WO2020250989A1 - バナジウム化合物の製造方法及び製造装置並びにレドックス・フロー電池用電解液の製造方法及び製造装置 - Google Patents

バナジウム化合物の製造方法及び製造装置並びにレドックス・フロー電池用電解液の製造方法及び製造装置 Download PDF

Info

Publication number
WO2020250989A1
WO2020250989A1 PCT/JP2020/023075 JP2020023075W WO2020250989A1 WO 2020250989 A1 WO2020250989 A1 WO 2020250989A1 JP 2020023075 W JP2020023075 W JP 2020023075W WO 2020250989 A1 WO2020250989 A1 WO 2020250989A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali
vanadium
concentration
solid
solution
Prior art date
Application number
PCT/JP2020/023075
Other languages
English (en)
French (fr)
Inventor
学 政本
西野 毅
雄太 北川
大地 赤木
Original Assignee
川崎重工業株式会社
日本管機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019109344A external-priority patent/JP6909826B2/ja
Priority claimed from JP2019154741A external-priority patent/JP6860628B2/ja
Application filed by 川崎重工業株式会社, 日本管機工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN202080042257.7A priority Critical patent/CN113939478A/zh
Priority to US17/618,727 priority patent/US20220364204A1/en
Priority to EP20822390.9A priority patent/EP3984958A4/en
Publication of WO2020250989A1 publication Critical patent/WO2020250989A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • C22B3/14Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions containing ammonia or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing a vanadium compound and a production apparatus. Specifically, the present invention relates to a production method and a production apparatus for separating a vanadium compound from combustion ash and the like. From another point of view, the present invention relates to a manufacturing method and a manufacturing apparatus for obtaining an electrolytic solution for a redox flow battery using a vanadium compound.
  • Vanadium is used as a raw material for an electrolytic solution, which is a main component of a redox flow battery, which is a large storage battery.
  • a redox flow battery containing vanadium vanadium redox flow battery
  • an inexpensive high-purity component containing no contaminant metal compounds such as nickel (Ni), iron (Fe), and magnesium (Mg) is contained in the electrolytic solution.
  • Vanadium is sought after.
  • the vanadium products that are generally distributed are ferrovanadium for adding steel materials, and have the disadvantages that they coexist with iron and have low purity, and that they are mainly for steel materials and cannot be supplied in large quantities.
  • Patent Document 1 proposes a technique for recovering a vanadium compound having a small amount of contaminant metal compounds such as iron using combustion ash as a raw material.
  • the incineration ash is immersed in an alkaline solution, and vanadium is leached from the incineration ash into the alkaline solution to obtain a leachate slurry, and the leachate slurry obtained in the alkali leaching step is solid-liquid separated and insoluble.
  • a solid-liquid separation step of removing substances to obtain a leachate, a pH adjustment step of adding an acid to the leachate after solid-liquid separation to make it acidic, and a aging step of aging until precipitates are deposited on the leachate after pH adjustment. It also has a separation step of separating the precipitate from the leachate after the aging step.
  • Patent Document 2 describes a first step of adjusting the pH of the dust collector ash while washing it with water and then solid-liquid separating it into a washing residue and washing waste water, and adding an alkaline solution to the washing residue and heating it.
  • solid-liquid separation is performed into the second filtrate and the second filtration residue.
  • a redox flow battery electrolytic solution having a fifth step of producing divanadium tetraoxide by burning and reducing the mixture, and a sixth step of dissolving divanadium tetroxide in sulfuric acid to produce a vanazyl sulfate electrolytic solution.
  • the manufacturing method is disclosed.
  • the heating temperature is preferably 50 to 100 ° C., and it is described that vanadium is contained in the first filtered solution in the form of a solution and solid-liquid separated from the first filtered residue.
  • the method for precipitating the alkali vanadate is not particularly limited, and a method for selectively separating the alkali vanadate depending on the difference in solubility or the like can be used, and sodium vanadate (NaVO 3) can be used as crystals of the alkali vanadate.
  • the second filtrate obtained in the third step is reused as an alkaline solution in the second step, and the second filtrate is replenished with an alkaline solution for concentration recovery because the alkali concentration is reduced. It is described that after making an alkaline solution having a predetermined concentration, it is reused as an alkaline solution in the second step and added to the washing residue.
  • JP-A-2019-46723 (Summary, Claim 1, Claim 3, Paragraph 025, Paragraph 0028-0032, etc.)
  • the combustion ash is obtained by burning a atmospheric distillation residual oil obtained by atmospheric distillation of heavy oil such as crude oil, a vacuum distillation residual oil obtained by vacuum distillation, oil coke, oil sands, etc., and other than vanadium (V). Includes a plurality of metals such as nickel (Ni), iron (Fe) and magnesium (Mg). Usually, the vanadium content (concentration) in the combustion ash is low. In order to selectively extract vanadium into the leaching solution from the combustion ash by the method of leaching vanadium into the liquid as in Patent Document 1, a large amount of alkaline solution is used with respect to the solid content (combustion ash). It was necessary to put it in, and it was difficult to achieve a practical and inexpensive processing cost.
  • Patent Document 1 it is necessary to add an acid (H 2 SO 4 or the like) to the leachate after the alkali leaching to make it acidic, so that the cost of the acidifying agent and the labor of adding the acidifying agent are high. Furthermore, since the vanadium content in the incineration ash is low, a relatively large amount of alkali is added, so that a large amount of acid is required, which leads to a further increase in drug cost. Furthermore, in order to recover the vanadium remaining in the leachate from which the precipitate was separated after the aging step, it is preferable to recycle it in the alkaline leaching step, but since the leachate is adjusted to be acidic, the alkaline solution is again used. There was a problem that it required input, which required a great deal of cost and labor.
  • an acid H 2 SO 4 or the like
  • Patent Document 2 an alkaline solution is added to the washing residue to obtain a first filtrate. Since the dust collector ash contains a large amount of sulfate roots, the washing residue contains sulfate ions, and when an alkaline solution is added to this, alkali sulfate such as sodium sulfate (Glauber's salt) is generated. Since alkali sulfate is difficult to separate in the process of producing vanadium, alkali sulfate tends to remain as a contaminant in the finally obtained purified vanadium product.
  • alkali sulfate such as sodium sulfate (Glauber's salt) is generated. Since alkali sulfate is difficult to separate in the process of producing vanadium, alkali sulfate tends to remain as a contaminant in the finally obtained purified vanadium product.
  • Patent Document 2 a device is made to reduce the drug cost by recovering the second filtrate obtained in the third step and reusing it as an alkaline solution in the second step, but it is a vanadium source.
  • the combustion ash contains a large amount of sulfate ions, as a result, the alkali sulfate in the obtained second filtration residue increases, which causes a decrease in product purity.
  • the treatment for separating the alkali sulfate is not performed, it is considered that the alkali sulfate remains as a contaminant in the purified vanadium product.
  • Patent Document 2 sodium vanadate (NaVO 3 ) is produced in the fourth step. Therefore, the pH after the addition of alkali in the second step is estimated to be about pH 7 to 9, judging from the known phase diagram of vanadium.
  • FIG. 4 shows changes in the leaching rate depending on the temperature and pH of various metals, in which (a) shows vanadium, (b) shows nickel, (c) shows iron, and (d) shows magnesium. From this figure, it can be seen that the advance rate of nickel and magnesium increases in the region where the pH is 11.5 or less. Therefore, also in Patent Document 2, since alkali leaching occurs in a low pH range of 7 to 9, a large amount of metal impurities such as nickel and magnesium are leached, and the vanadium purified product also contains these metal impurities. The result is.
  • a first object of the present invention is to provide a method and an apparatus for producing a vanadium compound which can be carried out at low cost with high purity of the obtained vanadium compound, and a method and an apparatus for producing an electrolytic solution for a redox flow battery. To do.
  • Patent Document 2 has a problem that heat treatment is performed after the addition of an alkaline solution in order to extract vanadium from the cleaning residue containing vanadium, which causes an energy burden.
  • evaporation crystallization or cooling crystallization is known as a method of recovering as a solid content (cake) containing vanadium from an alkaline leachate.
  • the content of alkali sulfate which is a contaminant, can be reduced by utilizing the difference in solubility between the alkali vanadate salt and the alkali sulfate salt.
  • the energy burden required for evaporation concentration and temperature adjustment increases.
  • manufacturing troubles caused by the occurrence of scaling and deterioration of manufacturing efficiency due to scale removal have been problems.
  • a second object of the present invention is to provide a method for efficiently producing a high-purity vanadium compound by reducing manufacturing troubles.
  • the present inventors have focused on the fact that the solubility of a vanadium compound such as sodium orthovanazine (V) and the solubility of an alkali sulfate such as sodium sulfate differ depending on the conditions of temperature and alkali concentration, and further, the alkali sulfate
  • the present invention was completed by finding the optimum temperature and alkali concentration conditions for dissolving and precipitating the alkali orthovanazine (V) acid.
  • the method for producing a vanadium compound according to the present invention comprises using ammonium sulfate and / or ammonium hydrogensulfate and sulfuric acid, vanadium, and at least one other metal selected from nickel, iron and magnesium.
  • An alkali extraction step of adding alkali and water or an alkaline solution to at least the contained raw material ash so as to have a pH of 13 or more and leaching the vanadium into the liquid phase to obtain an alkaline leachate, and solid-liquid separation of the alkaline leachate are performed.
  • the concentrated liquid has a vanadium compound having a saturated concentration or more and an alkali sulfate having a saturated concentration or less at a cooling temperature.
  • this production method further includes a raw material ash cleaning step of cleaning the raw material ash in the pre-stage of the alkaline extraction step.
  • this production method further includes a recycling step of reusing the crystallization filtrate separated from the solid content in the crystallization / solid-liquid separation step in the alkali extraction step in the subsequent stage of the crystallization / solid-liquid separation step. ..
  • the total of the sulfate roots brought in by the crystallization filtrate and the sulfate roots brought in from the raw material ash in the alkali extraction step corresponds to the saturation concentration after cooling in the crystallization / solid-liquid separation step.
  • a step of adjusting the amount of the crystallization filtrate to adjust the amount of the crystallization filtrate to be recycled so as to be equal to or less than the amount is further included.
  • this production method further includes an oxidation step of oxidizing the raw material ash in the pre-stage of the alkali extraction step.
  • this production method further includes a solid content cleaning step in which the solid content is washed to recover the vanadium-containing cleaning liquid and the cleaning liquid is transferred to the evaporation concentration step together with the leaching filtrate in a subsequent stage of the alkali extraction step.
  • the method for producing an electrolytic solution for a redox flow battery according to the present invention is a step of producing an electrolytic solution for producing an electrolytic solution for a redox flow battery using the vanadium compound produced by the method for producing a vanadium compound according to any one of the above as a raw material. Have.
  • the apparatus for producing a vanadium compound according to the present invention contains at least ammonium sulfate composed of ammonium sulfate and / or ammonium hydrogensulfate, sulfuric acid, vanadium, and at least one other metal selected from nickel, iron and magnesium.
  • Alkaline and water or an alkaline solution is added to the raw material ash to be prepared so that the pH becomes 13 or higher, and the alkaline leachate is solid-liquid separated with an alkaline extraction means for leaching vanadium into the liquid phase to obtain an alkaline leachate containing vanadium.
  • a solid-liquid separation means for removing insoluble matter as a solid content and obtaining an alkaline leachate containing vanadium as a leachate, an evaporative concentration means for evaporating and concentrating the leachate to obtain a concentrated solution, and a predetermined cooling temperature for the concentrated solution. It is provided with a crystallization / solid-liquid separation means for recovering a precipitate containing a vanadium compound as a solid content by cooling and crystallization.
  • the concentrated liquid has a vanadium compound having a saturated concentration or more and an alkali sulfate having a saturated concentration or less at a cooling temperature.
  • this manufacturing apparatus further includes a raw material ash cleaning means for cleaning the raw material ash in the previous stage of the alkaline extraction means.
  • the manufacturing apparatus further includes a recycling means for reusing the crystallization filtrate separated from the solid content by the crystallization / solid-liquid separation means by the alkaline extraction means at a later stage of the crystallization / solid-liquid separation means. ing.
  • the total amount of the sulfate roots brought in by the crystallization filtrate and the sulfate roots brought in from the raw material ash corresponds to the saturation concentration after cooling in the crystallization / solid-liquid separation means.
  • a crystallization filtrate amount adjusting means for adjusting the amount of the crystallization filtrate to be recycled is provided so as to be less than the amount.
  • this manufacturing apparatus further includes an oxidizing means for oxidizing the raw material ash in the previous stage of the alkaline extraction means.
  • the manufacturing apparatus further comprises a solids cleaning means that cleans the solids and recovers the vanadium-containing cleaning liquid at a later stage of the alkaline extraction means and transfers the cleaning liquid together with the leaching filtrate to the evaporation concentration means.
  • a solids cleaning means that cleans the solids and recovers the vanadium-containing cleaning liquid at a later stage of the alkaline extraction means and transfers the cleaning liquid together with the leaching filtrate to the evaporation concentration means.
  • the apparatus for producing an electrolytic solution for a redox flow battery according to the present invention is an electrolytic solution producing means for producing an electrolytic solution for a redox flow battery using the vanadium compound separated by the vanadium compound producing apparatus according to any one of the above as a raw material. I have.
  • the method for producing a vanadium compound according to the present invention is: (1) To the raw material ash containing at least ammonium sulfate and / or ammonium hydrogensulfate, sulfuric acid, and vanadium, alkali and water or an alkaline solution is added in an amount of pH 13 or higher to obtain vanadium. Into the liquid phase to obtain an alkaline leachate containing vanadium, an alkaline extraction step, (2) Solid-liquid separation step of separating the alkaline leachate into a solid-liquid separation to obtain a leachate containing vanadium. (3) Evaporative concentration step of evaporating and concentrating the leaching filtrate to obtain a concentrated solution.
  • the alkali concentration of the concentration adjusting solution is adjusted so that the vanadium compound has a saturation concentration or more and the alkali sulfate has a saturation concentration or less at the cooling temperature.
  • the alkali is a hydroxide of an alkali metal or an alkaline earth metal.
  • the alkali concentration of the concentration adjusting solution is adjusted to 10% by mass or more and 25% by mass or less.
  • this production method further comprises a raw material ash cleaning step of cleaning the raw material ash under conditions of less than pH 6 prior to the alkaline extraction step.
  • vanadium is leached into the liquid phase at a temperature of 10 ° C. or higher and lower than 50 ° C. in the alkaline extraction step.
  • the method for producing an electrolytic solution for a redox flow battery is (1) To the raw material ash containing at least ammonium sulfate and / or ammonium hydrogensulfate, sulfuric acid, and vanadium, alkali and water or an alkaline solution is added in an amount of pH 13 or higher to obtain vanadium.
  • an alkaline extraction step Into the liquid phase to obtain an alkaline leachate containing vanadium, an alkaline extraction step, (2) Solid-liquid separation step of separating the alkaline leachate into a solid-liquid separation to obtain a leachate containing vanadium. (3) Evaporative concentration step of evaporating and concentrating the leaching filtrate to obtain a concentrated solution.
  • the alkali concentration of the concentration adjusting solution is adjusted so that the vanadium compound has a saturation concentration or more and the alkali sulfate has a saturation concentration or less at the cooling temperature.
  • the apparatus for producing a vanadium compound according to the present invention comprises a raw material ash containing at least ammonium sulfate and / or ammonium hydrogensulfate, sulfuric acid, and vanadium, and an alkali and water, or an alkaline solution. Is added in an amount of pH 13 or higher to leach vanadium into the liquid phase to obtain an alkaline leachate containing vanadium.
  • the alkaline extraction means and the alkaline leachate are solid-liquid separated to obtain a leachate containing vanadium.
  • Solid-liquid separation means Solid-liquid separation means, evaporating and concentrating the leachate to obtain a concentrated solution, evaporative and concentrating means, and adding an alkali or alkaline solution to the concentrated solution to obtain a concentration adjusting solution
  • the crystallization / solid-liquid separation means is provided, wherein the concentration adjusting liquid is cooled to a predetermined cooling temperature and crystallized, and the precipitate containing the vanadium compound is recovered as a solid content.
  • the alkali concentration of the concentration adjusting solution is adjusted by the alkali concentration adjusting means so that the vanadium compound has a saturation concentration or more and the alkali sulfate has a saturation concentration or less at the cooling temperature.
  • the manufacturing apparatus includes a raw material ash cleaning means for washing the raw material ash with washing water before adding alkali and water or an alkaline solution to the raw material ash, and a pH for adjusting the pH at the time of washing to less than 6. It also has adjustment means.
  • the manufacturing apparatus further comprises a temperature control means for adding alkali and water or an alkaline solution to the raw material ash to control the temperature between 10 ° C. and lower than 50 ° C. while leaching vanadium into the liquid phase. I have.
  • the apparatus for producing an electrolytic solution for a redox flow battery comprises a raw material ash containing at least ammonium sulfate and / or ammonium hydrogensulfate, sulfuric acid, vanadium, alkali and Vanadium is leached into the liquid phase by adding water or an alkaline solution in an amount of pH 13 or higher to obtain an alkaline leaching solution containing vanadium.
  • the alkaline leaching solution is solid-liquid separated and contains vanadium.
  • an electrolytic solution manufacturing means for producing an electrolytic solution for a redox flow battery is provided.
  • the alkali concentration of the concentration adjusting solution is adjusted by the alkali concentration adjusting means so that the vanadium compound has a saturation concentration or more and the alkali sulfate has a saturation concentration or less at the cooling temperature.
  • the pH is set to 13 or higher in the alkali extraction step, and the leachate containing vanadium is recovered in the solid-liquid separation step.
  • the leachate is evaporated and concentrated in the evaporation concentration step so that the alkali has a predetermined concentration, and the precipitate containing the vanadium compound is recovered in the crystallization / solid-liquid separation step.
  • the concentrate is adjusted so that the vanadium compound has a saturation concentration or more and the alkali sulfate has a saturation concentration or less at the cooling temperature. Therefore, the alkali sulfate can be selectively removed, and the vanadium compound can be efficiently recovered.
  • vanadium compound is selectively precipitated and recovered according to the difference in solubility under the conditions of temperature and alkali concentration of the vanadium compound and the alkali sulfate. There is. Therefore, vanadium can be separated inexpensively, easily, and selectively as compared with the conventional case.
  • the alkali extraction step is performed again if necessary. Can be recycled.
  • the leachate filtrate is evaporated and concentrated, the alkali concentration of the obtained concentrate is high, and it is not necessary to add alkali for recovering the alkali concentration at the time of recycling to the alkali extraction step. Or because it lives in small quantities, it can be recycled at low cost.
  • the method for producing a vanadium compound according to the present invention alkali sulfate and metal impurities can be selectively removed, so that the obtained vanadium compound has high purity, does not require a large apparatus, and uses a small amount of alkali. Therefore, it is possible to provide a method for producing a vanadium compound that can be carried out at low cost. Further, by using a high-purity vanadium compound separated inexpensively, easily and selectively by this production method as a raw material, an electrolytic solution for a redox flow battery can be produced inexpensively and easily.
  • the pH is set to 13 or higher in the alkali extraction step, and the leachate containing vanadium is recovered by the solid-liquid separation means. Subsequently, the leachate is evaporated and concentrated in the evaporation concentration step so that the alkali has a predetermined concentration, and the precipitate containing the vanadium compound is recovered in the crystallization / solid-liquid separation step.
  • the vanadium compound is selectively precipitated and recovered according to the difference in solubility under the conditions of the temperature and the alkali concentration of the vanadium compound and the alkali sulfate. There is.
  • vanadium can be separated inexpensively, easily, and selectively as compared with the conventional case. Further, since the crystallization filtrate obtained by separating the solid content containing the vanadium compound by the crystallization / solid-liquid separation means contains alkali in addition to the vanadium compound that did not precipitate, the alkali extraction means is re-extracted as necessary. Can be recycled and used. Further, by using a high-purity vanadium compound separated inexpensively, easily and selectively by this production apparatus as a raw material, an electrolytic solution for a redox flow battery can be produced inexpensively and easily.
  • alkali and water or an alkaline solution are added in an amount of pH 13 or higher in the alkali extraction step, and the leachate containing vanadium is recovered in the solid-liquid separation step.
  • the pH By setting the pH to 13 or higher in the alkaline extraction step, vanadium can be selectively extracted in high yield without requiring heat treatment.
  • the leachate filtrate is concentrated in the evaporation concentration step, and then an alkali or an alkali solution is further added to the obtained concentrated solution in the alkali concentration adjusting step to obtain a predetermined alkali concentration. Adjust to. Since the alkali concentration of the leaching filtrate during evaporation concentration is low and a large boiling point elevation does not occur, the energy burden required for evaporation concentration is reduced. In addition, manufacturing troubles such as scaling during evaporation and concentration due to high concentration of alkali can be avoided.
  • the precipitate containing the vanadium compound is recovered in the crystallization / solid-liquid separation step.
  • the alkali concentration adjusting step the alkali concentration is adjusted so that the vanadium compound has a saturation concentration or more and the alkali sulfate has a saturation concentration or less at the cooling temperature in the crystallization / solid-liquid separation step. Therefore, in the present invention, the vanadium compound can be selectively precipitated and recovered due to the difference in solubility between the vanadium compound and the alkali sulfate, as in the conventional case, without adding an acid.
  • vanadium in the production method according to the present invention, vanadium can be selectively separated cheaper and more easily than in the past by avoiding production troubles that may occur during evaporation and concentration. Further, by avoiding manufacturing troubles and selectively separating vanadium inexpensively and easily, an electrolytic solution for a redox flow battery can be manufactured inexpensively, easily and efficiently.
  • alkali and water or an alkaline solution are added in an amount of pH 13 or higher by the alkaline extraction means, and the leaching filtrate containing vanadium is recovered by the solid-liquid separation means.
  • the pH By setting the pH to 13 or higher by the alkaline extraction means, vanadium can be selectively extracted in high yield without the need for heating means.
  • an alkali or an alkaline solution is further added to the concentrated solution by the alkali concentration adjusting means to adjust the concentration to a predetermined alkali concentration. Since the alkali concentration of the leaching filtrate during evaporation concentration is low and a large boiling point elevation does not occur, the energy burden required for evaporation concentration is reduced. In addition, manufacturing troubles such as scaling during evaporation and concentration due to high concentration of alkali can be avoided.
  • the precipitate containing the vanadium compound is recovered by crystallization / solid-liquid separation means.
  • the alkali concentration adjusting means adjusts the alkali concentration so that the vanadium compound has a saturation concentration or more and the alkali sulfate has a saturation concentration or less at the cooling temperature. Therefore, in the present invention, the vanadium compound can be selectively precipitated and recovered depending on the difference in solubility between the vanadium compound and the alkali sulfate, without requiring an acid addition means as in the prior art.
  • vanadium can be selectively separated cheaper and more easily than in the past by avoiding manufacturing troubles that may occur during evaporation and concentration. Further, by avoiding manufacturing troubles and selectively separating vanadium inexpensively and easily, an electrolytic solution for a redox flow battery can be manufactured inexpensively, easily and efficiently.
  • a method for producing a vanadium compound which can be carried out at low cost with high purity of the obtained vanadium compound, a method for producing an electrolytic solution for a redox flow battery, an apparatus for producing a vanadium compound, and a redox.
  • An apparatus for producing an electrolytic solution for a flow battery can be provided.
  • a method for producing a vanadium compound capable of separating vanadium inexpensively, easily and selectively while avoiding troubles during production a method for producing an electrolytic solution for a redox flow battery, and a method for producing an electrolytic solution for a redox flow battery. It is possible to provide an apparatus for producing a vanadium compound and an apparatus for producing an electrolytic solution for a redox flow battery.
  • FIG. 1A is a flowchart showing a method for producing a vanadium compound according to the first embodiment of the present invention and a method for producing an electrolytic solution for a redox flow battery
  • FIG. 1B is FIG. 1 (b).
  • FIG. 2 is a graph showing the solubility curves of sodium orthovanadate (a) and sodium sulfate (b) at different temperatures and alkali concentrations.
  • FIG. 3A is a flowchart showing a method for producing a vanadium compound according to a second embodiment of the present invention and a method for producing an electrolytic solution for a redox flow battery
  • FIG. 3B is FIG. 3 (b).
