結合するベンゼン環または環Aに結合することが、さらに好ましい。
 この場合、式(1)で表される化合物は、下記式(1-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
[式(1-1)中、
 3つのXは、同時にCまたはNを表す。
 Zは、直接結合またはp+1価の芳香族連結基を表す。
 Zは、直接結合またはq+1価の芳香族連結基を表す。
 p、qは1~10の整数である。
 R、R、a、b、n、m、環A、L、lは、式(1)におけるR、R、a、b、m、n、環A、L、lと同義である。]
 上記式(1-1)中、Z、Zは、製造が容易な点で、直接結合であることが好ましい。
 Z及びZは、駆動電圧が高くなる懸念が小さい点で、p+1価及びq+1価の芳香族連結基であることが好ましい。この場合、例えば、p及びqが1である場合、Z及びZは、耐久性の点で、フェニレン基、ビフェニレン基、テルフェニレン基、フルオレンジイル基が好ましく、特に、p-フェニレン基が好ましい。
 pが2以上である場合のZ及びqが2以上である場合のZは、耐久性の点で、1,3,5-位が結合位置であるベンゼン環又は2,4,6-位が結合位置であるトリアジン環を含むことが好ましい。すなわち、Z及びZは、下記式(1-2A)又は(1-2B)で表される3価の基を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000016
 Lは補助配位子である。特に制限は無いが、Lは好ましくは1価の2座配位子であり、より好ましくは下記式(1A),(1B),(1C)で表される配位子の中から選ばれる。
 下記式(1A)~(1C)中の破線は配位結合を表す。
 lが1で2つの補助配位子Lが存在する場合は、補助配位子Lは互いに同一であっても良く、異なる構造であっても良い。
 lが3のときは、Lは存在しない。
Figure JPOXMLDOC01-appb-C000017
                                                  
