WO2020250811A1 - 積層造形用銅粉末、積層造形体、積層造形体の製造方法および積層造形装置 - Google Patents

積層造形用銅粉末、積層造形体、積層造形体の製造方法および積層造形装置 Download PDF

Info

Publication number
WO2020250811A1
WO2020250811A1 PCT/JP2020/022203 JP2020022203W WO2020250811A1 WO 2020250811 A1 WO2020250811 A1 WO 2020250811A1 JP 2020022203 W JP2020022203 W JP 2020022203W WO 2020250811 A1 WO2020250811 A1 WO 2020250811A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated
powder
copper powder
copper
less
Prior art date
Application number
PCT/JP2020/022203
Other languages
English (en)
French (fr)
Inventor
雄史 杉谷
秀樹 京極
Original Assignee
福田金属箔粉工業株式会社
技術研究組合次世代3D積層造形技術総合開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福田金属箔粉工業株式会社, 技術研究組合次世代3D積層造形技術総合開発機構 filed Critical 福田金属箔粉工業株式会社
Priority to EP20822132.5A priority Critical patent/EP3950176A4/en
Priority to CN202080040371.6A priority patent/CN113939605B/zh
Priority to US17/607,736 priority patent/US20220219232A1/en
Priority to JP2021526057A priority patent/JPWO2020250811A1/ja
Publication of WO2020250811A1 publication Critical patent/WO2020250811A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to laminated modeling with copper powder.
  • Patent Document 1 a layer of nanosilica (SiO 2 ) of less than 100 ppm is formed as a treatment agent on the surface of Inconel 718 (registered trademark: Inconel 718), which is a nickel alloy, in an additional manufacturing technique (3D printing technique).
  • 3D printing technique A technique for improving the flow and diffusion characteristics of a metal powder is disclosed.
  • Patent Document 2 describes a metal powder having an average diameter of 10 ⁇ m or more and 200 ⁇ m or less made of an alloy such as Al, Co, Cr, Fe, and Ni, and a metal powder having a higher sphericity and an average diameter than the metal powder.
  • a mixture with a powder of ceramic, silica or alumina having a body integral ratio of 0.001% or more and 1% or less of the metal powder, which is 1/10 or less of the body, as a powder for laminated molding fluidity is obtained.
  • the technology for improving the above is disclosed.
  • An object of the present invention is to provide a technique for solving the above-mentioned problems.
  • the copper powder for laminated molding according to the present invention is used. It is a copper powder for laminated modeling in which nanooxide of 0.01 wt% or more and 0.20 wt% or less is mixed with copper powder.
  • the laminated model according to the present invention A laminated model formed by using the copper powder for laminated modeling. It contains 0.01 wt% or more and 0.20 wt% or less of nanooxide, and has an electric conductivity of 80% IACS or more.
  • the method for manufacturing a laminated model according to the present invention is: It is a manufacturing method of a laminated model which manufactures a laminated model using the copper powder for laminated model.
  • the layered manufacturing copper powder was spread in layers, by irradiating while scanning a laser beam so that the energy density is 500 J / mm 3 or more 1500 J / mm 3 or less laser output 1kW less, laminated one layer
  • the laminated modeling apparatus In order to achieve the above object, the laminated modeling apparatus according to the present invention
  • the average particle size of the copper powder is 5 ⁇ m or more and 15 ⁇ m or less
  • the powder resistance value of the copper powder for laminated molding containing the copper powder is (7.50E + 5) ⁇ or more and (2.50E + 7) ⁇ or less.
  • Judgment unit to judge that When both the judgment results by the judgment unit are within the range, the laminated modeling unit that models the laminated modeling body using the copper powder for laminated modeling and the laminated modeling unit. To be equipped.
  • FIG. 5 shows a scanning electron microscope (SEM) image of the surface of a laminated model of pure copper produced from a mixed powder of pure copper powder having an average particle diameter of 9.6 ⁇ m and 0.10 wt% nanooxide in an example of the present invention. is there.
  • FIG. 5 shows a scanning electron microscope (SEM) image of the surface of a laminated model of pure copper produced from a mixed powder of pure copper powder having an average particle diameter of 9.6 ⁇ m and 0.10 wt% nanooxide in an example of the present invention. is there.
  • FIG. 5 shows a scanning electron microscope (SEM) image of the surface of a laminated model of pure copper produced from a mixed powder of pure copper powder having an average particle diameter of 13.5 ⁇ m and 0.01 wt% nanooxide in an example of the present invention. is there.
  • SEM scanning electron microscope
  • the pure copper powder used in the present embodiment is fine in the fields of electric circuit connectors, heat sinks, heat exchangers, etc., if a laminated model using pure copper powder, which is used as a material for laminated modeling, can be produced. It is possible to make various shapes.
  • the laminated model using pure copper powder has a sufficient density (measured density by Archimedes method is 98.5% or more). If the measurement density is less than 98.5%, problems such as water leakage will occur. Further, when utilizing the electrical conductivity and thermal conductivity of copper, it is desirable to have sufficient electrical conductivity (80% IACS or more) as a pure copper product.
  • the laminated model using pure copper powder is not limited to the above example, and may be used as a circuit component or an electromagnetic wave shield component.
  • ⁇ Copper powder for laminated modeling Generally, in metal laminated molding, a fiber laser is used as a heat source in laser beam laminated molding, and an arbitrary shape is formed by melting and solidifying metal powder. In this case, a material having a low electric conductivity can obtain a high-density model, but a material having a high electric conductivity often cannot obtain a high-density model. Copper is an element with high electrical conductivity and thermal conductivity, and it is expected to produce electrically conductive parts and heat conductive parts with complicated shapes using laser beam laminated molding, but pure copper powder produces a high-density model. Cannot be made. The reason is that when pure copper powder is used, the thermal energy is diffused during laser irradiation due to its high electrical conductivity, and the laser beam is reflected during laser irradiation, so the thermal energy required for the pure copper powder to melt. This is because
  • the electric conductivity is reduced and the density is sufficient (measured density by the Archimedes method is 98.5% or more). It has become possible to manufacture a laminated model.
  • the electric conductivity of the laminated model is about 50% IACS, and the electric conductivity of the laminated model is 80% IACS. It cannot be more than that.
  • the electric conductivity is lower than that of pure copper powder, and it is possible to melt with an existing device having an energy density of about 1000 J / mm 3 , and the pure copper laminated model has high density and high conductivity.
  • a copper powder for laminated molding which can be obtained.
  • the electrical conductivity of the copper powder for laminated molding is lower than that of pure copper powder.
  • the powder resistance value is twice or more that of pure copper powder.
  • the powder resistance value of the copper powder for laminated molding containing copper powder is in the range of (7.50E + 5) ⁇ to (2.50E + 7) ⁇ .
  • a powder bed can be formed from copper powder for laminated modeling.
  • the fluidity (JIS Z2502 / FR: flow rate) of the copper powder for laminated molding is in the range of 15 to 120 sec / 50 g, preferably 60 sec / 50 g or less.
  • the adhesive force (FT4 measurement) of the copper powder for laminated modeling is 0.450 kPa or less. By satisfying this condition, it can be used as a metal powder for laminated modeling in the powder bed method.
  • the content of pure copper powder in the copper powder for laminated modeling is at least specified.
  • the apparent density (JIS Z2504) of copper powder for laminated modeling shall be in the range of 4.0 to 5.5 g / cm 3 .
  • the amount of copper per unit volume of the powder bed is kept constant, and the laminated model can have the characteristics of pure copper.
  • FIG. 1 is a diagram showing a schematic configuration example of the laminated modeling apparatus 10 of the present embodiment.
  • the laminated modeling unit of the laminated modeling device 10 includes an electron beam or fiber laser 11a emission mechanism 11, a hopper 12 which is a powder tank, and a squeezing blade 13 for forming a powder bed in which powder is spread in layers with a constant thickness. And a table 14 that repeats lowering by a certain thickness for lamination. The collaboration between the squeezing blade 13 and the table 14 produces a uniform and constant thickness powder additive 15.
  • each layer is irradiated with a fiber laser 11a based on slice data obtained from 3D-CAD data, and a metal powder (copper powder in this embodiment) is melted to produce a laminated model 15a.
  • the laminated modeling powder determination unit 16 determines whether or not the laminated modeling powder can be laminated and modeled by the laminated modeling device 10.
  • the average particle size of the copper powder is in the range of 5 ⁇ m to 15 ⁇ m
  • the powder resistance value of the copper powder for laminated molding containing the copper powder is from (7.50E + 5) ⁇ . Judge that it is within the range of (2.50E + 7) ⁇ .
  • a pure copper laminated model having a relative density of 99% or more and an electric conductivity of 80% IACS or more can be produced with the energy density possible in the laminated modeling device 10.
  • t the thickness of the powder bed
  • P the laser output
  • v the scanning speed of the laser
  • s the laser scanning pitch.
  • the laminated model using pure copper powder has a sufficient density.
  • the measured density by the Archimedes method is 98.5% or more.
  • the laminated model using pure copper powder has sufficient electrical conductivity as a pure copper product.
  • the electrical conductivity is 80% IACS or higher. By satisfying this condition, it can be used as a laminated model having the characteristics of pure copper.
  • Copper powder for laminated modeling of this embodiment is a laminated molding copper powder that satisfies the above conditions, can be melted by an existing device having a laser output of 1 kW or less and an energy density of about 1000 J / mm 3 , and can form a powder bed.
  • the following powders are provided as copper powders for laminated molding having a desired strength as a pure copper laminated molded product after molding and having sufficient electric conductivity.
  • nanooxide those having a shape close to a sphere or a true sphere and having a primary average particle diameter in the range of 10 nm to 100 nm, particularly 50 nm or less are preferably used.
  • Such nano-oxide for example, outside of nanosilica (SiO 2), as shown in Table 1 below, nano copper oxide (CuO), nano alumina (Al 2 O 3), nanotitania (TiO 2), nano Yttria (Y 2 O 3 ) and the like are included.
  • the average particle size of pure copper powder shall be in the range of 5 ⁇ m to 15 ⁇ m. That is, in the present embodiment, the amount of energy required for one particle to melt is reduced by reducing the volume of one particle of pure copper metal particles, and an existing device having an energy density of about 1000 J / mm 3 is used. For example, pure copper powder having an average particle size of 20 ⁇ m or less is used so that it can be melted.
  • the average particle size of the pure copper powder is less than 5 ⁇ m, sufficient fluidity cannot be obtained even if nanooxides are mixed, and the formation of a powder bed that realizes laminated molding is poor. Further, if the particles are made too small, the amount of metal existing in the powder bed decreases (corresponding to a decrease in apparent density), so that modeling cannot be performed due to poor formation of the powder bed. Therefore, a pure copper model with high density and high conductivity cannot be obtained. On the other hand, when the average particle size of the pure copper powder is 15 ⁇ m or more, a pure copper model having high density and high conductivity cannot be obtained even if a powder bed can be formed. It is more desirable that the average particle size of the pure copper powder is in the range of 8 ⁇ m to 15 ⁇ m.
  • FIG. 2 is a schematic view illustrating a mixed state of pure copper powder and nanooxide in the copper powder for laminated molding in the present embodiment.
  • the dimensions of the pure copper powder and the nanooxide are different from the actual ones, and the nanooxide is so small that it cannot be shown.
  • the pure copper powder 21 has high electrical conductivity and high thermal conductivity because each of the pure copper particles 20 is in direct contact with each other, and as shown by the arrow 22, the heat of the portion irradiated with the laser beam is the adjacent pure copper particles. It conducts heat through 20 and diffuses. Therefore, in an existing device having an energy density of about 1000 J / mm 3 , heat cannot be accumulated and melted before the portion irradiated with the laser beam exceeds the melting point.
  • the nanooxide 26 is interrupted between the pure copper particles 20, and the electric conductivity and the thermal conductivity between the pure copper particles 20 are reduced.
  • the heat generated by the laser beam is accumulated in each of the pure copper particles 20. Therefore, in an existing device having an energy density of about 1000 J / mm 3 , heat can be accumulated and melted before the portion irradiated with the laser beam exceeds the melting point.
  • Non-Patent Document 1 It is known as the Wiedemann-Franz law in Non-Patent Document 1 and the like that the reduction in electrical conductivity is proportional to the reduction in thermal conductivity in the copper powder for laminated molding of pure copper powder in the present embodiment. ..
  • the 50% particle size ( ⁇ m) of the copper powder for laminated molding was measured by a laser diffraction method (Microtrack MT3300: manufactured by Microtrack Bell Co., Ltd.).
  • FIG. 6A is a diagram showing a configuration of a shear stress measuring unit 60 for measuring a shear stress in the present embodiment.
  • the shear stress measuring unit 60 measures the shear stress by the rotary cell method, places the rotary cell 61 having a blade with a blade attached to the lower part inside the outer cell 62, and puts the powder to be measured on the upper part of the outer cell 62. Fill. Shear stress is measured from the rotational torque of the rotating cell 61 while applying a predetermined normal stress from the rotating cell 61 toward the outer cell 62.
  • FIG. 6B is a diagram showing a method of obtaining an adhesive force based on the shear stress measured by the shear stress measuring unit 60 in the present embodiment.
  • a plot of shear stress measured when shear occurs under each normal stress by the shear stress measuring unit 60 is called a fracture envelope, and powder is applied by applying a stronger shear stress than the fracture envelope. Shearing occurs in the body layer.