  • FIG. 4 is a graph showing changes in the leaching rate of vanadium (a), nickel (b), iron (c) and magnesium (d) depending on the pH.
  • FIG. 5 is a graph showing the amount of the cleaning liquid recovered by the solid content cleaning step and the recovery rate of the vanadium compound.
  • FIG. 6A is a Pourbaix diagram showing a state change due to the pH of vanadium and a redox potential
  • FIG. 6B is a graph showing a change in the ratio of vanadium washing loss due to pH adjustment during washing.
  • FIG. 7A is a flowchart showing a method for producing a vanadium compound according to a third embodiment of the present invention, and FIG.
  • FIG. 7B is a schematic showing a transition of components in each step of FIG. 7A. It is a figure.
  • FIG. 8 is a graph showing the saturated concentrations of sodium orthovanadate and sodium sulfate at different alkaline concentrations.
  • FIG. 9 (a) is a graph showing the solubility curves of sodium orthovanadate (Na 3 VO 4 ) at different temperatures and alkali concentrations, and
  • FIG. 9 (b) shows sodium sulfate (Na 2 SO 4 : Glauber's salt). It is a graph which shows the solubility curve.
  • the present invention relates to a method and an apparatus for producing a vanadium compound, and a method and an apparatus for producing an electrolytic solution for a redox flow battery using the vanadium compound as a raw material.
  • the method for producing a vanadium compound of the present invention is a method for recovering a vanadium compound from raw material ash containing vanadium and / or the vanadium compound. Examples of such raw material ash include combustion ash such as heavy oil, atmospheric distillation residual oil, vacuum distillation residual oil, incineration boiler ash, partially oxidized ash, petroleum coke ash, residual ash of oil sands and the like. Can be done.
  • the first, second, and third embodiments which are preferred embodiments of the present invention, will be sequentially described.
  • FIG. 1 shows a method for producing a vanadium compound according to the first embodiment of the present invention
  • (a) is a flow chart showing a process of a method for producing a vanadium compound
  • (b) is a flowchart of (a). It is a schematic diagram which shows the transition of the component in each process.
  • "bana” means “vanadium”
  • “Na vana” means “sodium orthovanadate (Na 3 VO 4 )”.
  • Ammonium sulfate consists of ammonium sulfate ((NH 4 ) 2 SO 4 ) and / or ammonium hydrogen sulfate (NH 4 HSO 4 ), and is also referred to as ammonium sulfate.
  • combustion ash raw material ash
  • step 10 combustion ash (raw material ash) is prepared (step 10).
  • the above-mentioned raw material ash is used as it is, or a raw material ash slurry obtained by dissolving it in a solvent such as water is used as the raw material ash.
  • the components contained in the raw material ash in this case are as shown in FIG. 1 (b) (step 10).
  • the raw material ash contains at least ammonium sulfate, sulfuric acid, vanadium, and at least one other metal selected from nickel, iron, and magnesium.
  • Ammonium sulfate consists of ammonium sulfate ((NH 4 ) 2 SO 4 ) and / or ammonium hydrogen sulfate (NH 4 HSO 4 ).
  • the ammonium sulfate content contained in the raw material ash is usually about 20 to 60% by mass ratio, and more generally about 30 to 50%. Examples of waste containing a large amount of ammonium sulfate include petroleum-based combustion ash.
  • the amount of sulfuric acid contained in the raw material ash is about 1 to 20% by mass (wt%), and more generally about 5 to 10% by mass.
  • Vanadium contained in the raw material ash is in the form of compounds having various valences of trivalent, tetravalent and pentavalent. Specifically NH 4 V 3 (OH) 6 (SO 4) is 2, VOSO 4 ⁇ 5H 2 O , V 2 O 5 or the like. Generally, vanadium contained in the raw material ash is about 0.1 to 30% by mass, and more generally about 1 to 10% by mass.
  • the raw material ash contains a water-insoluble solid (SS content) containing unburned carbon as the main component as carbon content.
  • SS content water-insoluble solid
  • the carbon content in the raw material ash is about 5 to 90% by mass, and more generally about 30 to 70% by mass, per dry matter.
  • the raw material ash may contain elements (metal impurities) other than vanadium, such as cobalt, molybdenum, manganese, titanium, copper, zinc, palladium, platinum, phosphorus, and sulfur.
  • these metal impurities are often contained as sulfates, oxides, and the like.
  • these metal impurities contained in the raw material ash are about 0.1 to 20% by mass, and more generally about 1 to 10% by mass, although it depends on the type of the element.
  • an alkali is added to the raw material ash (raw material ash itself or the raw material ash slurry) to adjust the pH to 13 or higher to obtain an alkaline leachate containing vanadium (step 12).
  • the alkali used in this step include sodium hydroxide (NaOH), lithium hydroxide (LiOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), and calcium hydroxide (Ca (Ca (). OH) 2 ), strontium hydroxide (Sr (OH) 2 ), barium hydroxide (Ba (OH) 2 ) and the like can be mentioned.
  • sodium hydroxide is preferable because it is easily available.
  • the temperature of the alkali extraction step is lower than the temperature of the evaporation concentration step described later, for example, about 10 to 40 ° C, preferably 20 to 30 ° C.
  • the alkali leachate after addition of alkali has a pH of 12.5 to 15, preferably pH 13 to 14.
  • the concentration of alkali contained in the alkali leachate depends on the concentration rate in the evaporation concentration step described later, and is preferably in the range of 10% by mass / concentration rate to 25% by mass / concentration rate. For example, when the concentration rate is 5 times (volume reduced to 1/5), the concentration of alkali contained in the alkali leachate is preferably 2 to 5% by mass.
  • step 13 the insoluble matter is removed from the alkaline leaching solution as a solid content, and a leaching filtrate containing vanadium is obtained (step 13).
  • the separation method is not particularly limited, and examples thereof include precipitation separation, centrifugation, suction filtration, and the like.
  • FIG. 1 (b) (step 13) the components contained in the raw material ash after this step have carbon content removed, and ammonium sulfate, sulfate ions, vanadium and vanadium are contained in the leaching filtrate. Contains alkali.
  • Solid content cleaning process After the solid-liquid separation step, it is preferable to perform a step of washing the solid content (cake) (solid content washing step).
  • solid content cleaning step cleaning is performed by adding 1 to 3 times the amount of water contained in the solid content (solid content water content).
  • vanadium can be extracted from the solid water content into the washing water and recovered. Since the solid content after the alkali extraction step is high pH, the pH of the cake washing water is about 12 to 13. Therefore, vanadium in the solid content becomes a solution state and can be easily recovered by solid content washing. Further, the cleaning liquid (cleaning filtrate) obtained in the solid content cleaning step is collected and transferred to the next evaporation concentration step together with the leaching filtrate. As shown in FIG.
  • the amount of washing water may be controlled by monitoring the pH and electrical conductivity of the cake washing water.
  • Patent Document 2 does not describe solid content cleaning. Further, in Patent Document 2, since alkali leaching is performed at pH 9 or lower, even if solid content cleaning is performed, cleaning is performed at a pH near neutral, and new extraction of vanadium cannot be expected. Rather, as shown in FIG. 4, a large amount of metal impurities such as nickel may be leached out.
  • the leaching filtrate is evaporated and concentrated to obtain a concentrated solution having an alkali concentration of 10 to 25% by mass (step 14).
  • this alkali is sodium hydroxide
  • the evaporation concentration method is not particularly limited, but can be carried out using an evaporation concentration can or the like.
  • the evaporation concentration temperature is preferably 70 to 130 ° C., although it depends on the salt concentration of the leaching filtrate. If the evaporation concentration temperature is high, the amount of input energy required for concentration increases and the treatment cost increases. Therefore, it is preferable to perform treatment at a temperature of 100 ° C. or lower, particularly 80 to 90 ° C., by evaporating under reduced pressure.
  • the evaporation concentration step is preferably performed under reduced pressure.
  • the ratio (concentration rate) of the volume of the leaching filtrate before the evaporation concentration step to the volume of the leaching filtrate after the evaporation concentration step is usually about 2 to 8 times, more preferably 4 to 6 times.
  • the volume of the leaching filtrate is reduced to 1/5 in this step, and ammonium sulfate, sulfate ion, vanadium and alkali are contained in the leaching filtrate. Is included.
  • the evaporated water may be recovered and used as the adjusting water in the alkali extraction step, or may be used as the washing water in the raw material ash washing step in the second embodiment described later.
  • the concentrate is cooled and crystallized, and the precipitate containing the vanadium compound is recovered as a solid content (step 15).
  • the cooling temperature is preferably 0 to 20 ° C.
  • the concentrated solution obtained in the previous step is preferably cooled to 0 to 20 ° C.
  • the crystallization method include a water tank having a cooling function, a cooling crystallization tank, a poor solvent crystallization tank to which an organic poor solvent such as methanol is added, and the like.
  • solid-liquid separation include a method using a thickener, a decanter, a basket centrifugal vacuum belt filter, and the like.
  • the solid content is recovered as a purified vanadium raw material containing a vanadium compound as a main component (step 17), and is used for the production of a redox flow electrolytic solution and the like. Since the crystallization filtrate in this step contains alkali and unrecovered vanadium, it is returned to the alkali extraction step (step 12) and recycled as needed. By reusing the alkali contained in the crystallization filtrate in the alkali extraction step, vanadium can be produced inexpensively and with a high recovery rate.
  • FIG. 2 is a graph showing the solubility curves of sodium orthovanadate (Na 3 VO 4 ) and sodium sulfate (Na 2 SO 4 : Glauber's salt) at different temperatures and alkali concentrations.
  • (a) shows the solubility curve of sodium orthovanadate
  • (b) shows the solubility curve of sodium sulfate.
  • the higher the temperature the higher the solubility of any compound.
  • the solubility of each compound depends on the alkali concentration (NaOH concentration), and as the alkali concentration increases, the solubility decreases and becomes substantially constant.
  • FIG. 2 the compositions of Na 3 VO 4 and Na 2 SO 4 contained in the alkaline leachate (in the case of 30 ° C.) are shown by “Alkaline extract filtrate @ 30 ° C.” in each graph.
  • This alkaline leachate is evaporated and concentrated at 80 ° C.
  • Na 3 VO 4 and Na 2 SO 4 and alkali (NaOH) remain in the liquid, so that the concentration change is represented by a straight line passing through the origin.
  • the concentrated solution after concentration is at 80 ° C.
  • the composition of Na 3 VO 4 and Na 2 SO 4 contained therein is shown by “after concentration of extract filtrate @ 80 ° C.” in each graph.
  • FIG. 2 is an example when concentrated 5 times.
  • the concentration equivalent to the concentrated solution calculated from the component concentration of the alkaline leachate is the saturation concentration of Na 3 VO 4 or more and the saturation concentration of Na 2 SO 4 at the temperature (for example, 10 ° C.) in the crystallization / solid-liquid separation step. If the following is the case, a high-purity Na 3 VO 4 precipitate containing no Na 2 SO 4 crystals can be recovered.
  • the vanadium compound can be recovered in a high yield, and the Na 2 SO 4 saturation concentration becomes zero. Stable recovery of high-purity vanadium compound is possible by crystallization in a region showing high solubility without gradual approach.
  • SO 4 in the alkaline leachate is set to 0.6% by mass or less and concentrated 2 to 7 times to increase the alkali concentration of the concentrated solution to 10 to 25% by mass and the saturated concentration of Na 2 SO 4 to 4. It is preferable that the saturation concentration of Na 3 VO 4 is 0 to 2% by mass.
  • An oxidation step for oxidizing the raw material ash may be further provided in the stage prior to the alkali extraction step.
  • the oxidation method include a method of adding an oxidizing gas and / or an oxidizing agent to the raw material ash.
  • the oxidizing gas include air, oxygen, ozone, nitrous oxide, nitric oxide, nitrogen dioxide, chlorine and the like.
  • the oxidizing agent include hydrogen peroxide and hypochlorous acid.
  • vanadium takes the form of compounds having various valences of trivalent, tetravalent, and pentavalent, but in the alkali extraction step, approximately pentavalent vanadium is selectively dissolved in the alkaline leachate.
  • Trivalent and tetravalent vanadium and metal impurities are hardly dissolved. Therefore, it is possible to improve the recovery rate of vanadium by performing an alkali extraction step after converting trivalent or tetravalent vanadium into pentavalent vanadium by adding an oxidation step.
  • the method for producing an electrolytic solution for a redox flow battery of the present invention is a method for using the vanadium compound produced by the method for producing a vanadium compound of the first embodiment as a stock solution for an electrolytic solution for a redox flow battery.
  • the method for producing an electrolytic solution for a redox flow battery includes an electrolytic solution manufacturing process which is a step of producing an electrolytic solution for a redox flow battery based on the vanadium raw material produced by the above-mentioned method for producing a vanadium compound.
  • vanadium (V) or vanadium (IV) is used on the positive electrode side
  • vanadium (III) or vanadium (II) is used on the negative electrode side
  • vanadium is mainly recovered as vanadium (V) such as sodium orthovanadate (Na 3 VO 4 ), and therefore can be particularly suitably used for producing an electrolytic solution on the positive electrode side.
  • the present invention is not limited to this, and for example, the recovered vanadium (V) may be reduced to vanadium (III) or vanadium (II) to be used in the production of an electrolytic solution on the negative electrode side. ..
  • the concentration of vanadium contained in the electrolytic solution for a redox flow battery is not particularly limited, but both the positive electrode side and the negative electrode side are, for example, in the range of 0.1 mol / l to 10 mol / l, preferably 1 to 3 mol / l. It can be within the range of l.
  • the vanadium compound production apparatus of the present invention can be configured as an apparatus for carrying out the vanadium compound production method of the first embodiment described above.
  • the vanadium compound production apparatus of the present embodiment includes an alkali extraction means, a solid-liquid separation means, an evaporation concentration means, and a crystallization / solid-liquid separation means.
  • the alkali extraction means is a means for carrying out the alkali extraction step of the first embodiment, and an alkali is added to the raw material ash so that the pH is 13 or more, preferably 14 or less to obtain an alkaline leachate containing vanadium.
  • Examples of the alkaline extraction means include a stirring and mixing tank for mixing an alkaline solution and raw material ash.
  • the solid-liquid separation means is a means for carrying out the solid-liquid separation step of the first embodiment.
  • the alkaline leaching solution is solid-liquid separated to remove insoluble matter such as carbon as a solid content, and leaching containing vanadium. It is a means to obtain a liquid.
  • the solid-liquid separation means include a dehydrator that separates the solid content from the alkaline leachate.
  • the solid content cleaning means is a means for carrying out the solid content cleaning step of the first embodiment, and cleans the solid content (cake) after solid-liquid separation.
  • the solid content cleaning means include a combination of a water tank for adding water, a vacuum belt filter for solid-liquid separation, a basket-type centrifuge, a dehydrator such as a decanter, and the like.
  • the solid content cleaning means may be a means of sprinkling water on the vacuum belt filter without using a water tank for adding water.
  • the evaporative concentration means is a means for carrying out the evaporative concentration step of the first embodiment, and the leaching filtrate is evaporated and concentrated at 70 to 100 ° C. to obtain a concentrated solution having an alkali concentration of 10 to 25% by mass.
  • the alkali is sodium hydroxide
  • the evaporation concentration means include an evaporation concentration can and an RO membrane separation device.
  • the crystallization / solid-liquid separation means is a means for carrying out the crystallization / solid-liquid separation step of the first embodiment, in which the concentrated solution is cooled to 0 to 20 ° C. for crystallization and a precipitate containing a vanadium compound. Is recovered as a solid content.
  • the crystallization / solid-liquid separation means is composed of a crystallization means and a solid-liquid separation means. Examples of the crystallization means include a water tank having a cooling function, a cooling crystallization tank, and a poor solvent crystallization tank to which an organic poor solvent such as methanol is added. Examples of the solid-liquid separation means include a thickener, a decanter, a basket centrifugal vacuum belt filter and the like.
  • the vanadium compound production apparatus may further include an oxidizing means for oxidizing the raw material ash in the stage prior to the alkaline extraction means.
  • the oxidizing means include an air diffuser for aerating the oxidizing gas.
  • the vanadium compound produced by the manufacturing apparatus for carrying out the method for producing a vanadium compound of the first embodiment is used as a stock solution for an electrolytic solution for a redox flow battery. It is a device for manufacturing.
  • the apparatus for producing the electrolytic solution for the redox flow battery includes an electrolytic solution manufacturing means which is a step of producing the electrolytic solution for the redox flow battery based on the vanadium raw material produced by the above-mentioned equipment for producing the vanadium compound.
  • the above-described method for producing the electrolytic solution for the redox flow battery can be referred to.
  • FIG. 3 shows a method for producing a vanadium compound according to a second embodiment of the present invention
  • (a) is a flowchart of a method for producing a vanadium compound
  • (b) is a transition of components in each step of (a). It is a schematic diagram which shows.
  • the meanings of the terms in FIG. 3B are all the same as the meanings of the terms described above with respect to FIG. 1B.
  • the method for producing the vanadium compound according to the second embodiment of the present invention includes a raw material ash preparation step (step 20), a raw material ash cleaning step (step 21), an alkali extraction step (step 22), and a solid-liquid separation step (step 23). , Evaporation concentration step (step 24), crystallization / solid-liquid separation step (step 25), and recycling step (step 26).
  • the steps other than the raw material ash washing step (step 21) and the recycling step (step 26) are the same as those in the first embodiment described above, and thus the description thereof will be omitted or simplified.
  • the raw material ash cleaning step for cleaning the raw material ash is performed.
  • soluble metal impurities iron, nickel, magnesium, etc.
  • soluble salts ammonium sulfate, sulfuric acid, etc.
  • the solvent used for washing the raw material ash may be water or an alkaline solution.
  • the method for cleaning the raw material ash may be a batch method or a continuous method. Specific examples thereof include a method in which a water tank for adding washing water is combined with a vacuum belt filter for solid-liquid separation, a basket-type centrifuge, and a dehydrator such as a decanter. Alternatively, a method of sprinkling water on the vacuum belt filter without using a water tank for adding washing water may be used.
  • the cleaning temperature is preferably 10 to 40 ° C, more preferably 20 to 30 ° C.
  • the cleaning time varies depending on the cleaning method, but is generally about 1 second to 60 minutes, preferably about 1 to 30 minutes.
  • FIG. 6A is a Pourbaix diagram showing a state change due to the pH of vanadium and a redox potential
  • FIG. 6B is a graph showing a change in the ratio of vanadium washing loss due to pH adjustment during washing. From the Pourbaix diagram of FIG.
  • the stable state of vanadium in the region where the pH is as low as 3 or less, the stable state of vanadium is ions such as VO 2+ , whereas in the region where the pH is as high as 4 to 7, it is.
  • the stable state of vanadium is a solid such as V 2 O 4 . Therefore, by setting the pH to 4 to 7 in the raw material ash cleaning step, vanadium is made solid and it is difficult to elute it as vanadium ions in the cleaning liquid, so that the loss during cleaning is reduced and impurities are efficiently removed. be able to.
  • FIG. 6B if the pH of the raw material ash aqueous solution is not adjusted during washing, the pH becomes as low as 3, and the vanadium loss becomes large. On the other hand, it can be seen that when the pH of the raw material ash aqueous solution is adjusted to 4, 5 and 6, the vanadium loss is smaller than that when the pH is not adjusted.
  • the raw material ash cleaning step is provided before the alkali extraction step, the ammonium sulfate content and sulfuric acid contained in the raw material ash can be significantly reduced as shown in FIG. 3 (b). In this way, by washing the raw material ash before the alkaline extraction process, the ammonium sulfate content and sulfuric acid are considerably reduced, and even if evaporation concentration and cooling crystallization are performed, sulfate such as sodium sulfate (Glauber's salt) in the liquid is used.
  • sulfate such as sodium sulfate (Glauber's salt) in the liquid is used.
  • the concentration of alkali can be maintained below the saturation concentration. Therefore, the solid content obtained in the crystallization / solid-liquid separation step contains almost no ammonium sulfate or alkali sulfate, and a high-quality vanadium compound can be obtained.
  • an alkali extraction step (step 22), a solid-liquid separation step (step 23), an evaporation concentration step (step 24), and a crystallization / solid-liquid separation step (step 25).
  • an alkali extraction step (step 22), a solid-liquid separation step (step 23), an evaporation concentration step (step 24), and a crystallization / solid-liquid separation step (step 25).
  • an alkali extraction step (step 22), a solid-liquid separation step (step 23), an evaporation concentration step (step 24), and a crystallization / solid-liquid separation step (step 25).
  • the crystallization filtrate obtained in the crystallization / solid-liquid separation step is recycled to the alkali extraction step.
  • the crystallization filtrate contains alkali and unrecovered vanadium.
  • the crystallization filtrate may be returned by a return pump, an overflow tank, or the like.
  • the entire amount of the crystallization filtrate may be reused as an alkaline solution in the alkali extraction step, but in order to suppress the accumulation of sulfate roots in the system, the range of 1 to 30% by mass of the obtained crystallization filtrate is obtained. It is preferable to discharge to the outside of the system and use the rest.
  • impurities such as ammonium sulfate and sulfuric acid are removed in the raw material ash washing step, so that the precipitate obtained in the crystallization / solid-liquid separation step (step 25) contains most of these impurities. Not done. Therefore, a high quality vanadium raw material can be obtained as compared with the method of the first embodiment.
  • the boiling point of the alkaline extract is lower than that in the case where the impurities are contained as in the first embodiment. Therefore, the evaporation concentration can be performed at a low temperature in the evaporation concentration step. Therefore, as compared with the first embodiment, a large input energy is not required in the evaporation concentration step, and the production cost of the vanadium raw material can be reduced.
  • the crystallization filtrate obtained in the crystallization / solid-liquid separation step (step 25) contains almost no contaminants, and is almost exclusively vanadium compounds and alkalis. Therefore, as compared with the method of the first embodiment, the amount of alkali to be added can be reduced and the vanadium recovery rate from the raw material ash can be increased.
  • the content of the vanadium compound (Na 3 VO 4, etc.) contained in the precipitate (solid content) obtained in the crystallization / separation step can be 30 to 40% by mass.
  • Na 3 VO 4 can be 70 to 80% by mass
  • Na 2 SO 4 can be 2 to 5% by mass
  • NaOH can be 20 to 25% by mass.
  • a solid content washing step of washing the solid content with water or the like it is possible to increase the Na 3 VO 4 to 90% by mass or more on a dry matter basis.
  • the salt concentration contained in the crystallization filtrate in the crystallization / separation step can be reduced to 15 to 20% by mass, and the amount of energy required in the evaporation concentration step is 14000 kcal or less per 1 kg of pure vanadium recovered. can do.
  • the total of the sulfate roots brought in by the crystallization filtrate and the sulfate roots brought in from the raw material ash in the alkali extraction step is equal to or less than the saturation concentration after cooling in the crystallization / solid-liquid separation step. It is preferable to adjust the amount of the crystallization filtrate to be recycled so as to be. By doing so, a high-purity vanadium compound containing no crystals of alkali sulfate can be recovered.
  • the vanadium compound production apparatus of the present invention can be configured as an apparatus for carrying out the vanadium compound production method of the second embodiment described above.
  • the vanadium compound production apparatus of the present embodiment includes raw material ash cleaning means, alkali extraction means, solid-liquid separation means, evaporation concentration means, crystallization / solid-liquid separation means, recycling means, and crystallization filtrate amount adjusting means.
  • the alkali extraction means, the solid-liquid separation means, the evaporation concentration means, and the crystallization / solid-liquid separation means are described in the first embodiment described above, and thus the description thereof will be omitted.
  • the raw material ash cleaning means is a means for carrying out the raw material ash cleaning step of the second embodiment.
  • the raw material ash cleaning means for cleaning the raw material ash include a combination of a water tank for adding water, a vacuum belt filter for solid-liquid separation, a basket-type centrifuge, a dehydrator such as a decanter, and the like. Further, as the raw material ash cleaning means, water may be sprinkled on the vacuum belt filter without using a water tank for adding water.
  • the raw material ash cleaning means by cleaning the raw material ash before the alkaline extraction means by the raw material ash cleaning means, the ammonium sulfate content and sulfuric acid are considerably reduced, and even if evaporation concentration and cooling crystallization are performed, sodium sulfate in the liquid ( The concentration of alkali sulfate such as Glauber's salt can be maintained below the saturation concentration. Therefore, the solid content obtained by the crystallization / solid-liquid separation means contains almost no ammonium sulfate or alkali sulfate, and a high-quality vanadium compound can be obtained.
  • the recycling means is a means for carrying out the recycling step of the second embodiment, and the crystallization filtrate separated from the solid content by the crystallization / solid-liquid separation means is reused by the alkaline extraction means.
  • the recycling means include a return pump and an overflow tank.
  • the crystallization filtrate amount adjusting means is a means for carrying out the crystallization filtrate amount adjusting step in the recycling step of the second embodiment, and the sulfate root brought in by the crystallization filtrate and the raw material in the alkali extraction step.
  • the amount of crystallization filtrate to be recycled is adjusted so that the total amount of the sulfate roots brought in from the ash is equal to or less than the amount equivalent to the saturation concentration after cooling in the crystallization / solid-liquid separation step.
  • the crystallization filtrate amount adjusting means it is possible to recover a high-purity vanadium compound containing no crystals of alkali sulfate.
  • FIG. 7 shows a method for producing a vanadium compound according to a third embodiment of the present invention
  • (a) is a flowchart showing a process of a method for producing a vanadium compound
  • (b) is each step of (a).
  • It is a schematic diagram which shows the transition of a component.
  • the meanings of the terms in FIG. 7 (b) are the same as the meanings of the terms described above with respect to FIG. 1 (b).
