WO2020250586A1 - Sputtering target and sputtering target manufacturing method - Google Patents

Sputtering target and sputtering target manufacturing method Download PDF

Info

Publication number
WO2020250586A1
WO2020250586A1 PCT/JP2020/017913 JP2020017913W WO2020250586A1 WO 2020250586 A1 WO2020250586 A1 WO 2020250586A1 JP 2020017913 W JP2020017913 W JP 2020017913W WO 2020250586 A1 WO2020250586 A1 WO 2020250586A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
backing tube
sputtering target
central axis
peripheral surface
Prior art date
Application number
PCT/JP2020/017913
Other languages
French (fr)
Japanese (ja)
Inventor
優 和田
勝仁 齋藤
裕 川越
健太郎 武末
高橋 一寿
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN202080016634.XA priority Critical patent/CN113508187B/en
Priority to KR1020217027471A priority patent/KR102429251B1/en
Priority to JP2020560496A priority patent/JP7016432B2/en
Publication of WO2020250586A1 publication Critical patent/WO2020250586A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3491Manufacturing of targets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures

Definitions

  • the present invention relates to a sputtering target and a method for manufacturing the sputtering target.
  • a sputtering target when a sputtering target is composed of a plurality of target members, adjacent target members may come into contact with each other due to thermal expansion of the target members, and the target members may crack. In order to prevent cracking due to this contact, a gap may be provided between adjacent target members (see, for example, Patent Document 1).
  • an object of the present invention is to provide a sputtering target in which particles and abnormal discharges are suppressed even if it is long and cylindrical, and a method for manufacturing the same.
  • the sputtering target includes a tubular backing tube, a target body, a bonding material, and a shielding member.
  • the target body includes a plurality of target members arranged side by side along the outer peripheral surface of the backing tube and having an arcuate cross section. Each of the plurality of target members is arranged so as to be separated from each other around the central axis of the backing tube.
  • the gap formed between the target members arranged around the central axis extends in the central axis direction of the backing tube.
  • the joining material is provided between the backing tube and the target body, and joins the backing tube and each of the plurality of target members.
  • the shielding member is provided between the joining material and the target body, and shields the gap from the side of the joining material.
  • the target body includes a plurality of target members having an arcuate cross section, and each of the plurality of target members is arranged so as to be separated from each other around the central axis of the backing tube.
  • the gap formed between the surrounding target members extends in the direction of the central axis of the backing tube.
  • the target body surrounds the backing tube with a set of target members.
  • the central axis of the backing tube is located between the pair of gaps formed between the set of target members. You may.
  • the volume of the gap is increased even if the sputtering target is long and cylindrical. Is suppressed, and particles and abnormal discharge are suppressed.
  • a plurality of target bodies may be arranged side by side in a row in the central axis direction of the backing tube.
  • the sputtering target is formed to be longer.
  • each of the plurality of target members may be composed of an oxide sintered body.
  • the sintered body may have In, Ga, and Zn.
  • the sintered body has In, Ga, and Zn, a stable oxide semiconductor film is formed.
  • the outer peripheral surface orbiting the central axis is configured to have the same curvature as the outer peripheral surface of the backing tube, and protrudes outward from the outer peripheral surface.
  • a columnar core rod having a convex portion and when the outer peripheral surface is surrounded by a tubular mold, the space formed by the outer peripheral surface and the mold is formed around the central axis by the convex portion.
  • the core rod defined in a plurality of spaces is prepared.
  • the plurality of space portions are formed by the core rod and the mold.
  • Powder is filled in each of the plurality of spaces.
  • isotropic pressure to the powder through the mold, a molded product made of the powder is formed.
  • a sintered body in which the powder is sintered is formed.
  • a pair of space portions that line up the space around the central axis may be defined by the convex portion.
  • the support base is formed so that the longitudinal direction of the molded body formed by filling the pair of spaces is parallel to the support surface of the support base that supports the molded body.
  • the above-mentioned molded product is placed on the A support jig composed of the same components as the molded body is interposed between the contact surface where the molded body is in contact with the outer peripheral surface of the core rod and the support base.
  • the molded product may be fired while supporting the contact surface with the support jig.
  • the molded body is fired while the molded body is supported by a support jig composed of the same components as the molded body, so that the volume of the gap increases even if it is a cylindrical type.
  • Sputtering targets that are suppressed, particles, and abnormal discharge are suppressed are reliably manufactured.
  • a sputtering target in which particles and abnormal discharge are suppressed even if it is long and cylindrical, and a method for manufacturing the same.
  • FIG. (A) is a schematic perspective view of the sputtering target according to the present embodiment.
  • FIG. (B) is a schematic cross-sectional view of the sputtering target according to the present embodiment. It is a schematic cross-sectional view which shows the cross-sectional structure of a shielding member. It is a schematic perspective view which shows the manufacturing jig used in the manufacturing method of a sputtering target. It is a schematic cross-sectional view which shows another manufacturing jig used in the manufacturing method of a sputtering target.
  • FIG. (A) is a schematic perspective view showing a molded product that is a precursor of the target body.
  • FIG. (B) is a schematic perspective view showing a state when the molded product is sintered.
  • FIG. 1A is a schematic perspective view of the sputtering target according to the present embodiment.
  • FIG. 1B is a schematic cross-sectional view of the sputtering target according to the present embodiment.
  • FIG. 1 (b) shows a cross section in the XY axis plane of FIG. 1 (a).
  • the sputtering target 1 shown in FIGS. 1A and 1B is a cylindrical target assembly used for sputtering film formation.
  • the sputtering target 1 includes a backing tube 10, a target main body 20, a bonding material 30, and a shielding member 40.
  • the backing tube 10 is a tubular body, and the inside thereof is hollow.
  • the backing tube 10 extends in a uniaxial direction (for example, in the direction of the central axis 10c).
  • the direction of the central axis 10c is the longitudinal direction of the backing tube 10.
  • the central axis 10c is also the central axis of the sputtering target 1.
  • the backing tube 10 has an outer peripheral surface 101 that orbits around the central axis 10c, and an inner peripheral surface 102 that is located on the opposite side of the outer peripheral surface 101 and orbits around the central axis 10c.
  • the shape thereof is, for example, an annular shape.
  • the material of the backing tube 10 has a material having excellent thermal conductivity, and is, for example, titanium (Ti), copper (Cu), or the like.
  • a flow path through which the refrigerant flows may be appropriately formed inside the backing tube 10.
  • the target body 20 surrounds the outer peripheral surface 101 of the backing tube 10.
  • the target body 20 is arranged concentrically with respect to the backing tube 10.
  • the target body 20 has a plurality of target members.
  • the target body 20 has a set of target members 20A and 20B.
  • Each of the target members 20A and 20B surrounds the backing tube 10.
  • the target members 20A and 20B are arranged side by side along the outer peripheral surface 101 of the backing tube 10.
  • the shape thereof is, for example, an arc shape.
  • the cross-sectional shapes of the target members 20A and 20B in the XY-axis plane have the same shape.
  • the lengths of the target members 20A and 20B in the Z-axis direction are the same.
  • the target members 20A and 20B are arranged so as to be separated from each other around the central axis 10c of the backing tube 10 without contacting each other.
  • the target members 20A and 20B are arranged side by side around the central axis 10c of the backing tube 10.
  • the target body 20 has a divided structure divided in a direction orthogonal to the central axis 10c.
  • a gap (divided portion) 201 is formed between the target member 20A and the target member 20B.
  • a pair of gaps 201 are formed between the target members 20A and 20B, respectively.
  • Each of the pair of gaps 201 is parallel to each other and extends in the direction of the central axis 10c of the backing tube 10.
  • the central axis 10c of the backing tube 10 is located between the pair of gaps 201.
  • the pair of gaps 201 and the central axis 10c are arranged in series.
  • the width of the gap 201 is not particularly limited, and is set so as not to come into contact with each other due to thermal expansion of the target members 20A and 20B, for example.
  • the target members 20A and 20B are made of the same material, for example, made of an oxide sintered body.
  • the sintered body has In and Zn.
  • the sintered body is made of In—Ga—Zn—O (IGZO).
  • the sintered body may be an In—Ti—Zn—Sn—O (ITZTO) sintered body, an In—Ti—Zn—Sn—O (IGTO) sintered body, or the like.
  • the joining material 30 is interposed between the backing tube 10 and the target body 20.
  • the joining material 30 is in close contact with the backing tube 10 and the target body 20.
  • the joining material 30 joins the backing tube 10 and each of the plurality of target members 20A and 20B.
  • the bonding material 30 includes, for example, indium (In), tin (Sn), a solder material, and the like.
  • the shielding member 40 is provided between the joining material 30 and the target body 20.
  • the shielding member 40 is located between the gap 201 and the joining member 30.
  • the shielding member 40 shields the gap 201 from the side of the joining member 30.
  • leakage of the bonding material 30 into the gap 201 is suppressed, and the bonding material 30 is less likely to enter the gap 201.
  • the bonding member 30 is shielded from the plasma by the shielding member 40.
  • the component of the bonding material 30 for example, In
  • the component of the bonding material 30 is less likely to be mixed with the component of the target body 20.
  • 2 (a) and 2 (b) are schematic cross-sectional views showing a cross-sectional structure of a shielding member.
  • the shielding member 40 may be the shielding member 40A shown in FIG. 2A or the shielding member 40B shown in FIG. 2B.
  • the shielding member 40A shown in FIG. 2A has an adhesive sheet 401 having adhesiveness and a resin sheet 402 having plasma resistance.
  • the resin sheet 402 is provided between the target members 20A and 20B and the adhesive sheet 401.
  • the resin sheet 402 is a shielding base material for the shielding member 40A.
  • the adhesive sheet 401 is a sticking material for the shielding member 40A.
  • the resin sheet 402 straddles the gap 201, and a part of the resin sheet 402 is exposed in the gap 201.
  • the resin sheet 402 is attached to each of the target members 20A and 20B by the adhesive sheet 401 from the side of the bonding material 30.
  • Each material of the pressure-sensitive adhesive sheet 401 and the resin sheet 402 includes, for example, polyimide, fluororesin, silicone resin, and the like.