 上記式(1A),(1B)中、R、R10は、前記R、Rと同様の群から選択され、好ましい例も同様である。
 gは0~4の整数である。hは0~4の整数である。g、hは製造が容易な点で0であることが好ましく、溶解性が高められる点で1又は2であることが好ましく、1であることがさらに好ましい。
 環Bは、ピリジン環、ピリミジン環、イミダゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、カルボリン環、ベンゾチアゾール環、ベンゾオキサゾール環のいずれかであり、これらは置換基を有していてもよい。
 環Bは、耐久性の点から、ピリジン環、ピリミジン環、イミダゾール環であることが好ましく、ピリジン環であることがさらに好ましい。
 環B上の水素原子は、耐久性の点及び溶解性が高められる点で、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数3~20の(ヘテロ)アリール基で置換されていることが好ましい。
 環B上の水素原子は、置換されていないことが製造容易な点で好ましい。
 環B上の水素原子は、置換基を有しても良いフェニル基又はナフチル基で置換されていることが、有機電界発光素子に用いられたときに励起子が生成しやすくなるため、発光効率が高められる点で好ましい。
 環Bは、環B上の置換基が互いに結合して環Bに縮合する縮合環を形成することで、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、カルボリン環を形成することが、アシストドーパント上で励起子が生成しやすくなるため、発光効率が高められる点で好ましい。中でも、耐久性の点及び赤色発光を示す点で、環Bはキノリン環、イソキノリン環、キナゾリン環を形成したものが好ましい。
 式(1C)中、R11~R13はそれぞれ独立に、水素原子、フッ素原子で置換されていても良い炭素数1~20のアルキル基、炭素数1~20のアルキル基で置換されていても良いフェニル基またはハロゲン原子を表す。より好ましくは、R11とR13がメチル基またはt-ブチル基であり、R12は、水素原子、炭素数1~20のアルキル基またはフェニル基である。
 式(1)で表される化合物は、隣接するRどうしが結合してフルオレン環を形成した、下記式(1-2)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000018
[式(1-2)中、R、a、m、n、環A、Z、L、lは、式(1)におけるR、a、m、n、環A、Z、L、lと同義である。
 R15~R17は置換基である。]
 R15としては前記Rが有してもよい置換基が挙げられる。より好ましくは、R15は炭素数1~20のアルキル基、1つ又は2つの炭素数1~20のアルキル基で置換されていても良い炭素数6~30の芳香族炭化水素基である。ここで、炭素数6~30の芳香族炭化水素基とは、単環、2環縮合環、若しくは3環縮合環、または単環、2環縮合環、若しくは3環縮合環が複数連結した基である。R15はさらに好ましくは炭素数1~20のアルキル基であり、特に好ましくは炭素数1~8のアルキル基である。
 R16、R17は前記Rの一部または前記Rが有してもよい置換基であり、好ましくはそれぞれ独立して、炭素数1~12のアルキル基、1つ又は2つの炭素数1~12のアルキル基で置換されていても良い炭素数6~20の芳香族炭化水素基、炭素数1~12のアルコキシ基、又は、1つ又は2つの炭素数1~12のアルコキシ基で置換されていても良い炭素数6~20の芳香族炭化水素基である。ここで、炭素数6~20の芳香族炭化水素基とは、単環、2環縮合環、若しくは3環縮合環、または単環、2環縮合環、若しくは3環縮合環が複数連結した基である。R16、R17はさらに好ましくはそれぞれ独立して、炭素数1~8のアルキル基、又は、1つ又は2つの炭素数1~8のアルキル基で置換されていてもよい炭素数6又は12の芳香族炭化水素基であり、特に好ましくは、炭素数1~8のアルキル基、又は、1つ又は2つの炭素数1~8のアルキル基で置換されていてもよい炭素数6の芳香族炭化水素基である。ここで、炭素数6の芳香族炭化水素構造はベンゼン構造であり、炭素数12の芳香族炭化水素構造はビフェニル構造である。
 以下に、本発明の有機電界発光素子用組成物に含まれる発光ドーパントである式(1)で表される化合物の好ましい具体例を示す。本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
[高分子化合物]
 本発明の有機電界発光素子用組成物は、下記式(2)で表される構造を含む繰り返し単位(以下、「繰り返し単位(2)」と称す場合がある。)を有する高分子化合物を含む。
Figure JPOXMLDOC01-appb-C000022
[式(2)中、R、Rはそれぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~30の(ヘテロ)アリール基のうちのいずれか、あるいはこれらの組み合わせである。これらの基はさらに置換基を有していても良い。]
 式(2)中、R、Rは、溶解性の点から、それぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基が好ましい。R、Rはそれぞれ独立して、耐熱性の点で炭素数3~30の(ヘテロ)アリール基が好ましい。
 本発明の有機電界発光素子用組成物に含まれる高分子化合物には、電荷輸送性が高められる点で、繰り返し単位(2)の他に、下記式(2-1)で表される構造を含む繰り返し単位(以下、「繰り返し単位(2-1)」と称す場合がある。)を含むことが好ましい。この場合、繰り返し単位(2)は下記繰り返し単位(2-1)に含まれるものであってもよい。
Figure JPOXMLDOC01-appb-C000023
[式(2-1)中、Ar21~Ar23は、それぞれ独立して、置換基を有していても良い、炭素数3~30の2価の(ヘテロ)アリーレン基を表す。
 Ar24、Ar25は、それぞれ独立して、置換基を有していてもよい炭素数3~30の(ヘテロ)アリール基を表す。
 rは0~2の整数を表す。]
 Ar21~Ar23は、耐久性の点で、それぞれ独立して、フェニレン基、ビフェニレン基、テルフェニレン基、フルオレンジイル基、またはこれらの基を任意に選択して連結した炭素数30以下の2価の基が好ましく、特にp-フェニレン基、ビフェニレン基が好ましい。これらの基は置換基を有していてもよい。
 式(2-1)が式(2)で表される構造を含む場合、Ar21、Ar22、またはrが1以上の場合は少なくとも一つのAr23、から選択される少なくとも一つが、式(2)で表される、9,9’位に置換基を有していてもよいフルオレニル基である。
 Ar24、Ar25は、耐久性の点で、それぞれ独立して、フェニル基、ビフェニル基、テルフェニル基、フルオレニル基が好ましく、特にフェニル基、フルオレニル基が好ましい。これらの基は置換基を有していてもよい。
 本発明の有機電界発光素子用組成物に含まれる高分子化合物は、繰り返し単位(2)の1種のみを含むものであってもよく、2種以上を含むものであってもよい。また、繰り返し単位(2-1)の1種のみを含むものであってもよく、2種以上を含むものであってもよい。
 本発明の有機電界発光素子用組成物に含まれる高分子化合物の重量平均分子量(Mw)は、通常2,000,000以下、好ましくは500,000以下、より好ましくは100,000以下、さらに好ましくは50,000以下であり、通常2,500以上、好ましくは5,000以上、より好ましくは10,000以上、さらに好ましくは20,000以上である。
 重量平均分子量が上記上限値以下であれば、溶媒に対する溶解性に優れ、成膜性にも優れる。重量平均分子量が上記下限値以上であれば、高分子化合物のガラス転移温度、融点及び気化温度が高く、耐熱性に優れる。
 本発明の有機電界発光素子用組成物に含まれる高分子化合物の数平均分子量(Mn)は、通常1,000,000以下、好ましくは250,000以下、より好ましくは50,000以下、さらに好ましくは25,000以下であり、通常2,000以上、好ましくは4,000以上、より好ましくは8,000以上、さらに好ましくは15,000以上である。
 本発明の有機電界発光素子用組成物に含まれる高分子化合物の分散度(Mw/Mn)は、好ましくは3.5以下であり、さらに好ましくは2.5以下、特に好ましくは2.0以下である。分散度は値が小さい程よいため、下限値は理想的には1である。該高分子化合物の分散度が、上記上限値以下であると、精製が容易で、かつ溶媒に対する溶解性や電荷輸送能が良好である。
 通常、高分子化合物の重量平均分子量はSEC(サイズ排除クロマトグラフィー)測定により決定される。SEC測定では高分子量成分ほど溶出時間が短く、低分子量成分ほど溶出時間が長くなる。分子量既知のポリスチレン(標準試料)の溶出時間から算出した校正曲線を用いて、サンプルの溶出時間を分子量に換算することによって、重量平均分子量が算出される。数平均分子量についても同様に求められる。
 本発明の有機電界発光素子用組成物に含まれる高分子化合物の製造方法は特には制限されず、繰り返し単位(2)を有する高分子化合物が得られる限り任意である。例えば、Suzuki反応による重合方法、Grignard反応による重合方法、Yamamoto反応による重合方法、Ullmann反応による重合方法、Buchwald-Hartwig反応による重合方法等などによって製造できる。
 以下に、実施例に示した以外の本発明の有機電界発光素子用組成物に含まれる繰り返し単位(2)を有する高分子化合物の繰り返し単位及びその組み合わせの好ましい具体例を示す。本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000024
[電荷輸送性材料]
 本発明の有機電界発光素子用組成物は、電荷輸送性材料として、下記式(3)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000025
[式(3)中、XはCまたはNを表す。
 R~Rはそれぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~30の(ヘテロ)アリール基のうちのいずれか、あるいはこれらの組み合わせである。これらの基はさらに置換基を有していても良い。Rが複数存在する場合、複数のRは同一でも良く、異なっていても良い。ベンゼン環に結合する隣り合うRは、互いに結合して当該ベンゼン環に縮合する環を形成していても良い。
 cは0~5の整数である。
 ただし、cが0の場合、RとRは同時に無置換フェニル基ではない。]
 式(3)中、R~Rは、耐久性の点から、それぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基であることが好ましく、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基または炭素数3~20の(ヘテロ)アリール基であることがより好ましく、炭素数6~20のアリール基であることがさらに好ましい。
 電荷輸送性の点では、R~Rは、それぞれ独立して、炭素数3~20の(ヘテロ)アリール基であることが好ましい。炭素数3~20の(ヘテロ)アリール基とは、単環又は縮合環のアリール基、単環又は縮合環のヘテロアリール基、単環又は縮合環のアリール基が複数連結した構造、単環又は縮合環のヘテロアリール基が複数連結した構造、及び、単環又は縮合環のアリール基若しくは単環又は縮合環のヘテロアリール基が任意に複数連結した構造を含む。さらに好ましくは、R~Rは、それぞれ独立して、フェニル基、ナフチル基、フルオレニル基、カルバゾリル基、インドロカルバゾリル基、インデノカルバゾリル基、インデノフルオレニル基から選ばれる基、または、フェニル基、ナフチル基、フルオレニル基、カルバゾリル基から選ばれる基を任意に複数連結した炭素数3~20の基である。特に好ましくは、インドロカルバゾリル基、インデノカルバゾリル基、インデノフルオレニル基、フェニル基またはフェニル基が2または3連結した基である。これらの基はさらに置換基を有していても良い。
 電荷輸送性、素子の発光効率、及び素子の駆動寿命の点から、R~Rの末端は、それぞれ独立して、フェニル基、ナフチル基、フルオレニル基、カルバゾリル基、インドロカルバゾリル基、インデノカルバゾリル基、又はインデノフルオレニル基を含むことがさらに好ましく、これらの基が存在する場合、下記(i)の態様が好ましく、下記(ii)の態様より好ましく、下記(iii)の態様がさらに好ましい。
(i) cが1以上の場合の1つまたは複数のR、R、及びRの内、少なくとも一つが末端にカルバゾリル基、インドロカルバゾリル基、インデノカルバゾリル基、又はインデノフルオレニル基を含む。
(ii) cが1以上の場合の1つまたは複数のR、R、及びRの内、1つまたは2つのみが末端にナフチル基、フルオレニル基、カルバゾリル基、インドロカルバゾリル基、インデノカルバゾリル基、又はインデノフルオレニル基を含む。
(iii) cが1以上の場合の1つまたは複数のR、R、及びRの内、1つまたは2つのみが末端にナフチル基、フルオレニル基、又はカルバゾリル基を含む、或いは、1つのみがインドロカルバゾリル基、インデノカルバゾリル基、又はインデノフルオレニル基を含む。
 ここで言うR~Rの末端とは、R~Rが有する置換基であってもよい。
 これらの構造はさらに置換基を有していてもよい。
 これら末端構造の例としては、下図の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000026
[上記構造中、*は結合位置を表す。Ar20は炭素数6~20の芳香族炭化水素基を表す。R14は置換基を表す。これらの構造はさらに置換基を有していてもよい。]
 これらの構造が有してよい置換基は、R~Rが有してよい置換基と同様である。
 Ar20は好ましくは炭素数6~20の芳香族炭化水素基であり、より好ましくはフェニル基又はビフェニル基であり、さらに好ましくはフェニル基である。
 R14を2個有する構造において、2個のR14は同一であっても良く、異なるものであっても良い。R14は好ましくは、炭素数1~20のアルキル基、炭素数7~40のアラルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数1~8のアルキル基で置換されていてもよい炭素数6~30のアリール基、又は炭素数1~8のアルキル基で置換されていてもよい炭素数3~30のヘテロアリール基であり、より好ましくは、炭素数1~20のアルキル基、炭素数7~40のアラルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数1~8のアルキル基で置換されていてもよい炭素数6~30のアリール基であり、さらに好ましくは、炭素数1~8のアルキル基、炭素数7~20のアラルキル基、炭素数1~8のアルコキシ基、炭素数6~14のアリールオキシ基、炭素数1~8のアルキル基で置換されていてもよい炭素数6~14のアリール基である。
 溶媒への溶解性及び非晶質性を高める観点からは、cが1以上の場合の1つまたは複数のR、R、及びRの内、少なくとも一つは1,2-フェニレン基または1,3-フェニレン基を有することが好ましく、さらに合成のしやすさから少なくとも一つは1,3-フェニレン基を含むことが好ましい。
 cは耐久性の点から0~2の整数であることが好ましい。
 式(3)で表される化合物において、Rを有するベンゼン環を「Bz」で表した場合のBz-(R)c、R及びRの3つの部分構造は、当該部分構造が置換基を有する場合はその置換基も含めて、3つ全て同一の構造であっても、一つだけ異なる構造であっても、3つ全て異なる構造であってもよい。好ましくは一つだけ異なる構造又は3つ全て異なる構造であり、さらに好ましくは3つ全て異なる構造である。その理由については後述の通りである。
 電荷輸送性材料として含まれる式(3)で表される化合物は低分子化合物であり、その分子量は400以上が好ましく、450以上がより好ましく、500以上がさらに好ましく、600以上がさらに好ましく、3000以下が好ましく、2000以下がより好ましく、1500以下がさらに好ましく、1200以下がさらに好ましい。
 以下に、実施例に示した以外の本発明の有機電界発光素子用組成物に電荷輸送性材料として含まれる式(3)で表される化合物の好ましい具体例を示す。本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000027
[各構造の具体例]
 以下に、式(1),(1-1),(1-2),(1A)~(1C),(2),(2-1),(3)におけるR~R,R~R13、Ar21~Ar25、環A、環Bとしての各種構造の具体例及び好ましい構造を挙げる。
 前記炭素数1~20のアルキル基としては、直鎖、分岐または環状のアルキル基のいずれでもよく、具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、イソプロピル基、イソブチル基、イソペンチル基、t-ブチル基、シクロヘキシル基などが挙げられる。中でも、メチル基、エチル基、n-ブチル基、n-ヘキシル基、n-オクチル基等の直鎖の炭素数1~8のアルキル基が好ましい。
 前記炭素数7~40の(ヘテロ)アラルキル基とは、直鎖、分岐または環状のアルキル基を構成する水素原子の一部が(ヘテロ)アリール基で置換された基のことを指す。具体的には、2-フェニル-1-エチル基、クミル基、5-フェニル-1-ペンチル基、6-フェニル-1-ヘキシル基、7-フェニル-1-ヘプチル基、テトラヒドロナフチル基などが挙げられる。中でも、5-フェニル-1-ペンチル基、6-フェニル-1-ヘキシル基、7-フェニル-1-ヘプチル基が好ましい。
 前記炭素数1~20のアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、オクタデシルオキシ基等が挙げられる。中でも、ヘキシルオキシ基が好ましい。
 前記炭素数3~20の(ヘテロ)アリールオキシ基の具体例としては、フェノキシ基、4-メチルフェニルオキシ基等が挙げられる。中でも、フェノキシ基が好ましい。
 前記炭素数1~20のアルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルフェニル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等が挙げられる。中でもトリイソプロピルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基が好ましい。
 前記炭素数6~20のアリールシリル基の具体例としては、ジフェニルピリジルシリル基、トリフェニルシリル基等が挙げられる。中でもトリフェニルシリル基が好ましい。
 前記炭素数2~20のアルキルカルボニル基の具体例としては、アセチル基、プロピオニル基、ピバロイル基、カプロイル基、デカノイル基、シクロヘキシルカルボニル基等が挙げられる。中でもアセチル基、ピバロイル基が好ましい。
 前記炭素数7~20のアリールカルボニル基の具体例としては、ベンゾイル基、ナフトイル基、アントライル基等が挙げられる。中でもベンゾイル基が好ましい。
 前記炭素数1~20のアルキルアミノ基の具体例としては、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、ジヘキシルアミノ基、ジオクチルアミノ基、ジシクロヘキシルアミノ基等が挙げられる。中でもジメチルアミノ基、ジシクロヘキシルアミノ基が好ましい。
 前記炭素数6~20のアリールアミノ基の具体例としては、フェニルアミノ基、ジフェニルアミノ基、ジ(4-トリル)アミノ基、ジ(2,6-ジメチルフェニル)アミノ基等が挙げられる。中でもジフェニルアミノ基、ジ(4-トリル)アミノ基が好ましい。
 前記炭素数3~30の(ヘテロ)アリール基とは、1個の遊離原子価を有する、芳香族炭化水素基および芳香族複素環基、または複数の芳香族炭化水素基が連なった連結芳香族炭化水素基、複数の芳香族複素環基が連なった連結芳香族複素環基、或いは、1若しくは複数の芳香族炭化水素基と1又若しくは複数の芳香族複素環基が任意に連なった基を意味する。
 炭素数3~30の(ヘテロ)アリール基の具体例としては、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環等の基が挙げられる。複数の芳香族炭化水素が連なった連結芳香族炭化水素基としては、ビフェニル基、テルフェニル基等が挙げられる。
 上記の(ヘテロ)アリール基の中でも、耐久性の観点から、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、ピリジン環、ピリミジン環、トリアジン環が好ましい。中でも、1個の遊離原子価を有し、炭素数が1~8のアルキル基で置換されていても良いベンゼン環、ナフタレン環またはフェナントレン環などの炭素数6~18のアリール基、または、1個の遊離原子価を有し、炭素数が1~4のアルキル基で置換されていても良いピリジン環がより好ましく、1個の遊離原子価を有し、炭素数が1~8のアルキル基で置換されていても良いベンゼン環、ナフタレン環またはフェナントレン環などの炭素数6~18のアリール基であることがさらに好ましい。
 前記炭素数3~30の2価の(ヘテロ)アリーレン基は、2個の遊離原子価を有すること以外は、上記の炭素数3~30の(ヘテロ)アリール基の例示物と同様であり、好ましいものも同様である。
 これら置換基の組み合わせとしては、例えばアリール基とアルキル基との組み合わせ、アリール基とアラルキル基との組み合わせ、または、アリール基とアルキル基、アラルキル基との組み合わせを用いることができる。アリール基とアラルキル基との組み合わせとしては、例えば、フェニル基、ビフェニル基、またはテルフェニル基と、5-フェニル-1-ペンチル基、または6-フェニル-1-ヘキシル基との組み合わせを用いることができる。
[置換基の具体例]
 以下に、式(1),(1-1),(1-2),(1A)~(1C),(2),(2-1),(3)におけるR~R,R~R13、Ar21~Ar25、環A、環Bが有していてもよい置換基は、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、炭素数3~30の(ヘテロ)アリール基、又は架橋基である。各種置換基の具体例を挙げる。
 前記炭素数1~20のアルキル基としては、直鎖、分岐または環状のアルキル基のいずれでもよく、具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、イソプロピル基、イソブチル基、イソペンチル基、t-ブチル基、シクロヘキシル基などが挙げられる。中でも、メチル基、エチル基、n-ブチル基、n-ヘキシル基、n-オクチル基等の直鎖の炭素数1~8のアルキル基が好ましい。
 前記炭素数7~40の(ヘテロ)アラルキル基とは、直鎖、分岐または環状のアルキル基を構成する水素原子の一部が(ヘテロ)アリール基で置換された基のことを指し、具体的には、2-フェニル-1-エチル基、クミル基、5-フェニル-1-ペンチル基、6-フェニル-1-ヘキシル基、7-フェニル-1-ヘプチル基、テトラヒドロナフチル基などが挙げられる。中でも、5-フェニル-1-ペンチル基、6-フェニル-1-ヘキシル基、7-フェニル-1-ヘプチル基が好ましい。
 前記炭素数1~20のアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、オクタデシルオキシ基等が挙げられる。中でも、ヘキシルオキシ基が好ましい。
 前記炭素数3~20の(ヘテロ)アリールオキシ基の具体例としては、フェノキシ基、4-メチルフェニルオキシ基等が挙げられる。中でも、フェノキシ基が好ましい。
 前記炭素数1~20のアルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルフェニル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等が挙げられる。中でもトリイソプロピルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基が好ましい。
 前記炭素数6~20のアリールシリル基の具体例としては、ジフェニルピリジルシリル基、トリフェニルシリル基等が挙げられる。中でもトリフェニルシリル基が好ましい。
 前記炭素数2~20のアルキルカルボニル基の具体例としては、アセチル基、プロピオニル基、ピバロイル基、カプロイル基、デカノイル基、シクロヘキシルカルボニル基等が挙げられる。中でもアセチル基、ピバロイル基が好ましい。
 前記炭素数7~20のアリールカルボニル基の具体例としては、ベンゾイル基、ナフトイル基、アントライル基等が挙げられる。中でもベンゾイル基が好ましい。
 前記炭素数1~20のアルキルアミノ基の具体例としては、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、ジヘキシルアミノ基、ジオクチルアミノ基、ジシクロヘキシルアミノ基等が挙げられる。中でもジメチルアミノ基、ジシクロヘキシルアミノ基が好ましい。
 前記炭素数6~20のアリールアミノ基の具体例としては、フェニルアミノ基、ジフェニルアミノ基、ジ(4-トリル)アミノ基、ジ(2,6-ジメチルフェニル)アミノ基等が挙げられる。中でもジフェニルアミノ基、ジ(4-トリル)アミノ基が好ましい。
 前記炭素数3~30の(ヘテロ)アリール基とは、1個の遊離原子価を有する、芳香族炭化水素基および芳香族複素環基、または複数の芳香族炭化水素基が連なった連結芳香族炭化水素基、複数の芳香族複素環基が連なった連結芳香族複素環基、或いは、1若しくは複数の芳香族炭化水素基と1又若しくは複数の芳香族複素環基が任意に連なった基を意味する。
 炭素数3~30の(ヘテロ)アリール基の具体例としては、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環等の基が挙げられる。複数の芳香族炭化水素が連なった連結芳香族炭化水素基としては、ビフェニル基、テルフェニル基等が挙げられる。
 上記の(ヘテロ)アリール基の中でも、耐久性の観点から、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、ピリジン環、ピリミジン環、トリアジン環が好ましい。中でも、1個の遊離原子価を有し、炭素数が1~8のアルキル基で置換されていても良いベンゼン環、ナフタレン環またはフェナントレン環などの炭素数6~18のアリール基、または、1個の遊離原子価を有し、炭素数が1~4のアルキル基で置換されていても良いピリジン環がより好ましく、1個の遊離原子価を有し、炭素数が1~8のアルキル基で置換されていても良いベンゼン環、ナフタレン環またはフェナントレン環などの炭素数6~18のアリール基であることがさらに好ましい。
 これら置換基の組み合わせとしては、例えばアリール基とアルキル基との組み合わせ、アリール基とアラルキル基との組み合わせ、または、アリール基とアルキル基、アラルキル基との組み合わせを用いることができる。アリール基とアラルキル基との組み合わせとしては、例えば、フェニル基、ビフェニル基、またはテルフェニル基と、5-フェニル-1-ペンチル基、または6-フェニル-1-ヘキシル基との組み合わせを用いることができる。
 これら置換基の中でも好ましくは、炭素数1~20のアルキル基、炭素数7~40のアラルキル基、炭素数1~20のアルコキシ基、炭素数3~20のアリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数6~20のアリールアミノ基、及び炭素数3~30の(ヘテロ)アリール基である。
 さらに好ましくは、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数6~20のアリールアミノ基、及び炭素数3~30の(ヘテロ)アリール基である。
 特に好ましくは、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、及び炭素数3~30の(ヘテロ)アリール基である。
 これら好ましい置換基それぞれにおける具体的な構造及び好ましい炭素数は前記置換基の具体例中に記載した通りである。
 これらの置換基が更に置換基を有する場合、その置換基としては、上記の例示置換基が挙げられる。
[本発明の有機電界発光素子用組成物が本発明の効果を奏するメカニズム]
 