  • combustion ash is prepared as raw material ash (step 30).
  • an alkali extraction step step 32
  • a solid-liquid separation step step 34
  • an evaporation concentration step step 36
  • an alkali concentration adjustment step step 37
  • a crystallization / solid-liquid separation step step 38
  • the vanadium compound is recovered.
  • the recovered vanadium compound is used as a raw material in a method for producing an electrolytic solution for a redox flow battery, which will be described later.
  • each step will be described in detail, but the description will be omitted or simplified for the portion that overlaps with the first or second embodiment described above.
  • combustion ash is prepared (step 30).
  • the combustion ash may be used as a raw material ash as it is, or a slurry obtained by dissolving it in a solvent such as water may be used as the raw material ash.
  • the raw material ash prepared in the third embodiment contains at least ammonium sulfate, sulfuric acid, and vanadium.
  • the components contained in the raw material ash (combustion ash) in this embodiment are carbon, ammonium sulfate, sulfuric acid and vanadium.
  • the details of carbon, ammonium sulfate, sulfuric acid and vanadium are the same as those described above in the first embodiment.
  • the raw material ash may contain elements other than vanadium (metal contaminants).
  • impurities include iron, magnesium, nickel, cobalt, molybdenum, manganese, titanium, copper, zinc, palladium, platinum, phosphorus, sulfur and the like.
  • these metal contaminants are often contained as sulfides and the like.
  • These metal contaminants contained in the raw material ash are about 0.1 to 20% by mass, and more generally about 1 to 10% by mass, depending on the type of element.
  • Alkali extraction step step 32
  • alkali and water or an alkali solution are added to the raw material ash (raw material ash itself or raw material ash slurry) in an amount of pH 13 or higher to leach vanadium into the liquid phase, and the alkali containing vanadium is added.
  • Obtain the leachate step 32.
  • the pH is preferably 13 or more and 15 or less, and more preferably 13 or more and 14 or less.
  • the alkali may be added only in an amount that makes the pH of the obtained alkaline leachate 13 or more, and the amount of the addition is appropriately adjusted according to the type and amount of the raw material ash.
  • the amount of alkali added is adjusted to the minimum amount that enables selective extraction of vanadium and / or vanadium compound.
  • the amount of alkali added is adjusted so that the boiling point elevation of the obtained alkaline leachate is 5 ° C. or lower, more preferably 1 ° C. or lower.
  • the alkali used in this step is not particularly limited, but an alkali metal or alkaline earth metal hydroxide is preferable.
  • the alkali described above can be used in the first embodiment.
  • Sodium hydroxide is preferable because it is easily available.
  • the concentration of alkali contained in the alkali leachate varies depending on the type of alkali used.
  • the alkali concentration in the alkaline leachate is preferably 0.5% by mass or more, more preferably 1.0% by mass or more, from the viewpoint of selective extraction of vanadium.
  • the alkali concentration is preferably 10% by mass or less, more preferably 3.0% by mass or less.
  • the extraction temperature in the alkaline extraction step affects the extraction efficiency, but in the production method according to this embodiment, vanadium can be selectively extracted by setting the pH of the alkaline leachate to 13 or more. Therefore, heat treatment at a high temperature is not required at the time of extraction.
  • the extraction temperature in this embodiment is lower than the temperature of the evaporation and concentration step described later, for example, 10 ° C. or higher and lower than 50 ° C., preferably 10 ° C. to 40 ° C., and more preferably 20 ° C. to 30 ° C.
  • Solid-liquid separation step 34 In the solid-liquid separation step, the obtained alkaline leaching solution is solid-liquid separated to obtain a leaching filtrate containing vanadium (step 34). As shown in FIG. 7B (step 32), the alkaline leachate contains carbon, ammonium sulfate, sulfuric acid, vanadium and alkali (sodium hydroxide). In this step, carbon, which is an insoluble matter, is removed as a solid content. The components contained in the leaching filtrate obtained in this step are ammonium sulfate, sulfuric acid, vanadium and alkali, as shown in FIG. 7B (step 34).
  • the method for solid-liquid separation of the alkaline leachate is not particularly limited, and the method described above can be used in the first embodiment.
  • a solid content washing step of washing the solid content (cake) after separating the leaching filtrate is performed.
  • the solid content cleaning step is as described above in the first embodiment.
  • the recovery rate of vanadium is improved by recovering the washing water (washing filtrate) after washing the solid content and subjecting it to the next evaporation concentration step together with the leaching filtrate.
  • the evaporation concentration method is not particularly limited, and is a multi-effect evaporation method (MED), a self-steam mechanical compression evaporation method (MVR), a steam compression evaporation method (VCD), and a vacuum multi-stage evaporation concentration evaporation method (VMEC). , Multi-stage flash evaporation method (MSF) and the like are appropriately selected and used. From the viewpoint of energy saving and cost, the self-steam mechanical compression type (MVR) is preferable.
  • MED multi-effect evaporation method
  • MVR self-steam mechanical compression evaporation method
  • VCD steam compression evaporation method
  • VMEC vacuum multi-stage evaporation concentration evaporation method
  • MMF multi-stage flash evaporation method
  • MVR self-steam mechanical compression type
  • the volume is reduced by removing water as vapor from the leaching filtrate.
  • the volume of the leaching filtrate is reduced to 1/5 in this step (concentration rate 5 times).
  • the volume-reduced leaching filtrate contains ammonium sulfate, sulfate ion, vanadium and alkali.
  • the evaporation concentration temperature, the concentration rate, and the method of using the evaporated water in this step are as described above with respect to the first embodiment.
  • the amount of alkali added in the alkali extraction step is adjusted to the minimum amount that enables selective extraction of vanadium and / or vanadium compound, and the boiling point elevation is preferably increased.
  • the amount is adjusted to 5 ° C. or lower, more preferably 1 ° C. or lower. According to this manufacturing method, in the evaporation concentration step, the energy burden associated with the boiling point elevation is reduced, and problems such as scaling are avoided.
  • the alkali concentration in the concentrate obtained in this step varies depending on the amount of alkali added and the concentration rate in the alkali extraction step. From the viewpoint of preventing scaling during evaporation and concentration, the alkali concentration in the concentrate is preferably 10% by mass or less, more preferably 5% by mass or less.
  • Alkali concentration adjustment step step 37
  • an alkali or an alkaline solution is further added to the obtained concentrated solution to obtain a concentration adjusting solution (step 37).
  • the type of alkali added to the concentrate is not particularly limited, and the above-mentioned alkali can be used in the alkali extraction step of the first embodiment.
  • the alkali added in this step and the alkali added in the alkali extraction step may be the same or different. From the viewpoint of high purity and cost of the obtained vanadium compound, it is preferable to add the same type of alkali as the alkali added in the alkali extraction step.
  • sodium hydroxide is further added to the concentrate.
  • the alkali concentration of the concentration adjusting solution is adjusted so that the vanadium compound has a saturation concentration or more and the alkali sulfate has a saturation concentration or less at the cooling temperature in the crystallization / solid-liquid separation step described later. adjust.
  • the alkali concentration of the concentration adjusting solution so as to satisfy this condition, the mixing of alkali sulfate in the precipitate recovered in the crystallization / solid-liquid separation step described later is reduced, and the obtained vanadium compound is high. Purification is achieved.
  • the effect of the alkali concentration on the amount of alkali sulfate mixed in the precipitate will be described in detail in the subsequent crystallization / solid-liquid separation step.
  • the amount of alkali or alkaline solution added to the concentrate in this step is not particularly limited, and the type of raw material ash, the alkali concentration of the concentrate, and the type of alkali to be added. It is adjusted as appropriate according to the above.
  • Crystallization / solid-liquid separation step 38 In the crystallization / solid-liquid separation step, the obtained concentration adjusting solution is cooled to a predetermined cooling temperature for crystallization, and the precipitate containing the vanadium compound is recovered as a solid content (also referred to as cake) (step 38). ).
  • the cooling temperature, the crystallization method, and the solid-liquid separation method are as described above for the crystallization / solid-liquid separation step of the first embodiment.
  • step 38 ammonium sulfate, alkali sulfate, and a part of the vanadium compound are precipitated as solids, respectively.
  • the crystallization filtrate separated from the solid content by solid-liquid separation contains the rest of these and alkali.
  • Na 2 SO 4 Glauber's salt
  • Na 3 VO 4 sodium orthovanadate
  • the crystallization filtrate contains sodium hydroxide (NaOH) as an alkali.
  • the solubility of the vanadium compound and the alkali sulfate decreases as the alkali concentration of the concentration adjusting solution increases.
  • by adjusting the alkali concentration of the concentration adjusting solution used in this step to this concentration range it is possible to remarkably suppress the precipitation of alkali sulfate.
  • the graph of FIG. 8 shows the saturation concentration of Na 3 VO 4 (solid line) and the saturation concentration of Na 2 SO 4 (broken line) at different alkali concentrations.
  • the solid and dashed lines in FIG. 8 are the solubility curves of Na 3 VO 4 and Na 2 SO 4 at 10 ° C., respectively.
  • the solubility of the vanadium compound at 10 ° C is asymptotic to zero in the concentration range of alkali concentration of 10% by mass or more and 25% by mass or less, while the solubility of alkali sulfate at 10 ° C is high. Maintained in a high range. Therefore, in this step, when the concentration adjusting solution adjusted to an alkali concentration of 10% by mass or more and 25% by mass or less is cooled to 10 ° C., the vanadium compound is predominantly precipitated as a solid content, while most of the alkali sulfate is crystallized. It remains in the filtrate.
  • the content of alkali sulfate, which is a contaminant, is extremely low, and a solid content containing a vanadium compound with high purity can be obtained.
  • the obtained solid content is recovered as a vanadium raw material purified with a vanadium compound as a main component (step 40), and is used for producing a redox flow electrolytic solution and the like.
  • the alkali concentration of the concentration adjusting solution used in this step is preferably adjusted to 10% by mass or more and 25% by mass or less.
  • the alkali concentration of the concentration adjusting solution is more preferably 10% by mass or more, and particularly preferably 15% by mass or more.
  • the alkali concentration of the concentration adjusting solution is more preferably 30% by mass or less, and particularly preferably 25% by mass or less.
  • FIG. 9A is a graph showing the solubility curves of sodium orthovanadate (Na 3 VO 4 ) at different temperatures and alkali concentrations
  • FIG. 9B is a graph showing sodium sulfate (Na 2 ) at different temperatures and alkali concentrations. It is a graph which shows the solubility curve of (SO 4 : Glauber's salt). As shown, the higher the temperature, the higher the solubility of each compound. Further, the solubility of each compound decreases as the alkali concentration (NaOH concentration) increases, and becomes almost constant.
  • FIGS. 9A and 9B the compositions of Na 3 VO 4 and Na 2 SO 4 contained in the alkaline leachate (in the case of 30 ° C.) are shown at “Before concentration @ 30 ° C.”, respectively.
  • this alkaline leachate is evaporated and concentrated at 80 ° C.
  • Na 3 VO 4 , Na 2 SO 4 and alkali (NaOH) remain in the liquid, and the concentration change is represented by a straight line passing through the origin.
  • the temperature of the concentrated solution after concentration is 80 ° C.
  • the compositions of Na 3 VO 4 and Na 2 SO 4 contained therein are shown by “after concentration @ 80 ° C.”, respectively.
  • 9 (a) and 9 (b) are examples when concentrated 5 times. If this concentration is lower than the saturated solubility at 80 ° C. (below the solubility curve), no solid matter precipitates at that time.
  • compositions of Na 3 VO 4 and Na 2 SO 4 of the concentration adjusting solution in which alkali is further added to each concentrated solution in the alkali concentration adjusting step are shown by "after alkali addition @ 80 ° C.”, respectively.
  • the amount of alkali added is adjusted so that the concentration of each compound is lower than the saturated solubility at 80 ° C. (that is, the precipitation of solid matter does not occur).
  • the concentration adjusting solution is cooled to 10 ° C.
  • the concentration adjusting solution reaches the composition of the saturated solution at 10 ° C., and each component exceeding the saturated concentration is precipitated and solidified. Collected as minutes (cake).
  • the compositions of Na 3 VO 4 and Na 2 SO 4 contained therein are shown by "cooled crystallization filtrate @ 10 ° C.”, respectively.
  • cooling crystallization filtrate @ 10 ° C.” of Na 3 VO 4 is located in the area close to the lower limit asymptotic solubility curve of Na 3 VO 4 is zero, "cooling crystallization of Na 2 SO 4 The lysate @ 10 ° C. ”is located in a region where the solubility curve of Na 2 SO 4 does not asymptotically approach zero and shows high solubility. As a result, the vanadium compound is recovered in high yield, and the precipitation of alkali sulfate is suppressed.
  • the alkali concentration of the concentration adjusting solution so that the concentration of the vanadium compound is equal to or higher than the saturation concentration and the concentration of alkali sulfate is equal to or lower than the saturation concentration at the cooling temperature of the crystallization / solid-liquid separation step. It is possible to recover a solid content that does not contain alkali sulfate, which is a contaminant, and contains a vanadium compound with high purity. This makes it possible to stably obtain a high-purity vanadium compound.
  • the content of the vanadium compound in the solid content obtained in the crystallization / solid-liquid separation step can be 30 to 40% by mass. Further, if it is a dry matter base in which the solid content is dried, it can be 70 to 80% by mass of the vanadium compound, 2 to 5% by mass of alkali sulfate, and 20 to 25% by mass of alkali. Further, if a cake washing step of washing the solid content with water or the like is provided after the crystallization / solid-liquid separation step, the content of the vanadium compound can be 90% by mass or more on a dry matter basis.
  • the vanadium compound has a saturation concentration or higher at the above-mentioned cooling temperature by further adding an alkali or an alkaline solution to the concentrated solution obtained in the evaporation concentration step. And, the alkali concentration is adjusted so that the alkali sulfate is less than the saturation concentration. In other words, the alkali concentration of the concentrated solution obtained in the evaporation concentration step is lower than the alkali concentration at which the vanadium compound is at least the saturated concentration and the alkali sulfate is at least the saturated concentration at the above-mentioned cooling temperature.
  • the feature of this production method is that the alkali concentration after evaporative concentration is lower than the alkali concentration at which the vanadium compound is at least the saturated concentration and the alkali sulfate is at least the saturated concentration at the above-mentioned cooling temperature.
  • the purpose is to set the amount of alkali to be added in. As a result, the alkali concentration of the leaching filtrate used in the evaporation concentration step is lowered, and a large increase in viscosity and boiling point elevation are avoided, so that the energy burden required for evaporation concentration is reduced and the fluid handling property is improved. To do. In addition, manufacturing troubles caused by the occurrence of scaling during evaporation and concentration due to the high concentration of alkali are avoided. Further, the time and cost required for removing the scale attached to the device are reduced.
  • the production method may further include other steps as long as the effects of the present invention are not impaired.
  • it is separated by a raw material ash washing step of cleaning the raw material ash after the preparation step and before the alkali extraction step, an oxidation step of oxidizing the raw material ash after the preparation step and before the alkali extraction step, and a crystallization / solid-liquid separation step.
  • a raw material ash washing step of cleaning the raw material ash after the preparation step and before the alkali extraction step
  • an oxidation step of oxidizing the raw material ash after the preparation step and before the alkali extraction step
  • crystallization / solid-liquid separation step examples thereof include a recycling process in which the crystallization filtrate is reused in an alkali extraction process.
  • This step is a step of removing soluble metal impurities and soluble salts (ammonium sulfate, sulfuric acid, etc.) from the raw material ash.
  • Water or an alkaline solution is used for washing the raw material ash, and the pH of the liquid during washing is adjusted to preferably pH 4 to 7, more preferably pH 5 to 6. Furthermore, it is preferable that the pH at the time of washing does not exceed 6. It is preferable to use washing water having a mass ratio of 2 to 20 times that of the raw material ash.
  • the crystallization / solid-liquid separation step metal impurities, alkali sulfate and the like are reduced, and a cake containing a vanadium compound with high purity can be obtained. From this point of view, it is preferable to wash the raw material ash until the content of soluble components (soluble metal contaminants and soluble salts) in the raw material ash after the raw material ash washing step is 5% by mass or less.
  • the cleaning method, cleaning temperature, and cleaning time of the raw material ash in this step are as described above in the second embodiment.
  • This step is a step of oxidizing trivalent or tetravalent vanadium contained in the raw material ash to pentavalent vanadium.
  • trivalent or tetravalent vanadium into pentavalent vanadium in the oxidation step and then performing an alkali extraction step, the recovery rate of vanadium is improved.
  • the method of oxidizing the raw material ash and the types of the oxidizing gas and the oxidizing agent used are as described above as a modification of the first embodiment.
  • This step is a step of returning the crystallization filtrate obtained by solid-liquid separation after crystallization to the alkali extraction step and reusing it as an alkaline solution. This improves the yield of the obtained vanadium compound.
  • the method of returning the crystallization filtrate and the amount of the crystallization filtrate returned are as described above in the second embodiment.
  • the vanadium compound obtained by the method for producing a vanadium compound according to the third embodiment described above is used as a raw material for the electrolytic solution for a redox flow battery.
  • raw material ash preparation step step 30
  • alkali extraction step step 32
  • solid-liquid separation step step 34
  • evaporation concentration step step 36
  • alkali concentration adjustment step step 37
  • the analysis / solid-liquid separation step (step 38) and the electrolytic solution manufacturing step of producing the electrolytic solution for the redox flow battery using the precipitate containing the vanadium compound as a raw material are sequentially carried out for the redox flow battery.
  • the electrolyte is produced.
  • the details of the electrolytic solution for the redox flow battery are as described above in the first embodiment.
  • vanadium can be selectively separated at a lower cost and more easily than before, avoiding production troubles that may occur during evaporation and concentration.
  • an electrolytic solution for a redox flow battery can be produced inexpensively, easily, and efficiently.
  • the vanadium compound production apparatus of the present invention can be configured as an apparatus for carrying out the vanadium compound production method according to the third embodiment described above.
  • the vanadium compound production apparatus of this embodiment includes an alkali extraction means, a solid-liquid separation means, an evaporation concentration means, an alkali concentration adjusting means, and a crystallization / solid-liquid separation means.
  • the alkali extraction means is a means for carrying out the alkali extraction step of the third embodiment described above, and is an amount of alkali and water or an alkali solution in the raw material ash (raw material ash itself or raw material ash slurry) so as to have a pH of 13 or more. Is a means for leaching vanadium into the liquid phase to obtain an alkaline leachate containing vanadium.
  • the alkali extraction means the alkali extraction means exemplified in the first embodiment can be used.
  • the solid-liquid separation means is a means for carrying out the above-mentioned solid-liquid separation step.
  • the solid-liquid separation means the solid-liquid separation means exemplified in the first embodiment can be used.
  • the evaporative concentration means is a means for carrying out the evaporative concentration step of the third embodiment described above, and is a means for evaporating and concentrating the leaching filtrate containing vanadium to obtain a concentrated solution.
  • the evaporation concentration means include an evaporation concentration can.
  • the alkali concentration adjusting means is a means for carrying out the above-mentioned alkali concentration adjusting step, and is a means for further adding an alkali or an alkaline solution to the concentrated solution to obtain a concentration adjusting solution.
  • Examples of the alkali concentration adjusting means include a stirring and mixing tank for mixing a concentrated solution and an alkaline solution.
  • the crystallization / solid-liquid separation means is a means for carrying out the crystallization / solid-liquid separation step of the third embodiment described above, and cools the concentration adjusting liquid to a predetermined cooling temperature to crystallize the vanadium compound. It is a means for recovering the contained precipitate as a solid content (also called a cake).
  • the crystallization / solid-liquid separation means is composed of a crystallization means and a solid-liquid separation means. As the crystallization means and the solid-liquid separation means, the crystallization means and the solid-liquid separation means exemplified in the first embodiment can be used.
  • vanadium can be selectively extracted in high yield without the need for heating means at a high temperature by setting the pH of the alkaline leachate to 13 or higher by the alkaline extraction means. .. Further, in this manufacturing apparatus, after the leachate filtrate is concentrated by the evaporative concentration means, an alkali or an alkali solution is further added to the concentrated solution by the alkali concentration adjusting means to adjust the concentration to a predetermined alkali concentration. Since the alkali concentration of the leaching filtrate during evaporation concentration is low and a large boiling point elevation does not occur, the energy burden required for evaporation concentration can be reduced, and manufacturing troubles such as scaling during evaporation concentration can be avoided.
  • the alkali concentration is adjusted by the alkali concentration adjusting means so that the vanadium compound has a saturation concentration or more and the alkali sulfate has a saturation concentration or less at the cooling temperature in the crystallization / solid-liquid separation step. Will be done.
  • the vanadium compound can be selectively precipitated and recovered due to the difference in solubility between the vanadium compound and the alkali sulfate, as in the conventional case, without requiring an acid addition means.
  • this manufacturing apparatus uses a raw material ash cleaning means for washing the raw material ash with washing water, a pH adjusting means for adjusting the pH of the washing water to 4 to 7, and an oxidizing means for oxidizing the raw material ash.
  • a temperature control means for controlling the temperature of vanadium to 10 ° C. or higher and lower than 50 ° C. while the vanadium is leached into the liquid phase by the alkaline extraction means, and a solid content cleaning means for washing the solid content (cake) separated by the solid-liquid separation means.
  • a recycling means for reusing the crystallization filtrate separated from the solid content by the crystallization / solid-liquid separation means by the alkaline extraction means may be further provided.
  • the apparatus for producing an electrolytic solution for a redox flow battery of the present invention is for using the vanadium compound produced by the apparatus for producing a vanadium compound according to the third embodiment described above as a raw material for an electrolytic solution for a redox flow battery. It is a device.
  • the apparatus for producing an electrolytic solution for a redox flow battery of this embodiment uses a precipitate containing an alkali extraction means, a solid-liquid separation means, an evaporation concentration means, an alkali concentration adjusting means, a crystallization / solid-liquid separation means, and a vanadium compound as raw materials. It is equipped with an electrolytic solution manufacturing means for producing an electrolytic solution for a redox flow battery.
  • the above-mentioned vanadium compound production apparatus can be referred to.
  • the above-described method for producing the electrolytic solution for the redox flow battery can be referred to.
  • vanadium can be selectively separated at a lower cost and more easily than before, avoiding manufacturing troubles that may occur during evaporation and concentration. Further, by avoiding manufacturing troubles and selectively separating vanadium inexpensively and easily, an electrolytic solution for a redox flow battery can be manufactured inexpensively, easily and efficiently.
  • Example 1 (1) Preparation step and washing step Boiler combustion ash 5 kg wet (moisture content 14.9%, vanadium (V) content 2.3%) is used as a raw material, water: 10 kg is added, and the mixture is stirred for 60 minutes and then centrifuged. Solid-liquid separation was performed with a machine. The obtained residue was 4.5 kg (moisture content 33 wt%). In this washing step, 16.6 wt% of vanadium (V) contained in the raw material ash was eluted in the filtrate.
  • Cooling Crystallization Step 1.0 kg of the concentrated solution obtained in the evaporation concentration step was taken, cooled gradually, and stirred at 5 ° C. for 5 hours to precipitate crystals. Solid-liquid separation was performed by suction filtration using a 1.0 ⁇ m membrane. As a result, 157 g of solid cake I (of which vanadium (V) as Na 3 VO 4 : 64 g: 18 g) was obtained. The composition ratio of this cake I in the dry matter was 85 wt% for Na 3 VO 4 , 0.1 wt% for Na 2 SO 4 , and 15 wt% for NaOH. Since most of the NaOH is mixed with the adhering water, the mixing rate can be significantly reduced by improving the solid-liquid separability.
  • the input energy required for the evaporation concentration step was 13950 kcal per 1.0 kg of pure vanadium recovered.
  • Example 2 (1) Preparation step and cleaning step As raw material ash, 1.5 kg wet of combustion ash (moisture content 14.9%, vanadium (V) content 2.3%) was prepared, and water: 15 kg (pH 7) was added. After stirring for 15 minutes, solid-liquid separation was performed with a centrifugal dehydrator. The obtained residue was 1.26 kg (moisture content 29 wt%).
  • Alkali extraction step and solid-liquid separation step 3.5 kg of water and 0.26 kg of 48 wt% caustic soda (NaOH) were added to 1.29 kg of the residue obtained in the washing step, and the mixture was stirred for 60 minutes at a pH of 13.5.
  • a high-purity vanadium compound could be efficiently produced.
  • Table 1 according to the production method according to the present invention in which the alkali concentration adjusting step is carried out after the evaporation concentration step, compared with the method of adding alkali only in the alkali extraction step before the evaporation concentration step. It can be seen that the power consumption is reduced to about 45%. Further, in the production method of the example, no production trouble occurred in the evaporation concentration step. From this evaluation result, the superiority of the present invention is clear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrochemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