  • the shielding member 40B shown in FIG. 2B has an adhesive sheet 401, a metal sheet 403, and an oxide layer 404.
  • the shielding member 40B has a laminated structure in which the adhesive sheet 401 / metal sheet 403 / oxide layer 404 are arranged in this order from the bonding material 30 toward the target members 20A and 20B.
  • the metal sheet 403 joins the pressure-sensitive adhesive sheet 401 and the oxide layer 404 and functions as an intermediate layer for relieving the stress of each, and the oxide layer 404 functions as a shielding base material.
  • the oxide layer 404 straddles the gap 201, and a part of the oxide layer 404 is exposed in the gap 201. Further, the oxide layer 404 is attached to the target members 20A and 20B from the side of the bonding material 30 by the adhesive sheet 401 via the metal sheet 403.
  • the metal sheet 403 contains, for example, titanium (Ti).
  • the oxide layer 404 is made of the same material as the target members 20A and 20B. As a result, even if the shielding member 40B is exposed to plasma during sputtering, components other than the components of the target body 20 are less likely to be mixed in the coating film.
  • the manufacturing method of the sputtering target 1 will be described.
  • FIG. 3 is a schematic perspective view showing a manufacturing jig used in a method for manufacturing a sputtering target.
  • the columnar core rod 5 shown in FIG. 3 is prepared.
  • the core rod 5 extends in the direction of the central shaft 5c, and the direction of the central shaft 5c is the longitudinal direction of the core rod 5.
  • the outer peripheral surface 51 orbits the central axis 5c, and the outer peripheral surface 51 has the same curvature as the outer peripheral surface 101 of the backing tube 10.
  • the core rod 5 is provided with a convex portion 52 protruding outward from the outer peripheral surface 51 on the outer peripheral surface 51.
  • a plurality of convex portions 52 are provided on the outer peripheral surface 51.
  • a pair of convex portions 52 are provided around the central axis 5c at intervals of 180 degrees.
  • 4 (a) and 4 (b) are schematic cross-sectional views showing another manufacturing jig used in the method for manufacturing a sputtering target.
  • 4 (a) and 4 (b) show the XY-axis cross sections of the manufacturing jig.
  • a tubular mold 6 is prepared.
  • the mold 6 extends in the direction of the central axis 5c, and at least one of both ends thereof is closed.
  • a plurality of space portions 53 are formed between the core rod 5 and the mold 6.
  • the pair of convex portions 52 abuts on the inner wall 6w of the mold 6.
  • the space between the outer peripheral surface 51 and the mold 6 is defined by a plurality of space portions 53.
  • the space between the outer peripheral surface 51 and the mold 6 is defined by the pair of convex portions 52 in the pair of space portions 53 around the central axis 5c.
  • the pair of space portions 53 are arranged around the central axis 5c.
  • each of the plurality of space portions 53 is filled with the powder 21 which is the raw material of the target main body 20. Subsequently, the powder 21 is isotropically pressed from the outside of the mold 6 by a method such as cold isostatic pressing (CIP) (see the arrow).
  • CIP cold isostatic pressing
  • FIG. 5A is a schematic perspective view showing a molded product that is a precursor of the target body.
  • FIG. 5B is a schematic perspective view showing a state when the molded product is sintered.
  • a support base 70 for supporting the molded body 22 is prepared. Subsequently, the molded body 22 is placed on the support base 70 so that the longitudinal direction of the molded body 22 is parallel to the support surface 71 of the support base 70.
  • a support jig 72 composed of the same components as the molded body 22 is interposed between the contact surface (inner wall) 22w of the molded body 22 that is in contact with the outer peripheral surface 51 of the core rod 5 and the support base 70.
  • the support jig 72 is in the form of a block, and at least one is prepared.
  • the molded body 22 is heated while the contact surface 22w is supported by the support jig 72.
  • sintered bodies in which the powder 21 is fired that is, target members 20A and 20B are formed.
  • the support jig 72 is composed of the same components as the molded body 22, foreign matter does not enter the sintered body from the support jig 72.
  • FIG. 6 is a schematic view showing how the bonding material is filled between the target body and the backing tube.
  • the target members 20A and 20B are arranged around the backing tube 10 with the backing tube 10 leaning against it.
  • the molten bonding material 30 is filled between the backing tube 10 and the target members 20A and 20B from below the backing tube 10 (for example, 160 ° C., In).
  • filling, press-fitting, etc. using the pressure (gravity) difference are used.
  • the joining material 30 is less likely to leak into the gap 201.
  • the joining material 30 is solidified between the backing tube 10 and the target members 20A and 20B, and the backing tube 10 and the target members 20A and 20B are joined by the joining material 30. After that, if necessary, a finishing process for adjusting the surface roughness of the target members 20A and 20B is performed.
  • a method of firing in an upright cylindrical molded body may be adopted.
  • the length of the sintered body (target member) formed is limited by the height of the firing furnace. Therefore, in order to obtain a sintered body having a length of 1 m or more, a new vertically long firing furnace must be newly introduced, which causes a cost problem. Further, if the molded product is fired in an upright state, the sintered body is more likely to be distorted or collapsed. For this reason, the yield is lowered in the cylindrical oxide target having an undivided structure.
  • the molded body 22 has a semi-cylindrical shape.
  • the molded body 22 when the molded body 22 is fired, the molded body 22 can be placed horizontally, the molded body 22 is less likely to be distorted, and the molded body 22 is less likely to collapse.
  • the yield of the oxide target is greatly improved.
  • the method of the present embodiment is effective when forming a sputtering target of IGZO (indium-gallium-zinc-oxide) or the like, which is an oxide semiconductor material.
  • IGZO indium-gallium-zinc-oxide
  • the component of the bonding material or the component of the backing tube may be mixed into the coating film through the gap.
  • the inclusion of such impurities may lead to deterioration of the quality of the coating film in the future, or the characteristics of the coating film may vary.
  • the gap 201 is formed in the longitudinal direction of the sputtering target 1, the volume of the gap exposed to plasma is reduced.
  • the volume of the gap exposed to plasma is greatly reduced.
  • impurities are less likely to be mixed into the film, and a high-quality film can be formed.
  • the characteristics of the coating film are less likely to vary.
  • the gap 201 is shielded from the side of the bonding material 30 by the shielding member 40, leakage of the bonding material 30 into the gap 201 and plasma irradiation of the bonding material 30 are reliably suppressed.
  • FIG. 7 is a schematic perspective view of the sputtering target according to the first modification of the present embodiment.
  • a plurality of target bodies 20 are arranged side by side in a row in the direction of the central axis 10c of the backing tube 10.
  • Each of the plurality of target bodies 20 is arranged apart from each other in the direction of the central axis 10c.
  • the length of the sputtering target 2 having the plurality of target bodies 20 in the direction of the central axis 10c is 2000 mm or more.
  • the gap 202 of the target main body 20 adjacent to each other in the direction of the central axis 10c may be narrower than the gap 201. As a result, even if a plurality of target bodies 20 are stacked in the direction of the central axis 10c, the volume of the gap does not become excessive.
  • the length of the sputtering target in the direction of the central axis 10c can be easily increased.
  • 8 (a) and 8 (b) are schematic cross-sectional views of the sputtering target according to the second modification of the present embodiment.
  • a recess 203 communicating with the gap 201 may be provided inside the target body 20.
  • the recess 203 is formed on the side of the backing tube 10.
  • the shielding member 40A (FIG. 8A) or the shielding member 40B (FIG. 8B) is housed in the recess 203.
  • the space between the shielding member 40A (or the shielding member 40B) and the backing tube 10 is surely secured.
  • the molten bonding material 30 is evenly distributed between the backing tube 10 and the target body 20 without being loaded by the shielding member 40A (or the shielding member 40B).
  • FIG. 9 is a schematic view showing another state in which the bonding material is filled between the target body and the backing tube.
  • the bonding material 30 is injected from below between the backing tube 10 and the target body 20 with the backing tube 10 and the target body 20 placed horizontally, the molten bonding material 30 is formed.
  • the backing tube 10 and the target main body 20 are evenly distributed without being loaded by the shielding member 40A (or the shielding member 40B).
  • Ga 2 O 3 was weighed so that the molar ratio of oxides was 1: 2: 1.
  • These raw material powders were pulverized and mixed with a wet ball mill. A zirconia ball having a diameter of 5 mm was used as the crushing medium. The pulverized and mixed slurry was dried and granulated with a spray dryer to obtain granulated powder.
  • the polyurethane mold 6 in which the metal core rod 5 was installed was filled with the granulated powder, the granulated powder was sealed, and then CIP molding was performed at a pressure of 98 MPa. As a result, two semi-cylindrical molded bodies (molded bodies) 22 were obtained. At the same time, the support jig 72 was molded. The dimensions of the support jig 72 are width 40 mm ⁇ height 77 mm.
  • the molded body 22 was left to stand sideways in a degreasing furnace and degreased at 600 ° C. After the degreasing treatment was completed, the molded body 22 was placed sideways on the support base 70 made of alumina, and the molded body 22 was supported by three support jigs 72 arranged in a row on the support base 70. As for the number of samples of the molded body 22, a total of 20 molded bodies (2 in one molding) were produced by performing molding 10 times.
  • Each of the molded bodies 22 was heat-treated at a maximum temperature of 1500 ° C. for 10 hours in a firing furnace to obtain semi-cylindrical target members 20A and 20B having a length of 1050 mm.
  • the average strain of the inner diameters of the 20 target members after firing was 1.1 mm.
  • the granulated powder produced under the same conditions as in the examples was filled between the round bar-shaped metal core rod and the mold 6 in which the convex portion 52 was not provided.
  • CIP molding was performed at a pressure of 98 MPa to obtain a cylindrical molded body having no gap 201.
  • the obtained molded body (molded body) was degreased at 600 ° C. in a degreasing furnace in an upright state.
  • a total of 10 molded bodies (1 in one molding) were produced by performing the molding 10 times.
  • the molded product after the degreasing treatment was left standing on a support 70 and fired at a maximum temperature of 1500 ° C. for 10 hours in a firing furnace. As a result, a cylindrical target member having a length of 350 mm was obtained.