 本発明の有機電界発光素子用組成物を用いて作製された有機電界発光素子の発光層は、式(1)で表される発光ドーパント、式(2)で表される構造を含む繰り返し単位を有する高分子化合物(繰返し単位(2)を有する高分子化合物)、及び、式(3)で表される化合物を含む。
 本発明の有機電界発光素子の発光層において、繰返し単位(2)を有する高分子化合物は、主として正孔輸送を担う。繰返し単位(2)が繰返し単位(2-1)に含まれる構造の場合、アリールアミン構造を有するため、正孔輸送性が大きく向上する。式(3)で表される化合物は高い電子輸送性を有する。そのため、発光層中での電荷輸送性が向上し、低電圧化する。また、正孔と電子の電荷バランスが良くなり、発光効率が向上すると考えられる。ここで、式(1)で表される発光ドーパントはt-ブチル基を含むアルキル基を有している。t-ブチル基はかさ高いため立体障害となる。そのため、電荷を輸送する化合物は通常、発光ドーパントの電荷を受容する部位からある程度離れた位置に存在し、電荷を輸送する化合物から発光ドーパントへは電荷が移動しにくい。ここで、本発明においては正孔輸送を担う材料が主として高分子化合物であり、高分子鎖上を正孔が移動しやすいため、高分子鎖の比較的広範な部位に正孔が存在する。広範な範囲に正孔が存在する高分子鎖においては、正孔が式(1)で表される発光ドーパントに相対的に移動しやすい部位が存在し、そこから正孔が式(1)で表される発光ドーパントに移動すると考えられる。このように、本発明の有機電界発光素子の発光層中では、中性の発光ドーパントにまず正孔が移動すると考えられる。次いで、式(3)で表される化合物から電子が発光ドーパントに移動し、再結合して発光すると考えられる。式(1)で表される発光ドーパントは電子に対する耐久性は低いが、正孔に対する耐久性は高いため、素子が長寿命化すると考えられる。
 さらに、前記式(3)で表される化合物は、[フェニレン-(R)c]、R及びRの3つの部分構造が、有する場合はその置換基も含めて、3つが同一の構造ではないことが好ましい。さらに好ましくはこれら3つの部分構造が互いに異なることである。本発明においては、このような構造を非対称構造であると称する。
 前記式(3)で表される化合物は、R~Rの内、1つまたは2つのみが末端にナフチル基、フルオレニル基、カルバゾリル基、インドロカルバゾリル基、インデノカルバゾリル基、インデノフルオレニル基を含む、非対称構造であることが更に好ましい。このような非対称構造をとることで、非晶質性が向上して均一で安定な膜が形成され、かつ、他の材料と均一に混合した膜を形成しやすく、また、溶媒に対する溶解性が向上し、溶液での安定性が向上するという観点から好ましい。特に、他の材料と均一に混合しやすい点は、さらなる電荷輸送材料として高分子材料を含む場合に特に効果が大きい。
 これは、前記式(3)で表される化合物と、前記繰り返し単位(2)を有する高分子化合物が溶媒に溶解している有機電界発光素子用組成物を発光層形成用組成物として用いて湿式成膜する際、乾燥時の溶媒が揮発して発光層形成用組成物が濃縮されつつある状態において、前記式(3)で表される化合物が非対称であることにより、前記繰り返し単位(2)を有する高分子化合物の高分子鎖環と均一に混合された状態のまま膜を形成しやすいためと考えられる。
 特に、存在する場合1つまたは複数のR、R、及びRの内、少なくとも一つが末端にカルバゾリル基、インドロカルバゾリル基、インデノカルバゾリル基、又はインデノフルオレニル基を含む場合、カルバゾリル基、インドロカルバゾリル基、インデノカルバゾリル基、又はインデノフルオレニル基は、程度の差はあるが正孔輸送能を有するため、正孔輸送性の高分子化合物と親和性が高く、正孔輸送性高分子化合物と均一に混合し、安定な膜となりやすいと考えられる。これらの中でも、カルバゾリル基は構造が適度に小さく、高分子化合物とより混合しやすいと考えられ、好ましい。
 また、電荷輸送材料である前記式(3)で表される化合物が非対称であることにより、発光ドーパントである式(1)で表される化合物の発光効率を向上させることができると考えられる。その理由を以下に述べる。
 式(1)で表される発光ドーパントは、t-ブチル基を含むアルキル基を有している。通常、t-ブチル基は立体障害となることから、電荷輸送性材料は式(1)で表される発光ドーパントからある程度離れた配置で存在する。本発明においては、正孔輸送を担う材料が主として高分子化合物であることから、高分子鎖上の比較的広範な部位に正孔が存在するため、正孔は式(1)で表される発光ドーパントに移動しやすい。一方、式(1)で表される発光ドーパントのt-ブチル基は立体障害であるため、低分子化合物は通常、発光ドーパントからある程度離れた位置に存在し、低分子化合物から発光ドーパントへは電荷が移動しにくい。しかしながら本発明の式(3)で表される電子輸送性材料が非対称構造である場合はLUMOの分布に偏りがあり、電子が移動しやすい部位が存在すると考えられる。そのため、t-ブチル基の様な立体障害を有する発光ドーパントに電子が移動しやすく低電圧化し、高い効率で発光し、素子が長寿命化すると考えられる。
 また、前記式(3)で表される化合物における、R~Rの末端の少なくとも一つがカルバゾリル基、インドロカルバゾリル基、インデノカルバゾリル基、又はインデノフルオレニル基を含む場合、前記式(3)で表される化合物は電子とともに正孔も受け取りやすくなり、電子と正孔の両方を受け取って励起状態を形成しやすいと考えられる。この場合、励起エネルギーが直接発光ドーパントへ移動すると考えられ、式(1)の様にt-ブチル基を有する発光ドーパントであっても励起エネルギーが効率よく移動すると考えられる。その結果、発光効率が高くなり、素子の駆動寿命が長くなると考えられる。
 さらに、前記式(3)で表される化合物が対称型であっても、R~R全ての末端がカルバゾリル基である場合は、同様の理由から発光効率が高くなり、素子の駆動寿命が長くなると考えられ、好ましい。カルバゾリル基は分子構造が比較的小さいため、R~R全ての末端が有していても、前記式(3)で表される化合物の立体的な構造への影響が少なく好ましい。
 前記式(3)で表される化合物が対称型であるとは、前記式(3)で表される化合物において、c=1であり、[フェニレン-R]、R及びRの3つの部分構造が、置換基を有する場合はその置換基も含めて、3つとも同一の構造である場合を指す。
[式(1)で表される化合物の合成方法]
 本発明の有機電界発光素子用組成物に発光ドーパントとして含まれる式(1)で表される化合物は、イリジウム錯体である。このイリジウム錯体の合成方法を以下に示す。
 イリジウム錯体の配位子は、既知の方法の組み合わせなどにより合成され得る。配位子は、アリールボロン酸類とハロゲン化ヘテロアリール類との鈴木-宮浦カップリング反応、2-ホルミル又はアシルアニリン類あるいは互いにオルト位にあるアシル-アミノピリジン類等とのFriedlaender環化反応(Chem.Rev.2009、109、2652、又は、Organic Reactions,28(2),37-201)など既知の反応により合成することができる。
<イリジウム錯体の合成方法>
 イリジウム錯体は、配位子と塩化イリジウムn水和物などを原料として、既知の方法の組み合わせにより合成できる。以下に説明する。
 イリジウム錯体の合成方法としては、判りやすさのためにフェニルピリジン配位子を例として用いた下記式[A]に示すような塩素架橋イリジウム二核錯体を経由する方法(M.G.Colombo,T.C.Brunold,T.Riedener,H.U.GudelInorg.Chem.,1994,33,545-550)、下記式[B]二核錯体からさらに塩素架橋をアセチルアセトナートと交換させ単核錯体へ変換したのち目的物を得る方法(S.Lamansky,P.Djurovich,D.Murphy,F.Abdel-Razzaq,R.Kwong,I.Tsyba,M.Borz,B.Mui,R.Bau,M.Thompson,Inorg.Chem.,2001,40,1704-1711)等が例示できるが、これらに限定されるものではない。
 例えば、下記式[A]で表される典型的な反応の条件は以下のとおりである。
 第一段階として、第一の配位子2当量と塩化イリジウムn水和物1当量の反応により塩素架橋イリジウム二核錯体を合成する。溶媒は通常2-エトキシエタノールと水の混合溶媒が用いられるが、無溶媒あるいは他の溶媒を用いてもよい。配位子を過剰量用いたり、塩基等の添加剤を用いたりして反応を促進することもできる。塩素に代えて臭素など他の架橋性陰イオン配位子を使用することもできる。
 反応温度に特に制限はないが、通常は0℃以上が好ましく、50℃以上がより好ましく、250℃以下が好ましく、150℃以下がより好ましい。反応温度がこの範囲であることで副生物や分解反応を伴うことなく目的の反応のみが進行し、高い選択性が得られる傾向にある。
Figure JPOXMLDOC01-appb-C000028
 二段階目は、トリフルオロメタンスルホン酸銀のようなハロゲンイオン捕捉剤を添加し第二の配位子と接触させることにより目的とする錯体を得る。溶媒は通常エトキシエタノール又はジグリムが用いられるが、配位子の種類により無溶媒あるいは他の溶媒を使用することができ、複数の溶媒を混合して使用することもできる。ハロゲンイオン捕捉剤を添加しなくても反応が進行する場合があるので必ずしも必要ではないが、反応収率を高め、より量子収率が高いフェイシャル異性体を選択的に合成するには該捕捉剤の添加が有利である。反応温度に特に制限はないが、通常0℃~250℃の範囲で行われる。
 下記式[B]で表される典型的な反応条件を説明する。
 第一段階の二核錯体は式[A]と同様に合成できる。
 第二段階は、該二核錯体にアセチルアセトンのような1,3-ジオン化合物を1当量以上、及び、炭酸ナトリウムのような該1,3-ジオン化合物の活性水素を引き抜き得る塩基性化合物を1当量以上反応させることにより、1,3-ジオナト配位子が配位する単核錯体へと変換する。通常原料の二核錯体を溶解しうるエトキシエタノールやジクロロメタンなどの溶媒が使用されるが、配位子が液状である場合無溶媒で実施することも可能である。反応温度に特に制限はないが、通常は0℃~200℃の範囲内で行われる。
Figure JPOXMLDOC01-appb-C000029
 第三段階は、第二の配位子を1当量以上反応させる。溶媒の種類と量は特に制限はなく、第二の配位子が反応温度で液状である場合には無溶媒でもよい。反応温度も特に制限はないが、反応性が若干乏しいため100℃~300℃の比較的高温下で反応させることが多い。そのため、グリセリンなど高沸点の溶媒が好ましく用いられる。
 最終反応後は未反応原料や反応副生物及び溶媒を除くために精製を行う。通常の有機合成化学における精製操作を適用することができるが、上記の非特許文献記載のように主として順相のシリカゲルカラムクロマトグラフィーによる精製が行われる。展開液にはヘキサン、ヘプタン、ジクロロメタン、クロロホルム、酢酸エチル、トルエン、メチルエチルケトン、メタノールの単一又は混合液を使用できる。精製は条件を変え複数回行ってもよい。その他のクロマトグラフィー技術(逆相シリカゲルクロマトグラフィー、サイズ排除クロマトグラフィー、ペーパークロマトグラフィー)や、分液洗浄、再沈殿、再結晶、粉体の懸濁洗浄、減圧乾燥などの精製操作を必要に応じて施すことができる。
[溶媒]
 本発明の有機電界発光素子用組成物は溶媒を含む。
 本発明の有機電界発光素子用組成物に含有される溶媒は、湿式成膜により発光ドーパントを含む層を形成するために用いる、揮発性を有する液体成分である。
 該溶媒は、溶質である発光ドーパントとしての式(1)で表される化合物、繰り返し単位(2)を有する高分子化合物、式(3)で表される化合物や、必要に応じて含まれていてもよい後述の他の発光材料や電荷輸送性材料が良好に溶解する溶媒であれば特に限定されない。
 好ましい溶媒としては、例えば、n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン類;トルエン、キシレン、メシチレン、シクロヘキシルベンゼン(フェニルシクロヘキサン)、テトラリン等の芳香族炭化水素類;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素類;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル類;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル類;シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン類;シクロヘキサノール、シクロオクタノール等の脂環族アルコール類;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン類;ブタノール、ヘキサノール等の脂肪族アルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル類等が挙げられる。中でも好ましくは、アルカン類や芳香族炭化水素類である。特に、シクロヘキシルベンゼンは湿式成膜プロセスにおいて好ましい粘度と沸点を有している。
 これらの溶媒は1種類を単独で用いてもよく、2種類以上を任意の組み合わせ、及び比率で用いてもよい。
 溶媒の沸点は、通常80℃以上、好ましくは100℃以上、より好ましくは150℃以上、特に好ましくは200℃以上であり、通常270℃以下、好ましくは250℃以下、より好ましくは240℃以下である。沸点がこの範囲を下回ると、湿式成膜時において、組成物からの溶媒蒸発により、成膜安定性が低下する可能性がある。
[組成]
 本発明の有機電界発光素子用組成物は、通常、湿式成膜法で層や膜を形成するために用いられ、特に有機電界発光素子の発光層を形成するために用いられることが好ましい。
 有機電界発光素子用組成物における、発光ドーパントである前記式(1)で表される化合物の含有量は、通常0.01質量%以上、好ましくは0.1質量%以上、通常20質量%以下、好ましくは10質量%以下である。式(1)で表される化合物の含有量をこの範囲とすることにより、該組成物を有機電界発光素子用途に利用した場合に、励起エネルギーが隣接する層(例えば、正孔輸送層や正孔阻止層)に移動することが少なく、また、励起子同士の相互作用により消光することが少なくなるため、発光効率を高めることができる。
 本発明の有機電界発光素子用組成物には、式(1)で表される化合物の1種のみが含まれていても、2種以上が組み合わされて含まれていてもよい。
 本発明の有機電界発光素子用組成物における、繰り返し単位(2)を有する高分子化合物の含有量は、通常0.01質量%以上、好ましくは0.1質量%以上、通常20質量%以下、好ましくは10質量%以下である。高分子化合物の含有量をこの範囲とすることにより、該組成物を有機電界発光素子用途に利用した場合に、励起エネルギーが隣接する層(例えば、正孔輸送層や正孔阻止層)に移動することが少なく、また、励起子同士の相互作用により消光することが少なくなるため、発光効率を高めることができる。
 本発明の有機電界発光素子用組成物には、繰り返し単位(2)を有する高分子化合物の1種のみが含まれていても、2種以上が組み合わされて含まれていてもよい。
 本発明の有機電界発光素子用組成物における、式(3)で表される化合物の含有量は、通常0.005質量%以上、好ましくは0.05質量%以上、通常10質量%以下、好ましくは5質量%以下である。式(3)で表される化合物の含有量をこの範囲とすることにより、該組成物を有機電界発光素子用途に利用した場合に、隣接する陰極側の層(例えば、正孔阻止層)から発光層へ、効率よく電子の注入が行われ、駆動電圧を低減することができる。
 本発明の有機電界発光素子用組成物には、式(3)で表される化合物の1種のみが含まれていても、2種以上が組み合わされて含まれていてもよい。
 本発明の有機電界発光素子用組成物は、繰り返し単位(2)を有する高分子化合物と式(3)で表される化合物との合計100質量部に対して、式(1)で表される化合物を5~100質量部、特に15~60質量部含有することが、発光効率の観点から好ましい。発光を担う式(1)で表される化合物が少なすぎると効率が低下し、多すぎると消光しやすくなり効率が低下する。
 本発明の有機電界発光素子用組成物は、繰り返し単位(2)を有する高分子化合物と式(3)で表される化合物との合計100質量部中に、繰り返し単位(2)を有する高分子化合物を20~98質量部、特に50~90質量部含有することが、電荷バランスが適切で、効率が高められる観点から好ましい。
 本発明の有機電界発光素子用組成物の溶媒の含有量は、組成物100質量部中に、好ましくは10質量部以上、より好ましくは50質量部以上、特に好ましくは80質量部以上であり、好ましくは99.95質量部以下、より好ましくは99.9質量部以下、特に好ましくは99.8質量部以下である。