この製造方法は、硫安分と硫酸とバナジウムとニッケル、鉄及びマグネシウムから選択される少なくとも1種類の他金属とを含む原料灰に、pH13以上となるようにアルカリ及び水、又はアルカリ溶液を添加してアルカリ浸出液を得るアルカリ抽出工程(ステップ12)、アルカリ浸出液を固液分離し、バナジウムを含む浸出ろ液を得る固液分離工程(ステップ13)、浸出ろ液を蒸発濃縮して濃縮液を得る蒸発濃縮工程(ステップ14)及び濃度液を冷却して晶析し、バナジウム化合物を含む析出物を回収する晶析・固液分離工程(ステップ15)を含む。他の製造方法は、アルカリ抽出工程(ステップ32)、固液分離工程(ステップ4)及び蒸発濃縮工程(ステップ36)と、濃縮液にさらにアルカリ又はアルカリ溶液を添加して、濃度調整液を得る、アルカリ濃度調整工程(ステップ37)と、晶析・固液分離工程(ステップ38)と、を含む。

Description

バナジウム化合物の製造方法及び製造装置並びにレドックス・フロー電池用電解液の製造方法及び製造装置
 本発明は、バナジウム化合物の製造方法及び製造装置に関する。詳細には、本発明は、燃焼灰等からバナジウム化合物を分離するための製造方法及び製造装置に関する。他の観点から、本発明は、バナジウム化合物を用いてレドックス・フロー電池用電解液を得るための製造方法及び製造装置に関する。
 バナジウムは、大型蓄電池であるレドックス・フロー電池の主要構成物である電解液の原料として使用されている。バナジウムを含むレドックス・フロー電池(バナジウム・レドックス・フロー電池)では、電解液の構成物として、ニッケル(Ni)、鉄(Fe)、マグネシウム(Mg)等の夾雑金属化合物を含まない安価な高純度バナジウムが求められている。しかしながら、一般的に流通しているバナジウム製品は、鋼材添加用のフェロバナジウムで、鉄と共存し純度が低いこと、鋼材向けが主流で大量供給ができないという欠点があった。
 例えば、特許文献1では、燃焼灰を原料として、鉄等の夾雑金属化合物の少ないバナジウム化合物を回収する技術が提案されている。この方法では、焼却灰をアルカリ性溶液に浸漬し、焼却灰からバナジウムをアルカリ性溶液中に浸出させて浸出液スラリーを得るアルカリ浸出工程と、アルカリ浸出工程で得られた浸出液スラリーを固液分離し、不溶物を除去して浸出液を得る固液分離工程と、固液分離後の浸出液に酸を添加し酸性にするpH調整工程と、pH調整後の浸出液に析出物が析出するまで熟成する熟成工程と、熟成工程後の浸出液から析出物を分離する分離工程と、を有する。
 特許文献2には、集塵機灰を水で洗浄しながらpH調整を行った後、洗浄残渣と洗浄廃水とに固液分離する第1工程と、洗浄残渣にアルカリ溶液を添加して加熱した後、第1ろ液と第1ろ過残渣とに固液分離する第2工程と、第1ろ液中からバナジン酸アルカリを析出させた後、第2ろ液と第2ろ過残渣とに固液分離する第3工程と、第2ろ過残渣を酸で中和するとともに、洗浄廃水を混合して、生成した五酸化バナジウムを含む第3ろ過残渣を固液分離により取り出す第4工程と、第3ろ過残渣をか焼還元して四酸化二バナジウムを生成する第5工程と、四酸化二バナジウムを硫酸に溶解して硫酸バナジル電解液を製造する第6工程と、を有するレドックス・フロー電池用電解液の製造方法が開示されている。
 特許文献2の第1工程では、懸濁液のpHが好ましくは6~8となるように調整することで、懸濁液に鉄、ニッケル等の金属夾雑物の溶解を防止できるとされている。また、第2工程では、加熱温度は好ましくは50~100℃とされており、第1濾過液にはバナジウムが溶液の形態で含まれ、第1濾過残渣と固液分離されることが記載されている。さらに、第3工程では、バナジン酸アルカリの析出方法は特に限定されておらず、溶解度の差によって選択的に分離する方法等を用いることができ、バナジン酸アルカリの結晶としてバナジン酸ナトリウム(NaVO)が析出することが記載されている。また、第3工程で得られる第二濾過液は、第2工程におけるアルカリ溶液として再利用され、第二濾過液は、アルカリ濃度が減少しているために、濃度回復用のアルカリ溶液を補充して所定濃度のアルカリ溶液にした後、第2工程におけるアルカリ溶液として再利用され、洗浄残渣に添加されることが記載されている。
国際公開2017/208471号(要約、段落0024等) 特開2019-46723号公報(要約、請求項1、請求項3、段落025、段落0028~0032等)
 燃焼灰は、原油等重質油を常圧蒸留した常圧蒸留残渣油や減圧蒸留して得られる減圧蒸留残渣油、オイルコークス、オイルサンド等を燃焼したものであり、バナジウム(V)の他に、ニッケル(Ni)、鉄(Fe)、マグネシウム(Mg)等の複数の金属が含まれる。通常、燃焼灰中のバナジウム含量(濃度)は少ない。特許文献1のようにバナジウムを液中に浸出させる方法によって燃焼灰から、選択的にバナジウムを高収率で浸出液に抽出するためには、固形分(燃焼灰)に対して多くのアルカリ溶液を投入する必要があり、実用的な安価な処理コストを達成することが困難であった。
 また、特許文献1の方法では、アルカリ浸出後の浸出液に酸(HSO等)を添加して酸性にする必要があるため、酸性化薬剤のコストや添加の手間がかかる。さらに、焼却灰中のバナジウム含量が少ないことから、相対的に多量のアルカリが投入されているため、投入する酸が多量に必要となり、薬剤コストの一層の増大に繋がっている。さらには、熟成工程後に析出物を分離した浸出液中に残存するバナジウムを回収するために、これをアルカリ浸出工程にリサイクルすることが好ましいが、浸出液が酸性に調整されているため、再度アルカリ溶液の投入が必要となり、多大なコストや手間がかかるという問題があった。
 特許文献2では、洗浄残渣にアルカリ溶液を添加して第1濾液を得ている。集塵機灰には硫酸根が多く含まれているため、洗浄残渣には硫酸イオンが含まれており、これにアルカリ溶液を添加すると、硫酸ナトリウム(芒硝)等の硫酸アルカリが生じる。バナジウムを生成する過程で硫酸アルカリは分離しにくいため、最終的に得られるバナジウム精製物に硫酸アルカリが夾雑物として残存しやすい。また、特許文献2では、第3工程で得られる第2濾液を回収して、第2工程のアルカリ溶液として再利用することにより、薬剤コストを低減する工夫がなされているが、バナジウム源である燃焼灰に硫酸イオンが多く含まれている場合、結果的に、得られる第2濾過残渣中の硫酸アルカリ塩が増加して、製品純度低下の要因となっている。特許文献2では、この硫酸アルカリを分離する処理をおこなっていないため、バナジウム精製物に硫酸アルカリが夾雑物として残存していると考えられる。
 さらに、特許文献2の第3工程では、溶解度の差によって選択的に分離する方法を用いることができると記載されているが、具体的な方法は何ら記載されていない。第3工程で得られる第2濾液は、第1濾液と比較してアルカリ濃度が減少していることから、第3工程の晶析では溶液の濃縮がおこなわれていないことがわかる。このため、多量の溶液を処理する必要があり、装置が大きくなりコストがかかる。また、第2濾液の第2工程へのリサイクルの際に高濃度アルカリを大量に添加する必要があり、さらにコストが増大する。
 また、特許文献2では、第4工程において、バナジン酸ナトリウム(NaVO)が生成している。このため、第2工程のアルカリ添加後のpHは、公知のバナジウムの状態図から判断すると、pH7~9程度と推測される。また、図4は各種金属の温度とpHによる浸出率の変化を示しており、(a)はバナジウム、(b)はニッケル、(c)は鉄、(d)はマグネシウムを示している。この図から、特にニッケル及びマグネシウムは、pHが11.5以下の領域で進出率が増加することがわかる。このため、特許文献2においても、pH7~9と低い範囲でアルカリ浸出しているため、ニッケル、マグネシウム等の金属夾雑物が多く浸出して、バナジウム精製物にもこれらの金属夾雑物が含まれる結果となる。
 本発明の第一の目的は、得られるバナジウム化合物の純度が高く、かつ低コストで実施可能なバナジウム化合物の製造方法及び製造装置、並びにレドックス・フロー電池用電解液の製造方法及び製造装置を提供することにある。
 他の観点から、特許文献2では、バナジウムを含む洗浄残渣からバナジウムを抽出するために、アルカリ溶液添加後に加熱処理が行われており、エネルギー的な負担が生じているという課題もあった。
 また、例えば、アルカリ浸出液からバナジウムを含む固形分(ケーキ)として回収する方法として、蒸発晶析又は冷却晶析が知られている。この手法において、バナジン酸アルカリ塩と硫酸アルカリ塩との溶解度差を利用することにより、夾雑物である硫酸アルカリ塩含有量は低減されうる。しかし、アルカリの含有量が大きく高粘度のアルカリ浸出液の場合、蒸発濃縮や温度調整に要するエネルギー負担が増加するという問題があった。さらに、スケーリングの発生に起因する製造トラブルやスケール除去による製造効率の低下等も、課題となっていた。
 本発明の第二の目的は、製造トラブルが低減され、効率よく高純度バナジウム化合物を製造する方法の提供にある。
 本発明者らは、オルトバナジン(V)酸ナトリウム等のバナジウム化合物の溶解度と、硫酸ナトリウム等の硫酸アルカリの溶解度とが、温度及びアルカリ濃度の条件によって異なることに着目し、さらには硫酸アルカリが溶解し、かつオルトバナジン(V)酸アルカリが析出する最適な温度及びアルカリ濃度の条件を見出し、本発明を完成させた。
 即ち、本発明に係るバナジウム化合物の製造方法は、硫酸アンモニウム及び/又は硫酸水素アンモニウムからなる硫安分と、硫酸と、バナジウムと、ニッケル、鉄及びマグネシウムから選択される少なくとも1種類のその他金属と、を少なくとも含有する原料灰に、pH13以上となるようにアルカリ及び水、又はアルカリ溶液を添加し、前記バナジウムを液相に浸出させてアルカリ浸出液を得るアルカリ抽出工程と、アルカリ浸出液を固液分離し、不溶物を固形分として除去するとともにバナジウムを含むアルカリ浸出液を浸出ろ液として得る固液分離工程と、浸出ろ液を蒸発濃縮して濃縮液を得る蒸発濃縮工程と、濃度液を所定の冷却温度に冷却して晶析し、バナジウム化合物を含む析出物を固形分として回収する晶析・固液分離工程と、を含む。この製造方法において、濃縮液は、冷却温度においてバナジウム化合物が飽和濃度以上、かつ硫酸アルカリが飽和濃度以下となる。
 好ましくは、この製造方法は、アルカリ抽出工程の前段階において、原料灰を洗浄する原料灰洗浄工程をさらに含む。
 好ましくは、この製造方法は、晶析・固液分離工程の後段階において、晶析・固液分離工程で固形分から分離された晶析ろ液をアルカリ抽出工程で再利用するリサイクル工程をさらに含む。
 好ましくは、この製造方法は、アルカリ抽出工程において、晶析ろ液により持ち込まれる硫酸根と、原料灰から持ち込まれる硫酸根との合計が、晶析・固液分離工程における冷却後の飽和濃度相当量以下になるように、リサイクルする晶析ろ液の量を調整する晶析ろ液量調整工程をさらに含む。
 好ましくは、この製造方法は、アルカリ抽出工程の前段階において、原料灰を酸化する酸化工程をさらに含む。
 好ましくは、この製造方法は、アルカリ抽出工程の後段階において、固形分を洗浄してバナジウムを含む洗浄液を回収し、洗浄液を浸出ろ液とともに蒸発濃縮工程に移行させる固形分洗浄工程をさらに含む。
 本発明に係るレドックス・フロー電池用電解液の製造方法は、上記いずれかに記載のバナジウム化合物の製造方法で製造したバナジウム化合物を原料としてレドックス・フロー電池用電解液を製造する電解液製造工程を有している。
 本発明に係るバナジウム化合物の製造装置は、硫酸アンモニウム及び/又は硫酸水素アンモニウムからなる硫安分と、硫酸と、バナジウムと、ニッケル、鉄及びマグネシウムから選択される少なくとも1種類のその他金属と、を少なくとも含有する原料灰に、pH13以上となるようにアルカリ及び水、又はアルカリ溶液を添加し、バナジウムを液相に浸出させてバナジウムを含むアルカリ浸出液を得るアルカリ抽出手段と、アルカリ浸出液を固液分離し、不溶物を固形分として除去するとともにバナジウムを含むアルカリ浸出液を浸出ろ液として得る固液分離手段と、浸出ろ液を蒸発濃縮して濃縮液を得る蒸発濃縮手段と、濃度液を所定の冷却温度に冷却して晶析し、バナジウム化合物を含む析出物を固形分として回収する晶析・固液分離手段と、を備えている。この製造装置において、濃縮液は、冷却温度においてバナジウム化合物が飽和濃度以上、かつ硫酸アルカリが飽和濃度以下となる。
 好ましくは、この製造装置は、アルカリ抽出手段の前段階において、原料灰を洗浄する原料灰洗浄手段をさらに備えている。
 好ましくは、この製造装置は、晶析・固液分離手段の後段階において、晶析・固液分離手段で固形分から分離された晶析ろ液をアルカリ抽出手段で再利用するリサイクル手段をさらに備えている。
 好ましくは、この製造装置は、アルカリ抽出手段において、晶析ろ液により持ち込まれる硫酸根と、原料灰から持ち込まれる硫酸根との合計が、晶析・固液分離手段における冷却後の飽和濃度相当量以下になるように、リサイクルする晶析ろ液の量を調整する晶析ろ液量調整手段をさらに備えている。
 好ましくは、この製造装置は、アルカリ抽出手段の前段階において、原料灰を酸化する酸化手段をさらに備えている。
 好ましくは、この製造装置は、アルカリ抽出手段の後段階において、固形分を洗浄してバナジウムを含む洗浄液を回収し、洗浄液を浸出ろ液とともに蒸発濃縮手段に移行させる固形分洗浄手段をさらに備えている。
 本発明に係るレドックス・フロー電池用電解液の製造装置は、上記いずれかに記載のバナジウム化合物の製造装置で分離したバナジウム化合物を原料としてレドックス・フロー電池用電解液を製造する電解液製造手段を備えている。
 他の観点から、本発明に係るバナジウム化合物の製造方法は、
(1)硫酸アンモニウム及び/又は硫酸水素アンモニウムからなる硫安分と、硫酸と、バナジウムと、を少なくとも含有する原料灰に、アルカリ及び水、又はアルカリ溶液を、pH13以上となる量で添加して、バナジウムを液相に浸出させ、バナジウムを含むアルカリ浸出液を得る、アルカリ抽出工程、
(2)アルカリ浸出液を固液分離して、バナジウムを含む浸出ろ液を得る、固液分離工程、
(3)浸出ろ液を蒸発濃縮して濃縮液を得る、蒸発濃縮工程、
(4)濃縮液に、さらにアルカリ又はアルカリ溶液を添加して、濃度調整液を得る、アルカリ濃度調整工程
及び
(5)濃度調整液を所定の冷却温度に冷却して晶析し、バナジウム化合物を含む析出物を固形分として回収する晶析・固液分離工程
を含む。ここで、冷却温度において、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるように、濃度調整液のアルカリ濃度を調整する。
 好ましくは、アルカリは、アルカリ金属又はアルカリ土類金属の水酸化物である。好ましくは、アルカリ濃度調整工程において、濃度調整液のアルカリ濃度を、10質量%以上25質量%以下に調整する。
 好ましくは、この製造方法は、アルカリ抽出工程前に、原料灰を、pH6未満の条件で洗浄する原料灰洗浄工程をさらに含む。
 好ましくは、アルカリ抽出工程において、10℃以上50℃未満の温度で、バナジウムを液相に浸出させる。
 他の観点から、本発明に係るレドックス・フロー電池用電解液の製造方法は、
(1)硫酸アンモニウム及び/又は硫酸水素アンモニウムからなる硫安分と、硫酸と、バナジウムと、を少なくとも含有する原料灰に、アルカリ及び水、又はアルカリ溶液を、pH13以上となる量で添加して、バナジウムを液相に浸出させ、バナジウムを含むアルカリ浸出液を得る、アルカリ抽出工程、
(2)アルカリ浸出液を固液分離して、バナジウムを含む浸出ろ液を得る、固液分離工程、
(3)浸出ろ液を蒸発濃縮して濃縮液を得る、蒸発濃縮工程、
(4)濃縮液に、さらにアルカリ又はアルカリ溶液を添加して、濃度調整液を得る、アルカリ濃度調整工程、
(5)濃度調整液を所定の冷却温度に冷却して晶析し、バナジウム化合物を含む析出物を固形分として回収する晶析・固液分離工程
及び
(6)バナジウム化合物を含む析出物を原料として、レドックス・フロー電池用電解液を製造する、電解液製造工程
を含む。ここで、冷却温度において、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるように、濃度調整液のアルカリ濃度を調整する。
 他の観点から、本発明に係るバナジウム化合物の製造装置は、硫酸アンモニウム及び/又は硫酸水素アンモニウムからなる硫安分と、硫酸と、バナジウムと、を少なくとも含有する原料灰に、アルカリ及び水、又はアルカリ溶液を、pH13以上となる量で添加して、バナジウムを液相に浸出させ、バナジウムを含むアルカリ浸出液を得る、アルカリ抽出手段と、アルカリ浸出液を固液分離して、バナジウムを含む浸出ろ液を得る、固液分離手段と、浸出ろ液を蒸発濃縮して濃縮液を得る、蒸発濃縮手段と、濃縮液に、さらにアルカリ又はアルカリ溶液を添加して、濃度調整液を得る、アルカリ濃度調整手段と、濃度調整液を所定の冷却温度に冷却して晶析し、バナジウム化合物を含む析出物を固形分として回収する晶析・固液分離手段と、を備えている。この製造装置では、アルカリ濃度調整手段により、冷却温度において、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるように、濃度調整液のアルカリ濃度を調整する。
 好ましくは、この製造装置は、原料灰にアルカリ及び水、又はアルカリ溶液を添加する前に、この原料灰を洗浄水で洗浄する原料灰洗浄手段と、洗浄時のpHを6未満に調整するpH調整手段と、をさらに備えている。
 好ましくは、この製造装置は、原料灰にアルカリ及び水、又はアルカリ溶液を添加して、バナジウムを液相に浸出させる間、その温度を10℃以上50℃未満に制御する温度制御手段を、さらに備えている。
 他の観点から、本発明に係るレドックス・フロー電池用電解液の製造装置は、硫酸アンモニウム及び/又は硫酸水素アンモニウムからなる硫安分と、硫酸と、バナジウムと、を少なくとも含有する原料灰に、アルカリ及び水、又はアルカリ溶液を、pH13以上となる量で添加して、バナジウムを液相に浸出させ、バナジウムを含むアルカリ浸出液を得る、アルカリ抽出手段と、アルカリ浸出液を固液分離して、バナジウムを含む浸出ろ液を得る、固液分離手段と、浸出ろ液を蒸発濃縮して濃縮液を得る、蒸発濃縮手段と、濃縮液に、さらにアルカリ又はアルカリ溶液を添加して、濃度調整液を得る、アルカリ濃度調整手段と、濃度調整液を所定の冷却温度に冷却して晶析し、バナジウム化合物を含む析出物を固形分として回収する晶析・固液分離手段と、バナジウム化合物を含む析出物を原料として、レドックス・フロー電池用電解液を製造する、電解液製造手段と、を備えている。この製造装置では、アルカリ濃度調整手段により、冷却温度において、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるように、濃度調整液のアルカリ濃度を調整する。
 本発明に係るバナジウム化合物の製造方法では、アルカリ抽出工程でpH13以上とし、固液分離工程でバナジウムを含む浸出ろ液を回収する。続いて、蒸発濃縮工程で浸出ろ液を蒸発濃縮してアルカリが所定の濃度となるようにし、晶析・固液分離工程でバナジウム化合物を含む析出物を回収する。濃縮液は、冷却温度においてバナジウム化合物が飽和濃度以上、硫酸アルカリが飽和濃度以下となるようにしている。このため、硫酸アルカリを選択的に除去し、バナジウム化合物を効率的に回収することができる。このように、この製造方法では従来のように酸を添加する必要がなく、バナジウム化合物と硫酸アルカリの温度及びアルカリ濃度の条件下における溶解度の差によってバナジウム化合物を選択的に析出させて回収している。このため、従来と比較して、バナジウムを安価で簡便かつ選択的に分離することができる。
 また、アルカリ抽出工程では、pH13以上と高いpH領域で浸出をおこなっているため、ニッケル等の夾雑物が浸出しにくく、最終的に得られるバナジウム化合物の純度を高くすることができる。
 さらに、晶析・固液分離工程でバナジウム化合物を含む固形分を分離した晶析ろ液には、析出しなかったバナジウム化合物のほかアルカリが含まれているため、必要に応じて再度アルカリ抽出工程にリサイクル利用することができる。また、本発明では、浸出ろ液の蒸発濃縮をおこなっているため、得られる濃縮液のアルカリ濃度が高く、アルカリ抽出工程へのリサイクルの際にアルカリ濃度回復のためのアルカリの追加が不要であるか、少量で棲むため、低コストでリサイクルできる。
 即ち、本発明に係るバナジウム化合物の製造方法では、硫酸アルカリや金属夾雑物を選択的に除去できるため、得られるバナジウム化合物の純度が高く、かつ大きな装置を必要とせず、使用するアルカリ量も少ないため、低コストで実施可能なバナジウム化合物の製造方法を提供することができる。また、この製造方法により安価で簡便かつ選択的に分離した高純度のバナジウム化合物を原料として用いることで、レドックス・フロー電池用電解液を安価で簡便に製造することができる。