  • the shear stress when the normal stress is 0 (zero) on the fracture envelope (for example, 65) is obtained as the adhesive force between the particles.
  • the apparent density (g / cm 3 ) of the copper powder for laminated molding was measured according to JIS Z2504.
  • the fluidity (sec / 50 g) of the copper powder for laminated molding was measured according to JIS Z2502.
  • FIG. 3B is a diagram showing a method for measuring the powder resistance value of the mixed powder of pure copper powder and nanooxide according to the present embodiment.
  • the powder resistance measuring instrument 39 is an insulator having two copper plates 32 for measuring terminals connected to both terminals of the resistance measuring instrument 35 by cables 36 and 37 having contact terminals, and a hole for accommodating the powder to be measured 31. 33 and two upper and lower insulators 34 for pressing for strongly connecting the two copper plates 32 for measurement terminals to the powder to be measured 31 are provided.
  • the insulators 33 and 34 are made of elastic rubber or the like.
  • the holes for accommodating the powder to be measured 31 have a thickness of 0.3 mm (corresponding to the thickness of the insulator 33) and a diameter of 17 mm, but are not limited.
  • the powder to be measured 31 may be filled without voids and may have sufficient electrical connection with the two copper plates 32 for measurement terminals.
  • FIG. 3C is a diagram showing a method for measuring the powder resistance value of the mixed powder of pure copper powder and nanooxide according to the present embodiment.
  • the same components as those in FIG. 3B are designated by the same reference numbers, and duplicate description will be omitted.
  • FIG. 7 is a diagram showing a test example of whether or not a powder bed can be formed by skiing the copper powder for laminated modeling with the laminated modeling device 10 in the present embodiment.
  • FIG. 7 shows a powder bed in a formable state 71 and a non-formable state 72.
  • the electrical conductivity (% IACS) of the pure copper laminated model was measured with an eddy current type conductivity meter.
  • the density (%) of the pure copper laminated model was measured based on the ratio obtained by dividing the void area by the area of the cross-sectional SEM image.
  • FIG. 3A is a diagram showing changes in the powder resistance value 30 of the mixed powder of pure copper powder and nanooxide according to the present embodiment.
  • the powder resistance value was measured by the powder resistance measuring device 39 shown in FIGS. 3B and 3C.
  • the powder resistance value 30 was increased by a value larger than 10 times in pure copper powder having an average particle size of 20 ⁇ m or less by adding and mixing nanooxides.
  • FIG. 4 is a diagram showing the thermal energy required for melting the pure copper powder of the present embodiment.
  • the upper 41 of FIG. 4 shows the energy density at which the density of the modeled object in each copper powder is 99% or more.
  • the lower 42 of FIG. 4 shows the energy density required for the pure copper powder predicted from the copper alloy powder containing tin (Sn) and the copper alloy powder containing phosphorus (P), and the copper powder for laminated molding of the present embodiment. It is a graph which contrasts with energy density.
  • the black triangles represent the electrical conductivity of the copper alloy powder containing tin (Sn) and the copper alloy powder containing phosphorus (P), and the relative density of the model formed by melting by laser irradiation of 99% or more. It is a plot of the relationship with the thermal energy required to become.
  • the straight line 43 connecting these black triangles shows the correspondence between the electric conductivity and the thermal energy required for melting by laser irradiation.
  • the thermal energy 44 is expected to be 5000 J / mm 3 or more as shown by the white ⁇ .
  • the density is high and the conductivity is high within the range where melting is possible with an existing device having an energy density of about 1000 J / mm 3. It is possible to provide a copper powder for laminated molding that can obtain a pure copper molded body of.
  • FIG. 5 is a diagram showing the energy density in the case of producing a laminated model from the mixed powder of pure copper powder and nanooxide according to the present embodiment and the electric conductivity of the produced laminated model of pure copper. ..
  • the upper 51 of FIG. 5 shows Comparative Examples 211 to 212 having an average particle size of 28.6 ⁇ m without adding and mixing nanooxides, which produced a copper laminated model in this example, and an average particle size of 19.9 ⁇ m with and without adding nanooxides.
  • the lower 52 of FIG. 5 is a graph plotted on the horizontal axis (energy density) / vertical axis (electrical conductivity) according to the value of the upper 51. From the lower 52 of FIG. 5, but not the electric conductivity of 80% IACS or less in only the molding near the energy density 1000 J / mm 3 in the comparative example (see 54), shaped in the vicinity of the energy density of 1000 J / mm 3 in the embodiment Then, a pure copper laminated model having an electric conductivity of 80% IACS or more can be obtained (see 53).
  • Suitable composition of copper powder for laminated molding by adding nanooxide to the pure copper powder, the conditions of the above-mentioned copper powder for laminated molding are satisfied, and the laminated molded body after the laminated molding by the laminated molding apparatus has the above-mentioned sufficient density and pure copper.
  • a pure copper powder having a sufficiently high electric conductivity as a product.
  • 0.01 wt% to 0.20 wt% (100 ppm to 2000 ppm) of nanooxide is mixed with the copper powder.
  • the average particle size of the copper powder is in the range of 5 ⁇ m to 15 ⁇ m.
  • 0.01 wt% to 0.10 wt% (100 ppm to 1000 ppm) of nanooxides are mixed in the average particle size of the copper powder in the range of 8 ⁇ m to 15 ⁇ m.
  • the nanooxide contains SiO 2
  • the primary average particle size of the nanooxide is in the range of 10 nm to 100 nm.
  • the powder resistance value of the copper powder for laminated molding is 10 to 100 times the powder resistance value of the copper powder, and is within the range of (7.50E + 5) ⁇ to (2.50E + 7) ⁇ . is there.
  • the bulk electrical conductivity of the copper powder is 100% JACS or higher.
  • the fluidity of the copper powder for laminated molding measured by JIS Z2502 is from 15 sec / 50 g to 120 sec / 50 g.
  • the volume is set so that one particle can be melted by a fiber laser, and by blending nanooxide, the fluidity of the powder is improved, and the metal in the powder bed
  • the apparent density which is an index of the amount, to 4.0 to 5.5 g / cm 3
  • the amount of copper per unit volume of the powder bed becomes constant.
  • connection between particles is hindered, the contact point between particles is reduced, the resistance value of powder is increased, and pure copper that is difficult to melt due to its high electrical conductivity is produced. Make it easier to melt.
  • the electrical conductivity of the modeled object when modeled under the condition that the energy density that can be calculated from the laser power, scan speed, scan pitch, and powder stack thickness is 1333 to 533 J / mm 3 is the eddy current ET using sigma check. It is possible to form a laminated model with 80% IACS or more by the measurement method.
  • the powder bed cannot be formed by the laminated molding apparatus 10 in the pure copper powder 300 to 600 having an average particle diameter of 20 ⁇ m or less.
  • the powder bed can be formed by the laminated modeling device 10, but from Tables 3 and 4 described later, the laminated model is formed by the laminated modeling device 10. Even so, the electrical conductivity is in the 60% IACS range, and a pure copper model that exceeds 80% IACS cannot be obtained.
  • nanooxides were added and mixed with pure copper powders 300 to 600 having an average particle diameter of 20 ⁇ m or less for which a powder bed could not be formed by the laminated molding apparatus 10.
  • FIG. 9A shows product information of AEROSIL® RX 300.
  • the upper 91 is product information
  • the lower 92 is a relational graph for converting "specific surface area" into particle diameter.
  • the specific surface area is 180-220 m 2 / g, so the particle size is on the order of 10 nm.
  • FIG. 9B shows an SEM image of AEROSIL® RX 300 (SEM ⁇ 1000).
  • a pure copper laminated model was produced by the laminated modeling apparatus 10 by selecting from the copper powders for laminated modeling that can form a powder bed in Tables 2 and 3.
  • the energy density was changed.
  • the energy density is related, for example, to Laser Power, Scanning Speed, Scanning Pitch, and Powder Layer.
  • the pure copper laminated model shown in Examples 411 to 413 and 513 to 534 achieves the electrical conductivity of the model at 80% IACS or more, which is the target in the present embodiment. Further, as shown in Table 41 of FIG. 4, the relative density of the modeled body also exceeds 99%.
  • FIG. 10A to 10D show SEM images ( ⁇ 50) of the surfaces of the laminated model in Examples and Comparative Examples.
  • FIG. 10A is an SEM image ( ⁇ 50) of the surface of a laminated model of pure copper of Example 531 (an example in which 0.10 wt% nanooxide was added and mixed with pure copper particles having an average particle diameter of 9.6 ⁇ m).
  • FIG. 10B is an SEM image ( ⁇ 50) of the surface of a laminated model of pure copper of Example 412 (an example in which 0.01 wt% nanooxide is added and mixed with pure copper particles having an average particle diameter of 13.5 ⁇ m).
  • FIG. 10A is an SEM image ( ⁇ 50) of the surface of a laminated model of pure copper of Example 531 (an example in which 0.10 wt% nanooxide was added and mixed with pure copper particles having an average particle diameter of 9.6 ⁇ m).
  • FIG. 10B is an SEM image ( ⁇ 50) of the surface of a laminated model of pure copper of Example
  • FIG. 10C is an SEM image ( ⁇ 50) of the surface of a laminated model of pure copper of Comparative Example 312 (an example in which 0.01 wt% nanooxide is added and mixed with pure copper particles having an average particle diameter of 19.9 ⁇ m).
  • FIG. 10D is an SEM image ( ⁇ 50) of Comparative Example 212 (the surface of a laminated model of pure copper of pure copper particles having an average particle diameter of 28.6 ⁇ m).
  • the surface of the laminated model is dense and has few irregularities, so that the relative density and the electric conductivity are high.
  • the surface of the laminated model has voids and irregularities. It is unlikely that the relative density and electrical conductivity will increase because of this.
  • the particle size becomes smaller depending on the surface condition, so that the laser melts stably and the surface becomes smooth.
  • the particle size becomes large, the melting of the laser becomes unstable and the molten copper becomes spheroidized, resulting in an uneven molding surface. It can be seen that due to this unevenness, holes are generated in the modeled body, causing a decrease in the modeling density.
  • the pure copper laminated model produced by using the powder for laminated modeling of the example has (conditions as a pure copper laminated model) "relative density of 99% or more" and “electrical conductivity of 80% IACS or more”. Has been achieved, and the conditions for a pure copper laminated model are satisfied.
  • the powder to which the nanooxide of this example was added and mixed it was compared with the characteristics of the pure copper laminated model produced by the laminated modeling apparatus 10.
  • a laminated model having a relative density of 99% or more is produced by an existing apparatus having an energy density of about 1000 J / mm 3. It was possible to provide a pure copper laminated model having an electric conductivity of 80% IACS or more as expected from the bulk electric conductivity.
  • Table 7 shows the results of each characteristic measurement shown in ⁇ Measurement of characteristics of copper powder for laminated molding >> for a copper powder material to which nanooxides other than SiO 2 shown in Table 1 were added and mixed. Shown.
  • the fluidity should not hinder the formation of the powder bed, and the powder resistance should be (1.00E + 4) ⁇ or more.
  • the powder resistance should be (1.00E + 4) ⁇ or more.
  • a copper laminated model having an electric conductivity of 60% IACS or more can be produced.
  • the powder resistance is in the range of (7.50E + 5) ⁇ or more and (2.50E + 7) ⁇ or less, the electric conductivity can achieve 80% IACS or more. Comparing with the test results of the copper powder material to which SiO 2 is added and mixed, the following points can be seen from the results of the powder characteristics in Table 7.
  • the powder material mixed with copper oxide or yttrium oxide may have a powder resistance of less than (1.00E + 4) ⁇ , and sufficient electrical conductivity cannot be expected to be achieved. ..
  • the powder material to which aluminum oxide or titanium oxide is added and mixed can produce a copper laminated model having a powder resistance of (1.00E + 4) ⁇ or more and an electric conductivity of 60% IACS or more.
  • the powder resistance is (1.00E + 4) ⁇ or more and the electrical conductivity is 60% IACS or more regardless of the powder material to which any nanooxide is added and mixed. It can be seen that the copper laminated model can be produced.
  • the copper laminated model can be obtained as in the case of SiO 2 . It can be expected that an electric conductivity of 80% IACS or more, which is a pure copper product, can be achieved.
  • a powder bed can be formed and the laminated molding copper containing the pure copper powder can be formed.
  • the powder resistance value of the powder is in the range of (7.50E + 5) ⁇ to (2.50E + 7) ⁇ .
  • a powder bed can be formed, and the relative density is 99% or more when melted at the energy density of the existing equipment.
  • a copper laminated model can be produced, but the electrical conductivity of the copper laminated model does not exceed 80% IACS, which is a pure copper product.
  • nanosilica (SiO 2 ) was used as the nanooxide to be added and mixed, but the energy density of the existing apparatus was reduced by reducing the powder resistance from the pure copper powder having an average particle size of 20 ⁇ m or less.
  • Any nanooxide may be used as long as it can be melted in the above and the fluidity can be improved to form a powder bed with an existing device.
  • any nanooxide may be used as long as the density of the pure copper laminated model produced by the laminated modeling device is 99% or more and the electric conductivity is 80% IACS or more.
  • the shape and particle size of the nanooxide are also preferably selected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Composite Materials (AREA)
  • Analytical Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)