 後述の通り、通常発光層の厚みは3~200nm程度であるが、溶媒の含有量が上記下限以上であれば、組成物の粘性が高くなりすぎず、成膜作業性が良好となる。一方、溶媒の含有量が上記上限以下であれば、成膜後、溶媒を除去して得られる膜の厚みを稼げるため、成膜が容易となる傾向がある。
 前述の通り、本発明の有機電界発光素子用組成物には、溶媒の1種のみが含まれていても、2種以上が組み合わされて含まれていてもよい。
[有機電界発光素子]
 本発明の有機電界発光素子は、本発明の有機電界発光素子用組成物を用いて湿式成膜法により形成した発光層を含むものである。
 本発明の有機電界発光素子は、好ましくは、基板上に少なくとも陽極、陰極及び陽極と陰極の間に少なくとも1層の有機層を有するものであって、前記有機層のうちの少なくとも1層として本発明の有機電界発光素子用組成物を用いて湿式成膜法により形成した発光層を含むものである。
 本発明において湿式成膜法とは、成膜方法、即ち、塗布方法として、例えば、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、ノズルプリンティング法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等、湿式で成膜される方法を採用し、これらの方法で成膜された膜を乾燥して膜形成を行う方法をいう。
 図1は本発明の有機電界発光素子10に好適な構造例を示す断面の模式図である。図1において、符号1は基板、符号2は陽極、符号3は正孔注入層、符号4は正孔輸送層、符号5は発光層、符号6は正孔阻止層、符号7は電子輸送層、符号8は電子注入層、符号9は陰極を各々表す。
 これらの構造に適用する材料は、公知の材料を適用することができ、特に制限はないが、各層に関しての代表的な材料や製法を一例として以下に記載する。以下において、公報や論文等を引用している場合、該当内容を当業者の常識の範囲で適宜、適用、応用することができるものとする。
<基板1>
 基板1は、有機電界発光素子の支持体となるものであり、通常、石英やガラスの板、金属板又は金属箔、プラスチックフィルム又はシート等が用いられる。これらのうち、ガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。基板1は、外気による有機電界発光素子の劣化が起こり難いことからガスバリア性の高い材質とするのが好ましい。特に合成樹脂製の基板等のようにガスバリア性の低い材質を用いる場合は、基板1の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を上げるのが好ましい。
<陽極2>
 陽極2は、発光層側の層に正孔を注入する機能を担う。陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属;インジウム及び/又はスズの酸化物等の金属酸化物;ヨウ化銅等のハロゲン化金属;カーボンブラック或いはポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。
 陽極2の形成は、通常、スパッタリング法、真空蒸着法等の乾式法により行われることが多い。銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極2を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板上に塗布することにより形成することもできる。導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布したりして陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
 陽極2は、通常、単層構造であるが、適宜、積層構造としてもよい。陽極2が積層構造である場合、1層目の陽極上に異なる導電材料を積層してもよい。
 陽極2の厚みは、必要とされる透明性と材質等に応じて、決めればよい。特に高い透明性が必要とされる場合は、可視光の透過率が60%以上となる厚みが好ましく、80%以上となる厚みが更に好ましい。陽極2の厚みは、通常5nm以上、好ましくは10nm以上であり、通常1000nm以下、好ましくは500nm以下とするのが好ましい。
 透明性が不要な場合は、陽極2の厚みは必要な強度等に応じて任意に厚みとすればよい。この場合、陽極2は基板1と同一の厚みでもよい。
 陽極2の表面に成膜を行う場合は、成膜前に、紫外線+オゾン、酸素プラズマ、アルゴンプラズマ等の処理を施すことにより、陽極上の不純物を除去すると共に、そのイオン化ポテンシャルを調整して正孔注入性を向上させておくのが好ましい。
<正孔注入層3>
 陽極2側から発光層5側に正孔を輸送する機能を担う層は、通常、正孔注入輸送層又は正孔輸送層と呼ばれる。陽極2側から発光層5側に正孔を輸送する機能を担う層が2層以上ある場合に、より陽極2側に近い方の層を正孔注入層3と呼ぶことがある。正孔注入層3は、陽極2から発光層5側に正孔を輸送する機能を強化する点で、用いることが好ましい。正孔注入層3を用いる場合、通常、正孔注入層3は、陽極2上に形成される。
 正孔注入層3の膜厚は、通常1nm以上、好ましくは5nm以上で、通常1000nm以下、好ましくは500nm以下である。
 正孔注入層3の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。
 正孔注入層3は、正孔輸送性化合物を含むことが好ましく、正孔輸送性化合物と電子受容性化合物とを含むことがより好ましい。更には、正孔注入層3中にカチオンラジカル化合物を含むことが好ましく、カチオンラジカル化合物と正孔輸送性化合物とを含むことが特に好ましい。
(正孔輸送性化合物)
 正孔注入層形成用組成物は、通常、正孔注入層3となる正孔輸送性化合物を含有する。
 湿式成膜法の場合は、通常、更に溶媒も含有する。正孔注入層形成用組成物は、正孔輸送性が高く、注入された正孔を効率よく輸送できるのが好ましい。このため、正孔移動度が大きく、トラップとなる不純物が製造時や使用時等に発生し難いのが好ましい。また、安定性に優れ、イオン化ポテンシャルが小さく、可視光に対する透明性が高いことが好ましい。特に、正孔注入層3が発光層5と接する場合は、発光層5からの発光を消光しないものや発光層5とエキサイプレックスを形成して、発光効率を低下させないものが好ましい。
 正孔輸送性化合物としては、陽極2から正孔注入層3への電荷注入障壁の観点から、4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、キナクリドン系化合物等が挙げられる。
 上述の例示化合物のうち、非晶質性及び可視光透過性の点から、芳香族アミン化合物が好ましく、芳香族三級アミン化合物が特に好ましい。芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
 芳香族三級アミン化合物の種類は、特に制限されないが、表面平滑化効果により均一な発光を得やすい点から、重量平均分子量が1000以上1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)を用いるのが好ましい。芳香族三級アミン高分子化合物の好ましい例としては、下記式(I)で表される繰り返し単位を有する高分子化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000030
[式(I)中、Ar及びArは、それぞれ独立して、置換基を有していてもよい芳香族基又は置換基を有していてもよい複素芳香族基を表す。Ar~Arは、それぞれ独立して、置換基を有していてもよい芳香族基又は置換基を有していてもよい複素芳香族基を表す。Qは、下記の連結基群の中から選ばれる連結基を表す。また、Ar~Arのうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。]
 下記に連結基を示す。
Figure JPOXMLDOC01-appb-C000031
[上記各式中、Ar~Ar16は、それぞれ独立して、置換基を有していてもよい芳香族基又は置換基を有していてもよい複素芳香族基を表す。R~Rは、それぞれ独立して、水素原子又は任意の置換基を表す。]
 Ar~Ar16の芳香族基及び複素芳香族基としては、高分子化合物の溶解性、耐熱性、正孔注入輸送性の点から、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環由来の基が好ましく、ベンゼン環、ナフタレン環由来の基がさらに好ましい。
 式(I)で表される繰り返し単位を有する芳香族三級アミン高分子化合物の具体例としては、国際公開第2005/089024号パンフレットに記載のもの等が挙げられる。
(電子受容性化合物)
 正孔注入層3には、正孔輸送性化合物の酸化により、正孔注入層3の導電率を向上させることができるため、電子受容性化合物を含有していることが好ましい。
 電子受容性化合物としては、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましい。具体的には、電子親和力が4eV以上である化合物が好ましく、電子親和力が5eV以上である化合物が更に好ましい。
 このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。具体的には、4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開第2005/089024号);塩化鉄(III)(特開平11-251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物;トリス(ペンタフルオロフェニル)ボラン(特開2003-31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体及びヨウ素等が挙げられる。
(カチオンラジカル化合物)
 カチオンラジカル化合物としては、正孔輸送性化合物から一電子取り除いた化学種であるカチオンラジカルと、対アニオンとからなるイオン化合物が好ましい。カチオンラジカルが正孔輸送性の高分子化合物由来である場合、カチオンラジカルは高分子化合物の繰り返し単位から一電子取り除いた構造となる。
 カチオンラジカルとしては、正孔輸送性化合物として前述した化合物から一電子取り除いた化学種であることが好ましい。正孔輸送性化合物として好ましい化合物から一電子取り除いた化学種であることが、非晶質性、可視光の透過率、耐熱性、及び溶解性などの点から好適である。
 カチオンラジカル化合物は、前述の正孔輸送性化合物と電子受容性化合物を混合することにより生成させることができる。前述の正孔輸送性化合物と電子受容性化合物とを混合することにより、正孔輸送性化合物から電子受容性化合物へと電子移動が起こり、正孔輸送性化合物のカチオンラジカルと対アニオンとからなるカチオンイオン化合物が生成する。
 PEDOT/PSS(Adv.Mater.,2000年,12巻,481頁)やエメラルジン塩酸塩(J.Phys.Chem.,1990年,94巻,7716頁)等の高分子化合物由来のカチオンラジカル化合物は、酸化重合(脱水素重合)することによっても生成する。
 ここでいう酸化重合は、モノマーを酸性溶液中で、ペルオキソ二硫酸塩等を用いて化学的に、又は、電気化学的に酸化するものである。この酸化重合(脱水素重合)の場合、モノマーが酸化されることにより高分子化されるとともに、酸性溶液由来のアニオンを対アニオンとする、高分子の繰り返し単位から一電子取り除かれたカチオンラジカルが生成する。
(湿式成膜法による正孔注入層3の形成)
 湿式成膜法により正孔注入層3を形成する場合、通常、正孔注入層3となる材料を可溶な溶媒(正孔注入層用溶媒)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を正孔注入層3の下層に該当する層(通常は、陽極2)上に湿式成膜法により成膜し、乾燥させることにより形成させる。成膜した膜の乾燥は、湿式成膜法による発光層5の形成における乾燥方法と同様に行うことができる。
 正孔注入層形成用組成物中における正孔輸送性化合物の濃度は、本発明の効果を著しく損なわない限り任意である。この濃度は、膜厚の均一性の点では、低い方が好ましく、正孔注入層3に欠陥が生じ難い点では、高い方が好ましい。正孔注入層形成用組成物中における正孔輸送性化合物の濃度は、0.01質量%以上が好ましく、0.1質量%以上が更に好ましく、0.5質量%以上が特に好ましく、70質量%以下が好ましく、60質量%以下が更に好ましく、50質量%以下が特に好ましい。
 溶媒としては、例えば、エーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、アミド系溶媒などが挙げられる。
 エーテル系溶媒としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル及び1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等が挙げられる。
 エステル系溶媒としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等が挙げられる。
 芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、メチルナフタレン等が挙げられる。
 アミド系溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
 これらの他、ジメチルスルホキシド等も用いることができる。
 正孔注入層3の湿式成膜法による形成は、通常、正孔注入層形成用組成物を調製後に、これを、正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布成膜し、乾燥することにより行われる。正孔注入層3は、通常、成膜後に、加熱や減圧乾燥等により塗布膜を乾燥させる。
(真空蒸着法による正孔注入層3の形成)
 真空蒸着法により正孔注入層3を形成する場合には、通常、正孔注入層3の構成材料(前述の正孔輸送性化合物、電子受容性化合物等)の1種類又は2種類以上を真空容器内に設置された坩堝に入れ(2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れ)、真空容器内を真空ポンプで10-4Pa程度まで排気した後、坩堝を加熱して(2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して)、坩堝内の材料の蒸発量を制御しながら蒸発させ(2種類以上の材料を用いる場合は、通常各々独立に蒸発量を制御しながら蒸発させ)、坩堝に向き合って置かれた基板上の陽極2上に正孔注入層3を形成させる。2種類以上の材料を用いる場合は、それらの混合物を坩堝に入れ、加熱、蒸発させて正孔注入層3を形成することもできる。
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上、50℃以下で行われる。
<正孔輸送層4>
 正孔輸送層4は、陽極2側から発光層5側に正孔を輸送する機能を担う層である。正孔輸送層4は、本発明の有機電界発光素子では、必須の層では無いが、陽極2から発光層5に正孔を輸送する機能を強化する点では、この層を設けることが好ましい。正孔輸送層4を設ける場合、通常、正孔輸送層4は、陽極2と発光層5の間に形成される。正孔注入層3がある場合、正孔輸送層4は正孔注入層3と発光層5の間に形成される。
 正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上で、通常300nm以下、好ましくは100nm以下である。
 正孔輸送層4の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。
 正孔輸送層4は、通常、正孔輸送層4となる正孔輸送性化合物を含有する。正孔輸送層4に含まれる正孔輸送性化合物としては、特に、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルで代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5-234681号公報)、4,4’,4''-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(J.Lumin.,72-74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレン等のスピロ化合物(Synth.Metals,91巻、209頁、1997年)、4,4’-N,N’-ジカルバゾールビフェニルなどのカルバゾール誘導体などが挙げられる。ポリビニルカルバゾール、ポリビニルトリフェニルアミン(特開平7-53953号公報)、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン(Polym.Adv.Tech.,7巻、33頁、1996年)等も好ましく使用できる。