  • the average strain of the inner diameters of the 10 target members was 2 mm, which was larger than that of the examples. It is considered that one of the reasons for this is that the shrinkage during firing was hindered by the frictional resistance of the end face that was in contact with the support 70, and the difference in inner diameter from the upper end face became large. ..
  • the granulated powder produced under the same conditions as in Example 1 was CIP molded and degreased under the same conditions as in Comparative Example 1 to obtain a cylindrical molded body.
  • the molded product after the degreasing treatment was allowed to stand sideways on the support 70 and fired at a maximum temperature of 1500 ° C. for 10 hours in a firing furnace to obtain a cylindrical target member having a length of 1050 mm.
  • a total of 10 molded bodies (1 in one molding) were produced by performing the molding 10 times.
  • the average strain of the inner diameters of the remaining six target members without cracks was 10 mm, which was larger than that of Comparative Example 1. As one of the factors, it is considered that in the case of standing sideways, the strain becomes large due to its own weight when it shrinks during firing.
  • Table 1 summarizes the number of CIP-molded compacts in Examples 1 and 2, the number of target members that did not crack, and the distortion of the inner diameter.
  • the semi-cylindrical target members 20A and 20B obtained in the examples were machined so as to have an inner diameter of 135 mm, an outer diameter of 147 mm and a length of 1000 mm, and a set of target members 20A and 20B was prepared. Further, a shielding member 40 having a width of 5 mm was produced by laminating an oxide layer 404 (IGZO layer) on a metal sheet 403 made of Ti having a thickness of 0.2 mm by plasma spraying.
  • IGZO layer oxide layer
  • a set of target members 20A and 20B were opposed to each other so as to form a cylinder, and a shielding member 40 was attached to the gap 201 from the inside. Subsequently, the backing tube 10 was arranged inside the cylindrical target members 20A and 20B (target body 20). The inner peripheral surface 102 of the backing tube 10 was pretreated by rubbing In while applying ultrasonic vibration with a trowel equipped with an ultrasonic transmitter.
  • the molten In bonding material 30 was injected between the target body 20 and the backing tube 10. After that, the bonding material 30 was cooled and solidified.
  • the width of the gap 201 of the obtained sputtering target 1 was 0.3 mm. As a result of observing the gap 201 with a microscope, no leakage of the bonding material 30 was observed.

Abstract

[Problem] To provide a sputtering target with which particles and abnormal discharge can be suppressed even if the sputtering target is long and cylindrical. [Solution] A sputtering target, wherein a target body comprises a plurality of target members that are arranged along the outer circumferential surface of a cylindrical backing tube, and that have a circular arc-shaped cross section. The plurality of target members are each disposed so as to be separated from each other around a central axis of the backing tube. A gap that is formed between the target members which are aligned around the central axis extends in the central axis direction of the backing tube. A bonding material is interposed between the backing tube and the target body so as to bond the backing tube and the plurality of target members to each other. A shielding member is provided between the bonding material and the target body so as to shield the gap from the bonding material side.

Description

スパッタリングターゲット及びスパッタリングターゲットの製造方法Sputtering target and manufacturing method of sputtering target
 本発明は、スパッタリングターゲット及びスパッタリングターゲットの製造方法に関する。 The present invention relates to a sputtering target and a method for manufacturing the sputtering target.
 薄型テレビの大画面化に伴い、フラットパネルディスプレイを製造するときに使用されるスパッタリングターゲットの大型化が進行している。これに伴い、大面積の酸化物ターゲットが出現している。特に、長く且つ円筒型の酸化物ターゲットが取り付けられる成膜装置が開発されている。長い円筒型の酸化物ターゲットを得るために、複数個の円筒型の酸化物焼結体を円筒型のバッキングチューブに接合する方法が提供されている。 With the increase in the screen size of flat-screen TVs, the size of the sputtering target used when manufacturing flat panel displays is increasing. Along with this, a large area oxide target has appeared. In particular, a film forming apparatus to which a long and cylindrical oxide target can be attached has been developed. A method of joining a plurality of cylindrical oxide sintered bodies to a cylindrical backing tube is provided in order to obtain a long cylindrical oxide target.
 しかし、複数個のターゲット部材でスパッタリングターゲットを構成した場合、ターゲット部材の熱膨張によって隣り合うターゲット部材同士が接触して、ターゲット部材が割れる場合がある。この接触による割れを防ぐために、隣り合うターゲット部材間には、間隙が設けられる場合がある(例えば、特許文献1参照)。 However, when a sputtering target is composed of a plurality of target members, adjacent target members may come into contact with each other due to thermal expansion of the target members, and the target members may crack. In order to prevent cracking due to this contact, a gap may be provided between adjacent target members (see, for example, Patent Document 1).
特開2015-168832号公報Japanese Unexamined Patent Publication No. 2015-168832
 しかしながら、間隙からはパーティクルが発生したり、間隙に酸化物以外の成分が付着すると異常放電が発生したりして、成膜工程に悪影響をもたらす。特に、長い円筒型ターゲットを得るためには、複数の円筒型ターゲット部材を列状に配置する必要があり、その分、間隙の数が増加する。 However, particles are generated from the gaps, and abnormal discharge occurs when components other than oxides adhere to the gaps, which adversely affects the film formation process. In particular, in order to obtain a long cylindrical target, it is necessary to arrange a plurality of cylindrical target members in a row, and the number of gaps increases accordingly.
 以上のような事情に鑑み、本発明の目的は、長く、円筒型であっても、パーティクル、異常放電が抑制されるスパッタリングターゲット及びその製造方法を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a sputtering target in which particles and abnormal discharges are suppressed even if it is long and cylindrical, and a method for manufacturing the same.
 上記目的を達成するため、本発明の一形態に係るスパッタリングターゲットは、筒状のバッキングチューブと、ターゲット本体と、接合材と、遮蔽部材とを具備する。
 上記ターゲット本体は、上記バッキングチューブの外周面に沿うように並設され円弧状の断面を有する複数のターゲット部材を含む。上記複数のターゲット部材のそれぞれは、上記バッキングチューブの中心軸周りに離間するように配置される。上記中心軸周りに並ぶターゲット部材間に形成される間隙は、上記バッキングチューブの中心軸方向に延在する。
 上記接合材は、上記バッキングチューブと上記ターゲット本体との間に設けられ、上記バッキングチューブと上記複数のターゲット部材のそれぞれとを接合する。
 上記遮蔽部材は、上記接合材と上記ターゲット本体との間に設けられ、上記間隙を上記接合材の側から遮蔽する。
In order to achieve the above object, the sputtering target according to one embodiment of the present invention includes a tubular backing tube, a target body, a bonding material, and a shielding member.
The target body includes a plurality of target members arranged side by side along the outer peripheral surface of the backing tube and having an arcuate cross section. Each of the plurality of target members is arranged so as to be separated from each other around the central axis of the backing tube. The gap formed between the target members arranged around the central axis extends in the central axis direction of the backing tube.
The joining material is provided between the backing tube and the target body, and joins the backing tube and each of the plurality of target members.
The shielding member is provided between the joining material and the target body, and shields the gap from the side of the joining material.
 このようなスパッタリングターゲットによれば、ターゲット本体は、円弧状の断面を有する複数のターゲット部材を含み、複数のターゲット部材のそれぞれは、バッキングチューブの中心軸周りに離間するように配置され、中心軸周りに並ぶターゲット部材間に形成される間隙がバッキングチューブの中心軸方向に延在する。これにより、スパッタリングターゲットが長く、円筒型であっても、間隙の容積増大が抑えられ、パーティクル、異常放電が抑制される。 According to such a sputtering target, the target body includes a plurality of target members having an arcuate cross section, and each of the plurality of target members is arranged so as to be separated from each other around the central axis of the backing tube. The gap formed between the surrounding target members extends in the direction of the central axis of the backing tube. As a result, even if the sputtering target is long and cylindrical, the increase in the volume of the gap is suppressed, and particles and abnormal discharge are suppressed.
 上記スパッタリングターゲットにおいては、上記ターゲット本体は、一組のターゲット部材によって上記バッキングチューブを囲む。上記一組のターゲット部材を上記バッキングチューブの上記中心軸方向と直交する方向に切断した場合、上記一組のターゲット部材間に形成される一対の上記間隙間に上記バッキングチューブの中心軸が位置してもよい。 In the sputtering target, the target body surrounds the backing tube with a set of target members. When the set of target members is cut in a direction orthogonal to the central axis direction of the backing tube, the central axis of the backing tube is located between the pair of gaps formed between the set of target members. You may.
 このようなスパッタリングターゲットによれば、一組のターゲット部材間に形成される一対の間隙間にバッキングチューブの中心軸が位置するので、スパッタリングターゲットが長く、円筒型であっても、間隙の容積増大が抑えられ、パーティクル、異常放電が抑制される。 According to such a sputtering target, since the central axis of the backing tube is located in the pair of gaps formed between the set of target members, the volume of the gap is increased even if the sputtering target is long and cylindrical. Is suppressed, and particles and abnormal discharge are suppressed.
 上記スパッタリングターゲットにおいては、上記ターゲット本体は、上記バッキングチューブの上記中心軸方向に列状となって複数並設されてもよい。 In the sputtering target, a plurality of target bodies may be arranged side by side in a row in the central axis direction of the backing tube.
 このようなスパッタリングターゲットによれば、スパッタリングターゲットがより長尺に形成される。 According to such a sputtering target, the sputtering target is formed to be longer.
 上記スパッタリングターゲットにおいては、上記複数のターゲット部材のそれぞれは、酸化物の焼結体によって構成されてもよい。 In the sputtering target, each of the plurality of target members may be composed of an oxide sintered body.
 このようなスパッタリングターゲットによれば、複数のターゲット部材のそれぞれが酸化物の焼結体によって構成されても、スパッタリングターゲットのパーティクル、異常放電が抑制される。 According to such a sputtering target, even if each of the plurality of target members is composed of an oxide sintered body, particles and abnormal discharge of the sputtering target are suppressed.
 上記スパッタリングターゲットにおいては、上記焼結体は、In、Ga、及びZnを有してもよい。 In the sputtering target, the sintered body may have In, Ga, and Zn.