Abstract

例えば80%IACS以上の電気伝導性が高い銅の積層造形物を造形することが可能な積層造形用銅粉末を提供することを目的とする。本発明は、銅粉体に0.01wt%以上0.20wt%以下のナノ酸化物が混合された積層造形用銅粉末である。また、本発明の積層造形用銅粉末を用いた積層造形体を提供する。さらに、本発明の積層造形用銅粉末を用いた積層造形体の製造方法および積層造形装置を提供する。

Description

積層造形用銅粉末、積層造形体、積層造形体の製造方法および積層造形装置
 本発明は、銅粉末による積層造形に関する。
 上記技術分野において、銅の電気伝導性が高いため溶融に必要なエネルギーが高くなったりビームの表面反射が強くなったりするので、安定して積層造形を行うことが困難なのが現状である。特許文献1には、ニッケル合金であるインコネル718(登録商標:Inconel 718)の表面に、処理剤として100ppm未満のナノシリカ(SiO2)の層を形成して、付加製造技術(3Dプリンティング技術)における金属粉末の流動や拡散特性を改善する技術が開示されている。また、特許文献2には、Al、Co、Cr、Fe、Ni等の合金からなる平均直径10μm以上200μm以下の金属粉体と、金属粉体よりも真球度が高く、平均直径が金属粉体の1/10以下、かつ体積分率が金属粉体の0.001%以上1%以下であるセラミック、シリカまたはアルミナの粉体との混合物を積層造形用粉体とすることにより、流動性を向上させる技術が開示されている。
特開2016-041850号公報 特許第6303016号公報
溝口正「物質科学の基礎 物性物理学」,1989年4月,裳華房発行
 しかしながら、上記文献に記載の技術は、積層造形用銅粉末の流動性の改善を目的とする技術でありその電気伝導性については考慮されてないので、これらの開示技術によっては、銅の積層造形物として有用である高い電気伝導性(例えば、80%IACS以上)を有する積層造形物を造形するための積層造形用銅粉末を提供できない。
 本発明の目的は、上述の課題を解決する技術を提供することにある。
 上記目的を達成するため、本発明に係る積層造形用銅粉末は、
 銅粉体に0.01wt%以上0.20wt%以下のナノ酸化物が混合された積層造形用銅粉末である。
 上記目的を達成するため、本発明に係る積層造形体は、
 上記積層造形用銅粉末を用いて積層造形された積層造形体であって、
 0.01wt%以上0.20wt%以下のナノ酸化物が含まれ、電気伝導率が80%IACS以上である。
 上記目的を達成するため、本発明に係る積層造形体の製造方法は、
 上記積層造形用銅粉末を用いて積層造形体を製造する積層造形体の製造方法であって、
 前記積層造形用銅粉末を層状に敷き詰めてパウダベッドを形成するパウダベッド形成工程と、
 層状に敷き詰められた前記積層造形用銅粉末に、レーザ出力が1kW以下でエネルギー密度が500J/mm3以上1500J/mm3以下となるようにレーザビームを走査しながら照射して、1層の積層造形体を造形する造形工程と、
 を含む。
 上記目的を達成するため、本発明に係る積層造形装置は、
 銅粉体の平均粒子径が5μm以上15μm以下であり、前記銅粉体を含む積層造形用銅粉末の粉体抵抗値が(7.50E+5)Ω以上(2.50E+7)Ω以下であることを判定する判定部と、
 前記判定部による判定結果が共に範囲内である場合に、前記積層造形用銅粉末を用いて積層造形体を造形する積層造形部と、
 を備える。
 本発明によれば、電気伝導性が高い銅の積層造形物を造形することが可能な積層造形用銅粉末を提供することができる。
本発明の実施形態に係る積層造形装置の構成例を示す図である。 本発明の実施形態に係る純銅粉体とナノ酸化物との混合状態を説明する図である。 本発明の実施形態に係る純銅粉体とナノ酸化物との混合粉末の粉末抵抗値の変化を示す図である。 本発明の実施形態に係る純銅粉体とナノ酸化物との混合粉末の粉末抵抗値の測定方法を示す図である。 本発明の実施形態に係る純銅粉体とナノ酸化物との混合粉末の粉末抵抗値の測定手順を示す図である。 本発明の実施形態に係る純銅粉体とナノ酸化物との混合粉末の電気伝導率と積層造形体を製造する場合のエネルギー密度とを示す図である。 本発明の実施形態に係る純銅粉体とナノ酸化物との混合粉末から積層造形体を製造する場合のエネルギー密度と製造された純銅の積層造形体の電気伝導率とを示す図である。 本発明の実施形態においてせん断応力を測定するためのせん断応力測定部の構成を示す図である。 本発明の実施形態においてせん断応力測定部で測定されたせん断応力に基づいて付着力を求める方法を示す図である。 本発明の実施形態における粉末を積層造形装置においてパウダベッドを形成した状態を示す図である。 本発明の実施例で使用される平均粒子径28.6μmの純銅粉体の走査型電子顕微鏡(SEM)像を示す図である。 本発明の実施例で使用される平均粒子径19.9μmの純銅粉体の走査型電子顕微鏡(SEM)像を示す図である。 本発明の実施例で使用される平均粒子径13.5μmの純銅粉体の走査型電子顕微鏡(SEM)像を示す図である。 本発明の実施例で使用される平均粒子径9.6μmの純銅粉体の走査型電子顕微鏡(SEM)像を示す図である。 本発明の実施例で使用される平均粒子径3.1μmの純銅粉体の走査型電子顕微鏡(SEM)像を示す図である。 本発明の実施例で使用されるナノ酸化物の特性を示す図である。 本発明の実施例で使用されるナノ酸化物の走査型電子顕微鏡(SEM)像を示す図である。 本発明の実施例において平均粒子径9.6μmの純銅粉体と0.10wt%のナノ酸化物との混合粉末から製造された純銅の積層造形物表面の走査型電子顕微鏡(SEM)像を示す図である。 本発明の実施例において平均粒子径13.5μmの純銅粉体と0.01wt%のナノ酸化物との混合粉末から製造された純銅の積層造形物表面の走査型電子顕微鏡(SEM)像を示す図である。 本発明の比較例において平均粒子径19.9μmの純銅粉体と0.10wt%のナノ酸化物との混合粉末から製造された純銅の積層造形物表面の走査型電子顕微鏡(SEM)像を示す図である。 本発明の実施例において平均粒子径28.6μmの純銅粉体から製造された純銅の積層造形物表面の走査型電子顕微鏡(SEM)像を示す図である。
 以下に、図面を参照して、本発明の実施の形態について例示的に詳しく説明する。ただし、以下の実施の形態に記載されている構成要素は単なる例示であり、本発明の技術範囲をそれらのみに限定する趣旨のものではない。
 《本実施形態の純銅粉末を用いて積層造形された積層造形体の用途》
 本実施形態において使用される純銅粉末は、積層造形の材料として使用される、純銅粉末を用いた積層造形体が作成可能となれば、電気回路のコネクタ、ヒートシンクや熱交換器などの分野における微細な造形が可能となる。
 かかる用途においては、純銅粉末を用いた積層造形体が十分な密度(アルキメデス法による測定密度が98.5%以上)を有するのが望ましい。上記測定密度が98.5%に満たない場合には、水漏れなどの問題が発生する。また、銅の電気伝導性や熱伝導性を利用する場合には、純銅製品として十分な電気伝導率(80%IACS以上)を有するのが望ましい。なお、純銅粉末を用いた積層造形体は上記例に限定されず、他に回路部品や電磁波シールド部品として利用されてもよい。
 《積層造形用銅粉末》
 一般に、金属積層造形においては、レーザビーム積層造形ではファイバレーザを熱源とし、金属粉末を溶融凝固することで任意の形状を成形していく。この場合に、電気伝導率の低い材料では高密度な造形体が得られるが、電気伝導率の高い材料では高密度な造形体が得られないことが多い。銅は高い電気伝導率および熱伝導率を有する元素であり、レーザビーム積層造形を用いた複雑形状の電気伝導部品や熱伝導部品の作製が期待されるが、純銅粉末では高密度な造形体を作製することができない。その理由は、純銅粉末を使用した場合、電気伝導率の高さからレーザ照射時に熱エネルギーが拡散し、さらに、レーザ照射時にレーザ光が反射するため、純銅粉末が溶融するために必要な熱エネルギーが得られないためである。
 そのため、例えばすず(Sn)を含む銅合金粉末や燐(P)を含む銅合金粉末を使用することによって電気伝導率を低減させ、十分な密度(アルキメデス法による測定密度が98.5%以上)を有する積層造形体を製造することが可能になった。しかしながら、すず(Sn)を含む銅合金粉末や燐(P)を含む銅合金粉末では高くても積層造形体の電気伝導率は50%IACSほどで、積層造形体の電気伝導率を80%IACS以上とすることはできない。
 本実施形態においては、電気伝導率が純銅粉体より低減され、エネルギー密度が1000J/mm3程度の既存の装置で溶融が可能であって、かつ、高密度かつ高伝導率の純銅積層造形体を得られる、積層造形用銅粉末を提供する。
 以下、本実施形態における、積層造形用銅粉末としての条件を整理する。
 (積層造形用銅粉末としての条件)
 (1) 積層造形用銅粉末の電気伝導率が純銅粉体より低減していること。例えば、粉末抵抗値が純銅粉体の2倍以上となれば望ましい。この条件を満たすことにより、熱の拡散を妨げて高温を維持できて積層造形用銅粉末の溶融を容易にする。例えば、銅粉体を含む積層造形用銅粉末の粉体抵抗値が(7.50E+5)Ωから(2.50E+7)Ωの範囲内であること。