 また、本発明に係るバナジウム化合物の製造装置では、アルカリ抽出工程でpH13以上とし、固液分離手段でバナジウムを含む浸出ろ液を回収する。続いて、蒸発濃縮工程で浸出ろ液を蒸発濃縮してアルカリが所定の濃度となるようにし、晶析・固液分離工程でバナジウム化合物を含む析出物を回収する。このように、この製造装置では従来のように酸を添加する必要がなく、バナジウム化合物と硫酸アルカリの温度及びアルカリ濃度の条件下における溶解度の差によってバナジウム化合物を選択的に析出させて回収している。このため、従来と比較して、バナジウムを安価で簡便かつ選択的に分離することができる。また、晶析・固液分離手段でバナジウム化合物を含む固形分を分離した晶析ろ液には、析出しなかったバナジウム化合物のほかアルカリが含まれているため、必要に応じて再度アルカリ抽出手段にリサイクル利用することができる。また、この製造装置により安価で簡便かつ選択的に分離した高純度のバナジウム化合物を原料として用いることで、レドックス・フロー電池用電解液を安価で簡便に製造することができる。
 他の観点から、本発明に係るバナジウム化合物の製造方法では、アルカリ抽出工程においてpH13以上となる量でアルカリ及び水、又はアルカリ溶液を添加し、固液分離工程でバナジウムを含む浸出ろ液を回収する。アルカリ抽出工程でpH13以上とすることにより、加熱処理を要することなく、バナジウムを選択的に、高収率で抽出することができる。
 この製造方法では、固液分離工程に続いて、蒸発濃縮工程で浸出ろ液を濃縮後、アルカリ濃度調整工程で、得られた濃縮液にさらにアルカリ又はアルカリ溶液を添加して、所定のアルカリ濃度に調整する。蒸発濃縮時の浸出ろ液のアルカリ濃度が低く、大きな沸点上昇が生じないため、蒸発濃縮に要するエネルギー負担が低減される。また、高濃度のアルカリに起因する、蒸発濃縮中のスケーリングの発生等の製造トラブルが回避されうる。
 この製造方法では、アルカリ濃度調整工程後に、晶析・固液分離工程でバナジウム化合物を含む析出物を回収する。アルカリ濃度調整工程では、晶析・固液分離工程における冷却温度で、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるように、アルカリ濃度が調整される。従って、本発明では従来のように、酸を添加することなく、バナジウム化合物と硫酸アルカリとの溶解度の差によって、バナジウム化合物を選択的に析出させて回収することができる。
 このように、本発明に係る製造方法では、蒸発濃縮時に生じうる製造トラブルを回避して、従来よりも安価かつ簡便に、バナジウムを選択的に分離することができる。さらに、製造トラブルを回避して、安価かつ簡便にバナジウムを選択的に分離することによりレドックス・フロー電池用電解液を安価で簡便に、効率よく製造することができる。
 また、本発明に係る製造装置では、アルカリ抽出手段によりpH13以上となる量でアルカリ及び水又はアルカリ溶液を添加し、固液分離手段でバナジウムを含む浸出ろ液を回収する。アルカリ抽出手段によりpH13以上とすることにより、加熱手段を要することなく、バナジウムを選択的に、高収率で抽出することができる。
 この製造装置では、蒸発濃縮手段により浸出ろ液を濃縮後、アルカリ濃度調整手段で、濃縮液にさらにアルカリ又はアルカリ溶液を添加して、所定のアルカリ濃度に調整する。蒸発濃縮時の浸出ろ液のアルカリ濃度が低く、大きな沸点上昇が生じないため、蒸発濃縮に要するエネルギー負担が低減される。また、高濃度のアルカリに起因する、蒸発濃縮中のスケーリングの発生等の製造トラブルが回避されうる。
 この製造装置では、アルカリ濃度調整後に、晶析・固液分離手段でバナジウム化合物を含む析出物を回収する。アルカリ濃度調整手段により、冷却温度において、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるように、アルカリ濃度が調整される。従って、本発明では従来のように、酸の添加手段を要することなく、バナジウム化合物と硫酸アルカリとの溶解度の差によって、バナジウム化合物を選択的に析出させて回収することができる。
 このように、本発明に係る製造装置によれば、蒸発濃縮時に生じうる製造トラブルを回避して、従来よりも安価かつ簡便に、バナジウムを選択的に分離することができる。さらに、製造トラブルを回避して、安価かつ簡便にバナジウムを選択的に分離することにより、レドックス・フロー電池用電解液を安価かつ簡便に、効率よく製造することができる。
 本発明によれば、得られるバナジウム化合物の純度が高く、かつ低コストで実施可能なバナジウム化合物の製造方法、及びレドックス・フロー電池用電解液の製造方法、並びにバナジウム化合物の製造装置、及びレドックス・フロー電池用電解液の製造装置を提供することができる。さらに、本発明によれば、製造時のトラブルを回避しつつ、バナジウムを安価で簡便かつ選択的に分離することができるバナジウム化合物の製造方法、及びレドックス・フロー電池用電解液の製造方法、並びにバナジウム化合物の製造装置、及びレドックス・フロー電池用電解液の製造装置を提供することができる。
図1(a)は、本発明の第1の実施形態に係るバナジウム化合物の製造方法、及びレドックス・フロー電池用電解液の製造方法を示すフローチャートであり、図1(b)は、図1(a)の各工程における成分の推移を示す模式図である。 図2は、異なる温度とアルカリ濃度におけるオルトバナジン酸ナトリウム(a)及び硫酸ナトリウム(b)の溶解度曲線を示すグラフである。 図3(a)は、本発明の第2の実施形態に係るバナジウム化合物の製造方法、及びレドックス・フロー電池用電解液の製造方法を示すフローチャートであり、図3(b)は、図3(a)の各工程における成分の推移を示す模式図である。 図4は、バナジウム(a)、ニッケル(b)、鉄(c)及びマグネシウム(d)のpHによる浸出率の変化を示すグラフである。 図5は、固形分洗浄工程により回収した洗浄液の量とバナジウム化合物の回収率を示すグラフである。 図6(a)は、バナジウムのpH、酸化還元電位による状態変化を表すプールベ図であり、図6(b)は、水洗時pH調整によるバナジウムの水洗ロスの割合の変化を示すグラフである。 図7(a)は、本発明の第3の実施形態に係るバナジウム化合物の製造方法を示すフローチャートであり、図7(b)は、図7(a)の各工程における成分の推移を示す模式図である。 図8は、異なるアルカリ濃度におけるオルトバナジン酸ナトリウム及び硫酸ナトリウムの飽和濃度を示すグラフである。 図9(a)は、異なる温度とアルカリ濃度におけるオルトバナジン酸ナトリウム(NaVO)の溶解度曲線を示すグラフであり、図9(b)は、硫酸ナトリウム(NaSO:芒硝)の溶解度曲線を示すグラフである。
 以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。本発明は、その要旨を変更しない範囲で、適宜変更して実施することが可能である。なお、本願明細書において特に言及しない限り、「X~Y」は「X以上Y以下」を意味し、「%」は「質量%」を意味する。
 本発明は、バナジウム化合物の製造方法及び製造装置並びにこのバナジウム化合物を原料に用いたレドックス・フロー電池用電解液の製造方法及び製造装置に関する。本発明のバナジウム化合物の製造方法は、バナジウム及び/又はバナジウム化合物を含有する原料灰から、バナジウム化合物を回収するための方法である。このような原料灰としては、例えば、重質油、常圧蒸留残渣油、減圧蒸留残渣油等の燃焼灰、焼却ボイラー灰、部分酸化灰、石油コークス灰、オイルサンドの残渣灰等を挙げることができる。以下、本発明の好ましい実施形態である、第1、第2及び第3の実施形態について、順次説明する。
1.第1の実施形態
 以下、図1を参照して、本発明の第1の実施形態について説明する。図1は、本発明の第1の実施形態に係るバナジウム化合物の製造方法を示しており、(a)はバナジウム化合物の製造方法の工程を示すフロー図、(b)は(a)のフローチャートの各工程における成分の推移を示す模式図である。図1(b)中、「バナ」は「バナジウム」を意味し、「Naバナ」は「オルトバナジン酸ナトリウム(NaVO)」を意味する。「硫安」は、硫酸アンモニウム((NHSO)及び/又は硫酸水素アンモニウム(NHHSO)からなり、硫安分とも称される。
(原料灰準備工程)
 図1(a)に示すように、第1の実施形態に係るバナジウム化合物の製造方法は、まず燃焼灰(原料灰)を準備する(ステップ10)。この工程では、上述した原料灰をそのまま使用するか、あるいは水等の溶媒に溶解して原料灰スラリーとしたものを原料灰として使用する。この場合の原料灰に含まれる成分は図1(b)(ステップ10)のようになっている。
 この実施形態おいて、原料灰は、硫安分と、硫酸と、バナジウムと、ニッケル、鉄、マグネシウムから選択される少なくとも1種類のその他金属と、を少なくとも含んでいる。硫安分は、硫酸アンモニウム((NHSO)及び/又は硫酸水素アンモニウム(NHHSO)からなる。原料灰に含まれる硫安分は、通常、質量比で20~60%程度であり、より一般的には30~50%程度である。硫安分を多く含む廃棄物としては、石油系燃焼灰等を挙げることができる。また、原料灰に含まれる硫酸は、1~20質量%(wt%)程度であり、より一般的には5~10質量%程度である。
 原料灰に含まれるバナジウムは、3価、4価、5価の様々な価数の化合物の形態をとっている。具体的にはNH(OH)(SO、VOSO・5HO、V等である。一般に、原料灰に含まれるバナジウムは、0.1~30質量%程度であり、より一般的には1~10質量%程度である。
 原料灰には、炭素分として、未燃焼カーボンを主成分とする非水溶性固形物(SS分)が含まれる。原料灰に含まれる炭素分は、乾物当たり5~90質量%程度であり、より一般的には30~70質量%程度である。
 原料灰には、これら以外にもコバルト、モリブデン、マンガン、チタン、銅、亜鉛、パラジウム、白金、リン、硫黄等、バナジウム以外の他の元素(金属夾雑物)が含まれる場合がある。一般にこれらの金属夾雑物は、硫酸塩や酸化物等として含まれることが多い。一般に、原料灰に含まれるこれらの金属夾雑物は、元素の種類にもよるが、0.1~20質量%程度であり、より一般的には1~10質量%程度である。
(アルカリ抽出工程)
 次に、原料灰(原料灰そのもの又は原料灰スラリー)にアルカリを添加してpH13以上とし、バナジウムを含むアルカリ浸出液を得る(ステップ12)。本工程で使用するアルカリとしては、水酸化ナトリウム(NaOH)、水酸化リチウム(LiOH)、水酸化カリウム(KOH)、水酸化ルビジウム(RbOH)、水酸化セシウム(CsOH)、水酸化カルシウム(Ca(OH))、水酸化ストロンチウム(Sr(OH))、水酸化バリウム(Ba(OH))等を挙げることができる。これらのうち、入手が容易等の理由から、水酸化ナトリウムが好ましい。
 アルカリ抽出工程の温度は、後述する蒸発濃縮工程の温度よりも低い温度であり、例えば10~40℃程度であり、20~30℃が好ましい。アルカリ添加後のアルカリ浸出液は、pH12.5~15であり、pH13~14が好ましい。アルカリ浸出液のpHが13以上、14以下であると、バナジウムをアルカリ浸出液中に選択的に抽出させやすくなる。アルカリ浸出液に含まれるアルカリの濃度は、後述する蒸発濃縮工程での濃縮率に依存し、10質量%/濃縮率~25質量%/濃縮率の範囲内とすることが好ましい。例えば、濃縮率が5倍(1/5に減容)の場合、アルカリ浸出液に含まれるアルカリの濃度は2~5質量%であることが好ましい。
(固液分離工程)
 次に、アルカリ浸出液から不溶物を固形分として除去するとともにバナジウムを含む浸出ろ液を得る(ステップ13)。分離方法としては、特に制限はないが、沈殿分離、遠心分離、吸引ろ過等を挙げることができる。本工程後の原料灰に含まれる成分は図1(b)(ステップ13)のように、炭素分が除去されたものとなっており、浸出ろ液中には硫安分、硫酸イオン、バナジウム及びアルカリが含まれている。
(固形分洗浄工程)
 固液分離工程後に、固形分(ケーキ)を洗浄する工程(固形分洗浄工程)を行うことが好ましい。この固形分洗浄工程では、洗浄水を、固形分に含まれる水(固形分含水)の1~3倍量加えて、洗浄を行う。この工程により、固形分含水からバナジウムを洗浄水に抽出し、回収することができる。アルカリ抽出工程後の固形分が高pHであることから、ケーキ洗浄水もpH12~13程度となる。そのため、固形分中のバナジウムが溶液状態となり、固形分洗浄によって回収しやすくなるためである。さらに、固形分洗浄工程で得られた洗浄液(洗浄ろ液)を回収して浸出ろ液とともに次の蒸発濃縮工程に移行させる。図5に示すように、洗浄液の回収を行わなかった場合(洗浄ろ液量0mL)、バナジウムの回収率が88%であったのに対して、洗浄液を回収した場合は、100%以上と高い回収率となる。なお、ケーキ洗浄水のpH、電気伝導度を監視することで、洗浄水量を制御してもよい。
 このように、この製造方法では、固形分を洗浄してバナジウムを含む洗浄液を回収することで、固形分に含まれるバナジウムを回収することができるため、バナジウムの回収率を高めることができる。一方、特許文献2には、固形分洗浄に関する記載はない。また、特許文献2では、pH9以下でアルカリ浸出を行っているため、仮に固形分洗浄を行ったとしても、中性付近のpHで洗浄を行うことになり、バナジウムの新たな抽出は見込めず、むしろ図4に示すようにニッケル等の金属夾雑物が多く浸出する可能性がある。
(蒸発濃縮工程)
 次に、浸出ろ液を蒸発濃縮し、アルカリの濃度が10~25質量%の濃縮液を得る(ステップ14)。例えば、このアルカリが水酸化ナトリウムである場合、濃縮液中の水酸化ナトリウムの濃度が10~25質量%になるように濃縮することが好ましい。蒸発濃縮方法としては、特に制限はないが、蒸発濃縮缶等を用いて行うことができる。蒸発濃縮温度は、浸出ろ液の塩濃度にもよるが、70~130℃であることが好ましい。蒸発濃縮温度が高いと濃縮に必要な投入エネルギー量が多くなり、処理コストが増大するため、減圧下で蒸発させることにより、温度100℃以下、特に80~90℃で処理することが好ましい。
 蒸発濃縮工程は、減圧下で行うことが好ましい。蒸発濃縮工程後の浸出ろ液の体積に対する蒸発濃縮工程前の浸出ろ液の体積の割合(濃縮率)は、通常は2~8倍程度であり、4~6倍がより好ましい。図1(b)(ステップ14)に示すように、この実施形態では、本工程において浸出ろ液が1/5に減容化され、浸出ろ液中には硫安分、硫酸イオン、バナジウム及びアルカリが含まれる。蒸発させた水分については、回収して、アルカリ抽出工程における調整水として使用してもよく、後述する第2の実施形態における原料灰洗浄工程において洗浄水として使用してもよい。
(晶析・固液分離工程)
 次に、濃縮液を冷却して晶析し、バナジウム化合物を含む析出物を固形分として回収する(ステップ15)。冷却温度は0~20℃であることが好ましく、前工程で得た濃縮液を0~20℃に冷却することが好ましい。晶析方法としては、冷却機能を備えた水槽、冷却晶析槽や、メタノール等有機系貧溶媒を加える貧溶媒晶析槽等を用いた方法を挙げることができる。晶析後は、固液分離を行う。固液分離方法としては、シックナー、デカンター、バスケット遠心真空ベルトフィルタ等を用いた方法を挙げることができる。図1(b)に示すように、この実施形態では、硫安分、硫酸アルカリ(本実施形態では、硫酸ナトリウム(NaSO:芒硝))、バナジウム化合物(NaVO等)の一部が、それぞれ固形分として析出し、これらの残りとアルカリ(NaOH)が晶析ろ液に含まれる。
 固形分はバナジウム化合物を主成分として精製されたバナジウム原料として回収され(ステップ17)、レドックス・フロー電解液の製造等に使用される。本工程の晶析ろ液は、アルカリと未回収のバナジウムが含まれているため、必要に応じてアルカリ抽出工程(ステップ12)に返送されてリサイクルされる。晶析ろ液に含まれるアルカリをアルカリ抽出工程で再利用することで、バナジウムの製造を安価かつ高い回収率で行うことができる。
 ここで、第1の実施形態に係る製造方法において、蒸発濃縮工程と晶析・固液分離工程でバナジウム化合物が選択的に分離されるメカニズムについて説明する。図2は、異なる温度とアルカリ濃度におけるオルトバナジン酸ナトリウム(NaVO)及び硫酸ナトリウム(NaSO:芒硝)の溶解度曲線を示すグラフである。この図の(a)がオルトバナジン酸ナトリウムの溶解度曲線を、(b)が硫酸ナトリウムの溶解度曲線を示している。
 この図に示すように、いずれの化合物も、温度が高いほど溶解度が高くなる。また、いずれの化合物も、溶解度はアルカリ濃度(NaOH濃度)に依存しており、アルカリ濃度が高くなるにつれて溶解度が低くなるとともにほぼ一定となる。
 図2において、アルカリ浸出液(30℃の場合)に含まれるNaVOとNaSOの組成を、それぞれのグラフの「アルカリ抽出ろ液@30℃」で示す。このアルカリ浸出液を80℃で蒸発濃縮すると、NaVOとNaSO及びアルカリ(NaOH)は液中に残留するため、その濃度変化は原点を通る直線で表される。濃縮後の濃縮液は80℃となっており、これに含まれるNaVOとNaSOの組成を、それぞれのグラフの「抽出ろ液濃縮後@80℃」で示す。図2は5倍濃縮した場合の例示である。この濃度が80℃の飽和溶解度よりも低ければ(溶解度曲線の下であれば)、その時点で固形物の析出は生じない。次に、晶析・固液分離工程で、この濃縮液を10℃まで冷却すると、濃縮液は10℃での飽和溶液の組成に行きつき、飽和濃度を超えた成分が析出し、固形分(ケーキ)として回収される。これに含まれるNaVOとNaSOの組成を、それぞれのグラフの「冷却晶析ろ液@10℃」で示す。
 ここで、アルカリ浸出液の成分濃度から算出される濃縮液相当濃度が、晶析・固液分離工程における温度(例えば10℃)において、NaVOが飽和濃度以上、NaSOは飽和濃度以下であれば、NaSOの結晶を含まない高純度なNaVO析出物を回収することができる。
 さらに、上述において、NaVO飽和濃度がゼロに漸近し下限に近い領域で晶析処理すれば、高収率でのバナジウム化合物の回収が可能であり、NaSO飽和濃度がゼロに漸近せず、高い溶解度を示す領域で晶析すれば、安定した高純度バナジウム化合物の回収が可能である。このような条件としては、アルカリ浸出液中のSOを0.6質量%以下として2~7倍濃縮することにより、濃縮液のアルカリ濃度を10~25質量%、NaSO飽和濃度を4~7質量%、NaVO飽和濃度を0~2質量%とすることが好ましい。
(変形例)
 アルカリ抽出工程の前段階において、原料灰を酸化する酸化工程を更に備えていてもよい。酸化方法としては、原料灰に酸化性ガス及び/又は酸化剤を添加する方法を挙げることができる。酸化性ガスとしては、空気、酸素、オゾン、亜酸化窒素、一酸化窒素、二酸化窒素、塩素等を挙げることができる。酸化剤としては、過酸化水素、次亜塩素酸等を挙げることができる。原料灰中において、バナジウムは3価、4価、5価の様々な価数の化合物の形態をとっているが、アルカリ抽出工程において、概ね5価のバナジウムが選択的にアルカリ浸出液に溶解し、3価や4価のバナジウムや金属夾雑物はほとんど溶解しない。それゆえ酸化工程を追加して、3価又は4価のバナジウムを5価のバナジウムに変換した後、アルカリ抽出工程を実施することにより、バナジウムの回収率を向上させることが可能となる。
(レドックス・フロー電池用電解液の製造方法)
 本発明のレドックス・フロー電池用電解液の製造方法は、第1の実施形態のバナジウム化合物の製造方法で製造したバナジウム化合物をレドックス・フロー電池用の電解液の原液とするための方法である。レドックス・フロー電池用電解液の製造方法としては、上述したバナジウム化合物の製造方法で製造したバナジウム原料をもとにレドックス・フロー電池用電解液を製造する工程である電解液製造工程を備える。
 レドックス・フロー電池用電解液としては、正極側はバナジウム(V)やバナジウム(IV)が、負極側はバナジウム(III)やバナジウム(II)が用いられている。本発明の方法では、バナジウムは主にオルトバナジン酸ナトリウム(NaVO)等のバナジウム(V)として回収されるため、特に正極側の電解液の製造に好適に使用することができる。しかしながら、本発明はこれに限定されず、例えば回収されたバナジウム(V)を還元してバナジウム(III)やバナジウム(II)とすることで、負極側の電解液の製造に使用してもよい。レドックス・フロー電池用電解液中に含まれるバナジウムの濃度は、特に制限はないが、正極側、負極側いずれも、例えば0.1mol/l~10mol/lの範囲内、好ましくは1~3mol/lの範囲内とすることができる。
(バナジウム化合物の製造装置)
 本発明のバナジウム化合物の製造装置は、上記の第1の実施形態のバナジウム化合物の製造方法を実施するための装置として構成することができる。本実施形態のバナジウム化合物の製造装置は、アルカリ抽出手段、固液分離手段、蒸発濃縮手段、晶析・固液分離手段を備える。