 このようなスパッタリングターゲットによれば、焼結体がIn、Ga、及びZnを有するので、安定した酸化物半導体膜が形成される。 According to such a sputtering target, since the sintered body has In, Ga, and Zn, a stable oxide semiconductor film is formed.
 上記目的を達成するため、本発明の一形態に係るスパッタリングターゲットの製造方法では、中心軸を周回する外周面が上記バッキングチューブの外周面と同じ曲率で構成され、上記外周面から外側に突出する凸部を有する円柱状の芯棒であって、筒状の型によって上記外周面が囲まれたときに、上記外周面と上記型とによって形成される空間が上記凸部によって上記中心軸の周りに複数の空間部に画定される上記芯棒が準備される。
 上記芯棒と上記型とによって上記複数の空間部が形成される。
 上記複数の空間部のそれぞれに粉体が充填される。
 上記粉体に上記型を介して等方的に圧力をかけることによって上記粉体による成形体が形成される。
 上記成形体を加熱することにより、上記粉体が焼結した焼結体が形成される。
In order to achieve the above object, in the method for manufacturing a sputtering target according to one embodiment of the present invention, the outer peripheral surface orbiting the central axis is configured to have the same curvature as the outer peripheral surface of the backing tube, and protrudes outward from the outer peripheral surface. A columnar core rod having a convex portion, and when the outer peripheral surface is surrounded by a tubular mold, the space formed by the outer peripheral surface and the mold is formed around the central axis by the convex portion. The core rod defined in a plurality of spaces is prepared.
The plurality of space portions are formed by the core rod and the mold.
Powder is filled in each of the plurality of spaces.
By applying isotropic pressure to the powder through the mold, a molded product made of the powder is formed.
By heating the molded product, a sintered body in which the powder is sintered is formed.
 このようなスパッタリングターゲットの製造方法によれば、スパッタリングターゲットが長く、円筒型であっても、間隙の容積増大が抑えられ、パーティクル、異常放電が抑制されたスパッタリングターゲットが確実に製造される。 According to such a method for manufacturing a sputtering target, even if the sputtering target is long and cylindrical, the increase in the volume of the gap is suppressed, and the sputtering target in which particles and abnormal discharge are suppressed can be reliably manufactured.
 上記スパッタリングターゲットの製造方法においては、上記空間を上記凸部によって上記中心軸の周りに並ぶ一対の空間部が画定されてもよい。 In the method for manufacturing a sputtering target, a pair of space portions that line up the space around the central axis may be defined by the convex portion.
 このようなスパッタリングターゲットの製造方法によれば、上記空間が凸部によって中心軸の周りに並ぶ一対の空間部が画定されるので、スパッタリングターゲットが長く、円筒型であっても、間隙の容積増大が抑えられ、パーティクル、異常放電が抑制されたスパッタリングターゲットが確実に製造される。 According to such a method for manufacturing a sputtering target, since a pair of spaces in which the above spaces are arranged around the central axis are defined by the convex portion, the volume of the gap is increased even if the sputtering target is long and cylindrical. Sputtering target with suppressed particles and abnormal discharge is surely manufactured.
 上記スパッタリングターゲットの製造方法においては、上記一対の空間部に充填されて形成された上記成形体の長手方向が上記成形体を支持する支持台の支持面に対して平行になるように上記支持台に上記成形体が載置され、
 上記成形体が上記芯棒の上記外周面に当接した当接面と上記支持台との間に上記成形体と同じ成分で構成された支持冶具を介在させ、
 上記支持冶具によって上記当接面を支持しながら上記成形体が焼成されてもよい。
In the method for manufacturing a sputtering target, the support base is formed so that the longitudinal direction of the molded body formed by filling the pair of spaces is parallel to the support surface of the support base that supports the molded body. The above-mentioned molded product is placed on the
A support jig composed of the same components as the molded body is interposed between the contact surface where the molded body is in contact with the outer peripheral surface of the core rod and the support base.
The molded product may be fired while supporting the contact surface with the support jig.
 このようなスパッタリングターゲットの製造方法によれば、成形体と同じ成分で構成された支持冶具によって成形体が支持されながら成形体が焼成されるので、円筒型であっても、間隙の容積増大が抑えられ、パーティクル、異常放電が抑制されたスパッタリングターゲットが確実に製造される。 According to such a method for manufacturing a sputtering target, the molded body is fired while the molded body is supported by a support jig composed of the same components as the molded body, so that the volume of the gap increases even if it is a cylindrical type. Sputtering targets that are suppressed, particles, and abnormal discharge are suppressed are reliably manufactured.
 以上述べたように、本発明によれば、長く、円筒型であっても、パーティクル、異常放電が抑制されるスパッタリングターゲット及びその製造方法が提供される。 As described above, according to the present invention, there is provided a sputtering target in which particles and abnormal discharge are suppressed even if it is long and cylindrical, and a method for manufacturing the same.
図(a)は、本実施形態に係るスパッタリングターゲットの模式的斜視図である。図(b)は、本実施形態に係るスパッタリングターゲットの模式的断面図である。FIG. (A) is a schematic perspective view of the sputtering target according to the present embodiment. FIG. (B) is a schematic cross-sectional view of the sputtering target according to the present embodiment. 遮蔽部材の断面構造を示す模式的断面図である。It is a schematic cross-sectional view which shows the cross-sectional structure of a shielding member. スパッタリングターゲットの製造方法で用いられる製造冶具を示す模式的斜視図である。It is a schematic perspective view which shows the manufacturing jig used in the manufacturing method of a sputtering target. スパッタリングターゲットの製造方法で用いられる別の製造冶具を示す模式的断面図である。It is a schematic cross-sectional view which shows another manufacturing jig used in the manufacturing method of a sputtering target. 図(a)は、ターゲット本体の前駆体である成形体を示す模式的斜視図である。図(b)は、成形体を焼結するときの様子を示す模式的斜視図である。FIG. (A) is a schematic perspective view showing a molded product that is a precursor of the target body. FIG. (B) is a schematic perspective view showing a state when the molded product is sintered. ターゲット本体とバッキングチューブとの間に接合材を充填する様子を示す模式図である。It is a schematic diagram which shows the state of filling the joint material between a target body and a backing tube. 本実施形態の変形例1に係るスパッタリングターゲットの模式的斜視図である。It is a schematic perspective view of the sputtering target which concerns on the modification 1 of this embodiment. 本実施形態の変形例2に係るスパッタリングターゲットの模式的断面図である。It is a schematic sectional view of the sputtering target which concerns on the modification 2 of this embodiment. ターゲット本体とバッキングチューブとの間に接合材を充填する別の様子を示す模式図である。It is a schematic diagram which shows another state of filling a joint material between a target body and a backing tube.
 以下、図面を参照しながら、本発明の実施形態を説明する。各図面には、XYZ軸座標が導入される場合がある。また、同一の部材または同一の機能を有する部材には同一の符号を付す場合があり、その部材を説明した後には適宜説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. XYZ axis coordinates may be introduced in each drawing. Further, the same member or a member having the same function may be designated by the same reference numeral, and the description may be omitted as appropriate after the description of the member.
 図1(a)は、本実施形態に係るスパッタリングターゲットの模式的斜視図である。図1(b)は、本実施形態に係るスパッタリングターゲットの模式的断面図である。図1(b)には、図1(a)のX-Y軸平面における断面が示されている。 FIG. 1A is a schematic perspective view of the sputtering target according to the present embodiment. FIG. 1B is a schematic cross-sectional view of the sputtering target according to the present embodiment. FIG. 1 (b) shows a cross section in the XY axis plane of FIG. 1 (a).
 図1(a)、(b)に示すスパッタリングターゲット1は、スパッタリング成膜に用いられる円筒状のターゲットアセンブリである。スパッタリングターゲット1は、バッキングチューブ10と、ターゲット本体20と、接合材30と、遮蔽部材40とを具備する。 The sputtering target 1 shown in FIGS. 1A and 1B is a cylindrical target assembly used for sputtering film formation. The sputtering target 1 includes a backing tube 10, a target main body 20, a bonding material 30, and a shielding member 40.
 バッキングチューブ10は、筒状体であり、その内部が中空状になっている。バッキングチューブ10は、一軸方向(例えば、中心軸10cの方向)に延在する。中心軸10cの方向は、バッキングチューブ10の長手方向である。また、バッキングチューブ10は、スパッタリングターゲット1の基材であることから、中心軸10cは、スパッタリングターゲット1の中心軸でもある。 The backing tube 10 is a tubular body, and the inside thereof is hollow. The backing tube 10 extends in a uniaxial direction (for example, in the direction of the central axis 10c). The direction of the central axis 10c is the longitudinal direction of the backing tube 10. Further, since the backing tube 10 is the base material of the sputtering target 1, the central axis 10c is also the central axis of the sputtering target 1.
 バッキングチューブ10は、中心軸10cの周りを周回する外周面101と、外周面101とは反対側に位置し、中心軸10cの周りを周回する内周面102とを有する。バッキングチューブ10を中心軸10cと直交する平面(例えば、X-Y軸平面)で切断した場合、その形状は、例えば、環状になっている。 The backing tube 10 has an outer peripheral surface 101 that orbits around the central axis 10c, and an inner peripheral surface 102 that is located on the opposite side of the outer peripheral surface 101 and orbits around the central axis 10c. When the backing tube 10 is cut in a plane orthogonal to the central axis 10c (for example, an XY-axis plane), the shape thereof is, for example, an annular shape.
 バッキングチューブ10の材料は、熱伝導性に優れた材料を有し、例えば、チタン(Ti)、銅(Cu)等である。バッキングチューブ10の内部には、適宜、冷媒が流通する流路が形成されてもよい。 The material of the backing tube 10 has a material having excellent thermal conductivity, and is, for example, titanium (Ti), copper (Cu), or the like. A flow path through which the refrigerant flows may be appropriately formed inside the backing tube 10.
 ターゲット本体20は、バッキングチューブ10の外周面101を囲む。ターゲット本体20は、バッキングチューブ10に対して同心状に配置される。ターゲット本体20は、複数のターゲット部材を有する。例えば、図1(a)、(b)の例では、ターゲット本体20は、一組のターゲット部材20A、20Bを有している。 The target body 20 surrounds the outer peripheral surface 101 of the backing tube 10. The target body 20 is arranged concentrically with respect to the backing tube 10. The target body 20 has a plurality of target members. For example, in the examples of FIGS. 1A and 1B, the target body 20 has a set of target members 20A and 20B.