 (2) 積層造形用銅粉末に含まれる純銅粉体の粒子体積を減少させる(粒子径を小さくする)こと。この条件を満たすことにより、1粒子が溶融するのに必要なエネルギー量を低減させ、積層造形用銅粉末の溶融を容易にする。
 (3) 積層造形用銅粉末からパウダベッドが形成可能なこと。例えば、積層造形用銅粉末の流動性(JIS Z2502/FR:flow rate)が15~120sec/50gの範囲、好ましくは60sec/50g以下である。あるいは、積層造形用銅粉末の付着力(FT4測定)が0.450kPa以下である。この条件を満たすことにより、パウダベッド方式における積層造形用の金属粉末として使用が可能となる。
 (4) 積層造形用銅粉末の純銅粉体の含有量が所定以上であること。例えば、積層造形用銅粉末の見掛密度(JIS Z2504)が4.0~5.5g/cm3の範囲であること。銅粉末の見掛け密度をこの範囲とすることにより、パウダベッドの単位体積当たりの銅量が一定に維持されて、積層造形体が純銅の特性を有することができる。
 《純銅積層造形体の製造》
 図1は、本実施形態の積層造形装置10の概略構成例を示す図である。積層造形装置10の積層造形部は、電子ビームあるいはファイバレーザ11aの発射機構11と、粉末タンクであるホッパー12と、粉末を一定厚で層状に敷き詰めた粉末床を形成するためのスキージングブレード13と、積層のために一定厚だけ下降を繰り返すテーブル14と、を有する。スキージングブレード13とテーブル14との協働により、均一な一定厚の粉末積層15が生成される。各層には、3D-CADデータより得られたスライスデータを基にファイバレーザ11aを照射し、金属粉末(本実施形態では銅粉末)を溶融して積層造形体15aが製造される。また、積層造形用粉末判定部16は、積層造形用粉末が積層造形装置10で積層造形可能であるか否かを判定する。なお、本実施形態においては、銅粉体の平均粒子径が5μmから15μmの範囲内であり、前記銅粉体を含む積層造形用銅粉末の粉体抵抗値が(7.50E+5)Ωから(2.50E+7)Ωの範囲内であることを判定する。判定結果がかかる範囲内であれば、積層造形装置10において可能なエネルギー密度で、99%以上の相対密度で電気伝導率が80%IACS以上の純銅積層造形体を生成できる。
 なお、使用したエネルギー密度E(J/mm3)は、E=P/(v×s×t)により調整した。ここで、t:粉末床の厚み、P:レーザ出力、v:レーザの走査速度、s:レーザ走査ピッチである。
 以下、本実施形態における、純銅積層造形体としての条件を整理する。
 (純銅積層造形体としての条件)
 (5) 純銅粉末を用いた積層造形体が十分な密度を有すること。例えば、アルキメデス法による測定密度が98.5%以上である。この条件を満たすことにより、純銅による積層造形体の強度を得ることができる。
 (6) 純銅粉末を用いた積層造形体が、純銅製品として十分な電気伝導率を有すること。例えば、電気伝導率が80%IACS以上である。この条件を満たすことにより、純銅の特性を有する積層造形体として使用することができる。
 《本実施形態の積層造形用銅粉末》
 本実施形態においては、上記条件を満たし、レーザ出力が1kW以内でエネルギー密度が1000J/mm3程度の既存の装置で溶融が可能で、パウダベッドが形成できる積層造形用銅粉末であって、積層造形後に純銅積層造形物として所望の強度を持ち、十分な電気伝導率を有する積層造形用銅粉末として、以下の粉末を提供する。
 (1) 純銅粉体に0.01wt%から0.20wt%(100ppm~2000ppm)のナノ酸化物を混合すること。ナノ酸化物の混合が0.01wt%未満の場合は電気伝導率が高く溶融するのに必要なエネルギー量が既存の装置によって提供できない。特に、純銅粉体の平均粒子径が10μm以下の場合、ナノ酸化物の混合が0.01wt%未満ではパウダベッドの形成が不良となる。一方、ナノ酸化物の混合が0.20wt%以上の場合は高密度かつ高伝導率の純銅造形体を得られない。なお、ナノ酸化物の混合が0.01wt%から0.10wt%(100ppm~1000ppm)であれば、さらに望ましい。
 ナノ酸化物としては、形状が球状や真球に近く一次平均粒子径が10nmから100nmの範囲、特に50nm以下のものが好適に使用される。かかるナノ酸化物としては、例えば、ナノシリカ(SiO2)の外に、以下の表1に示すように、ナノ酸化銅(CuO)、ナノアルミナ(Al23)、ナノチタニア(TiO2)、ナノイットリア(Y23)などが含まれる。
Figure JPOXMLDOC01-appb-T000001
 (2) 純銅粉体の平均粒子径が5μmから15μmの範囲であること。すなわち、本実施形態においては、純銅の金属粒子の1粒子の体積を減少させることで1粒子が溶融するのに必要なエネルギー量を低減し、エネルギー密度が1000J/mm3程度の既存の装置で溶融が可能なように、例えば、平均粒子径が20μm以下の純銅の粉末を使用する。
 なお、純銅粉体の平均粒子径が5μm未満の場合は、ナノ酸化物が混合されても流動性が十分に得られず、積層造形を実現するパウダベッドの形成が不良である。また、粒子を小さくし過ぎるとパウダベッド内に存在する金属量の低下(見掛密度の低下に相当する)が発生するため、パウダベッドの形成不良により造形ができない。したがって、高密度かつ高伝導率の純銅造形体が得られない。一方、純銅粉体の平均粒子径が15μm以上の場合はパウダベッドを形成可能であっても高密度かつ高伝導率の純銅造形体が得られない。なお、純銅粉体の平均粒子径が8μmから15μmの範囲であれば、さらに望ましい。
 (積層造形用銅粉末の模式図)
 図2は、本実施形態における積層造形用銅粉末における純銅粉体とナノ酸化物との混合状態を説明する模式図である。なお、図2において、純銅粉体とナノ酸化物との寸法は実際とは異なっており、ナノ酸化物は図示できないほど小さい。
 純銅粉体21において、1つ1つの純銅粒子20が直接接触するため高電気伝導率および高熱伝導率を有し、矢印22のように、レーザビームに照射された部分の熱が隣の純銅粒子20を介して熱伝導して拡散する。したがって、エネルギー密度が1000J/mm3程度の既存の装置においては、レーザビームに照射された部分が融点を超えるまでに熱を蓄積できず溶融することができない。
 これに対して、本実施形態の積層造形用銅粉末25においては、各純銅粒子20の間にナノ酸化物26が割り込んで、各純銅粒子20間の電気伝導率および熱伝導率が低減し、矢印27のように、各純銅粒子20内にレーザビームによる熱を蓄積する。したがって、エネルギー密度が1000J/mm3程度の既存の装置において、レーザビームに照射された部分が融点を超えるまでに熱を蓄積し溶融することができることになる。
 なお、本実施形態における純銅粉体の積層造形用銅粉末において、電気伝導率の低減が熱伝導率の低減に比例することは、非特許文献1などにおいてヴァーデマン-フランツの法則として知られている。
 《本実施形態の積層造形用銅粉末の特性測定》
 準備された積層造形用銅粉末について、以下の特性を測定した。
 (表面の撮影)
 走査電子顕微鏡(SEM:Scanning Electron Microscope)により、製造された積層造形用銅粉末の表面を撮影した。
 (50%粒径の測定)
 積層造形用銅粉末について、レーザ回折法により50%粒度(μm)を測定した(マイクロトラックMT3300:マイクロトラックベル株式会社製)。
 (付着力の測定)
 図6Aは、本実施形態においてせん断応力を測定するためのせん断応力測定部60の構成を示す図である。せん断応力測定部60は回転セル法によりせん断応力を測定、外部セル62の内部に、下部に刃付きのブレードが取り付けられた回転セル61を載せ、外部セル62の上部に被測定用の粉末を充填する。回転セル61から外部セル62に向けて所定の垂直応力を掛けながら、回転セル61の回転トルクからせん断応力を測定する。
 図6Bは、本実施形態においてせん断応力測定部60で測定されたせん断応力に基づいて付着力を求める方法を示す図である。図6Bのように、せん断応力測定部60により各垂直応力下でのせん断発生時に測定されるせん断応力をプロットしたものを破壊包絡線と呼び、破壊包絡線よりも強いせん断応力が加わることで粉体層にすべりが発生する。破壊包絡線(例えば、65)上で、垂直応力が0(ゼロ)の時のせん断応力を粒子間の付着力として求める。
 (見掛密度の測定)
 積層造形用銅粉末について、JIS Z2504に準じて見掛密度(g/cm3)を測定した。
 (流動性の測定)
 積層造形用銅粉末について、JIS Z2502に準じて流動性(sec/50g)を測定した。
 (粉末の電気伝導率=1/電気抵抗率の測定)
 図3Bは、本実施形態に係る純銅粉体とナノ酸化物との混合粉末の粉末抵抗値の測定方法を示す図である。粉末抵抗測定器39は、抵抗測定器35の両端子に接触端子付きのケーブル36と37とで接続された2枚の測定端子用銅板32と、被測定粉末31を収納する孔を有する絶縁体33と、2枚の測定端子用銅板32を被測定粉末31に強く接続するための押圧用の上下2枚の絶縁体34と、を備える。
 ここで、絶縁体33や34は弾力性を有するゴムなどが望ましい。本実施形態においては、被測定粉末31を収納する孔を厚み0.3mm(絶縁体33の厚みに対応)、直径17mmとしたが、限定されるものではない。被測定粉末31が、空隙なく充填され、かつ、2枚の測定端子用銅板32との電気的な接続が十分となるものであればよい。