 アルカリ抽出手段は、第1の実施形態のアルカリ抽出工程を実施する手段であり、pH13以上、好ましくはpH14以下となるように原料灰にアルカリを添加し、バナジウムを含むアルカリ浸出液を得る。アルカリ抽出手段としては、例えば、アルカリ溶液及び原料灰を混合する撹拌混合槽等を挙げることができる。
 固液分離手段は、第1の実施形態の固液分離工程を実施する手段であり、アルカリ浸出液を固液分離して、炭素等の不溶物を固形分として除去するとともに、バナジウムを含む浸出ろ液を得るための手段である。固液分離手段としては、例えば、アルカリ浸出液から固形分を分離する脱水機等を挙げることができる。
 固形分洗浄手段は、第1の実施形態の固形分洗浄工程を実施する手段であり、固液分離後に、固形分(ケーキ)を洗浄する。固形分洗浄手段により固形分を洗浄してバナジウムを含む洗浄液を回収することで、固形分に含まれるバナジウムを回収することができるため、バナジウムの回収率を高めることができる。固形分洗浄手段としては、例えば、水添加用の水槽と固液分離のための真空ベルトフィルタ、バスケット式遠心機、デカンター等の脱水機等の組み合わせ等を挙げることができる。また、固形分洗浄手段としては、水添加用の水槽を用いずに真空ベルトフィルタ上へ散水する手段でもよい。
 蒸発濃縮手段は、第1の実施形態の蒸発濃縮工程を実施する手段であり、浸出ろ液を70~100℃で蒸発濃縮し、アルカリの濃度が10~25質量%の濃縮液を得る。例えば、アルカリが水酸化ナトリウムの場合、蒸発濃縮手段により、濃縮液中の水酸化ナトリウムの濃度が10~25%になるように濃縮することが好ましい。蒸発濃縮手段としては、例えば、蒸発濃縮缶やRO膜分離装置等を挙げることができる。
 晶析・固液分離手段は、第1の実施形態の晶析・固液分離工程を実施する手段であり、濃縮液を0~20℃に冷却して晶析し、バナジウム化合物を含む析出物を固形分として回収する。晶析・固液分離手段は晶析手段と固液分離手段とから構成される。晶析手段としては、例えば、冷却機能を備えた水槽、冷却晶析槽、メタノール等有機系貧溶媒を加える貧溶媒晶析槽等を挙げることができる。固液分離手段としては、例えば、シックナー、デカンター、バスケット遠心真空ベルトフィルタ等を挙げることができる。
 バナジウム化合物の製造装置は、アルカリ抽出手段の前段階において、原料灰を酸化する酸化手段を更に備えていてもよい。酸化手段としては、酸化ガス通気用の散気設備等を挙げることができる。このように、原料灰の酸化手段を備えることにより、アルカリ抽出前に、価数の大きなバナジウム化合物を生成させている。これにより、バナジウムの抽出回収率を向上させることができる。
(レドックス・フロー電池用電解液の製造装置)
 本発明のレドックス・フロー電池用電解液の製造装置は、第1の実施形態のバナジウム化合物の製造方法を実施するための製造装置で製造したバナジウム化合物をレドックス・フロー電池用の電解液の原液とするための装置である。レドックス・フロー電池用電解液の製造装置としては、上述したバナジウム化合物の製造装置で製造したバナジウム原料をもとにレドックス・フロー電池用電解液を製造する工程である電解液製造手段を備える。レドックス・フロー電池用電解液の製造装置の詳細については、上述したレドックス・フロー電池用電解液の製造方法を参考にすることができる。
2.第2の実施形態
 以下、図3を参照して、本発明の第2の実施形態について説明する。図3は、本発明の第2の実施形態に係るバナジウム化合物の製造方法を示しており、(a)はバナジウム化合物の製造方法のフローチャート、(b)は(a)の各工程における成分の推移を示す模式図である。図3(b)中の用語の意味は、いずれも、図1(b)について前述した用語の意味と同じである。
 本発明の第2の実施形態のバナジウム化合物の製造方法は、原料灰準備工程(ステップ20)、原料灰洗浄工程(ステップ21)、アルカリ抽出工程(ステップ22)、固液分離工程(ステップ23)、蒸発濃縮工程(ステップ24)、晶析・固液分離工程(ステップ25)及びリサイクル工程(ステップ26)を備える。これらの工程のうち、原料灰洗浄工程(ステップ21)、リサイクル工程(ステップ26)以外については、上述した第1の実施形態と同様であるため、説明は省略又は簡便に済ませる。
(原料灰洗浄工程)
 本実施形態では、原料灰準備工程(ステップ20)の後に、原料灰を洗浄する原料灰洗浄工程(ステップ21)を行う。本工程では、原料灰から溶解性の金属夾雑物(鉄、ニッケル、マグネシウムなど)を除去するとともに、アルカリ再使用の妨げとなる溶解性塩類(硫安分、硫酸など)を除去する。原料灰の洗浄に使用する溶媒は、水又はアルカリ溶液を挙げることができる。原料灰洗浄工程は、原料灰に対して質量比で2~20倍の溶媒で洗浄を行うことが好ましい。
 原料灰の洗浄方法は、バッチ法でもよく、連続法でもよい。具体的には、洗浄水添加用の水槽と、固液分離用の真空ベルトフィルタ、バスケット式遠心機、デカンターといった脱水機との組み合わせによる方法を挙げることができる。また、洗浄水添加用の水槽を用いずに真空ベルトフィルタ上へ散水する方法でもよい。洗浄温度は、10~40℃が好ましく、20~30℃がより好ましい。洗浄時間は、洗浄方法により異なるが、概ね1秒~60分程度であり、1~30分程度が好ましい。
 また、原料灰洗浄工程では、バナジウムが水洗中に溶出することを防ぐため、洗浄中の原料灰水溶液のpHは4~7、好ましくは5~6とする。以下、このpHが好ましいことを説明する。図6(a)はバナジウムのpH及び酸化還元電位による状態変化を表すプールベ図であり、図6(b)は水洗時pH調整によるバナジウムの水洗ロスの割合の変化を示すグラフである。図6(a)のプールベ図より、pHが3以下のように低い領域では、バナジウムの安定状態はVO2+などのイオンであるのに対して、pHが4~7のように高い領域では、バナジウムの安定状態はVなどの固体となる。したがって、原料灰洗浄工程でpHを4~7とすることでバナジウムを固体とし、バナジウムイオンとして洗浄液に溶出させにくくすることで、洗浄時のロスを低減しつつ、夾雑物を効率的に除去することができる。実際、図6(b)に示すように、洗浄時に原料灰水溶液のpHを調整しなかった場合、pHは3と低くなり、バナジウムのロスが大きくなる。一方、原料灰水溶液のpHを4、5、6に調整した場合、バナジウムのロスはpHを調整しなかった場合と比較して小さくなることがわかる。
 本工程では、固液分離工程後に、原料灰中の可溶性成分(溶解性金属夾雑物及び溶解性塩類)の含有量が5質量%以下となるまで洗浄することが好ましい。本実施形態では、アルカリ抽出工程の前段階で原料灰洗浄工程を備えるため、図3(b)に示すように、原料灰に含まれる硫安分や硫酸を大幅に減少させることができる。このように、アルカリ抽出工程の前段階で原料灰を洗浄することで、硫安分と硫酸を相当程度少なくし、蒸発濃縮・冷却晶析をしても液中の硫酸ナトリウム(芒硝)などの硫酸アルカリの濃度を飽和濃度未満に維持することができる。このため、晶析・固液分離工程で得られる固形分には硫安分や硫酸アルカリがほとんど含まれておらず、高品質のバナジウム化合物を得ることができる。
 第2の実施形態では、原料灰洗浄工程の次に、アルカリ抽出工程(ステップ22)、固液分離工程(ステップ23)、蒸発濃縮工程(ステップ24)、晶析・固液分離工程(ステップ25)を順次行う。ここで、図3(b)に示すように、本実施形態では原料灰洗浄工程によって硫安分と硫酸などが原料灰から大幅に減少しているため、その後の工程においてアルカリ浸出液や浸出ろ液、濃縮液に硫安分と硫酸などの残存量が少なくなっている。その結果、晶析・固液分離工程で得られる析出物には、これら夾雑物がほとんど含まれておらず、ほぼバナジウム化合物とアルカリのみとなっている。
(リサイクル工程)
 この実施形態では、晶析・固液分離工程の後段階において、晶析・固液分離工程で得られる晶析ろ液は、アルカリ抽出工程へリサイクルされる。晶析ろ液には、アルカリ及び未回収のバナジウムが含まれる。この晶析ろ液をアルカリ抽出工程に返送することにより、得られるバナジウム化合物の収率が向上する。
 晶析ろ液の返送は、返送ポンプ、オーバーフロー槽等で行ってもよい。この場合、晶析ろ液の全量をアルカリ溶液としてアルカリ抽出工程で再使用しても良いが、硫酸根の系内蓄積を抑えるため、得られた晶析ろ液の1~30質量%の範囲で系外へ排出し、残りを使用することが好ましい。
 本実施形態では、原料灰洗浄工程で硫安分や硫酸などの夾雑物を除去しているため、晶析・固液分離工程(ステップ25)で得られる析出物には、これら夾雑物がほとんど含まれていない。したがって、第1の実施形態の方法と比較して、高品質のバナジウム原料を得ることができる。
 また、原料灰洗浄工程においてこれらの夾雑物を除去するため、第1の実施形態のように夾雑物が含まれる場合と比較してアルカリ抽出液の沸点が低くなる。このため、蒸発濃縮工程において低い温度で蒸発濃縮を行うことができる。したがって、第1の実施形態と比較して、蒸発濃縮工程で大きな投入エネルギーを必要とせず、バナジウム原料の製造コストを低減することができる。
 さらに、晶析・固液分離工程(ステップ25)で得られる晶析ろ液にも夾雑物がほとんど含まれておらず、ほぼバナジウム化合物とアルカリのみとなっている。このため、第1の実施形態の方法と比較して、投入するアルカリの量を低減できるとともに、原料灰からのバナジウム回収率を高くすることができる。
 このように、原料灰洗浄工程を行うことで、高品質のバナジウム原料を得ることができる。具体的には、晶析・分離工程で得られた析出物(固形分)に含まれるバナジウム化合物(NaVOなど)の含有量を、30~40質量%とすることができる。また、固形分を乾燥させた乾物ベースであれば、NaVOを70~80質量%、NaSOを2~5質量%、NaOHを20~25質量%とすることができる。さらに、晶析・分離工程後に固形分を水などで洗浄する固形分洗浄工程を設けると、乾物ベースでNaVOを90質量%以上とすることも可能である。
 また、晶析・分離工程の晶析ろ液に含まれる塩濃度を15~20質量%と低くすることができ、さらに、蒸発濃縮工程で必要なエネルギー量を、純バナジウム1kg回収あたり14000kcal以下とすることができる。
(晶析ろ液量調整工程)
 また、リサイクル工程では、アルカリ抽出工程において、晶析ろ液により持ち込まれる硫酸根と、原料灰から持ち込まれる硫酸根との合計が、晶析・固液分離工程における冷却後の飽和濃度相当量以下になるように、リサイクルする晶析ろ液の量を調整することが好ましい。このようにすることで、硫酸アルカリの結晶を含まない高純度なバナジウム化合物を回収することができる。
(バナジウム化合物の製造装置)
 本発明のバナジウム化合物の製造装置は、上記の第2の実施形態のバナジウム化合物の製造方法を実施するための装置として構成することができる。本実施形態のバナジウム化合物の製造装置は、原料灰洗浄手段、アルカリ抽出手段、固液分離手段、蒸発濃縮手段、晶析・固液分離手段、リサイクル手段、晶析ろ液量調整手段を備える。これらのうち、アルカリ抽出手段、固液分離手段、蒸発濃縮手段、晶析・固液分離手段については、上記の第1の実施形態において説明しているため、説明を省略する。
 原料灰洗浄手段は、第2の実施形態の原料灰洗浄工程を実施する手段である。原料灰を洗浄する原料灰洗浄手段としては、例えば、水添加用の水槽と固液分離のための真空ベルトフィルタ、バスケット式遠心機、デカンターなどの脱水機等の組み合わせなどを挙げることができる。また、原料灰洗浄手段としては、水添加用の水槽を用いずに真空ベルトフィルタ上へ散水する手段でもよい。このように、原料灰洗浄手段によりアルカリ抽出手段の前段階で原料灰を洗浄することで、硫安分と硫酸を相当程度少なくし、蒸発濃縮・冷却晶析をしても液中の硫酸ナトリウム(芒硝)などの硫酸アルカリの濃度を飽和濃度未満に維持することができる。このため、晶析・固液分離手段で得られる固形分には硫安分や硫酸アルカリがほとんど含まれておらず、高品質のバナジウム化合物を得ることができる。
 リサイクル手段は、第2の実施形態のリサイクル工程を実施する手段であり、晶析・固液分離手段で固形分から分離された晶析ろ液をアルカリ抽出手段で再利用する。リサイクル手段としては、例えば、返送ポンプやオーバーフロー槽などを挙げることができる。このように、リサイクル手段を用いて、晶析・固液分離手段で固形分と分離したろ液に含まれるアルカリをアルカリ抽出手段で再利用することで、バナジウムの分離を安価かつ高い回収率で行うことができる。
 晶析ろ液量調整手段は、第2の実施形態のリサイクル工程において、晶析ろ液量調整工程を実施する手段であり、アルカリ抽出工程において、晶析ろ液により持ち込まれる硫酸根と、原料灰から持ち込まれる硫酸根との合計が、晶析・固液分離工程における冷却後の飽和濃度相当量以下になるように、リサイクルする晶析ろ液の量を調整する。このように、晶析ろ液量調整手段を備えることにより、硫酸アルカリの結晶を含まない高純度なバナジウム化合物を回収することができる。
3.第3の実施形態
 以下、図7を参照して、本発明の第1の実施形態について説明する。図7は、本発明の第3の実施形態に係るバナジウム化合物の製造方法を示しており、(a)はバナジウム化合物の製造方法の工程を示すフローチャート、(b)は(a)の各工程における成分の推移を示す模式図である。図7(b)中の用語の意味は、いずれも図1(b)について前述した用語の意味とおなじである。
 図7(a)に示される通り、この実施形態では、まず、原料灰として燃焼灰が準備される(ステップ30)。続いて、アルカリ抽出工程(ステップ32)、固液分離工程(ステップ34)、蒸発濃縮工程(ステップ36)、アルカリ濃度調整工程(ステップ37)及び晶析・固液分離工程(ステップ38)が、順次、実施されて、バナジウム化合物が回収される。図示されないが、回収されたバナジウム化合物は、後述するレドックス・フロー電池用電解液の製造方法に、原料として供される。以下、各工程について詳細に説明するが、前述した第1又は第2の実施形態と重複する部分については、説明を省略又は簡略化する。
(準備工程:ステップ30)
 前述した通り、この準備工程では、燃焼灰が準備される(ステップ30)。燃焼灰をそのまま原料灰として使用してもよいし、水等の溶媒に溶解してスラリー状にしたものを原料灰として使用してもよい。
 第3の実施形態で準備される原料灰は、硫安分と、硫酸と、バナジウムと、を少なくとも含んでいる。図7(b)(ステップ30)に示される通り、この実施形態における原料灰(燃焼灰)に含まれる成分は、炭素、硫安、硫酸及びバナジウムである。炭素、硫安、硫酸及びバナジウムの詳細は、第1の実施形態にて前述した内容と同様である。
 図示されないが、原料灰には、バナジウム以外の他の元素(金属夾雑物)が含まれる場合がある。このような夾雑物の例として、鉄、マグネシウム、ニッケル、コバルト、モリブデン、マンガン、チタン、銅、亜鉛、パラジウム、白金、リン、硫黄等が挙げられる。一般にこれらの金属夾雑物は、硫化物等として含まれることが多い。原料灰に含まれるこれらの金属夾雑物は、元素の種類にもよるが、0.1~20質量%程度であり、より一般的には1~10質量%程度である。
(アルカリ抽出工程:ステップ32)
 アルカリ抽出工程では、原料灰(原料灰そのもの又は原料灰スラリー)に、アルカリ及び水、又はアルカリ溶液を、pH13以上となる量で添加して、液相にバナジウムを浸出させて、バナジウムを含むアルカリ浸出液を得る(ステップ32)。アルカリ浸出液のpHを13以上とすることにより、原料灰中のバナジウム及び/又はバナジウム化合物が選択的に抽出される。pH13以上15以下が好ましく、pH13以上14以下がより好ましい。
 第3の実施形態では、得られるアルカリ浸出液のpHが13以上となる量だけ、アルカリを添加すればよく、その添加量は、原料灰の種類及び量に応じて、適宜調整される。換言すれば、この実施形態のアルカリ抽出工程では、バナジウム及び/又はバナジウム化合物の選択的抽出が可能となる最低限の量に、アルカリ添加量が調整される。好ましくは、アルカリ添加量は、得られるアルカリ浸出液の沸点上昇が5℃以下、より好ましくは1℃以下となるように調整される。アルカリ抽出工程におけるアルカリ添加量がこのように調整されることにより、後述する蒸発濃縮工程において、沸点上昇にともなうエネルギー負担が軽減され、スケーリング等の不具合が回避される。
 本工程で使用するアルカリとしては、特に限定されないが、アルカリ金属又はアルカリ土類金属の水酸化物が好ましい。第1の実施形態にて前述したアルカリが使用されうる。入手が容易等の理由から、水酸化ナトリウムが好ましい。
 アルカリ浸出液に含まれるアルカリの濃度は、使用されるアルカリの種類により変動する。アルカリとして水酸化ナトリウムを使用する場合、アルカリ浸出液中のアルカリ濃度は、バナジウムの選択的抽出の観点から、0.5質量%以上が好ましく、1.0質量%以上がより好ましい。沸点上昇抑制及び製造トラブル低減の観点から、アルカリ濃度は10質量%以下が好ましく、3.0質量%以下がより好ましい。
 アルカリ抽出工程における抽出温度は抽出効率に影響するが、この実施形態に係る製造方法では、アルカリ浸出液のpHを13以上とすることにより、バナジウムの選択的な抽出が可能となっている。そのため、抽出時に高温での加熱処理を要しない。この実施形態における抽出温度は、後述する蒸発濃縮工程の温度よりも低い温度であり、例えば10℃以上50℃未満であり、10℃~40℃が好ましく、20℃~30℃がより好ましい。
(固液分離工程:ステップ34)
 固液分離工程では、得られたアルカリ浸出液を固液分離して、バナジウムを含む浸出ろ液を得る(ステップ34)。図7(b)(ステップ32)に示される通り、アルカリ浸出液には、炭素、硫安分、硫酸、バナジウム及びアルカリ(水酸化ナトリウム)が含まれている。本工程では、不溶物である炭素が固形分として除去される。本工程で得られる浸出ろ液に含まれる成分は、図7(b)(ステップ34)に示される通り、硫安分、硫酸、バナジウム及びアルカリである。
 この実施形態において、アルカリ浸出液を固液分離する方法は特に限定されず、第1の実施形態にて前述した方法が用いられうる。
 第3の実施形態において、好ましくは、本工程後、浸出ろ液を分離した後の固形分(ケーキ)を洗浄する固形分洗浄工程をおこなう。固形分洗浄工程については、第1の実施形態にて前述した通りである。この実施形態において、固形分洗浄後の洗浄水(洗浄ろ液)を回収して、浸出ろ液とともに、次の蒸発濃縮工程に供することにより、バナジウムの回収率が向上する。
(蒸発濃縮工程:ステップ36)
 蒸発濃縮工程では、バナジウムを含む浸出ろ液を蒸発濃縮して、濃縮液を得る(ステップ36)。蒸発濃縮方法としては、特に制限はなく、多重効用式蒸発法(MED)、自己蒸気機械圧縮式蒸発法(MVR)、蒸気圧縮式蒸発法(VCD)、真空多段蒸発濃縮式蒸発法(VMEC)、多段フラッシュ式蒸発法(MSF)等が適宜選択して用いられる。省エネルギー及びコストの観点から、自己蒸気機械圧縮式(MVR)が好ましい。
 本工程では、浸出ろ液から水分が蒸気として除去されることにより、減容化される。図7(b)(ステップ36)に示すように、この実施形態では、本工程において浸出ろ液が1/5に減容化される(濃縮率5倍)。減容化された浸出ろ液(濃縮液)中には、硫安分、硫酸イオン、バナジウム及びアルカリが含まれる。本工程における蒸発濃縮温度、濃縮率及び蒸発させた水分の使用方法については、第1の実施形態に関し前述した通りである。
 前述した通り、第3の実施形態では、アルカリ抽出工程におけるアルカリ添加量が、バナジウム及び/又はバナジウム化合物の選択的抽出が可能となる最低限の量に調整されており、好ましくは、沸点上昇が5℃以下、より好ましくは1℃以下となる量に調整されている。この製造方法によれば、蒸発濃縮工程において、沸点上昇にともなうエネルギー負担が軽減され、スケーリング等の不具合が回避される。
 本工程で得られる濃縮液中のアルカリ濃度は、アルカリ抽出工程におけるアルカリ添加量及び濃縮率により変動する。蒸発濃縮中のスケーリング等の防止の観点から、濃縮液中のアルカリ濃度は、10質量%以下が好ましく、5質量%以下がより好ましい。
(アルカリ濃度調整工程:ステップ37)
 アルカリ濃度調整工程では、得られた濃縮液にさらにアルカリ又はアルカリ溶液を添加して、濃度調整液を得る(ステップ37)。本工程において、濃縮液に添加するアルカリの種類は特に限定されず、第1の実施形態のアルカリ抽出工程にて前述したアルカリが用いられ得る。本工程で添加するアルカリと、アルカリ抽出工程で添加したアルカリとが同じであってもよく、異なっていてもよい。得られるバナジウム化合物の高純度化及びコスト上の観点から、アルカリ抽出工程で添加したアルカリと同じ種類のアルカリを添加することが、好ましい。図7(b)(ステップ37)に示される通り、この実施形態では、濃縮液にさらに水酸化ナトリウムが添加される。