 ターゲット部材20A、20Bのそれぞれは、バッキングチューブ10を囲む。例えば、ターゲット部材20A、20Bは、バッキングチューブ10の外周面101に沿うように並設される。ターゲット部材20A、20BのそれぞれをX-Y軸平面で切断した場合、その形状は、例えば、円弧状になっている。例えば、X-Y軸平面におけるターゲット部材20A、20Bのそれぞれの断面形状は、同じ形状をしている。また、Z軸方向におけるターゲット部材20A、20Bのそれぞれの長さは、同じである。 Each of the target members 20A and 20B surrounds the backing tube 10. For example, the target members 20A and 20B are arranged side by side along the outer peripheral surface 101 of the backing tube 10. When each of the target members 20A and 20B is cut along the XY axis plane, the shape thereof is, for example, an arc shape. For example, the cross-sectional shapes of the target members 20A and 20B in the XY-axis plane have the same shape. Further, the lengths of the target members 20A and 20B in the Z-axis direction are the same.
 ターゲット部材20A、20Bのそれぞれは、互いに接触することなく、バッキングチューブ10の中心軸10cの周りに離間するように配置される。例えば、ターゲット部材20A、20Bは、バッキングチューブ10の中心軸10cの周りに並設される。換言すれば、ターゲット本体20は、中心軸10cに対し直交する方向で分割された分割構造を有する。これにより、ターゲット部材20Aとターゲット部材20Bとの間には、間隙(分割部)201が形成される。 The target members 20A and 20B are arranged so as to be separated from each other around the central axis 10c of the backing tube 10 without contacting each other. For example, the target members 20A and 20B are arranged side by side around the central axis 10c of the backing tube 10. In other words, the target body 20 has a divided structure divided in a direction orthogonal to the central axis 10c. As a result, a gap (divided portion) 201 is formed between the target member 20A and the target member 20B.
 例えば、ターゲット部材20A、20Bを中心軸10cの方向と直交する方向に切断した場合、ターゲット部材20A、20Bのそれぞれの間には、一対の間隙201が形成される。一対の間隙201のそれぞれは、互いに平行となってバッキングチューブ10の中心軸10cの方向に延在する。また、一対の間隙201の間には、バッキングチューブ10の中心軸10cが位置する。例えば、X-Y軸平面において、一対の間隙201と中心軸10cとは、直列状に並んでいる。 For example, when the target members 20A and 20B are cut in a direction orthogonal to the direction of the central axis 10c, a pair of gaps 201 are formed between the target members 20A and 20B, respectively. Each of the pair of gaps 201 is parallel to each other and extends in the direction of the central axis 10c of the backing tube 10. Further, the central axis 10c of the backing tube 10 is located between the pair of gaps 201. For example, in the XY axis plane, the pair of gaps 201 and the central axis 10c are arranged in series.
 間隙201の幅については、特に限定されず、例えば、ターゲット部材20A、20Bの熱膨張によって、それぞれが互いに接触しない程度に設定される。 The width of the gap 201 is not particularly limited, and is set so as not to come into contact with each other due to thermal expansion of the target members 20A and 20B, for example.
 ターゲット部材20A、20Bは、同一材料で構成され、例えば、酸化物の焼結体によって構成されている。一例として、焼結体は、In及びZnを有する。例えば、焼結体は、In-Ga-Zn-O(IGZO)からなる。例えば、焼結体は、In-Ti-Zn-Sn-O(ITZTO)焼結体、In-Ti-Zn-Sn-O(IGTO)焼結体等でもよい。 The target members 20A and 20B are made of the same material, for example, made of an oxide sintered body. As an example, the sintered body has In and Zn. For example, the sintered body is made of In—Ga—Zn—O (IGZO). For example, the sintered body may be an In—Ti—Zn—Sn—O (ITZTO) sintered body, an In—Ti—Zn—Sn—O (IGTO) sintered body, or the like.
 接合材30は、バッキングチューブ10とターゲット本体20との間に介設されている。接合材30は、バッキングチューブ10とターゲット本体20とに密に接している。接合材30は、バッキングチューブ10と複数のターゲット部材20A、20Bのそれぞれとを接合する。接合材30は、例えば、インジウム(In)、錫(Sn)、ハンダ材等を有する。 The joining material 30 is interposed between the backing tube 10 and the target body 20. The joining material 30 is in close contact with the backing tube 10 and the target body 20. The joining material 30 joins the backing tube 10 and each of the plurality of target members 20A and 20B. The bonding material 30 includes, for example, indium (In), tin (Sn), a solder material, and the like.
 遮蔽部材40は、接合材30とターゲット本体20との間に設けられる。遮蔽部材40は、間隙201と接合材30との間に位置する。遮蔽部材40は、間隙201を接合材30の側から遮蔽する。これにより、接合材30の間隙201への漏れが抑制され、間隙201に接合材30が侵入しにくくなる。また、スパッタリング時に間隙201がプラズマに晒されたとしても、遮蔽部材40により接合材30がプラズマから遮蔽される。これにより、スパッタリング時には、接合材30の成分(例えば、In)がターゲット本体20の成分と混ざりにくくなる。 The shielding member 40 is provided between the joining material 30 and the target body 20. The shielding member 40 is located between the gap 201 and the joining member 30. The shielding member 40 shields the gap 201 from the side of the joining member 30. As a result, leakage of the bonding material 30 into the gap 201 is suppressed, and the bonding material 30 is less likely to enter the gap 201. Further, even if the gap 201 is exposed to plasma during sputtering, the bonding member 30 is shielded from the plasma by the shielding member 40. As a result, during sputtering, the component of the bonding material 30 (for example, In) is less likely to be mixed with the component of the target body 20.
 遮蔽部材40の具体的な構成を以下に説明する。図2(a)、(b)は、遮蔽部材の断面構造を示す模式的断面図である。 The specific configuration of the shielding member 40 will be described below. 2 (a) and 2 (b) are schematic cross-sectional views showing a cross-sectional structure of a shielding member.
 遮蔽部材40は、図2(a)に示す遮蔽部材40Aであってもよく、図2(b)に示す遮蔽部材40Bであってもよい。 The shielding member 40 may be the shielding member 40A shown in FIG. 2A or the shielding member 40B shown in FIG. 2B.
 図2(a)に示す遮蔽部材40Aは、粘着性を有する粘着シート401と、プラズマ耐性を有する樹脂シート402とを有する。樹脂シート402は、ターゲット部材20A、20Bと粘着シート401との間に設けられる。樹脂シート402は、遮蔽部材40Aの遮蔽基材である。粘着シート401は、遮蔽部材40Aの貼付材である。 The shielding member 40A shown in FIG. 2A has an adhesive sheet 401 having adhesiveness and a resin sheet 402 having plasma resistance. The resin sheet 402 is provided between the target members 20A and 20B and the adhesive sheet 401. The resin sheet 402 is a shielding base material for the shielding member 40A. The adhesive sheet 401 is a sticking material for the shielding member 40A.
 樹脂シート402は、間隙201を跨ぎ、その一部が間隙201に露出される。樹脂シート402は、粘着シート401によってターゲット部材20A、20Bのそれぞれに接合材30の側から貼付される。粘着シート401及び樹脂シート402のそれぞれの材料は、例えば、ポリイミド、フッ素樹脂、シリコーン樹脂等を含む。 The resin sheet 402 straddles the gap 201, and a part of the resin sheet 402 is exposed in the gap 201. The resin sheet 402 is attached to each of the target members 20A and 20B by the adhesive sheet 401 from the side of the bonding material 30. Each material of the pressure-sensitive adhesive sheet 401 and the resin sheet 402 includes, for example, polyimide, fluororesin, silicone resin, and the like.
 図2(b)に示す遮蔽部材40Bは、粘着シート401と、金属シート403と、酸化物層404とを有する。遮蔽部材40Bは、接合材30からターゲット部材20A、20Bに向かって、粘着シート401/金属シート403/酸化物層404の順に並ぶ積層構造を有する。遮蔽部材40Bにおいては、金属シート403が粘着シート401と酸化物層404とを接合し、それぞれの応力を緩和する中間層として機能し、酸化物層404が遮蔽基材として機能する。 The shielding member 40B shown in FIG. 2B has an adhesive sheet 401, a metal sheet 403, and an oxide layer 404. The shielding member 40B has a laminated structure in which the adhesive sheet 401 / metal sheet 403 / oxide layer 404 are arranged in this order from the bonding material 30 toward the target members 20A and 20B. In the shielding member 40B, the metal sheet 403 joins the pressure-sensitive adhesive sheet 401 and the oxide layer 404 and functions as an intermediate layer for relieving the stress of each, and the oxide layer 404 functions as a shielding base material.
 酸化物層404は、間隙201を跨ぎ、その一部が間隙201に露出される。さらに、酸化物層404は、金属シート403を介して粘着シート401によりターゲット部材20A、20Bのそれぞれに接合材30の側から貼付される。 The oxide layer 404 straddles the gap 201, and a part of the oxide layer 404 is exposed in the gap 201. Further, the oxide layer 404 is attached to the target members 20A and 20B from the side of the bonding material 30 by the adhesive sheet 401 via the metal sheet 403.
 金属シート403は、例えば、チタン(Ti)を含む。酸化物層404は、ターゲット部材20A、20Bと同じ材料で構成されている。これにより、スパッタリング時に、遮蔽部材40Bがプラズマに晒されたとしても、ターゲット本体20の成分以外の成分が被膜に混在しにくくなる。 The metal sheet 403 contains, for example, titanium (Ti). The oxide layer 404 is made of the same material as the target members 20A and 20B. As a result, even if the shielding member 40B is exposed to plasma during sputtering, components other than the components of the target body 20 are less likely to be mixed in the coating film.
 スパッタリングターゲット1の製造方法について説明する。 The manufacturing method of the sputtering target 1 will be described.