 電気伝導率=(1/電気抵抗率)
      =(1/測定された粉末抵抗)×(孔の厚み/孔の断面積)である。
 図3Cは、本実施形態に係る純銅粉体とナノ酸化物との混合粉末の粉末抵抗値の測定方法を示す図である。なお、図3Cにおいて、図3Bと同様の構成要素には同じ参照番号を付し、重複する説明を省略する。
 (パウダベッドの形成可否の試験)
 図7は、本実施形態において、積層造形用銅粉末を積層造形装置10によってスキージングさせることによって、パウダベッドの形成可否の試験例を示す図である。図7には、パウダベッドの形成可能状態71と、形成不能状態72とが示されている。
 《本実施形態の純銅積層造形体の特性測定》
 積層造形用銅粉末について製造された純銅積層造形体について、以下の特性を測定した。
 (電気伝導率の測定)
 純銅積層造形体の電気伝導率(%IACS)を、渦電流方式の導電率計で測定した。
 (密度の測定)
 純銅積層造形体の密度(%)を、断面SEM像の面積により空隙面積を除した割合に基づいて測定した。
 (表面の撮影)
 走査電子顕微鏡(SEM:Scanning Electron Microscope)により、製造された純銅積層造形体の表面を撮影した。
 《本実施形態の積層造形用銅粉末の評価結果》
 以下、本実施形態の積層造形用銅粉末が純銅積層造形体の造形に有用であるとの評価結果を示す。
 (パウダベッド形成の可否)
 積層造形装置10による積層造形用銅粉末のスキージングによれば、積層造形用銅粉末の平均粒子径が20μmを超えると、ナノ酸化物の添加混合が無くても十分なパウダベッドの形成ができる。しかしながら、平均粒子径が20μm以下であればナノ酸化物の添加混合が無ければ、十分なパウダベッドの形成ができない。さらに、平均粒子径が5μm以下になると、ナノ酸化物の添加混合をしてもパウダベッドの形成ができない。
 (ナノ酸化物の添加による粉末抵抗値の変化)
 図3Aは、本実施形態に係る純銅粉体とナノ酸化物との混合粉末の粉末抵抗値30の変化を示す図である。粉末抵抗値は図3Bおよび図3Cに図示した粉末抵抗測定器39によって測定した。
 粉末抵抗値30は、図3Aに示すように、ナノ酸化物の添加混合によって、平均粒子径が20μm以下の純銅粉体において10倍よりも大きい数値で増加した。
 (純銅粉末の溶融に必要な熱エネルギー)
 図4は、本実施形態の純銅粉末の溶融に必要な熱エネルギーを示した図である。図4の上段41は、各銅粉末における造形体の密度が99%以上になるエネルギー密度を示す。図4の下段42は、すず(Sn)を含む銅合金粉末や燐(P)を含む銅合金粉末から予測される純銅粉体に必要なエネルギー密度と、本実施形態の積層造形用銅粉末に対するエネルギー密度とを対比するグラフである。
 図4において、黒い三角は、すず(Sn)を含む銅合金粉末や燐(P)を含む銅合金粉末の電気伝導率と、レーザ照射で溶融して造形した造形体の相対密度が99%以上になるのに必要な熱エネルギーとの関係をプロットしたものである。そして、これら黒い三角を結ぶ直線43は、電気伝導率と、レーザ照射で溶融に必要な熱エネルギーとの対応関係を示している。この直線43に本実施形態で用いる純銅粉体の電気伝導率102.0%IACSを対応させると、熱エネルギー44は白い◇で示したように5000J/mm3以上になると予想される。
 しかしながら、本実施形態の積層造形用銅粉末によれば、黒い◇45で示したように、エネルギー密度が1000J/mm3程度の既存の装置で溶融が可能な範囲において、高密度かつ高伝導率の純銅造形体を得られる積層造形用銅粉末を提供できる。
 (エネルギー密度と積層造形体の電気伝導率)
 図5は、本実施形態に係る純銅粉体とナノ酸化物との混合粉末から積層造形体を製造する場合のエネルギー密度と製造された純銅の積層造形体の電気伝導率とを示す図である。
 図5の上段51は、本実施例において銅積層造形体を生成した、ナノ酸化物を添加混合しない平均粒子径28.6μmの比較例211~212、ナノ酸化物を添加混合した平均粒子径19.9μmの比較例311~313、ナノ酸化物を添加混合した平均粒子径13.3μmの実施例411~413、ナノ酸化物を添加混合した平均粒子径9.6μmの実施例531~534、のエネルギー密度と造形体の電気伝導率とを示す。
 そして、図5の下段52は、上段51の値に従って横軸(エネルギー密度)/縦軸(電気伝導率)上にプロットしたグラフである。図5の下段52から、比較例ではエネルギー密度1000J/mm3付近の造形では電気伝導率が80%IACS以下にしかならないが(54参照)、実施例においてはエネルギー密度1000J/mm3付近の造形では電気伝導率が80%IACS以上の純銅積層造形体が得られる(53参照)。
 (好適な積層造形用銅粉末の組成)
 本実施形態においては、純銅粉体にナノ酸化物を添加することで、上記積層造形用銅粉末の条件を満たし、かつ、積層造形装置による積層造形後の積層造形体が上記十分な密度、純銅製品として十分な高い電気伝導率を有する純銅粉末を提供する。
 本実施形態の積層造形用銅粉末は、銅粉体に0.01wt%から0.20wt%(100ppm~2000ppm)のナノ酸化物が混合されている。また、銅粉体の平均粒子径は、5μmから15μmの範囲である。望ましくは、銅粉体の平均粒子径が8μmから15μmの範囲で、0.01wt%から0.10wt%(100ppm~1000ppm)のナノ酸化物が混合されている。ここで、ナノ酸化物は、SiO2を含み、ナノ酸化物の一次平均粒子径が10nmから100nmの範囲である。
 また、積層造形用銅粉末の粉体抵抗値は、銅粉体の粉体抵抗値の10倍から100倍であり、(7.50E+5)Ωから(2.50E+7)Ωの範囲内である。また、銅粉体のバルク電気伝導率は、100%JACS以上である。また、積層造形用銅粉末のJIS Z2502により測定された流動性が、15sec/50gから120sec/50gである。
 《本実施形態の効果》
 本実施形態によれば、ナノ酸化物を添加した積層造形用銅粉末を提供し、高密度で電気伝導率の高い純銅積層造形体を得ることができた。
 すなわち、粒子サイズを5~15μm の範囲にすることによりファイバレーザで1粒子を溶融可能にする体積量とし、ナノ酸化物を配合することで粉体の流動性が改善され、パウダベッド中の金属量の指標となる見掛密度が4.0~5.5g/cm3にすることでパウダベッドの単位体積当たりの銅量は一定となる。
 また、ナノ酸化物を配合することで粒子間の接続が阻害され、粒子同士の接点を減少させ粉体の抵抗値が増大する効果を発現し、電気伝導率の高さから溶融しにくい純銅をより溶融しやすくする。
 それにより、レーザパワー、スキャンスピード、スキャンピッチ、粉末の積層厚より算出できるエネルギー密度が1333~533J/mm3の条件で造形した際の造形体の電気伝導率がシグマチェックを用いた渦電流ET 測定法で80%IACS以上となる積層造形体を形成できる。
 以下、本実施形態の条件に合致した積層造形用銅粉末の実施例と、本実施形態の条件に合致しない積層造形用銅粉末とについて説明する。
 《積層造形用銅粉末の製造》
 (純銅粉体の選択および特性測定)
 例えばアトマイズ法を用いて、アトマイズとしてはヘリウム、アルゴン、窒素などのガスや高圧の水を用い、流体の圧力と流量とを調整し粉末化の制御を行って生成された純銅粉体から、平均粒子径により本実施例で用いる純銅粉体を選択する。
 そして、ナノ酸化物を含まない純銅粉体について、《積層造形用銅粉末の特性測定》で示した各特性測定を行った。その結果を、以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 また、純銅粉体200~600の走査電子顕微鏡(SEM:Scanning Electron Microscope)により、製造された銅粉末を撮影した(SEM×500)。図8A~図8Eに純銅粉体200~600のSEM像を示す。
 表2の結果から、ナノ酸化物を含まない場合に、平均粒子径が20μm以下の純銅粉体300~600においては、積層造形装置10によりパウダベッドが形成できないことが分かる。一方、平均粒子径が20μm以上の純銅粉体100、200においては、積層造形装置10によりパウダベッドが形成できるが、後出の表3および表4より、積層造形装置10により積層造形物を形成しても、その電気伝導率が60%IACS台であり、80%IACSを超える純銅造形物は得られない。
 (ナノ酸化物の添加混合および特性測定)
 次に、積層造形装置10によりパウダベッドが形成できなかった平均粒子径が20μm以下の純銅粉体300~600に対して、ナノ酸化物を添加混合した。
 混合したナノ酸化物としては、AEROSIL(登録商標) RX 300(日本アエロジル株式会社製)を使用した。図9AにAEROSIL(登録商標) RX 300の製品情報を示す。図9Aにおいて、上段91は製品情報であり、下段92は「比表面積」を粒子径に変換する関係グラフである。AEROSIL(登録商標) RX 300の場合、比表面積180-220m2/gなので粒子径は10nmのオーダーである。また、図9BにAEROSIL(登録商標) RX 300のSEM像を示す(SEM×1000)。
 純銅粉体300~600へのAEROSIL(登録商標) RX 300の混合は、O.M.ダイザー OMD-3(株式会社奈良機械製作所)を用いて、回転数1500rpmで3min間行った。