 本発明に係る製造方法では、後述する晶析・固液分離工程での冷却温度において、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるように、濃度調整液のアルカリ濃度を調整する。この条件を満たすように、濃度調整液のアルカリ濃度を調製することにより、後述する晶析・固液分離工程で回収する析出物中への硫酸アルカリの混入が低減され、得られるバナジウム化合物の高純度化が達成される。なお、析出物への硫酸アルカリ混入量に対するアルカリ濃度の作用効果に関しては、後の晶析・固液分離工程において詳述する。
 濃度調整液のアルカリ濃度がこの条件を満たす限り、本工程において濃縮液に添加するアルカリ又はアルカリ溶液の量は、特に限定されず、原料灰の種類、濃縮液のアルカリ濃度、添加するアルカリの種類等に応じて適宜調整される。
(晶析・固液分離工程:ステップ38)
 晶析・固液分離工程では、得られた濃度調整液を所定の冷却温度に冷却して晶析し、バナジウム化合物を含む析出物を固形分(ケーキとも称される)として回収する(ステップ38)。冷却温度、晶析方法及び固液分離方法は、第1の実施形態の晶析・固液分離工程について前述した通りである。
 本工程では、硫安分、硫酸アルカリ及びバナジウム化合物の一部が、それぞれ固形分として析出する。固液分離により固形分と分離された晶析ろ液には、これらの残りとアルカリとが含まれる。図7(b)(ステップ38)に示される通り、この実施形態では、硫酸アルカリとして硫酸ナトリウム(NaSO:芒硝)の一部と、バナジウム化合物としてオルトバナジン酸ナトリウム(NaVO)等の一部とが、それぞれ固形分として析出し、晶析ろ液には、アルカリとして水酸化ナトリウム(NaOH)が含まれる。
 前述した通り、バナジウム化合物及び硫酸アルカリの溶解度は、濃度調整液のアルカリ濃度の増加によって低下する。本発明者らの知見によると、晶析時の冷却温度において、バナジウム化合物の溶解度が、硫酸アルカリの溶解度に比べて、極めて低くなるアルカリ濃度領域が存在する。この実施形態では、本工程に供する濃度調整液のアルカリ濃度を、この濃度領域に調整することにより、硫酸アルカリの析出を顕著に抑制することが可能となる。
 例えば、図8のグラフには、異なるアルカリ濃度におけるNaVOの飽和濃度(実線)及びNaSOの飽和濃度(破線)が示されている。それぞれの濃度が飽和濃度以上では析出し、飽和濃度以下では溶解する。換言すれば、図8の実線及び破線は、それぞれ、NaVO及びNaSOの10℃における溶解度曲線である。
 図示される通り、アルカリとしてNaOHを使用する場合、アルカリ濃度10質量%以上25質量%以下の濃度領域で、バナジウム化合物の10℃における溶解度がゼロに漸近する一方、硫酸アルカリの10℃における溶解度が高い範囲に維持される。従って、本工程において、アルカリ濃度10質量%以上25質量%以下に調整した濃度調整液を10℃に冷却した場合、バナジウム化合物が優位に固形分として析出する一方で、ほとんどの硫酸アルカリは晶析ろ液中に残存する。これにより、夾雑物である硫酸アルカリの含有量が極めて少なく、バナジウム化合物を高純度で含む固形分が得られる。得られた固形分は、バナジウム化合物を主成分として精製されたバナジウム原料として回収され(ステップ40)、レドックス・フロー電解液の製造等に使用される。
 バナジウム化合物の回収率向上及び硫酸アルカリの析出抑制の観点から、好ましくは、本工程に供される濃度調整液のアルカリ濃度は、10質量%以上25質量%以下に調整される。得られるバナジウム化合物の回収率向上の観点から、濃度調整液のアルカリ濃度は10質量%以上がより好ましく、15質量%以上が特に好ましい。硫酸アルカリの析出抑制の観点から、濃度調整液のアルカリ濃度は30質量%以下がより好ましく、25質量%以下が特に好ましい。
 次に、図9を用いて、蒸発濃縮工程から晶析・固液分離工程で、バナジウム化合物が選択的に分離されるメカニズムについて説明する。図9(a)は、異なる温度とアルカリ濃度におけるオルトバナジン酸ナトリウム(NaVO)の溶解度曲線を示すグラフであり、図9(b)は、異なる温度とアルカリ濃度における硫酸ナトリウム(NaSO:芒硝)の溶解度曲線を示すグラフである。図示される通り、いずれの化合物も、温度が高いほど溶解度が高くなる。また、いずれの化合物の溶解度も、アルカリ濃度(NaOH濃度)が高くなるに従って低くなり、ほぼ一定となる。
 図9(a)及び(b)において、アルカリ浸出液(30℃の場合)に含まれるNaVO及びNaSOの組成を、それぞれ「濃縮前@30℃」で示す。このアルカリ浸出液を80℃で蒸発濃縮すると、NaVO、NaSO及びアルカリ(NaOH)は液中に残留するため、その濃度変化は原点を通る直線で表される。濃縮後の濃縮液の温度は80℃であり、これに含まれるNaVO及びNaSOの組成を、それぞれ「濃縮後@80℃」で示す。図9(a)及び(b)は、5倍濃縮した場合の例示である。この濃度が80℃の飽和溶解度よりも低ければ(溶解度曲線の下であれば)、その時点で固形物の析出は生じない。
 その後、アルカリ濃度調整工程で各濃縮液にさらにアルカリを添加した濃度調整液の、NaVO及びNaSOの組成を、それぞれ「アルカリ添加後@80℃」で示す。このとき、いずれの化合物の濃度も、80℃の飽和溶解度よりも低くなるように(即ち、固形物の析出が生じないように)、アルカリ添加量を調整する。次に、晶析・固液分離工程で、濃度調整液を10℃まで冷却すると、濃度調整液は10℃での飽和溶液の組成に到達し、飽和濃度を超えた各成分が析出し、固形分(ケーキ)として回収される。これに含まれるNaVO及びNaSOの組成を、それぞれ「冷却晶析ろ液@10℃」で示す。
 図示される通り、NaVOの「冷却晶析ろ液@10℃」は、NaVOの溶解度曲線がゼロに漸近し下限に近い領域に位置し、NaSOの「冷却晶析ろ液@10℃」は、NaSOの溶解度曲線がゼロに漸近せず、高い溶解度を示す領域に位置している。これにより、バナジウム化合物が高収率で回収されるとともに、硫酸アルカリの析出が抑制される。さらに、晶析・固液分離工程の冷却温度において、バナジウム化合物の濃度が飽和濃度以上、かつ、硫酸アルカリの濃度が飽和濃度以下となるように、濃度調整液のアルカリ濃度を調整することにより、夾雑物である硫酸アルカリを含まず、バナジウム化合物を高純度で含む固形分を回収することができる。これにより、高純度バナジウム化合物を安定して得ることが可能となる。
 この実施形態に係る製造方法によれば、晶析・固液分離工程で得られる固形分中のバナジウム化合物の含有量を30~40質量%とすることができる。また、固形分を乾燥させた乾物ベースであれば、バナジウム化合物70~80質量%、硫酸アルカリ2~5質量%、アルカリ20~25質量%とすることができる。また、晶析・固液分離工程後に、固形分を水等で洗浄するケーキ洗浄工程を設けると、乾物ベースでバナジウム化合物の含有量を90質量%以上とすることも可能である。
 また、前述した通り、第3の実施形態に係る製造方法では、蒸発濃縮工程で得られる濃縮液に、さらにアルカリ又はアルカリ溶液を添加することにより、前述の冷却温度において、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるアルカリ濃度に調整される。換言すれば、蒸発濃縮工程で得られる濃縮液のアルカリ濃度は、前述の冷却温度において、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるアルカリ濃度よりも、低い。この製造方法の特徴は、蒸発濃縮後のアルカリ濃度が、前述の冷却温度において、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるアルカリ濃度よりも低くなるように、アルカリ抽出工程で添加するアルカリの量を設定することにある。これにより、蒸発濃縮工程に供される浸出ろ液のアルカリ濃度が低くなり、大幅な粘度増加や沸点上昇が回避されるため、蒸発濃縮に要するエネルギー負担が低減され、かつ、流体ハンドリング性が向上する。また、高濃度のアルカリに起因する、蒸発濃縮中のスケーリングの発生に起因する製造トラブルが回避される。さらに、装置に付着したスケールの除去等に要する時間及び費用が軽減される。
(その他の工程)
 本発明の効果が阻害されない限り、第3の実施形態において、製造方法がさらに他の工程を含んでもよい。この他の工程として、準備工程後アルカリ抽出工程前に原料灰を洗浄する原料灰洗浄工程、準備工程後アルカリ抽出工程前に原料灰を酸化する酸化工程、晶析・固液分離工程で分離された晶析ろ液をアルカリ抽出工程で再利用するリサイクル工程等が挙げられる。
(原料灰洗浄工程)
 本工程は、原料灰から溶解性の金属夾雑物及び溶解性塩類(硫安分、硫酸等)を除去する工程である。原料灰の洗浄には、水又はアルカリ溶液を用い、洗浄中の液のpHを、好ましくはpH4~7、より好ましくはpH5~6に調整する。さらには、洗浄時のpHが6を越えないことが好ましい。原料灰に対して質量比で2~20倍の洗浄水の使用が好ましい。アルカリ抽出工程前に原料灰を洗浄することにより、蒸発濃縮工程に供される浸出ろ液中の塩濃度が低減される。そのため、より低い温度で蒸発濃縮を行うことが可能となり、消費エネルギー負担が低減される。さらに、晶析・固液分離工程において、金属夾雑物及び硫酸アルカリ等が低減され、バナジウム化合物を高純度で含むケーキが得られる。この観点から、原料灰洗浄工程後の原料灰中の可溶性成分(溶解性金属夾雑物及び溶解性塩類)の含有量が、5質量%以下となるまで洗浄することが好ましい。本工程における原料灰の洗浄方法、洗浄温度及び洗浄時間は、第2の実施形態にて前述した通りである。
(酸化工程)
 本工程は、原料灰に含まれる3価又は4価のバナジウムを、5価のバナジウムに酸化する工程である。酸化工程において3価又は4価のバナジウムを5価のバナジウムに変換した後、アルカリ抽出工程を実施することにより、バナジウムの回収率が向上する。原料灰の酸化方法並びに使用する酸化性ガス及び酸化剤の種類については、第1の実施形態の変形例として前述した通りである。
(リサイクル工程)
 本工程は、晶析後、固液分離して得た晶析ろ液を、アルカリ抽出工程に返送して、アルカリ溶液として再利用する工程である。これにより、得られるバナジウム化合物の収率が向上する。晶析ろ液の返送方法及び返送量については、第2の実施形態にて前述した通りである。
(レドックス・フロー電池用電解液の製造方法)
 本発明に係るレドックス・フロー電池用電解液の製造方法は、前述した第3の実施形態に係るバナジウム化合物の製造方法で得られたバナジウム化合物を、レドックス・フロー電池用の電解液の原料として用いる方法である。この実施形態では、原料灰の準備工程(ステップ30)、アルカリ抽出工程(ステップ32)、固液分離工程(ステップ34)、蒸発濃縮工程(ステップ36)、アルカリ濃度調整工程(ステップ37)、晶析・固液分離工程(ステップ38)及びバナジウム化合物を含む析出物を原料として、レドックス・フロー電池用電解液を製造する、電解液製造工程が、順次、実施されて、レドックス・フロー電池用の電解液が製造される。レドックス・フロー電池用電解液の詳細については、第1の実施形態にて前述した通りである。
 本発明に係る製造方法では、蒸発濃縮時に生じうる製造トラブルを回避して、従来よりも安価かつ簡便に、バナジウムを選択的に分離することができる。このバナジウム化合物を原料とすることにより、レドックス・フロー電池用電解液を安価で簡便に、効率よく製造することができる。
(バナジウム化合物の製造装置)
 本発明のバナジウム化合物の製造装置は、前述した第3の実施形態に係るバナジウム化合物の製造方法を実施するための装置として構成することができる。この実施形態のバナジウム化合物の製造装置は、アルカリ抽出手段、固液分離手段、蒸発濃縮手段、アルカリ濃度調整手段及び晶析・固液分離手段を備える。
 アルカリ抽出手段は、前述した第3の実施形態のアルカリ抽出工程を実施する手段であり、原料灰(原料灰そのもの又は原料灰スラリー)に、アルカリ及び水、又はアルカリ溶液を、pH13以上となる量で添加して、液相にバナジウムを浸出させて、バナジウムを含むアルカリ浸出液を得るための手段である。アルカリ抽出手段として、第1の実施形態で例示したアルカリ抽出手段が用いられうる。
 固液分離手段は、前述した固液分離工程を実施する手段である。固液分離手段として、第1の実施形態で例示した固液分離手段が用いられうる。
 蒸発濃縮手段は、前述した第3の実施形態の蒸発濃縮工程を実施する手段であり、バナジウムを含む浸出ろ液を蒸発濃縮して、濃縮液を得るための手段である。蒸発濃縮手段として、例えば、蒸発濃縮缶等を挙げることができる。
 アルカリ濃度調整手段は、前述したアルカリ濃度調整工程を実施する手段であり、濃縮液にさらにアルカリ又はアルカリ溶液を添加して、濃度調整液を得るための手段である。アルカリ濃度調整手段としては、濃縮液及びアルカリ溶液を混合する撹拌混合槽等が挙げられる。
 晶析・固液分離手段は、前述した第3の実施形態の晶析・固液分離工程を実施する手段であり、濃度調整液を所定の冷却温度に冷却して晶析し、バナジウム化合物を含む析出物を固形分(ケーキとも称される)として回収するための手段である。晶析・固液分離手段は晶析手段と固液分離手段とから構成される。晶析手段及び固液分離手段として、第1の実施形態で例示した晶析手段及び固液分離手段が用いられうる。
 第3の実施形態に係る製造装置では、アルカリ抽出手段により、アルカリ浸出液をpH13以上とすることにより、高温による加熱手段を要することなく、バナジウムを選択的に、高収率で抽出することができる。また、この製造装置では、蒸発濃縮手段により浸出ろ液を濃縮後、アルカリ濃度調整手段で、濃縮液にさらにアルカリ又はアルカリ溶液を添加して、所定のアルカリ濃度に調整する。蒸発濃縮時の浸出ろ液のアルカリ濃度が低く、大きな沸点上昇が生じないため、蒸発濃縮に要するエネルギー負担が低減され、かつ、蒸発濃縮中のスケーリングの発生等の製造トラブルも回避されうる。
 さらに、この製造装置では、アルカリ濃度調整手段により、晶析・固液分離工程での冷却温度において、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるように、アルカリ濃度が調整される。この製造装置によれば、従来のように、酸の添加手段を要することなく、バナジウム化合物と硫酸アルカリとの溶解度の差によって、バナジウム化合物を選択的に析出させて回収することができる。
 本発明の効果が阻害されない限り、この製造装置が、原料灰を洗浄水で洗浄する原料灰洗浄手段、この洗浄水のpHを4~7に調整するpH調整手段、原料灰を酸化する酸化手段、アルカリ抽出手段によりバナジウムを液相に浸出させる間、その温度を10℃以上50℃未満に制御する温度制御手段、固液分離手段により分離された固形分(ケーキ)を洗浄する固形分洗浄手段、晶析・固液分離手段で固形分から分離された晶析ろ液をアルカリ抽出手段で再利用するリサイクル手段等を、さらに備えてもよい。
(レドックス・フロー電池用電解液の製造装置)
 本発明のレドックス・フロー電池用電解液の製造装置は、前述した第3の実施形態に係るバナジウム化合物の製造装置で製造したバナジウム化合物を、レドックス・フロー電池用の電解液の原料として用いるための装置である。この実施形態のレドックス・フロー電池用電解液の製造装置は、アルカリ抽出手段、固液分離手段、蒸発濃縮手段、アルカリ濃度調整手段、晶析・固液分離手段及びバナジウム化合物を含む析出物を原料としてレドックス・フロー電池用電解液を製造する、電解液製造手段を備えている。
 アルカリ抽出手段、固液分離手段、蒸発濃縮手段、アルカリ濃度調整手段、晶析・固液分離手段の詳細については、前述したバナジウム化合物の製造装置を参照することができる。レドックス・フロー電池用電解液の製造装置の詳細については、前述したレドックス・フロー電池用電解液の製造方法を参照することができる。
 第3の実施形態に係る製造装置によれば、蒸発濃縮時に生じうる製造トラブルを回避して、従来よりも安価かつ簡便に、バナジウムを選択的に分離することができる。さらに、製造トラブルを回避して、安価かつ簡便にバナジウムを選択的に分離することにより、レドックス・フロー電池用電解液を安価かつ簡便に、効率よく製造することができる。
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
 [実施例1]
(1)準備工程及び洗浄工程
 ボイラー燃焼灰 5kg wet(含水率14.9%、バナジウム(V)含有率2.3%)を原料とし、水:10kgを加え、60分間撹拌したのち、遠心脱水機にて固液分離を行った。得られた残渣は、4.5kg(含水率33wt%)であった。この水洗工程において、原料灰中に含まれるバナジウム(V)の16.6wt%がろ液中に溶出した。
(2)アルカリ抽出工程及び固液分離工程
 水洗工程で得られた残渣1kgに、スラリー化水:2.1kg、30wt%苛性ソーダ(NaOH):1.0kgを投入し、pH13.8として60分間撹拌したのち、加圧ろ過を行い、ろ液:2.8kgを得た。残渣を2.1kgの水でケーキ洗浄し、その際の洗浄液も回収することで合計4.8kgのアルカリ浸出液を得た。
(3)蒸発濃縮工程
 アルカリ浸出工程で得られたろ液(濃縮前液)4.8kgを、80~85℃、-70kPaで減圧濃縮を行い、濃縮液:1.0kgを得た。
(4)冷却晶析工程
 蒸発濃縮工程で得られた濃縮液1.0kgをとり、徐々に冷却を行い、5℃にて5時間攪拌し、結晶を析出させた。1.0μmのメンブレンを使用して吸引ろ過によって固液分離を行った。これにより固形物であるケーキI:157g(うち、NaVO:64gとしてのバナジウム(V):18g)を得た。このケーキIの乾物中構成比は、NaVOが85wt%、NaSOが0.1wt%、NaOHが15wt%であった。なお、NaOHの混入はその大部分が付着水によるものであるため、固液分離性を高めることで混入率は大幅に削減できる。また、蒸発濃縮工程に必要な投入エネルギーは、純バナジウム1.0kg回収あたり、13950kcalであった。
 [実施例2]
(1)準備工程及び洗浄工程
 原料灰として、燃焼灰1.5kg wet(含水率14.9%、バナジウム(V)含有率2.3%)を準備し、水:15kg(pH7)を加え、15分間撹拌したのち、遠心脱水機にて固液分離を行った。得られた残渣は、1.26kg(含水率29wt%)であった。
(2)アルカリ抽出工程及び固液分離工程
 洗浄工程で得られた残渣1.29kgに、水3.5kg及び48wt%苛性ソーダ(NaOH):0.26kgを投入してpH13.5として60分間撹拌したのち、加圧ろ過を行って、バナジウムを含む浸出ろ液:3.35kg(NaVO濃度2.3wt.%、NaSO濃度0.4wt.%、NaOH濃度1.4wt.%)を得た。
(3)蒸発濃縮工程
 得られた浸出ろ液から2100gを採取し、MVRを用いて、80~85℃、-70kPaの条件にて減圧濃縮を行い、濃縮液:420gを得た(濃縮倍率5倍、NaOH濃度7.0wt.%)。蒸発濃縮工程において、スケーリングの発生等の製造トラブルは生じなかった。
(4)アルカリ濃度調整工程
 得られた濃縮液から100gを採取し、これにNaOH粉末10.8gを投入して溶解し、濃度調整液(NaOH濃度16.0wt.%)を得た。
(5)晶析・固液分離工程
 得られた濃度調整液を徐々に冷却して、5℃にて5時間攪拌し、結晶を析出させた。その後、1.0μmのメンブレンを用いた吸引ろ過により固液分離をおこなった。これにより、固形分であるケーキI:36.2g(うち、NaVO:11.5gとしてのバナジウム(V):3.2g)を得た。このケーキIの乾物中構成比は、NaVOが77.5wt%、NaSOが2.1wt%、NaOHが20.4wt%であった。
 [消費電力比較]
 アルカリ濃度調整工程を実施せず、アルカリ抽出工程でのみNaOHを添加する場合(A)、及び、アルカリ抽出工程及びアルカリ濃度調整工程でNaOHを添加する場合(B)について、下記製造条件にて蒸発濃縮工程をおこなったときの消費電力を算出して比較した。結果が表1に示されている。
 装置:MVR(自己蒸気機械圧縮)
 濃縮倍率:5倍
 蒸発量:10 ton/h
 蒸発濃縮前のアルカリ濃度:(A)4.0wt.%、(B)1.5wt.%
 沸点上昇:(A)7℃、(B)1℃
 沸点上昇がない場合の液温:70℃
 ヒーターでの温度差:5℃
 供給流体:70℃飽和蒸気(31.2kPa、0.198kg/m
 吐出流体:(A)82℃飽和蒸気(51.4kPa)
      (B)76℃飽和蒸気(40.2kPa)
 ブロワ効率:80%
 ブロワ動力:
 (A)(10×1000/60/0.198)×(51.4-31.2)×1000/6120/0.8/9.81=353kW
 (B)(10×1000/60/0.198)×(40.2-31.2)×1000/6120/0.8/9.81=158kW
Figure JPOXMLDOC01-appb-T000001
 