 図3は、スパッタリングターゲットの製造方法で用いられる製造冶具を示す模式的斜視図である。 FIG. 3 is a schematic perspective view showing a manufacturing jig used in a method for manufacturing a sputtering target.
 まず、図3に示す円柱状の芯棒5が準備される。芯棒5は、中心軸5cの方向に延在し、中心軸5cの方向が芯棒5の長手方向となる。芯棒5においては、外周面51が中心軸5cを周回し、外周面51がバッキングチューブ10の外周面101と同じ曲率で構成されている。さらに、芯棒5には、外周面51に外周面51から外側に突出する凸部52が設けられている。例えば、凸部52は、外周面51に複数設けられる。例えば、図3の例では、中心軸5cの周りに、180度の間隔で、一対の凸部52が設けられている。 First, the columnar core rod 5 shown in FIG. 3 is prepared. The core rod 5 extends in the direction of the central shaft 5c, and the direction of the central shaft 5c is the longitudinal direction of the core rod 5. In the core rod 5, the outer peripheral surface 51 orbits the central axis 5c, and the outer peripheral surface 51 has the same curvature as the outer peripheral surface 101 of the backing tube 10. Further, the core rod 5 is provided with a convex portion 52 protruding outward from the outer peripheral surface 51 on the outer peripheral surface 51. For example, a plurality of convex portions 52 are provided on the outer peripheral surface 51. For example, in the example of FIG. 3, a pair of convex portions 52 are provided around the central axis 5c at intervals of 180 degrees.
 図4(a)、(b)は、スパッタリングターゲットの製造方法で用いられる別の製造冶具を示す模式的断面図である。図4(a)、(b)には、製造冶具のX-Y軸断面が示されている。 4 (a) and 4 (b) are schematic cross-sectional views showing another manufacturing jig used in the method for manufacturing a sputtering target. 4 (a) and 4 (b) show the XY-axis cross sections of the manufacturing jig.
 次に、図4(a)に示すように、筒状の型6が準備される。型6は、中心軸5cの方向に延在し、その両端の少なくとも一方が閉塞されている。芯棒5が筒状の型6によって囲まれると、芯棒5と型6との間に複数の空間部53が形成される。例えば、型6によって芯棒5の外周面51が囲まれると、一対の凸部52が型6の内壁6wに当接する。これにより、外周面51と型6との間の空間は、複数の空間部53に画定される。 Next, as shown in FIG. 4A, a tubular mold 6 is prepared. The mold 6 extends in the direction of the central axis 5c, and at least one of both ends thereof is closed. When the core rod 5 is surrounded by the tubular mold 6, a plurality of space portions 53 are formed between the core rod 5 and the mold 6. For example, when the outer peripheral surface 51 of the core rod 5 is surrounded by the mold 6, the pair of convex portions 52 abuts on the inner wall 6w of the mold 6. As a result, the space between the outer peripheral surface 51 and the mold 6 is defined by a plurality of space portions 53.
 例えば、図4(a)の例では、一対の凸部52によって外周面51と型6との間の空間が中心軸5cの周りに一対の空間部53に画定される。一対の空間部53は、中心軸5cの周りに並ぶ。 For example, in the example of FIG. 4A, the space between the outer peripheral surface 51 and the mold 6 is defined by the pair of convex portions 52 in the pair of space portions 53 around the central axis 5c. The pair of space portions 53 are arranged around the central axis 5c.
 次に、図4(b)に示すように、複数の空間部53のそれぞれに、ターゲット本体20の原料である粉体21が充填される。続いて、冷間等方加圧(CIP:Cold Isostatic Pressing)等の手法により、型6の外側から粉体21に等方的に圧力がかけられる(矢印参照)。 Next, as shown in FIG. 4B, each of the plurality of space portions 53 is filled with the powder 21 which is the raw material of the target main body 20. Subsequently, the powder 21 is isotropically pressed from the outside of the mold 6 by a method such as cold isostatic pressing (CIP) (see the arrow).
 図5(a)は、ターゲット本体の前駆体である成形体を示す模式的斜視図である。図5(b)は、成形体を焼結するときの様子を示す模式的斜視図である。 FIG. 5A is a schematic perspective view showing a molded product that is a precursor of the target body. FIG. 5B is a schematic perspective view showing a state when the molded product is sintered.
 型6を介して粉体21に等方的に圧力がかけられることにより、図5(a)に示すように、粉体21による一対の成形体22が形成される。 By isotropically applying pressure to the powder 21 via the mold 6, as shown in FIG. 5A, a pair of molded bodies 22 made of the powder 21 are formed.
 次に、図5(b)に示すように、成形体22を支持する支持台70が準備される。続いて、成形体22の長手方向が支持台70の支持面71に対して平行になるように成形体22が支持台70に載置される。 Next, as shown in FIG. 5B, a support base 70 for supporting the molded body 22 is prepared. Subsequently, the molded body 22 is placed on the support base 70 so that the longitudinal direction of the molded body 22 is parallel to the support surface 71 of the support base 70.
 次に、芯棒5の外周面51に当接した成形体22の当接面(内壁)22wと、支持台70との間に、成形体22と同じ成分で構成された支持冶具72を介在させる。支持冶具72は、ブロック状であり、少なくとも1つ準備される。続いて、支持冶具72によって当接面22wが支持されながら、成形体22が加熱される。これにより、粉体21が焼成した焼結体、すなわち、ターゲット部材20A、20Bが形成される。ここで、支持冶具72は、成形体22と同じ成分で構成されているため、焼結体に支持冶具72から異物が混入することはない。 Next, a support jig 72 composed of the same components as the molded body 22 is interposed between the contact surface (inner wall) 22w of the molded body 22 that is in contact with the outer peripheral surface 51 of the core rod 5 and the support base 70. Let me. The support jig 72 is in the form of a block, and at least one is prepared. Subsequently, the molded body 22 is heated while the contact surface 22w is supported by the support jig 72. As a result, sintered bodies in which the powder 21 is fired, that is, target members 20A and 20B are formed. Here, since the support jig 72 is composed of the same components as the molded body 22, foreign matter does not enter the sintered body from the support jig 72.
 図6は、ターゲット本体とバッキングチューブとの間に接合材を充填する様子を示す模式図である。 FIG. 6 is a schematic view showing how the bonding material is filled between the target body and the backing tube.
 次に、バッキングチューブ10が立てかけられた状態で、バッキングチューブ10の周りにターゲット部材20A、20Bが配置される。続いて、バッキングチューブ10の下方から、バッキングチューブ10と、ターゲット部材20A、20Bとの間に溶融した接合材30が充填される(例えば、160℃、In)。接合材30の充填では、圧力(重力)差を利用した充填、圧入等が利用される。この際、間隙201は、遮蔽部材40で遮蔽されているため、接合材30が間隙201に漏れにくくなっている。 Next, the target members 20A and 20B are arranged around the backing tube 10 with the backing tube 10 leaning against it. Subsequently, the molten bonding material 30 is filled between the backing tube 10 and the target members 20A and 20B from below the backing tube 10 (for example, 160 ° C., In). In filling of the bonding material 30, filling, press-fitting, etc. using the pressure (gravity) difference are used. At this time, since the gap 201 is shielded by the shielding member 40, the joining material 30 is less likely to leak into the gap 201.
 この後、接合材30がバッキングチューブ10とターゲット部材20A、20Bとの間で固化し、バッキングチューブ10と、ターゲット部材20A、20Bとが接合材30によって接合される。この後、必要に応じて、ターゲット部材20A、20Bの表面粗さを調える仕上げ加工が施される。 After that, the joining material 30 is solidified between the backing tube 10 and the target members 20A and 20B, and the backing tube 10 and the target members 20A and 20B are joined by the joining material 30. After that, if necessary, a finishing process for adjusting the surface roughness of the target members 20A and 20B is performed.
 スパッタリングターゲット1を用いた場合の効果の一例について説明する。 An example of the effect when the sputtering target 1 is used will be described.
 非分割構造の円筒型の酸化物ターゲットにおいては、その成形体が焼成されるときに、成形体が高温環境下に置かれるため、成形体の軟化、収縮等によって成形体に歪みが発生する場合がある。このため、非分割構造の円筒型の酸化物ターゲットを作製するときは、円筒型の成形体を立てた状態で焼成する手法が採用されることがある。 In a cylindrical oxide target having a non-divided structure, when the molded body is fired, the molded body is placed in a high temperature environment, so that the molded body is distorted due to softening, shrinkage, etc. of the molded body. There is. For this reason, when producing a cylindrical oxide target having a non-divided structure, a method of firing in an upright cylindrical molded body may be adopted.
 しかし、成形体を立てた状態で焼成する場合、形成される焼結体(ターゲット部材)の長さが焼成炉の高さによって制限される。従って、1m以上の長さの焼結体を得るためには、縦長の新たな焼成炉を新規導入しなければならず、コスト的な問題を招来する。また、立てた状態で成形体の焼成を行うと、焼結体が歪んだり、倒壊したりする可能性が高くなる。このため、非分割構造の円筒型の酸化物ターゲットでは、歩留りが低下する。 However, when firing the molded body in an upright position, the length of the sintered body (target member) formed is limited by the height of the firing furnace. Therefore, in order to obtain a sintered body having a length of 1 m or more, a new vertically long firing furnace must be newly introduced, which causes a cost problem. Further, if the molded product is fired in an upright state, the sintered body is more likely to be distorted or collapsed. For this reason, the yield is lowered in the cylindrical oxide target having an undivided structure.
 これに対して本実施形態では、成形体22を半円筒状にしている。これにより、成形体22の焼成時には、成形体22を横置きにすることができ、成形体22に歪みが発生しにくく、成形体22の倒壊が起きにくくなっている。この結果、酸化物ターゲットの歩留りが大きく向上する。また、成形体22を横置きにすることで、長尺のターゲット部材が得られ、さらには、焼成炉の高さの制限を受けないことから焼成炉を新規導入する必要がなくなる。これにより、低コスト化が実現する。特に、本実施形態の手法は、酸化物半導体材料であるIGZO(インジウム-ガリウム-亜鉛-酸化物)等のスパッタリングターゲッットを形成するときに有効である。 On the other hand, in the present embodiment, the molded body 22 has a semi-cylindrical shape. As a result, when the molded body 22 is fired, the molded body 22 can be placed horizontally, the molded body 22 is less likely to be distorted, and the molded body 22 is less likely to collapse. As a result, the yield of the oxide target is greatly improved. Further, by placing the molded body 22 horizontally, a long target member can be obtained, and further, since the height of the firing furnace is not limited, it is not necessary to newly introduce a firing furnace. As a result, cost reduction is realized. In particular, the method of the present embodiment is effective when forming a sputtering target of IGZO (indium-gallium-zinc-oxide) or the like, which is an oxide semiconductor material.