 純銅粉体にナノ酸化物を0.01wt%~0.15wt%の間で添加混合した積層造形用銅粉末について、《積層造形用銅粉末の特性測定》で示した各特性測定を行った。その結果を、以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3において、まず、ナノ酸化物を添加混合しない純銅粉体の粉末抵抗(表2参照)に比較して、ナノ酸化物を添加混合した積層造形用銅粉末の粉末抵抗(表3参照)は、10倍よりも大きい数値で増加している。また、平均粒子径が19.9μmと13.5μmの純銅粉体300、400においては、ナノ酸化物の0.01wt%~0.15wt%添加のいずれにおいてもパウダベッドが形成できるようになった。また、平均粒子径が9.6μmの純銅粉体500においては、ナノ酸化物の0.10wt%~0.15wt%添加においてパウダベッドが形成できるようになった。しかしながら、平均粒子径が3.1μmの純銅粉体600においては、ナノ酸化物の0.01wt%~0.15wt%添加においてもパウダベッドが形成できなかった。
 (積層造形装置での造形処理および特性測定)
 表2および表3でパウダベッドが形成できる積層造形用銅粉末から選択して、積層造形装置10で純銅積層造形体を生成した。純銅積層造形体の生成においては、エネルギー密度を変化させて生成した。エネルギー密度は、例えば、レーザ出力(Laser Power)、走査速度(Scanning Speed)、走査幅(Scanning Pitch)、粉末層厚(Powder Layer)に関連する。
 積層造形装置10で生成した純銅積層造形体について、《純銅積層造形体の特性測定》で示した各特性測定を行った。その結果を、以下の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4において、実施例411~413、531~534で示した純銅積層造形体は、造形体の電気伝導率が、本実施形態で目標とする80%IACS以上を達成している。また、図4の表41にも示したように、造形体の相対密度も99%を超えている。
 図10A~図10Dに、実施例および比較例における積層造形体の表面を撮影したSEM像(×50)を示す。図10Aは、実施例531(平均粒子径9.6μmの純銅粒子に0.10wt%のナノ酸化物を添加混合した例)の純銅の積層造形体の表面を撮影したSEM像(×50)である。図10Bは、実施例412(平均粒子径13.5μmの純銅粒子に0.01wt%のナノ酸化物を添加混合した例)の純銅の積層造形体の表面を撮影したSEM像(×50)である。図10Cは、比較例312(平均粒子径19.9μmの純銅粒子に0.01wt%のナノ酸化物を添加混合した例)の純銅の積層造形体の表面を撮影したSEM像(×50)である。図10Dは、比較例212(平均粒子径28.6μmの純銅粒子の純銅の積層造形体の表面を撮影したSEM像(×50)である。
 図10Aおよび図10Bにおいては、積層造形体の表面が緻密で凹凸が少ないために相対密度および電気伝導率が高く、図10Cおよび図10Dにおいては、積層造形体の表面に空隙があって凹凸があるために相対密度および電気伝導率が高くならないと思われる。
 すなわち、表面状態により粒子径が小さくなることでレーザの溶融が安定し平滑な造形表面となる。粒子径が大きくなるとレーザの溶融が不安定となり溶融した銅が球状化するボウリングが原因で凹凸のある造形表面となる。この凹凸が原因となり造形体に空孔が発生し、造形密度の低下を起こすことがわかる。
 すなわち、実施例の積層造形用粉末を用いて生成した純銅積層造形体は、(純銅積層造形体としての条件)である「相対密度が99%以上」、「電気伝導率が80%IACS以上」を達成しており、純銅積層造形体としての条件を満たしている。
 なお、以下の表5および表6に、本実施例の全体をまとめて示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 (すず(Sn)を含む銅合金粉末や燐(P)を含む銅合金粉末との対比)
 比較例710~730、810、820として、すず(Sn)を含む銅合金粉末や燐(P)を含む銅合金粉末を使用して、積層造形装置10によって銅積層造形体を生成した。そして、銅合金粉末の特性(バルク電気伝導率や平均粒子径など)と、積層造形の特性(積層造形中のエネルギー密度や積層造形体の相対密度など)を測定した。測定結果を前出の図4の表41に示している。
 本実施例のナノ酸化物を添加混合した粉末を使用して、積層造形装置10によって生成した純銅積層造形体の特性と比較した。図4で前述した如く、本実施例のナノ酸化物を添加混合した粉末によれば、99%以上の相対密度を有する積層造形体が、エネルギー密度が1000J/mm3程度の既存の装置で生成でき、かつ、バルク電気伝導率から想定されるように80%IACS以上の電気伝導率を有する純銅積層造形体が提供できた。
 《SiO2以外のナノ酸化物を添加混合した銅粉末材料》
 以下の表7に、表1で示したSiO2以外のナノ酸化物を添加混合した銅粉末材料に対して、《積層造形用銅粉末の特性測定》で示した各特性測定を行った結果を示す。
Figure JPOXMLDOC01-appb-T000007
 表5および表6のSiO2を添加混合した銅粉末材料の試験結果から、例えば、流動性がパウダベッドの形成の障害にならない程度であり、粉末抵抗が(1.00E+4)Ω以上であれば、電気伝導率が60%IACS以上の銅積層造形体が生成可能であることが分かる。さらに、粉末抵抗が(7.50E+5)Ω以上(2.50E+7)Ω以下の範囲の場合に、電気伝導率が80%IACS以上を達成できることが分かる。かかるSiO2を添加混合した銅粉末材料の試験結果と比較すると、表7の粉末特性の結果から、以下の点が分かる。
 平均粒子径19.9μmの純銅粉体においては、酸化銅や酸化イットリウムを添加混合した粉末材料は粉末抵抗が(1.00E+4)Ω未満の場合があり、充分な電気伝導率の達成は期待できない。しかしながら、酸化アルミニウムや酸化チタンを添加混合した粉末材料は粉末抵抗が(1.00E+4)Ω以上であり、電気伝導率が60%IACS以上の銅積層造形体が生成可能であることが分かる。
 また、平均粒子径13.5μmの純銅粉体においては、どのナノ酸化物を添加混合した粉末材料であっても粉末抵抗が(1.00E+4)Ω以上であり、電気伝導率が60%IACS以上の銅積層造形体が生成可能であることが分かる。
 さらに、平均粒子径9.6μmの純銅粉体においては、どのナノ酸化物を添加混合した多くの粉末材料が粉末抵抗が(7.50E+5)Ω以上(2.50E+7)Ω以下の範囲に入っており、電気伝導率が80%IACS以上を達成できることが期待できる。
 以上のように、平均粒子径13.5μmおよび9.6μmの純銅粉体に、SiO2以外のナノ酸化物を添加混合した粉末材料であっても、SiO2の場合と同様に、銅積層造形体の電気伝導率が純銅製品である80%IACS以上が達成できることが期待できる。
 [実施例の効果]
 本実施例によれば、平均粒子径が13.5μmまたは9.6μmの純銅粉体にナノ酸化物を添加混合した積層造形用粉末の場合、パウダベッドが形成できて純銅粉体を含む積層造形用銅粉末の粉体抵抗値が(7.50E+5)Ωから(2.50E+7)Ωの範囲内である。また、既存の装置のエネルギー密度での溶融で相対密度が99%以上の銅積層造形体が生成可能であって、銅積層造形体の電気伝導率は純銅製品である80%IACS以上が達成できる。
 一方、平均粒子径が28.6μmの純銅粉体や、すず(Sn)の銅合金、燐(P)の銅合金の積層造形用粉末の場合、パウダベッドが形成でき、既存の装置のエネルギー密度での溶融で相対密度が99%以上の銅積層造形体が生成可能であるが、銅積層造形体の電気伝導率は純銅製品である80%IACS以上にはならない。
 また、平均粒子径が19.9μmの純銅粉体にナノ酸化物を添加混合した積層造形用粉末の場合、パウダベッドが形成でき、既存の装置のエネルギー密度での溶融で相対密度が99%以上の銅積層造形体が生成可能であるが、銅積層造形体の電気伝導率は純銅製品である80%IACS以上にはならない。
 さらに、平均粒子径が3.1μmの純銅粉体にナノ酸化物を添加混合した積層造形用粉末の場合、そもそもパウダベッドが形成できない。
 [他の実施形態]
 本実施形態および実施例においては、添加混合するナノ酸化物としてナノシリカ(SiO2)を使用したが、平均粒子径が20μm以下の純銅粉体から、粉末抵抗を削減して既存の装置のエネルギー密度での溶融でき、かつ、流動性を向上して既存の装置でパウダベッドを形成できるナノ酸化物であればよい。さらに、積層造形装置で生成した純銅積層造形体の密度が99%以上で、かつ、電気伝導度が80%IACS以上となるナノ酸化物であればよい。また、ナノ酸化物の形状や粒径なども好適に選択される。
 また、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の技術的範囲で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の技術的範囲に含まれる。
 この出願は、2019年6月13日に出願された日本国特許出願 特願2019-110429号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (12)