(湿式成膜法による正孔輸送層4の形成)
 湿式成膜法で正孔輸送層4を形成する場合は、通常、上述の正孔注入層3を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに正孔輸送層形成用組成物を用いて形成させる。
 湿式成膜法で正孔輸送層4を形成する場合は、通常、正孔輸送層形成用組成物は、更に溶媒を含有する。正孔輸送層形成用組成物に用いる溶媒は、上述の正孔注入層形成用組成物で用いる溶媒と同様の溶媒を使用することができる。
 正孔輸送層形成用組成物中の正孔輸送性化合物の濃度は、正孔注入層形成用組成物中の正孔輸送性化合物の濃度と同様の範囲とすることができる。
 正孔輸送層4の湿式成膜法による形成は、前述の正孔注入層3の成膜法と同様に行うことができる。
(真空蒸着法による正孔輸送層4の形成)
 真空蒸着法で正孔輸送層4を形成する場合も、通常、上述の正孔注入層3を真空蒸着法で形成する場合と同様にして、正孔注入層3の構成材料の代わりに正孔輸送層4の構成材料を用いて形成させることができる。蒸着時の真空度、蒸着速度及び温度などの成膜条件などは、正孔注入層3の真空蒸着時と同様の条件で成膜することができる。
<発光層5>
 発光層5は、一対の電極間に電界が与えられた時に、陽極2から注入される正孔と陰極9から注入される電子が再結合することにより励起され、発光する機能を担う層である。
 発光層5は、陽極2と陰極9の間に形成される層である。発光層5は、陽極2の上に正孔注入層3がある場合は、正孔注入層3と陰極9の間に形成される。陽極2の上に正孔輸送層4がある場合は、発光層5は正孔輸送層4と陰極9との間に形成される。
 発光層5の膜厚は、本発明の効果を著しく損なわない限り任意である。膜に欠陥が生じ難い点では厚い方が好ましく、薄い方が低駆動電圧としやすい点で好ましい。発光層5の膜厚は、3nm以上が好ましく、5nm以上が更に好ましく、通常200nm以下が好ましく、100nm以下が更に好ましい。
 本発明の有機電界発光素子において、発光層5は、本発明の有機電界発光素子用組成物を用いて好ましくは湿式成膜法により形成される。
 本発明の有機電界発光素子用組成物を用いて湿式成膜法により発光層を形成する場合、本発明の有機電界発光素子用組成物は、前述の式(1)で表される化合物、繰り返し単位(2)を有する高分子化合物及び式(3)で表される化合物以外に、その他の発光材料及び電荷輸送性材料を含んでもよい。
 以下に他の発光材料及び電荷輸送性材料について詳述する。
(発光材料)
 式(1)で表される化合物以外の発光材料は、所望の発光波長で発光し、本発明の効果を損なわない限り特に制限はなく、公知の発光材料を適用可能である。発光材料は、蛍光発光材料でも、燐光発光材料でもよいが、発光効率が良好である材料が好ましい。内部量子効率の観点から燐光発光材料が好ましい。
 蛍光発光材料としては、例えば、以下の材料が挙げられる。
 青色発光を与える蛍光発光材料(青色蛍光発光材料)としては、例えば、ナフタレン、ペリレン、ピレン、アントラセン、クマリン、クリセン、p-ビス(2-フェニルエテニル)ベンゼン及びそれらの誘導体等が挙げられる。
 緑色発光を与える蛍光発光材料(緑色蛍光発光材料)としては、例えば、キナクリドン誘導体、クマリン誘導体、Al(CNO)などのアルミニウム錯体等が挙げられる。
 黄色発光を与える蛍光発光材料(黄色蛍光発光材料)としては、例えば、ルブレン、ペリミドン誘導体等が挙げられる。
 赤色発光を与える蛍光発光材料(赤色蛍光発光材料)としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。
 燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)の第7~11族から選ばれる金属を含む有機金属錯体等が挙げられる。周期表の第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられる。
 有機金属錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基又はヘテロアリール基を表す。
 好ましい燐光発光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム等のフェニルピリジン錯体及びオクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等のポルフィリン錯体等が挙げられる。
 高分子系の発光材料としては、ポリ(9,9-ジオクチルフルオレン-2,7-ジイル)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(4,4’-(N-(4-sec-ブチルフェニル))ジフェニルアミン)]、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(1,4-ベンゾ-2{2,1’-3}-トリアゾール)]などのポリフルオレン系材料、ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン]などのポリフェニレンビニレン系材料が挙げられる。
(電荷輸送性材料)
 電荷輸送性材料は、正電荷(正孔)又は負電荷(電子)輸送性を有する材料であり、式(3)で表される化合物以外の電荷輸送性材料としては、本発明の効果を損なわない限り、特に制限はなく、公知の材料を適用可能である。
 電荷輸送性材料は、従来、有機電界発光素子の発光層に用いられている化合物等を用いることができる。特に、発光層のホスト材料として使用されている化合物が好ましい。
 電荷輸送性材料としては、具体的には、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、シラナミン系化合物、ホスファミン系化合物、キナクリドン系化合物等の正孔注入層3の正孔輸送性化合物として例示した化合物等が挙げられる他、アントラセン系化合物、ピレン系化合物、カルバゾール系化合物、ピリジン系化合物、フェナントロリン系化合物、オキサジアゾール系化合物、シロール系化合物等の電子輸送性化合物等が挙げられる。
 電荷輸送性材料としては、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルで代表される2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5-234681号公報)、4,4’,4''-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン系化合物(J.Lumin.,72-74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン系化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレン等のフルオレン系化合物(Synth.Metals,91巻、209頁、1997年)、4,4’-N,N’-ジカルバゾールビフェニルなどのカルバゾール系化合物等の正孔輸送層4の正孔輸送性化合物として例示した化合物等も好ましく用いることができる。その他、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(tBu-PBD)、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(BND)などのオキサジアゾール系化合物、2,5-ビス(6’-(2’,2''-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)等のシロール系化合物、バソフェナントロリン(BPhen)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP、バソクプロイン)などのフェナントロリン系化合物等も挙げられる。
(湿式成膜法による発光層5の形成)
 本発明の有機電界発光素子は、本発明の有機電界発光素子用組成物を用いて、湿式成膜法により形成した発光層を有する。本発明の有機電界発光素子は、発光層5として、本発明の有機電界発光素子用組成物を用いて湿式成膜法により形成した発光層以外の発光層を有しても良い。この発光層の形成方法は、真空蒸着法でも、湿式成膜法でもよいが、成膜性に優れることから、湿式成膜法が好ましい。
 湿式成膜法により発光層5を形成する場合は、本発明の有機電界発光素子用組成物、或いは発光層5となる材料を可溶な溶媒(発光層用溶媒)と混合して調製した発光層形成用組成物を、上述の正孔注入層3を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに用いて形成させる。
 溶媒としては、例えば、正孔注入層3の形成について挙げたエーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、アミド系溶媒の他、アルカン系溶媒、ハロゲン化芳香族炭化水系溶媒、脂肪族アルコール系溶媒、脂環族アルコール系溶媒、脂肪族ケトン系溶媒及び脂環族ケトン系溶媒などが挙げられる。用いる溶媒は、本発明の有機電界発光素子用組成物の溶媒としても例示した通りである。以下に溶媒の具体例を挙げるが、本発明の効果を損なわない限り、これらに限定されるものではない。
 例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル系溶媒;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル系溶媒;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル系溶媒;トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、テトラリン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、メチルナフタレン等の芳香族炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン系溶媒;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素系溶媒;ブタノール、ヘキサノール等の脂肪族アルコール系溶媒;シクロヘキサノール、シクロオクタノール等の脂環族アルコール系溶媒;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン系溶媒;シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン系溶媒等が挙げられる。これらのうち、アルカン系溶媒及び芳香族炭化水素系溶媒が特に好ましい。
 より均一な膜を得るためには、成膜直後の液膜から溶媒が適当な速度で蒸発することが好ましい。このため、用いる溶媒の沸点は、前述の通り、通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上で、通常270℃以下、好ましくは250℃以下、より好ましくは沸点230℃以下である。
 溶媒の使用量は、本発明の効果を著しく損なわない限り任意であるが、前述の通り、発光層形成用組成物、即ち有機電界発光素子用組成物中の合計含有量は、低粘性なために成膜作業が行いやすい点で多い方が好ましく、厚膜で成膜しやすい点では低い方が好ましい。前述の通り、溶媒の含有量は、有機電界発光素子用組成物において好ましくは1質量%以上、より好ましくは10質量%以上、特に好ましくは50質量%以上で、好ましくは99.99質量%以下、より好ましくは99.9質量%以下、特に好ましくは99質量%以下である。
 湿式成膜後の溶媒除去方法としては、加熱又は減圧を用いることができる。加熱方法において使用する加熱手段としては、膜全体に均等に熱を与えることから、クリーンオーブン、ホットプレートが好ましい。
 加熱工程における加熱温度は、本発明の効果を著しく損なわない限り任意であるが、乾燥時間を短くする点では温度が高いほうが好ましく、材料へのダメージが少ない点では低い方が好ましい。加温温度の上限は通常250℃以下であり、好ましくは200℃以下、さらに好ましくは150℃以下である。加温温度の下限は通常30℃以上であり、好ましくは50℃以上、さらに好ましくは80℃以上である。加温温度が上記上限を超える温度は、通常用いられる電荷輸送性材料又は燐光発光材料の耐熱性より高く、分解や結晶化する可能性があり好ましくない。加熱温度が上記下限未満では溶媒の除去に長時間を要するため、好ましくない。加熱工程における加熱時間は、発光層形成用組成物中の溶媒の沸点や蒸気圧、材料の耐熱性、および加熱条件によって適切に決定される。
(真空蒸着法による発光層5の形成)
 真空蒸着法により発光層5を形成する場合には、通常、発光層5の構成材料(前述の発光材料、電荷輸送性化合物等)の1種類又は2種類以上を真空容器内に設置された坩堝に入れ(2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れ)、真空容器内を真空ポンプで10-4Pa程度まで排気した後、坩堝を加熱して(2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して)、坩堝内の材料の蒸発量を制御しながら蒸発させ(2種類以上の材料を用いる場合は、通常各々独立に蒸発量を制御しながら蒸発させ)、坩堝に向き合って置かれた正孔注入層3又は正孔輸送層4の上に発光層5を形成させる。2種類以上の材料を用いる場合は、それらの混合物を坩堝に入れ、加熱、蒸発させて発光層5を形成することもできる。
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上、50℃以下で行われる。
<正孔阻止層6>
 発光層5と後述の電子注入層8との間に、正孔阻止層6を設けてもよい。正孔阻止層6は、発光層5の上に、発光層5の陰極9側の界面に接するように積層される層である。
 正孔阻止層6は、陽極2から移動してくる正孔を陰極9に到達するのを阻止する役割と、陰極9から注入された電子を効率よく発光層5の方向に輸送する役割とを有する。正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。
 このような条件を満たす正孔阻止層6の材料としては、例えば、ビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリノラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾール等のトリアゾール誘導体(特開平7-41759号公報)、バソクプロイン等のフェナントロリン誘導体(特開平10-79297号公報)などが挙げられる。国際公開第2005/022962号に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層6の材料として好ましい。
 正孔阻止層6の形成方法に制限はなく、前述の発光層5の形成方法と同様にして形成することができる。
 正孔阻止層6の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常0.3nm以上、好ましくは0.5nm以上で、通常100nm以下、好ましくは50nm以下である。
<電子輸送層7>
 電子輸送層7は素子の電流効率をさらに向上させることを目的として、発光層5又は正孔素子層6と電子注入層8との間に設けられる。
 電子輸送層7は、電界を与えられた電極間において陰極9から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。電子輸送層7に用いられる電子輸送性化合物としては、陰極9又は電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物であることが必要である。
 このような条件を満たす電子輸送性化合物としては、例えば、8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(特開平6-207169号公報)、フェナントロリン誘導体(特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
 電子輸送層7の膜厚は、通常1nm以上、好ましくは5nm以上で、通常300nm以下、好ましくは100nm以下である。
 電子輸送層7は、発光層5と同様にして湿式成膜法、或いは真空蒸着法により発光層5又は正孔阻止層6上に積層することにより形成される。通常は、真空蒸着法が用いられる。