 また、長尺のスパッタリングターゲットの中心軸と直交する方向に、間隙が幾重にも形成されると、スパッタリング時にプラズマに晒される間隙の容積が必然的に大きくなる。このため、間隙を介して接合材の成分またはバッキングチューブの成分が被膜に混入する可能性がある。このような不純物の混入は、被膜の品質低下を将来したり、被膜の特性がばらついたりする。 Also, if multiple gaps are formed in the direction orthogonal to the central axis of the long sputtering target, the volume of the gaps exposed to plasma during sputtering will inevitably increase. Therefore, the component of the bonding material or the component of the backing tube may be mixed into the coating film through the gap. The inclusion of such impurities may lead to deterioration of the quality of the coating film in the future, or the characteristics of the coating film may vary.
 これに対して本実施形態では、スパッタリングターゲット1の長手方向に間隙201が形成されるために、プラズマに晒される間隙の容積が減少する。特に、一対の半円筒型のターゲット部材20A、20Bをバッキングチューブ10の周りに配置することで、プラズマに晒される間隙の容積が大きく減少する。これにより、被膜には不純物の混入しにくくなり、高品質な被膜が形成され得る。さらに、被膜の特性がばらつきにくくなる。 On the other hand, in the present embodiment, since the gap 201 is formed in the longitudinal direction of the sputtering target 1, the volume of the gap exposed to plasma is reduced. In particular, by arranging the pair of semi-cylindrical target members 20A and 20B around the backing tube 10, the volume of the gap exposed to plasma is greatly reduced. As a result, impurities are less likely to be mixed into the film, and a high-quality film can be formed. Further, the characteristics of the coating film are less likely to vary.
 さらに、間隙201は、接合材30の側から遮蔽部材40によって遮蔽されているため、間隙201への接合材30の漏れ、接合材30へのプラズマ照射が確実に抑制される。 Further, since the gap 201 is shielded from the side of the bonding material 30 by the shielding member 40, leakage of the bonding material 30 into the gap 201 and plasma irradiation of the bonding material 30 are reliably suppressed.
 (変形例1) (Modification example 1)
 図7は、本実施形態の変形例1に係るスパッタリングターゲットの模式的斜視図である。 FIG. 7 is a schematic perspective view of the sputtering target according to the first modification of the present embodiment.
 スパッタリングターゲット2においては、ターゲット本体20がバッキングチューブ10の中心軸10cの方向に列状となって複数並設されている。複数のターゲット本体20のそれぞれは、中心軸10cの方向に互いに離間して配置される。複数のターゲット本体20を有するスパッタリングターゲット2の中心軸10cの方向における長さは、2000mm以上である。 In the sputtering target 2, a plurality of target bodies 20 are arranged side by side in a row in the direction of the central axis 10c of the backing tube 10. Each of the plurality of target bodies 20 is arranged apart from each other in the direction of the central axis 10c. The length of the sputtering target 2 having the plurality of target bodies 20 in the direction of the central axis 10c is 2000 mm or more.
 中心軸10cの方向に隣り合うターゲット本体20の間隙202は、間隙201よりも狭めてもよい。これにより、ターゲット本体20を中心軸10cの方向に複数重ねたとしても、間隙の容積は過大とならない。 The gap 202 of the target main body 20 adjacent to each other in the direction of the central axis 10c may be narrower than the gap 201. As a result, even if a plurality of target bodies 20 are stacked in the direction of the central axis 10c, the volume of the gap does not become excessive.
 このような構成によれば、上述した効果に加え、スパッタリングターゲットの中心軸10cの方向における長さを簡便に長くすることができる。 According to such a configuration, in addition to the above-mentioned effect, the length of the sputtering target in the direction of the central axis 10c can be easily increased.
 (変形例2) (Modification example 2)
 図8(a)、(b)は、本実施形態の変形例2に係るスパッタリングターゲットの模式的断面図である。 8 (a) and 8 (b) are schematic cross-sectional views of the sputtering target according to the second modification of the present embodiment.
 ターゲット本体20においては、間隙201に連通する凹部203がターゲット本体20の内側に設けられてもよい。凹部203は、バッキングチューブ10の側に形成される。凹部203には、遮蔽部材40A(図8(a))または、遮蔽部材40B(図8(b))が収容される。 In the target body 20, a recess 203 communicating with the gap 201 may be provided inside the target body 20. The recess 203 is formed on the side of the backing tube 10. The shielding member 40A (FIG. 8A) or the shielding member 40B (FIG. 8B) is housed in the recess 203.
 このような構成であれば、遮蔽部材40A(または、遮蔽部材40B)とバッキングチューブ10との間の空間が確実に確保される。これにより、溶融した接合材30が遮蔽部材40A(または、遮蔽部材40B)によって負荷を受けることなく、バッキングチューブ10とターゲット本体20との間により満遍なく行き渡る。 With such a configuration, the space between the shielding member 40A (or the shielding member 40B) and the backing tube 10 is surely secured. As a result, the molten bonding material 30 is evenly distributed between the backing tube 10 and the target body 20 without being loaded by the shielding member 40A (or the shielding member 40B).
 図9は、ターゲット本体とバッキングチューブとの間に接合材を充填する別の様子を示す模式図である。 FIG. 9 is a schematic view showing another state in which the bonding material is filled between the target body and the backing tube.
 例えば、バッキングチューブ10及びターゲット本体20を横置きにした状態で、下方から接合材30をバッキングチューブ10とターゲット本体20との間に接合材30を注入する場合には、溶融した接合材30が遮蔽部材40A(または、遮蔽部材40B)によって負荷を受けることなく、バッキングチューブ10とターゲット本体20との間により満遍なく行き渡ることになる。 For example, when the bonding material 30 is injected from below between the backing tube 10 and the target body 20 with the backing tube 10 and the target body 20 placed horizontally, the molten bonding material 30 is formed. The backing tube 10 and the target main body 20 are evenly distributed without being loaded by the shielding member 40A (or the shielding member 40B).
 [ターゲット部材] [Target member]
 (実施例) (Example)
 原料として、一次粒子の平均粒径が1.1μmであるIn粉と、一次粒子の平均粒径が0.5μmであるZnO粉と、一次粒子の平均粒径が1.3μmであるGaを酸化物のモル比で1:2:1となるように秤量した。これらの原料粉末を湿式ボールミルで粉砕・混合した。粉砕メディアとしてφ5mmのジルコニアボールを使用した。粉砕混合したスラリーをスプレードライヤで乾燥造粒し、造粒粉を得た。 As raw materials, In 2 O 3 powder having an average particle size of primary particles of 1.1 μm, ZnO powder having an average particle size of primary particles of 0.5 μm, and an average particle size of primary particles of 1.3 μm. Ga 2 O 3 was weighed so that the molar ratio of oxides was 1: 2: 1. These raw material powders were pulverized and mixed with a wet ball mill. A zirconia ball having a diameter of 5 mm was used as the crushing medium. The pulverized and mixed slurry was dried and granulated with a spray dryer to obtain granulated powder.
 金属製の芯棒5が内部に設置されたポリウレタン製の型6に造粒粉を充填して、造粒粉を密封後、98MPaの圧力でCIP成形を行った。これにより、2つの半円筒状の成形体(被焼成体)22を得た。同時に、支持治具72を成形した。支持治具72の寸法は、幅40mm×高さ77mmである。 The polyurethane mold 6 in which the metal core rod 5 was installed was filled with the granulated powder, the granulated powder was sealed, and then CIP molding was performed at a pressure of 98 MPa. As a result, two semi-cylindrical molded bodies (molded bodies) 22 were obtained. At the same time, the support jig 72 was molded. The dimensions of the support jig 72 are width 40 mm × height 77 mm.
 成形体22を脱脂炉に横向きに静置して600℃で脱脂を行った。脱脂処理が終了した後、成形体22をアルミナ製の支持台70上に横向きに静置し、支持台70上で列状に並べた3個の支持治具72で成形体22を支持した。成形体22のサンプル数としては、10回の成形を行うことで、計20個(1回の成形で2個)の成形体22を作製した。 The molded body 22 was left to stand sideways in a degreasing furnace and degreased at 600 ° C. After the degreasing treatment was completed, the molded body 22 was placed sideways on the support base 70 made of alumina, and the molded body 22 was supported by three support jigs 72 arranged in a row on the support base 70. As for the number of samples of the molded body 22, a total of 20 molded bodies (2 in one molding) were produced by performing molding 10 times.
 成形体22それぞれを焼成炉内で最高温度1500℃、10時間の加熱処理を行い、長さ1050mmの半円筒型のターゲット部材20A、20Bを得た。焼成後の20個のターゲット部材の内径の歪みの平均は、1.1mmであった。 Each of the molded bodies 22 was heat-treated at a maximum temperature of 1500 ° C. for 10 hours in a firing furnace to obtain semi-cylindrical target members 20A and 20B having a length of 1050 mm. The average strain of the inner diameters of the 20 target members after firing was 1.1 mm.
 (比較例1) (Comparative example 1)
 実施例と同条件で製作した造粒粉を凸部52が設けられていない丸棒状の金属製の芯棒と型6との間に充填した。造粒粉を密封後、98MPaの圧力でCIP成形を行い、間隙201のない円筒状の成形体を得た。得られた成形体(被焼成体)を立てた状態で脱脂炉内で600℃で脱脂を行った。成形体のサンプル数としては、10回の成形を行うことで、計10個(1回の成形で1個)の成形体を作製した。 The granulated powder produced under the same conditions as in the examples was filled between the round bar-shaped metal core rod and the mold 6 in which the convex portion 52 was not provided. After sealing the granulated powder, CIP molding was performed at a pressure of 98 MPa to obtain a cylindrical molded body having no gap 201. The obtained molded body (molded body) was degreased at 600 ° C. in a degreasing furnace in an upright state. As for the number of samples of the molded body, a total of 10 molded bodies (1 in one molding) were produced by performing the molding 10 times.