 実施例1及び2に示されるように、本発明に係る製造方法によれば、高純度のバナジウム化合物を効率よく製造することができた。さらに、表1に示されるように、蒸発濃縮工程後にアルカリ濃度調整工程を実施する本発明に係る製造方法によれば、蒸発濃縮工程前のアルカリ抽出工程でのみアルカリを添加する方法と比較して、消費電力が約45%に削減されることがわかる。また、実施例の製造方法では、蒸発濃縮工程における製造トラブルが生じなかった。この評価結果から、本発明の優位性は明らかである。
 10、20、30・・・原料灰準備工程
 12、22、32・・・アルカリ抽出工程
 13、23、34・・・固液分離工程
 14、24、36・・・蒸発濃縮工程
 15、25、38・・・晶析・固液分離工程
 17、27、40・・・バナジウム化合物回収
 21・・・原料灰洗浄工程
 37・・・アルカリ濃度調整工程
 

Claims (24)

  1.  硫酸アンモニウム及び/又は硫酸水素アンモニウムからなる硫安分と、硫酸と、バナジウムと、ニッケル、鉄及びマグネシウムから選択される少なくとも1種類のその他金属と、を少なくとも含有する原料灰に、pH13以上となるようにアルカリ及び水、又はアルカリ溶液を添加し、前記バナジウムを液相に浸出させてアルカリ浸出液を得るアルカリ抽出工程と、
     前記アルカリ浸出液を固液分離し、不溶物を固形分として除去するとともにバナジウムを含む前記アルカリ浸出液を浸出ろ液として得る固液分離工程と、
     前記浸出ろ液を蒸発濃縮して濃縮液を得る蒸発濃縮工程と、
     前記濃度液を所定の冷却温度に冷却して晶析し、バナジウム化合物を含む析出物を固形分として回収する晶析・固液分離工程と、を含み、
     前記濃縮液は、前記冷却温度においてバナジウム化合物が飽和濃度以上、かつ硫酸アルカリが飽和濃度以下となるバナジウム化合物の製造方法。
  2.  前記アルカリ抽出工程の前段階において、前記原料灰を洗浄する原料灰洗浄工程をさらに含む請求項1に記載のバナジウム化合物の製造方法。
  3.  前記晶析・固液分離工程の後段階において、前記晶析・固液分離工程で前記固形分から分離された晶析ろ液を前記アルカリ抽出工程で再利用するリサイクル工程をさらに含む請求項1に記載のバナジウム化合物の製造方法。
  4.  前記アルカリ抽出工程において、前記晶析ろ液により持ち込まれる硫酸根と、前記原料灰から持ち込まれる硫酸根との合計が、前記晶析・固液分離工程における冷却後の飽和濃度相当量以下になるように、リサイクルする前記晶析ろ液の量を調整する晶析ろ液量調整工程をさらに含む請求項3に記載のバナジウム化合物の製造方法。
  5.  前記アルカリ抽出工程の前段階において、前記原料灰を酸化する酸化工程をさらに含む請求項1に記載のバナジウム化合物の製造方法。
  6.  前記アルカリ抽出工程の後段階において、前記固形分を洗浄してバナジウムを含む洗浄液を回収し、前記洗浄液を前記浸出ろ液とともに前記蒸発濃縮工程に移行させる固形分洗浄工程をさらに含む請求項1に記載のバナジウム化合物の製造方法。
  7.  請求項1から6のいずれか1項に記載のバナジウム化合物の製造方法で分離した前記バナジウム化合物を原料としてレドックス・フロー電池用電解液を製造する電解液製造工程を有するレドックス・フロー電池用電解液の製造方法。
  8.  硫酸アンモニウム及び/又は硫酸水素アンモニウムからなる硫安分と、硫酸と、バナジウムと、ニッケル、鉄及びマグネシウムから選択される少なくとも1種類のその他金属と、を少なくとも含有する原料灰に、pH13以上となるようにアルカリ及び水、又はアルカリ溶液を添加し、前記バナジウムを液相に浸出させてバナジウムを含むアルカリ浸出液を得るアルカリ抽出手段と、
     前記アルカリ浸出液を固液分離し、不溶物を固形分として除去するとともにバナジウムを含むアルカリ浸出液を浸出ろ液として得る固液分離手段と、
     前記浸出ろ液を蒸発濃縮して濃縮液を得る蒸発濃縮手段と、
     前記濃度液を所定の冷却温度に冷却して晶析し、バナジウム化合物を含む析出物を固形分として回収する晶析・固液分離手段と、を備えており、
     前記濃縮液は、前記冷却温度においてバナジウム化合物が飽和濃度以上、かつ硫酸アルカリが飽和濃度以下となるバナジウム化合物の製造装置。
  9.  前記アルカリ抽出手段の前段階において、前記原料灰を洗浄する原料灰洗浄手段をさらに備えている請求項8に記載のバナジウム化合物の製造装置。
  10.  前記晶析・固液分離手段の後段階において、前記晶析・固液分離手段で前記固形分から分離された晶析ろ液を前記アルカリ抽出手段で再利用するリサイクル手段をさらに備えている請求項8に記載のバナジウム化合物の製造装置。
  11.  前記アルカリ抽出手段において、前記晶析ろ液により持ち込まれる硫酸根と、前記原料灰から持ち込まれる硫酸根との合計が、前記晶析・固液分離手段における冷却後の飽和濃度相当量以下になるように、リサイクルする前記晶析ろ液の量を調整する晶析ろ液量調整手段をさらに備えている請求項8に記載のバナジウム化合物の製造装置。
  12.  前記アルカリ抽出手段の前段階において、前記原料灰を酸化する酸化手段をさらに備えている請求項8に記載のバナジウム化合物の製造装置。
  13.  前記アルカリ抽出手段の後段階において、前記固形分を洗浄してバナジウムを含む洗浄液を回収し、前記洗浄液を前記浸出ろ液とともに前記蒸発濃縮手段に移行させる固形分洗浄手段をさらに備えている請求項8に記載のバナジウム化合物の製造装置。
  14.  請求項8から13のいずれか1項に記載のバナジウム化合物の製造装置で分離した前記バナジウム化合物を原料としてレドックス・フロー電池用電解液を製造する電解液製造手段を備えているレドックス・フロー電池用電解液の製造装置。
  15.  硫酸アンモニウム及び/又は硫酸水素アンモニウムからなる硫安分と、硫酸と、バナジウムと、を少なくとも含有する原料灰に、アルカリ及び水、又はアルカリ溶液を、pH13以上となる量で添加して、前記バナジウムを液相に浸出させ、バナジウムを含むアルカリ浸出液を得る、アルカリ抽出工程と、
     前記アルカリ浸出液を固液分離して、バナジウムを含む浸出ろ液を得る、固液分離工程と、
     前記浸出ろ液を蒸発濃縮して濃縮液を得る、蒸発濃縮工程と、
     前記濃縮液に、さらにアルカリ又はアルカリ溶液を添加して、濃度調整液を得る、アルカリ濃度調整工程と、
     前記濃度調整液を所定の冷却温度に冷却して晶析し、バナジウム化合物を含む析出物を固形分として回収する晶析・固液分離工程と、を含み、
     前記冷却温度において、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるように、前記濃度調整液のアルカリ濃度を調整する、バナジウム化合物の製造方法。
  16.  前記アルカリが、アルカリ金属又はアルカリ土類金属の水酸化物である、請求項15に記載の製造方法。
  17.  前記アルカリ濃度調整工程において、前記濃度調整液のアルカリ濃度を、10質量%以上25質量%以下に調整する、請求項15又は16に記載の製造方法。
  18.  前記アルカリ抽出工程前に、前記原料灰を、pH6未満の条件で洗浄する原料灰洗浄工程をさらに含む、請求項15から17のいずれかに記載の製造方法。
  19.  前記アルカリ抽出工程において、10℃以上50℃未満の温度で、前記バナジウムを液相に浸出させる、請求項15から18のいずれかに記載の製造方法。
  20.  硫酸アンモニウム及び/又は硫酸水素アンモニウムからなる硫安分と、硫酸と、バナジウムと、を少なくとも含有する原料灰に、アルカリ及び水、又はアルカリ溶液を、pH13以上となる量で添加して、前記バナジウムを液相に浸出させ、バナジウムを含むアルカリ浸出液を得る、アルカリ抽出工程と、
     前記アルカリ浸出液を固液分離して、バナジウムを含む浸出ろ液を得る、固液分離工程と、
     前記浸出ろ液を蒸発濃縮して濃縮液を得る、蒸発濃縮工程と、
     前記濃縮液に、さらにアルカリ又はアルカリ溶液を添加して、濃度調整液を得る、アルカリ濃度調整工程と、
     前記濃度調整液を所定の冷却温度に冷却して晶析し、バナジウム化合物を含む析出物を固形分として回収する晶析・固液分離工程と、
     前記バナジウム化合物を含む析出物を原料として、レドックス・フロー電池用電解液を製造する、電解液製造工程と、を含み、
     前記冷却温度において、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるように、前記濃度調整液のアルカリ濃度を調整する、レドックス・フロー電池用電解液の製造方法。
  21.  硫酸アンモニウム及び/又は硫酸水素アンモニウムからなる硫安分と、硫酸と、バナジウムと、を少なくとも含有する原料灰に、アルカリ及び水、又はアルカリ溶液を、pH13以上となる量で添加して、前記バナジウムを液相に浸出させ、バナジウムを含むアルカリ浸出液を得る、アルカリ抽出手段と、
     前記アルカリ浸出液を固液分離して、バナジウムを含む浸出ろ液を得る、固液分離手段と、
     前記浸出ろ液を蒸発濃縮して濃縮液を得る、蒸発濃縮手段と、
     前記濃縮液に、さらにアルカリ又はアルカリ溶液を添加して、濃度調整液を得る、アルカリ濃度調整手段と、
     前記濃度調整液を所定の冷却温度に冷却して晶析し、バナジウム化合物を含む析出物を固形分として回収する晶析・固液分離手段と、
    を備えており、
     前記アルカリ濃度調整手段により、前記冷却温度において、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるように、前記濃度調整液のアルカリ濃度を調整する、バナジウム化合物の製造装置。
  22.  前記原料灰に前記アルカリ及び水、又はアルカリ溶液を添加する前に、この原料灰を洗浄水で洗浄する原料灰洗浄手段と、洗浄時のpHを6未満に調整するpH調整手段と、をさらに備えている請求項21に記載の製造装置。
  23.  前記原料灰に前記アルカリ及び水、又はアルカリ溶液を添加して、前記バナジウムを液相に浸出させる間、その温度を10℃以上50℃未満に制御する温度制御手段を、さらに備えている請求項21又は22に記載の製造装置。
  24.  硫酸アンモニウム及び/又は硫酸水素アンモニウムからなる硫安分と、硫酸と、バナジウムと、を少なくとも含有する原料灰に、アルカリ及び水、又はアルカリ溶液を、pH13以上となる量で添加して、前記バナジウムを液相に浸出させ、バナジウムを含むアルカリ浸出液を得る、アルカリ抽出手段と、
     前記アルカリ浸出液を固液分離して、バナジウムを含む浸出ろ液を得る、固液分離手段と、
     前記浸出ろ液を蒸発濃縮して濃縮液を得る、蒸発濃縮手段と、
     前記濃縮液に、さらにアルカリ又はアルカリ溶液を添加して、濃度調整液を得る、アルカリ濃度調整手段と、
     前記濃度調整液を所定の冷却温度に冷却して晶析し、バナジウム化合物を含む析出物を固形分として回収する晶析・固液分離手段と、
     前記バナジウム化合物を含む析出物を原料として、レドックス・フロー電池用電解液を製造する、電解液製造手段と、を備えており、
     前記アルカリ濃度調整手段により、前記冷却温度において、バナジウム化合物が飽和濃度以上、かつ、硫酸アルカリが飽和濃度以下となるように、前記濃度調整液のアルカリ濃度を調整する、レドックス・フロー電池用電解液の製造装置。
PCT/JP2020/023075 2019-06-12 2020-06-11 バナジウム化合物の製造方法及び製造装置並びにレドックス・フロー電池用電解液の製造方法及び製造装置 WO2020250989A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080042257.7A CN113939478A (zh) 2019-06-12 2020-06-11 钒化合物的制造方法和制造装置以及氧化还原液流电池用电解液的制造方法和制造装置
US17/618,727 US20220364204A1 (en) 2019-06-12 2020-06-11 Method and apparatus for producing vanadium compound, and method and apparatus for producing redox-flow battery electrolyte
EP20822390.9A EP3984958A4 (en) 2019-06-12 2020-06-11 METHOD AND DEVICE FOR THE PRODUCTION OF A VANADIUM COMPOUND, AND METHOD AND DEVICE FOR THE PRODUCTION OF A REDOX FLOW BATTERY ELECTROLYTE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019109344A JP6909826B2 (ja) 2019-06-12 2019-06-12 バナジウム化合物の製造方法、及びレドックス・フロー電池用電解液の製造方法、並びにバナジウム化合物の製造装置、及びレドックス・フロー電池用電解液の製造装置
JP2019-109344 2019-06-12
JP2019-154741 2019-08-27
JP2019154741A JP6860628B2 (ja) 2019-08-27 2019-08-27 バナジウム化合物の製造方法及び製造装置並びにレドックス・フロー電池用電解液の製造方法及び製造装置

Publications (1)

Publication Number Publication Date
WO2020250989A1 true WO2020250989A1 (ja) 2020-12-17

Family

ID=73782011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023075 WO2020250989A1 (ja) 2019-06-12 2020-06-11 バナジウム化合物の製造方法及び製造装置並びにレドックス・フロー電池用電解液の製造方法及び製造装置

Country Status (4)

Country Link
US (1) US20220364204A1 (ja)
EP (1) EP3984958A4 (ja)
CN (1) CN113939478A (ja)
WO (1) WO2020250989A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021031344A (ja) * 2019-08-27 2021-03-01 川崎重工業株式会社 バナジウム化合物の製造方法及び製造装置並びにレドックス・フロー電池用電解液の製造方法及び製造装置
CN115415291A (zh) * 2022-07-06 2022-12-02 宜宾天原海丰和泰有限公司 氯化法钛白粉氯化渣的处理方法
WO2024164406A1 (zh) * 2023-02-07 2024-08-15 广东邦普循环科技有限公司 一种红土镍矿浸出渣综合利用的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350961B (zh) * 2021-11-25 2023-07-28 攀钢集团研究院有限公司 一种含铵废水和提钒残渣资源化利用的方法
CN117374351B (zh) * 2023-12-07 2024-02-27 杭州德海艾科能源科技有限公司 一种全钒液流电池电解液及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319118A (en) * 1976-08-06 1978-02-22 Baba Risaachi Inst Kk Extraction of v and mo from oxidizing roasted ores containing same components
CN101748296A (zh) * 2008-12-10 2010-06-23 赖琼琳 一种从石煤中提取钒的方法
WO2017208471A1 (ja) 2016-06-03 2017-12-07 昭和電工株式会社 バナジウム化合物の製造方法、バナジウム溶液の製造方法及びレドックスフローバッテリー電解液の製造方法
JP2019046723A (ja) 2017-09-05 2019-03-22 住友電気工業株式会社 レドックスフロー電池用電解液の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231124A (ja) * 1997-02-21 1998-09-02 Kashimakita Kyodo Kaihatsu Kk メタバナジン酸アンモニウムの製造方法
CN101230419A (zh) * 2007-12-29 2008-07-30 谌建开 一种从含钒石煤或含钒灰渣中提取五氧化二钒以及综合提取铵明矾和铁红的方法
CN103014379B (zh) * 2012-12-26 2013-12-11 中南大学 一种从石煤钒矿中提钒的工艺
WO2017010437A1 (ja) * 2015-07-15 2017-01-19 国立大学法人群馬大学 バナジウムの回収方法、及びレドックス・フロー電池用電解液の製造方法、並びにバナジウムの回収装置、及びレドックス・フロー電池用電解液の製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319118A (en) * 1976-08-06 1978-02-22 Baba Risaachi Inst Kk Extraction of v and mo from oxidizing roasted ores containing same components
CN101748296A (zh) * 2008-12-10 2010-06-23 赖琼琳 一种从石煤中提取钒的方法
WO2017208471A1 (ja) 2016-06-03 2017-12-07 昭和電工株式会社 バナジウム化合物の製造方法、バナジウム溶液の製造方法及びレドックスフローバッテリー電解液の製造方法
JP2019046723A (ja) 2017-09-05 2019-03-22 住友電気工業株式会社 レドックスフロー電池用電解液の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3984958A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021031344A (ja) * 2019-08-27 2021-03-01 川崎重工業株式会社 バナジウム化合物の製造方法及び製造装置並びにレドックス・フロー電池用電解液の製造方法及び製造装置
CN115415291A (zh) * 2022-07-06 2022-12-02 宜宾天原海丰和泰有限公司 氯化法钛白粉氯化渣的处理方法
CN115415291B (zh) * 2022-07-06 2024-04-19 宜宾天原海丰和泰有限公司 氯化法钛白粉氯化渣的处理方法
WO2024164406A1 (zh) * 2023-02-07 2024-08-15 广东邦普循环科技有限公司 一种红土镍矿浸出渣综合利用的方法

Also Published As

Publication number Publication date
EP3984958A4 (en) 2023-07-26
CN113939478A (zh) 2022-01-14
US20220364204A1 (en) 2022-11-17
EP3984958A1 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
WO2020250989A1 (ja) バナジウム化合物の製造方法及び製造装置並びにレドックス・フロー電池用電解液の製造方法及び製造装置
RU2456241C2 (ru) Способ получения оксида ванадия с использованием экстракции
RU2591903C2 (ru) Способ выделения оксида цинка
JP6909826B2 (ja) バナジウム化合物の製造方法、及びレドックス・フロー電池用電解液の製造方法、並びにバナジウム化合物の製造装置、及びレドックス・フロー電池用電解液の製造装置
JP5481450B2 (ja) 炭酸リチウムの精製方法
JP2015183292A (ja) コバルトおよびニッケルの回収方法
JP6336469B2 (ja) スカンジウム高含有のスカンジウム含有固体材料の生産方法
CN101259956A (zh) 一种粗碲粉深度除杂的方法
KR20240049385A (ko) 블랙 매스로부터 금속을 회수하기 위한 방법 및 설비
JP2021031345A (ja) バナジウム化合物の製造方法及び製造装置
JP6860628B2 (ja) バナジウム化合物の製造方法及び製造装置並びにレドックス・フロー電池用電解液の製造方法及び製造装置
JP5867727B2 (ja) 希土類元素の分離方法
JP2020020016A (ja) リチウムの精製方法
WO2023195533A1 (ja) 廃リチウムイオン電池からリチウムを回収する方法
WO2023106164A1 (ja) バナジウム化合物の製造方法及び製造装置並びにレドックス・フロー電池用電解液の製造方法及び製造装置
CN114956126A (zh) 一种钠法磷酸铁生产过程中母液的回收利用方法
AU2022320902B2 (en) Crystallization process for the separation of metals
JP2022174564A (ja) バナジウム化合物の製造方法及び製造装置
US20240250327A1 (en) Methods of purifying and precipitating materials from batteries for recycling and manufacturing processes
JP3613443B2 (ja) タンタルおよび/またはニオブ含有合金の溶解抽出方法
JP3634747B2 (ja) タンタルおよびニオブの分離精製方法
CA3211531C (en) Method for producing secondary battery material from black mass
TWI849817B (zh) 由黑物質(black mass)製造二次電池材料之方法
WO2003072503A1 (fr) Procédé de purification d'un composé de niobium et/ou de tantale
CN115491495B (zh) 一种砷碱渣无害化与资源化的湿法处理工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020822390

Country of ref document: EP

Effective date: 20220112