<電子注入層8>
 電子注入層8は、陰極9から注入された電子を効率よく、電子輸送層7又は発光層5へ注入する役割を果たす。
 電子注入を効率よく行うには、電子注入層8を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられる。
 電子注入層8の膜厚は、0.1~5nmが好ましい。
 陰極9と電子輸送層7との界面に電子注入層8として、LiF、MgF、LiO、CsCO等の極薄絶縁膜(膜厚0.1~5nm程度)を挿入することも、素子の効率を向上させる有効な方法である(Appl.Phys.Lett.,70巻,152頁,1997年;特開平10-74586号公報;IEEETrans.Electron.Devices,44巻,1245頁,1997年;SID 04 Digest,154頁)。
 さらに、バソフェナントロリン等の含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(特開平10-270171号公報、特開2002-100478号公報、特開2002-100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は通常5nm以上、好ましくは10nm以上で、通常200nm以下、好ましくは100nm以下である。
 電子注入層8は、発光層5と同様にして湿式成膜法或いは真空蒸着法により、発光層5或いはその上の正孔阻止層6又は電子輸送層7上に積層することにより形成される。
 湿式成膜法の場合の詳細は、前述の発光層5の場合と同様である。
<陰極9>
 陰極9は、発光層5側の層(電子注入層8又は発光層5など)に電子を注入する役割を果たす。陰極9の材料としては、前記の陽極2に使用される材料を用いることが可能である。効率よく電子注入を行なう上では、仕事関数の低い金属を用いることが好ましい。陰極9の材料としては、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の金属又はそれらの合金などが用いられる。陰極9の材料としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数の合金電極などが挙げられる。
 素子の安定性の点では、陰極9の上に、仕事関数が高く、大気に対して安定な金属層を積層して、低仕事関数の金属からなる陰極9を保護するのが好ましい。積層する金属としては、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が挙げられる。
 陰極の膜厚は通常、陽極2と同様である。
<その他の構成層>
 以上、図1に示す層構成の素子を中心に説明したが、本発明の有機電界発光素子における陽極2及び陰極9と発光層5との間には、その性能を損なわない限り、上記説明にある層の他にも、任意の層を有していてもよい。発光層5以外の任意の層を省略してもよい。
 例えば、正孔阻止層8と同様の目的で、正孔輸送層4と発光層5の間に電子阻止層を設けることも効果的である。電子阻止層は、発光層5から移動してくる電子が正孔輸送層4に到達することを阻止することで、発光層5内で正孔との再結合確率を増やし、生成した励起子を発光層5内に閉じこめる役割と、正孔輸送層4から注入された正孔を効率よく発光層5の方向に輸送する役割がある。
 電子阻止層に求められる特性としては、正孔輸送性が高く、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。
 発光層5を湿式成膜法で形成する場合、電子阻止層も湿式成膜法で形成することが、素子製造が容易となるため、好ましい。
 このため、電子阻止層も湿式成膜適合性を有することが好ましく、このような電子阻止層に用いられる材料としては、F8-TFBに代表されるジオクチルフルオレンとトリフェニルアミンの共重合体(国際公開第2004/084260号)等が挙げられる。
 図1とは逆の構造、即ち、基板1上に陰極9、電子注入層8、電子輸送層7、正孔阻止層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に積層することも可能である。少なくとも一方が透明性の高い2枚の基板の間に本発明の有機電界発光素子を設けることも可能である。
 図1に示す層構成を複数段重ねた構造(発光ユニットを複数積層させた構造)とすることも可能である。その際には段間(発光ユニット間)の界面層(陽極がITO、陰極がAlの場合はその2層)の代わりに、例えばV等を電荷発生層として用いると段間の障壁が少なくなり、発光効率・駆動電圧の観点からより好ましい。
 本発明は、有機電界発光素子が、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。
[表示装置及び照明装置]
 本発明の表示装置及び照明装置は、上述のような本発明の有機電界発光素子を用いたものである。本発明の表示装置及び照明装置の形式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
 例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発刊、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の表示装置を形成することができる。
 以下、実施例を示して本発明について更に具体的に説明する。
 本発明は以下の実施例に限定されるものではなく、本発明はその要旨を逸脱しない限り任意に変更して実施できる。
[実施例1]
 以下の方法で有機電界発光素子を作製した。
 ガラス基板上にインジウム・スズ酸化物(ITO)透明導電膜を50nmの厚さに堆積したものを通常のフォトリソグラフィー技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極を形成した。ITOをパターン形成した基板を、界面活性剤水溶液による超音波洗浄、超純水による水洗、超純水による超音波洗浄、超純水による水洗の順で洗浄後、圧縮空気で乾燥させ、最後に紫外線オゾン洗浄を行った。
 正孔注入層形成用組成物として、下記式(P-1)で表される正孔輸送性高分子化合物を3.0質量%の濃度で、下記式(HI-1)で表される化合物を0.3質量%の濃度で、安息香酸エチルに溶解させた組成物を調製した。
Figure JPOXMLDOC01-appb-C000032
 この正孔注入層形成用組成物を、大気中で上記基板上にスピンコートし、大気中、ホットプレートで240℃にて30分乾燥させ、膜厚40nmの均一な薄膜を形成し、正孔注入層とした。
 次に、下記の構造式(HT-1)で表される電荷輸送性高分子化合物をシクロヘキシルベンゼンに3質量%溶解させて調製した正孔輸送層形成用組成物を、上記正孔注入層を成膜した基板上に窒素グローブボックス中でスピンコートし、窒素グローブボックス中のホットプレートで230℃にて30分間乾燥させ、膜厚43nmの均一な薄膜を形成し、正孔輸送層とした。
Figure JPOXMLDOC01-appb-C000033
 引続き、発光層の材料として、下記構造式(H-1)で表される高分子化合物(Mw=39000、Mw/Mn=1.41)を75質量部、下記構造式(H-2)で表される化合物を25質量部、下記構造式(D-1)で表される化合物20質量部を秤量し、シクロヘキシルベンゼンにこれらの合計で6.0質量%となるように溶解させて発光層形成用組成物を調製した。
Figure JPOXMLDOC01-appb-C000034
 この発光層形成用組成物を、上記正孔輸送層を成膜した基板上に窒素グローブボックス中でスピンコートし、窒素グローブボックス中のホットプレートで120℃にて20分間乾燥させ、膜厚70nmの均一な薄膜を形成し、発光層とした。
 発光層までを成膜した基板を真空蒸着装置に設置し、装置内を2×10-4Pa以下になるまで排気した。
 次に、下記構造式(HB-1)で表される化合物および8-ヒドロキシキノリノラトリチウムを2:3の膜厚比で、発光層上に真空蒸着法にて1Å/秒の速度で共蒸着し、膜厚30nmの正孔阻止層を形成した。
Figure JPOXMLDOC01-appb-C000035
 続いて、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極のITOストライプとは直交するように基板に密着させて、別の真空蒸着装置内に設置し、陰極として、アルミニウムをモリブデンボートにより加熱して、蒸着速度1~8.6Å/秒で膜厚80nmのアルミニウム層を形成して陰極を形成した。
 続いて、窒素グローブボックス中にて、水分ゲッターシートを設置したガラスキャップを蒸着部を覆うように設置し、蒸着部周囲とガラスキャップをUV硬化樹脂にて接着し、封止した。
 以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。
[実施例2]
 発光層形成用組成物に含まれる材料組成(質量部)を、(H-1):(H-2):(D-1)=50:50:20としたこと以外は、実施例1と同様にして素子を作製した。
[実施例3]
 発光層形成用組成物に含まれる材料組成(質量部)を、(H-1):(H-3):(D-1)=75:25:20としたこと以外は、実施例1と同様にして素子を作製した。(H-3)の構造式を下記に示す。
Figure JPOXMLDOC01-appb-C000036
[比較例1]
 発光層形成用組成物に含まれる材料組成(質量部)を、(H-1):(D-1)=100:20としたこと以外は、実施例1と同様にして素子を作製した。
[素子の評価]
 実施例1~3および比較例1で作製した有機電界発光素子を、輝度1000cd/mで発光させたときの電圧(V)を測定し、比較例1の電圧との差(実施例1~3及び比較例1の電圧-比較例1の電圧)を求め、電圧差(V)とした。
 実施例1~3および比較例1で作製した有機電界発光素子を、輝度1000cd/mで発光させたときの電流発光効率(cd/A)を測定し、比較例1の電流発光効率を100としたときの相対値を求め、相対発光効率とした。
 実施例1~3および比較例1で作製した有機電界発光素子を輝度1000cd/mで発光させたときの外部量子効率(EQEとする)を求め、比較例1のEQEを100としたときの相対値を相対EQEとした。
 これらの評価結果を表1に示す。
 表1に表されるように、本発明の有機電界発光素子は比較例の有機電界発光素子より、発光効率が向上し、電圧が低下することが分かった。
Figure JPOXMLDOC01-appb-T000037
[実施例4]
 構造式(H-2)で表される化合物の代りに下記構造式(H-4)で表される化合物を用い、発光層形成用組成物に含まれる材料組成(質量部)を、(H-1):(H-4):(D-1)=75:25:20としたこと以外は、実施例1と同様にして素子を作製した。
Figure JPOXMLDOC01-appb-C000038
[実施例5]
 発光層形成用組成物に含まれる材料組成(質量部)を、(H-1):(H-4):(D-1)=50:50:20としたこと以外は、実施例1と同様にして素子を作製した。
[実施例6]
 発光層形成用組成物に含まれる材料組成(質量部)を、(H-1):(H-4):(D-1)=25:75:20としたこと以外は、実施例1と同様にして素子を作製した。
[実施例7]
 構造式(H-2)で表される構造式の代りに下記構造式(H-5)で表される化合物を用い、発光層形成用組成物に含まれる材料組成(質量部)を、(H-1):(H-5):(D-1)=75:25:20としたこと以外は、実施例1と同様にして素子を作製した。
Figure JPOXMLDOC01-appb-C000039
[実施例8]
 構造式(H-2)で表される化合物の代りに下記構造式(H-6)で表される化合物を用い、発光層形成用組成物に含まれる材料組成(質量部)を、(H-1):(H-6):(D-1)=75:25:20としたこと以外は、実施例1と同様にして素子を作製した。
Figure JPOXMLDOC01-appb-C000040
[比較例2]
 比較例1と同様にして素子を作製した。
[比較例3]
 構造式(H-2)で表される化合物の代りに下記構造式(H-7)で表される化合物を用い、発光層形成用組成物に含まれる材料組成(質量部)を、(H-1):(H-7):(D-1)=75:25:20としたこと以外は、実施例1と同様にして素子を作製した。
Figure JPOXMLDOC01-appb-C000041
[比較例4]
 構造式(D-1)で表される化合物の代りに下記構造式(D-2)で表される化合物を用い、発光層形成用組成物に含まれる材料組成(質量部)を、(H-1):(H-4):(D-2)=75:25:20としたこと以外は、実施例1と同様にして素子を作製した。
Figure JPOXMLDOC01-appb-C000042
[比較例5]
 発光層形成用組成物に含まれる材料組成(質量部)を、(H-1):(H-5):(D-2)=75:25:20としたこと以外は、実施例1と同様にして素子を作製した。
[比較例6]
 発光層形成用組成物に含まれる材料組成(質量部)を、(H-1):(H-6):(D-2)=75:25:20としたこと以外は、実施例1と同様にして素子を作製した。
[比較例7]
 発光層形成用組成物に含まれる材料組成(質量部)を、(H-1):(H-7):(D-2)=75:25:20としたこと以外は、実施例1と同様にして素子を作製した。
[素子の評価]
 実施例4~8および比較例2~7で作製した有機電界発光素子を輝度1000cd/mで発光させたときの電圧(V)を測定し、比較例2の素子の電圧と各素子の電圧の差(実施例4~8及び比較例2~7の電圧-比較例2の電圧)を求め、電圧差(V)とした。
 実施例4~8および比較例2~7で作製した有機電界発光素子を輝度1000cd/mで発光させたときの外部量子効率(EQEとする)を求め、比較例2のEQEを100としたときの各素子のEQEの相対値を求め、相対EQEとした。
 実施例4~8および比較例2~7で作製した有機電界発光素子を定電流駆動し、初期輝度Lo=3000cd/mで換算し、輝度が初期輝度の95%に低下するまでの時間を求めてLT95(hr)とし、比較例2のLT95を100とした場合の各素子のLT95の相対値を求め、相対駆動寿命とした。
 これらの結果を表2に示す。
 表2に示されるように、本発明の有機電界発光素子は、低電圧であり、発光効率(EQE)が高く、駆動寿命が長いことが分かる。
Figure JPOXMLDOC01-appb-T000043
[実施例9]
 実施例1と同様にして素子を作製した。
[比較例8]
 発光層形成用組成物に含まれる材料組成(質量部)を、(H-1):(H-2):(D-2)=75:25:20としたこと以外は、実施例1と同様にして素子を作製した。
[比較例9]
 構造式(H-1)で表される高分子化合物の代りに下記構造式(H-8)で表される高分子化合物を用い、発光層形成用組成物に含まれる材料組成(質量部)を、(H-8):(H-2):(D-1)=75:25:20としたこと以外は、実施例1と同様にして素子を作製した。
Figure JPOXMLDOC01-appb-C000044
[素子の評価]
 実施例9、比較例8及び比較例9で作製した有機電界発光素子を輝度1000cd/mで発光させたときの電圧(V)を測定し、比較例2の電圧との差(実施例9、比較例2、8、9の電圧-比較例2の電圧)を求め、電圧差(V)とした。
 実施例9、比較例8及び比較例9で作製した有機電界発光素子を輝度1000cd/mで発光させたときの外部量子効率(EQEとする)を求め、比較例2のEQEを100としたときの相対値を相対EQEとした。
 実施例9、比較例8及び比較例9で作製した有機電界発光素子を定電流駆動し、初期輝度Lo=3000cd/mで換算し、輝度が初期輝度の95%に低下するまでの時間を求めてLT95(hr)とし、比較例2のLT95を100とした場合の各素子のLT95の相対値を求め、相対駆動寿命とした。これらの結果を表3に示す。
 表3に示されるように、本発明の素子は電圧が低く、発光効率(EQE)が高く、駆動耐久性が高いことが分かる。一方で、発光層に含まれる高分子化合物が本発明の式(2)で表される構造を含まない比較例9の素子は、電圧が高く、発光効率が低かった。
Figure JPOXMLDOC01-appb-T000045
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2019年6月13日付で出願された日本特許出願2019-110408に基づいており、その全体が引用により援用される。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔阻止層
 7 電子輸送層
 8 電子注入層
 9 陰極
 10 有機電界発光素子