  1.  銅粉体に0.01wt%以上0.20wt%以下のナノ酸化物が混合された積層造形用銅粉末。
  2.  前記銅粉体の平均粒子径は、5μm以上15μm以下である請求項1に記載の積層造形用銅粉末。
  3.  前記銅粉体の平均粒子径が8μm以上15μm以下で、0.01wt%以上0.10wt%以下の前記ナノ酸化物が混合された請求項2に記載の積層造形用銅粉末。
  4.  前記ナノ酸化物は、SiO2である請求項1乃至3のいずれか1項に記載の積層造形用銅粉末。
  5.  前記ナノ酸化物の一次平均粒子径が10nm以上100nm以下である請求項1乃至4のいずれか1項に記載の積層造形用銅粉末。
  6.  前記積層造形用銅粉末の粉体抵抗値は、前記銅粉体の粉体抵抗値の10倍以上100倍以下であり、(7.50E+5)Ω以上(2.50E+7)Ω以下である請求項1乃至5のいずれか1項に記載の積層造形用銅粉末。
  7.  前記銅粉体のバルク電気伝導率は、100%JACS以上である請求項1乃至6のいずれか1項に記載の積層造形用銅粉末。
  8.  前記積層造形用銅粉末のJIS Z2502により測定された流動性が、15sec/50g以上120sec/50g以下である請求項1乃至7のいずれか1項に記載の積層造形用銅粉末。
  9.  請求項1乃至8のいずれか1項に記載の積層造形用銅粉末を用いて積層造形された積層造形体であって、
     0.01wt%以上0.20wt%以下のナノ酸化物が含まれ、電気伝導率が80%IACS以上である積層造形体。
  10.  前記積層造形体の相対密度が、99%以上である請求項9に記載の積層造形体。
  11.  請求項1乃至8のいずれか1項に記載の積層造形用銅粉末を用いて積層造形体を製造する積層造形体の製造方法であって、
     前記積層造形用銅粉末を層状に敷き詰めてパウダベッドを形成するパウダベッド形成工程と、
     層状に敷き詰められた前記積層造形用銅粉末に、レーザ出力が1kW以下でエネルギー密度が500J/mm3以上1500J/mm3以下となるようにレーザビームを走査しながら照射して、1層の積層造形体を造形する造形工程と、
     を含む積層造形体の製造方法。
  12.  銅粉体の平均粒子径が5μm以上15μm以下であり、前記銅粉体を含む積層造形用銅粉末の粉体抵抗値が(7.50E+5)Ω以上(2.50E+7)Ω以下であることを判定する判定部と、
     前記判定部による判定結果が共に範囲内である場合に、前記積層造形用銅粉末を用いて積層造形体を造形する積層造形部と、
     を備える積層造形装置。
PCT/JP2020/022203 2019-06-13 2020-06-04 積層造形用銅粉末、積層造形体、積層造形体の製造方法および積層造形装置 WO2020250811A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20822132.5A EP3950176A4 (en) 2019-06-13 2020-06-04 COPPER POWDER FOR SHAPING LAMINATE, SHAPING LAMINATE BODY, METHOD FOR MAKING SHAPING LAMINATE BODY, AND APPARATUS FOR SHAPING LAMINATE
CN202080040371.6A CN113939605B (zh) 2019-06-13 2020-06-04 层压成形用铜粉末、层压成形体、层压成形体的制造方法及层压成形装置
US17/607,736 US20220219232A1 (en) 2019-06-13 2020-06-04 Laminating and shaping copper powder, laminated and shaped object, manufacturing method of laminated and shaped object, and laminating and shaping apparatus
JP2021526057A JPWO2020250811A1 (ja) 2019-06-13 2020-06-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019110429 2019-06-13
JP2019-110429 2019-06-13