Claims (12)

  1.  下記式(1)で表される化合物と、
     下記式(2)で表される構造を含む繰り返し単位を有する高分子化合物と、
     下記式(3)で表される化合物、及び、溶媒を含む有機電界発光素子用組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R、Rは、それぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~30の(ヘテロ)アリール基のうちのいずれか、あるいはこれらの組み合わせである。これらの基はさらに置換基を有していても良い。R、Rが複数存在する場合、複数のR、Rは同一でも良く、異なっていても良い。ベンゼン環に結合する隣り合うRまたはRは、互いに結合して当該ベンゼン環に縮合する環を形成していても良い。
     aは0~4の整数である。bは0~3の整数である。
     mは1~20の整数である。
     nは0~2の整数である。
     環Aは、ピリジン環、ピラジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、カルボリン環のいずれかである。
     環Aは、置換基を有していても良い。該置換基は、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基のうちのいずれか、あるいはこれらの組み合わせである。環Aに結合する隣り合う置換基どうしが結合して環Aに縮合する環を形成しても良い。
     Zは、直接結合またはm+1価の芳香族連結基を表す。
     Lは補助配位子を表す。lは1~3の整数である。補助配位子が複数ある場合は、それぞれ異なっていても良く、同一であっても良い。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R、Rはそれぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~30の(ヘテロ)アリール基のうちのいずれか、あるいはこれらの組み合わせである。これらの基はさらに置換基を有していても良い。]
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、XはCまたはNを表す。
     R~Rはそれぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~30の(ヘテロ)アリール基のうちのいずれか、あるいはこれらの組み合わせである。これらの基はさらに置換基を有していても良い。Rが複数存在する場合、複数のRは同一でも良く、異なっていても良い。ベンゼン環に結合する隣り合うRは、互いに結合して当該ベンゼン環に縮合する環を形成していても良い。
     cは0~5の整数である。
     ただし、cが0の場合、RとRは同時に無置換フェニル基ではない。]
  2.  前記式(1)中のZが直接結合である、請求項1に記載の有機電界発光素子用組成物。
  3.  前記式(1)で表される化合物が下記式(1-1)で表される化合物である、請求項1に記載の有機電界発光素子用組成物。
    Figure JPOXMLDOC01-appb-C000004
    [式(1-1)中、
     3つのXは、同時にCまたはNを表す。
     Zは、直接結合またはp+1価の芳香族連結基を表す。
     Zは、直接結合またはq+1価の芳香族連結基を表す。
     p、qは1~10の整数である。
     R、R、a、b、n、m、環A、L、lは、式(1)におけるR、R、a、b、m、n、環A、L、lと同義である。]
  4.  前記式(1)で表される化合物が、式(1-2)で表される化合物である請求項1または2に記載の有機電界発光素子用組成物。
    Figure JPOXMLDOC01-appb-C000005
    [式(1-2)中、R、a、m、n、環A、Z、L、lは、式(1)におけるR、a、m、n、環A、Z、L、lと同義である。
     R15~R17は置換基である。]
  5.  前記式(1)中のlが3である、請求項1~4のいずれかに記載の有機電界発光素子用組成物。
  6.  前記式(2)で表される構造を含む繰り返し単位を有する高分子化合物が、下記式(2-1)で表される繰返し単位を含む、請求項1~5のいずれかに記載の有機電界発光素子用組成物。
    Figure JPOXMLDOC01-appb-C000006
    [式(2-1)中、Ar21~Ar23は、それぞれ独立して、置換基を有していても良い、炭素数3~30の2価の(ヘテロ)アリーレン基を表す。
     Ar24、Ar25は、それぞれ独立して、置換基を有していてもよい炭素数3~30の(ヘテロ)アリール基を表す。
     rは0~2の整数を表す。]
  7.  前記式(3)で表される化合物において、[フェニレン-(R)c]、R及びRの3つの部分構造が、当該部分構造が置換基を有する場合はその置換基も含めて、同一の構造ではない、請求項1~6のいずれかに記載の有機電界発光素子用組成物。
  8.  前記式(3)で表される化合物におけるR~Rの末端がそれぞれ独立して、フェニル基、ナフチル基、フルオレニル基、カルバゾリル基、インドロカルバゾリル基、インデノカルバゾリル基、又はインデノフルオレニル基を含む、請求項1~7のいずれかに記載の有機電界発光素子用組成物。
  9.  請求項1~8のいずれかに記載の有機電界発光素子組成物を用いて湿式成膜法により発光層を形成する工程を含む、有機電界発光素子の製造方法。
  10.  請求項1~8のいずれかに記載の有機電界発光素子組成物を用いて形成された発光層を有する有機電界発光素子。
  11.  請求項10に記載の有機電界発光素子を有する表示装置。
  12.  請求項10に記載の有機電界発光素子を有する照明装置。
PCT/JP2020/023263 2019-06-13 2020-06-12 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置 WO2020251031A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217040500A KR20220024000A (ko) 2019-06-13 2020-06-12 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
CN202080042912.9A CN113966553A (zh) 2019-06-13 2020-06-12 有机电致发光元件用组合物、有机电致发光元件、显示装置和照明装置
JP2021526164A JPWO2020251031A1 (ja) 2019-06-13 2020-06-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019110408 2019-06-13
JP2019-110408 2019-06-13

Publications (1)

Publication Number Publication Date
WO2020251031A1 true WO2020251031A1 (ja) 2020-12-17

Family

ID=73781225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023263 WO2020251031A1 (ja) 2019-06-13 2020-06-12 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置

Country Status (5)

Country Link
JP (1) JPWO2020251031A1 (ja)
KR (1) KR20220024000A (ja)
CN (1) CN113966553A (ja)
TW (1) TW202110997A (ja)
WO (1) WO2020251031A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021061316A (ja) * 2019-10-07 2021-04-15 三菱ケミカル株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086370A (ja) * 2001-09-10 2003-03-20 Brother Ind Ltd 表示用組成物形成用塗布液、有機el素子、表示装置、及び表示装置の製造方法
JP2012036381A (ja) * 2010-07-16 2012-02-23 Sumitomo Chemical Co Ltd 高分子化合物を含む組成物及びそれを用いる発光素子
CN103497219A (zh) * 2013-10-12 2014-01-08 北京科技大学 一类红光铱配合物及其在有机电致白或红发光器件中应用
WO2015105014A1 (ja) * 2014-01-08 2015-07-16 住友化学株式会社 金属錯体およびそれを用いた発光素子
JP2018078286A (ja) * 2016-10-28 2018-05-17 住友化学株式会社 組成物及びそれを用いた発光素子
CN108395456A (zh) * 2017-12-11 2018-08-14 辅仁大学学校财团法人辅仁大学 有机金属铱络合物及其简易合成方法和用途
JP2019057484A (ja) * 2017-09-22 2019-04-11 三菱ケミカル株式会社 有機電界発光素子、有機電界発光素子の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102069497B1 (ko) * 2012-01-13 2020-01-23 미쯔비시 케미컬 주식회사 이리듐 착물 화합물 그리고 그 화합물을 함유하는 용액 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
KR102132591B1 (ko) 2012-08-08 2020-07-10 미쯔비시 케미컬 주식회사 이리듐 착물 화합물, 그리고 그 화합물을 포함하는 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
WO2017154884A1 (ja) 2016-03-10 2017-09-14 住友化学株式会社 発光素子
JP7444607B2 (ja) 2016-04-11 2024-03-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ジベンゾフランおよび/またはジベンゾチオフェン構造を有する複素環式化合物
JP2018083941A (ja) 2016-11-14 2018-05-31 住友化学株式会社 組成物及びそれを用いた発光素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086370A (ja) * 2001-09-10 2003-03-20 Brother Ind Ltd 表示用組成物形成用塗布液、有機el素子、表示装置、及び表示装置の製造方法
JP2012036381A (ja) * 2010-07-16 2012-02-23 Sumitomo Chemical Co Ltd 高分子化合物を含む組成物及びそれを用いる発光素子
CN103497219A (zh) * 2013-10-12 2014-01-08 北京科技大学 一类红光铱配合物及其在有机电致白或红发光器件中应用
WO2015105014A1 (ja) * 2014-01-08 2015-07-16 住友化学株式会社 金属錯体およびそれを用いた発光素子
JP2018078286A (ja) * 2016-10-28 2018-05-17 住友化学株式会社 組成物及びそれを用いた発光素子
JP2019057484A (ja) * 2017-09-22 2019-04-11 三菱ケミカル株式会社 有機電界発光素子、有機電界発光素子の製造方法
CN108395456A (zh) * 2017-12-11 2018-08-14 辅仁大学学校财团法人辅仁大学 有机金属铱络合物及其简易合成方法和用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021061316A (ja) * 2019-10-07 2021-04-15 三菱ケミカル株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP7276059B2 (ja) 2019-10-07 2023-05-18 三菱ケミカル株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置

Also Published As

Publication number Publication date
JPWO2020251031A1 (ja) 2020-12-17
KR20220024000A (ko) 2022-03-03
TW202110997A (zh) 2021-03-16
CN113966553A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
JP5810417B2 (ja) イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
JP7420116B2 (ja) イリジウム錯体化合物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
JP6879342B2 (ja) 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP5707704B2 (ja) 有機金属錯体、有機金属錯体含有組成物、発光材料、有機電界発光素子材料、有機電界発光素子、有機elディスプレイおよび有機el照明
WO2020235562A1 (ja) 有機電界発光素子用組成物、有機電界発光素子とその製造方法、及び表示装置
KR102115141B1 (ko) 고분자 화합물, 전하 수송성 폴리머, 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 유기 el 표시 장치 및 유기 el 조명
JP6866576B2 (ja) 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2020230811A1 (ja) イリジウム錯体化合物、該化合物および溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置および照明装置
JP6264766B2 (ja) イリジウム錯体化合物、有機電界発光素子、表示装置ならびに照明装置
JP6119171B2 (ja) イリジウム錯体化合物、該化合物及び溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
KR20200089668A (ko) 이리듐 착물 화합물, 그 화합물 및 용제를 함유하는 조성물, 그 화합물을 함유하는 유기 전계 발광 소자, 표시 장치 및 조명 장치
JP7140014B2 (ja) 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置。
WO2022250044A1 (ja) イリジウム錯体化合物、イリジウム錯体化合物含有組成物及び有機電界発光素子とその製造方法
WO2020251031A1 (ja) 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
WO2022149519A1 (ja) 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP7276059B2 (ja) 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
WO2021166900A1 (ja) 有機電界発光素子、有機el表示装置及び有機el照明
WO2021125011A1 (ja) 重合体、有機電界発光素子用組成物、正孔輸送層又は正孔注入層形成用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP7047355B2 (ja) イリジウム錯体化合物、該化合物及び溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
WO2022234763A1 (ja) 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
WO2023136252A1 (ja) イリジウム錯体化合物、有機電界発光素子用組成物、有機電界発光素子とその製造方法、及び表示装置
WO2023153161A1 (ja) 有機電界発光素子用組成物、有機電界発光素子の製造方法、有機電界発光素子、表示装置及び照明装置
JP7342639B2 (ja) Oled素子形成用組成物及びoled素子
JP2021127325A (ja) 芳香族ジアミン誘導体
JP2024055580A (ja) 有機電界発光素子用組成物、有機電界発光素子とその製造方法、及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526164

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20822559

Country of ref document: EP

Kind code of ref document: A1