Publications (1)

Publication Number Publication Date
WO2020250811A1 true WO2020250811A1 (ja) 2020-12-17

Family

ID=73780756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022203 WO2020250811A1 (ja) 2019-06-13 2020-06-04 積層造形用銅粉末、積層造形体、積層造形体の製造方法および積層造形装置

Country Status (5)

Country Link
US (1) US20220219232A1 (ja)
EP (1) EP3950176A4 (ja)
JP (1) JPWO2020250811A1 (ja)
CN (1) CN113939605B (ja)
WO (1) WO2020250811A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115415646A (zh) * 2022-09-06 2022-12-02 上海工程技术大学 一种中熵/高熵合金熔敷层的制备方法
WO2023047044A1 (fr) * 2021-09-27 2023-03-30 Addup Procédé de fabrication additive d'un objet en cuivre

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633016B2 (ja) 1983-12-22 1988-01-21 Tokuriki Honten Kk
JP2004332016A (ja) * 2003-05-01 2004-11-25 Seiko Epson Corp 金属造粒粉末体及びその製造方法、並びに金属粉末体
JP2016041850A (ja) 2014-07-04 2016-03-31 ゼネラル・エレクトリック・カンパニイ 粉末を処理する方法及び同方法によって処理された粉末
WO2019017467A1 (ja) * 2017-07-21 2019-01-24 三井金属鉱業株式会社 銅粉、それを用いた光造形物の製造方法、および銅による光造形物
WO2019064745A1 (ja) * 2017-09-29 2019-04-04 Jx金属株式会社 金属積層造形用金属粉及び該金属粉を用いて作製した造形物
JP2019110429A (ja) 2017-12-18 2019-07-04 新光電気工業株式会社 固体撮像装置及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947659B2 (ja) * 2008-02-29 2012-06-06 福田金属箔粉工業株式会社 銅系金属粉末
JP6338422B2 (ja) * 2014-03-31 2018-06-06 三菱重工業株式会社 三次元積層装置
CN106457668A (zh) * 2014-06-20 2017-02-22 福吉米株式会社 粉末层叠造形中使用的粉末材料和使用其的粉末层叠造形法
EP3187285B1 (en) * 2014-08-27 2023-07-05 Proterial, Ltd. Powder for layer-by-layer additive manufacturing, and process for producing object by layer-by-layer additive manufacturing
JP6656911B2 (ja) * 2015-12-22 2020-03-04 株式会社フジミインコーポレーテッド 粉末積層造形に用いるための造形用材料
WO2017217302A1 (ja) * 2016-06-14 2017-12-21 コニカミノルタ株式会社 粉末材料、粉末材料の製造方法、立体造形物の製造方法および立体造形装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633016B2 (ja) 1983-12-22 1988-01-21 Tokuriki Honten Kk
JP2004332016A (ja) * 2003-05-01 2004-11-25 Seiko Epson Corp 金属造粒粉末体及びその製造方法、並びに金属粉末体
JP2016041850A (ja) 2014-07-04 2016-03-31 ゼネラル・エレクトリック・カンパニイ 粉末を処理する方法及び同方法によって処理された粉末
WO2019017467A1 (ja) * 2017-07-21 2019-01-24 三井金属鉱業株式会社 銅粉、それを用いた光造形物の製造方法、および銅による光造形物
WO2019064745A1 (ja) * 2017-09-29 2019-04-04 Jx金属株式会社 金属積層造形用金属粉及び該金属粉を用いて作製した造形物
JP2019110429A (ja) 2017-12-18 2019-07-04 新光電気工業株式会社 固体撮像装置及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950176A4
TADASHI MIZOGUCHI: "Fundamentals of Materials Science, Solid State Physics", April 1989, SHOKABO, pages: 126 - 128

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047044A1 (fr) * 2021-09-27 2023-03-30 Addup Procédé de fabrication additive d'un objet en cuivre
FR3127422A1 (fr) * 2021-09-27 2023-03-31 Addup Procédé de fabrication additive d’un objet en cuivre
CN115415646A (zh) * 2022-09-06 2022-12-02 上海工程技术大学 一种中熵/高熵合金熔敷层的制备方法

Also Published As

Publication number Publication date
EP3950176A4 (en) 2022-07-20
CN113939605B (zh) 2023-03-21
EP3950176A1 (en) 2022-02-09
JPWO2020250811A1 (ja) 2020-12-17
CN113939605A (zh) 2022-01-14
US20220219232A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
Wang et al. A general approach to composites containing nonmetallic fillers and liquid gallium
WO2020250811A1 (ja) 積層造形用銅粉末、積層造形体、積層造形体の製造方法および積層造形装置
CN109843479B (zh) 金属增材制造用金属粉以及使用该金属粉制作的成型物
WO2007037440A1 (ja) 導電粉およびその製造方法、導電粉ペースト、導電粉ペーストの製造方法
Xiong et al. High thermal conductivity and electrical insulation of liquid alloy/ceramic/epoxy composites through the construction of mutually independent structures
JP7001685B2 (ja) 積層造形用銅粉末およびその製造方法
JP6935501B2 (ja) 積層造形用粉末の評価方法
US20210138768A1 (en) Composite material
JP6935502B2 (ja) 積層造形用粉末の評価方法
Wang et al. Facile fabrication of three-dimensional thermal conductive composites with synergistic effect of multidimensional fillers
Mu et al. Investigation of electromagnetic wave absorption and anti-corrosion mechanism of multifunctional Ni/AlN composite coatings with core-shell structure by laser cladding
JP7057784B2 (ja) 積層造形用銅粉末およびその積層造形体
JP3299083B2 (ja) カーボン系導電ペーストの製造方法
JP2002332501A (ja) 銀コート銅粉の製造方法、その製造方法で得られた銀コート銅粉、その銀コート銅粉を用いた導電性ペースト、及びその導電性ペーストを用いたプリント配線板
JP6151017B2 (ja) ニッケル超微粉、導電ペーストおよびニッケル超微粉の製造方法
JP2023012810A (ja) 銅基粉、その製造方法、および銅基粉を用いた光造形物の製造方法
WO2020137330A1 (ja) 銀ペースト
JP4333358B2 (ja) カーボンペースト
JP2021123770A (ja) 被覆Cu基合金粉末
CN113205901A (zh) 玻璃料、导电浆料及在制备陶瓷介质滤波器电极中应用
JP2006131978A (ja) 球状NiP微小粒子およびその製造方法ならびに、異方性導電フィルム用導電粒子
JP2006351390A (ja) 複合材料
CN113226595B (zh) 银浆
JPH06310825A (ja) 金属ベース回路基板及び製造方法
WO2020137331A1 (ja) 銀ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526057

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020822132

Country of ref document: EP

Effective date: 20211103

NENP Non-entry into the national phase

Ref country code: DE