 脱脂処理が終了した成形体は、支持台70の上に立てた状態で静置し、焼成炉内で最高温度1500℃、10時間の焼成を行った。これにより、長さ350mmの円筒型のターゲット部材が得られた。 The molded product after the degreasing treatment was left standing on a support 70 and fired at a maximum temperature of 1500 ° C. for 10 hours in a firing furnace. As a result, a cylindrical target member having a length of 350 mm was obtained.
 10個のターゲット部材の内径の歪みの平均は、2mmとなり、実施例よりも大きくなった。この要因の1つとして、焼成時の収縮が支持台70と接触していた端面の滑りが支持台70との摩擦抵抗によって阻害されたため、上側の端面との内径の差が大きくなったと考えられる。 The average strain of the inner diameters of the 10 target members was 2 mm, which was larger than that of the examples. It is considered that one of the reasons for this is that the shrinkage during firing was hindered by the frictional resistance of the end face that was in contact with the support 70, and the difference in inner diameter from the upper end face became large. ..
 (比較例2) (Comparative example 2)
 実施例と同条件で製作した造粒粉を比較例1と同条件でCIP成形、脱脂を行って円筒状の成形体を得た。脱脂処理が終了した成形体を支持台70上で横向きに静置し、焼成炉内で最高温度1500℃、10時間の焼成を行い、長さ1050mmの円筒型のターゲット部材を得た。成形体のサンプル数としては、10回の成形を行うことで、計10個(1回の成形で1個)の成形体を作製した。 The granulated powder produced under the same conditions as in Example 1 was CIP molded and degreased under the same conditions as in Comparative Example 1 to obtain a cylindrical molded body. The molded product after the degreasing treatment was allowed to stand sideways on the support 70 and fired at a maximum temperature of 1500 ° C. for 10 hours in a firing furnace to obtain a cylindrical target member having a length of 1050 mm. As for the number of samples of the molded body, a total of 10 molded bodies (1 in one molding) were produced by performing the molding 10 times.
 10個のターゲット部材の中、4本のターゲット部材に割れが発生した。割れのない残り6個のターゲット部材の内径の歪みの平均は10mmとなり、比較例1よりも大きくなった。この要因の1つとして、横向きの静置では、焼成時の収縮の際に自重によって歪みが大きくなることが考えられる。 Of the 10 target members, 4 target members were cracked. The average strain of the inner diameters of the remaining six target members without cracks was 10 mm, which was larger than that of Comparative Example 1. As one of the factors, it is considered that in the case of standing sideways, the strain becomes large due to its own weight when it shrinks during firing.
 実施例、比較例1、2でCIP成形した成形体の本数と、その中で割れが生じなかったターゲット部材の個数及び内径の歪みを表1にまとめた。 Table 1 summarizes the number of CIP-molded compacts in Examples 1 and 2, the number of target members that did not crack, and the distortion of the inner diameter.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [スパッタリングターゲット] [Sputtering target]
 実施例で得られた半円筒型のターゲット部材20A、20Bを内径135mm、外径147mm、長さ1000mmになるように機械加工を行い、一組のターゲット部材20A、20Bを準備した。また、厚さ0.2mmのTi製の金属シート403にプラズマ溶射によって酸化物層404(IGZO層)を積層させた幅5mmの遮蔽部材40を製作した。 The semi-cylindrical target members 20A and 20B obtained in the examples were machined so as to have an inner diameter of 135 mm, an outer diameter of 147 mm and a length of 1000 mm, and a set of target members 20A and 20B was prepared. Further, a shielding member 40 having a width of 5 mm was produced by laminating an oxide layer 404 (IGZO layer) on a metal sheet 403 made of Ti having a thickness of 0.2 mm by plasma spraying.
 一組のターゲット部材20A、20Bを円筒状になるように対向させ、間隙201に内側から遮蔽部材40を貼付した。続けて、円筒状のターゲット部材20A、20B(ターゲット本体20)の内部にバッキングチューブ10を配置した。なお、バッキングチューブ10の内周面102には、超音波発信機を搭載したコテで超音波振動を与えながらInの擦り込むみをする前処理を行った。 A set of target members 20A and 20B were opposed to each other so as to form a cylinder, and a shielding member 40 was attached to the gap 201 from the inside. Subsequently, the backing tube 10 was arranged inside the cylindrical target members 20A and 20B (target body 20). The inner peripheral surface 102 of the backing tube 10 was pretreated by rubbing In while applying ultrasonic vibration with a trowel equipped with an ultrasonic transmitter.
 ターゲット本体20と、バッキングチューブ10とが同心円状になるように位置あわせを行った後、溶融したInの接合材30をターゲット本体20と、バッキングチューブ10との間に注入した。この後、接合材30を冷却して固化させた。 After aligning the target body 20 and the backing tube 10 so as to be concentric, the molten In bonding material 30 was injected between the target body 20 and the backing tube 10. After that, the bonding material 30 was cooled and solidified.
 得られたスパッタリングターゲット1の間隙201の幅は0.3mmであった。間隙201をマイクロスコープで観察した結果、接合材30の漏れは観測されなかった。 The width of the gap 201 of the obtained sputtering target 1 was 0.3 mm. As a result of observing the gap 201 with a microscope, no leakage of the bonding material 30 was observed.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。各実施形態は、独立の形態とは限らず、技術的に可能な限り複合することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made. Each embodiment is not limited to an independent form and can be combined as technically possible as possible.
 1、2…スパッタリングターゲット
 5…芯棒
 5c…中心軸
 51…外周面
 52…凸部
 53…空間部
 6…型
 6w…内壁
 10…バッキングチューブ
 10c…中心軸
 101…外周面
 102…内周面
 20…ターゲット本体
 20A、20B…ターゲット部材
 201、202…間隙
 21…粉体
 22…成形体
 22w…当接面
 30…接合材
 40、40A、40B…遮蔽部材
 401…粘着シート
 402…樹脂シート
 403…金属シート
 404…酸化物層
 70…支持台
 71…支持面
 72…支持冶具
1, 2 ... Sputtering target 5 ... Core rod 5c ... Central axis 51 ... Outer surface 52 ... Convex 53 ... Space 6 ... Type 6w ... Inner wall 10 ... Backing tube 10c ... Central axis 101 ... Outer surface 102 ... Inner peripheral surface 20 ... Target body 20A, 20B ... Target member 201, 202 ... Gap 21 ... Powder 22 ... Molded body 22w ... Contact surface 30 ... Bonding material 40, 40A, 40B ... Shielding member 401 ... Adhesive sheet 402 ... Resin sheet 403 ... Metal Sheet 404 ... Oxide layer 70 ... Support stand 71 ... Support surface 72 ... Support jig

Claims (8)

  1.  筒状のバッキングチューブと、
     前記バッキングチューブの外周面に沿うように並設され円弧状の断面を有する複数のターゲット部材を含み、前記複数のターゲット部材のそれぞれが前記バッキングチューブの中心軸周りに離間するように配置され、前記中心軸周りに並ぶターゲット部材間に形成される間隙が前記バッキングチューブの中心軸方向に延在するターゲット本体と、
     前記バッキングチューブと前記ターゲット本体との間に設けられ、前記バッキングチューブと前記複数のターゲット部材のそれぞれとを接合する接合材と、
     前記接合材と前記ターゲット本体との間に設けられ、前記間隙を前記接合材の側から遮蔽する遮蔽部材と
     を具備するスパッタリングターゲット。
    With a tubular backing tube
    A plurality of target members arranged side by side along the outer peripheral surface of the backing tube and having an arcuate cross section are included, and each of the plurality of target members is arranged so as to be separated from each other around the central axis of the backing tube. A target body in which a gap formed between target members arranged around the central axis extends in the central axis direction of the backing tube,
    A joining material provided between the backing tube and the target body and joining the backing tube and each of the plurality of target members.
    A sputtering target provided between the bonding material and the target main body and provided with a shielding member that shields the gap from the side of the bonding material.
  2.  請求項1に記載のスパッタリングターゲットにおいて、
     前記ターゲット本体は、一組のターゲット部材によって前記バッキングチューブを囲み、
     前記一組のターゲット部材を前記バッキングチューブの前記中心軸方向と直交する方向に切断した場合、前記一組のターゲット部材間に形成される一対の前記間隙間に前記バッキングチューブの中心軸が位置する
     スパッタリングターゲット。
    In the sputtering target according to claim 1,
    The target body surrounds the backing tube with a set of target members.
    When the set of target members is cut in a direction orthogonal to the central axis direction of the backing tube, the central axis of the backing tube is located between the pair of gaps formed between the set of target members. Sputtering target.
  3.  請求項1または2に記載のスパッタリングターゲットにおいて、
     前記ターゲット本体は、前記バッキングチューブの前記中心軸方向に列状となって複数並設されている
     スパッタリングターゲット。
    In the sputtering target according to claim 1 or 2.
    A plurality of target main bodies are arranged side by side in a row in the central axis direction of the backing tube.
  4.  請求項1~3のいずれか1つに記載のスパッタリングターゲットにおいて、
     前記複数のターゲット部材のそれぞれは、酸化物の焼結体によって構成されている
     スパッタリングターゲット。
    In the sputtering target according to any one of claims 1 to 3.
    Each of the plurality of target members is a sputtering target composed of an oxide sintered body.
  5.  請求項4に記載のスパッタリングターゲットにおいて、
     前記焼結体は、In、Ga、及びZnを有する
     スパッタリングターゲット。
    In the sputtering target according to claim 4,
    The sintered body is a sputtering target having In, Ga, and Zn.
  6.  筒状のバッキングチューブと、前記バッキングチューブを囲むターゲット本体と、前記バッキングチューブと前記ターゲット本体との間に介設され、前記バッキングチューブと前記ターゲット本体とを接合する接合材とを有するスパッタリングターゲットの製造方法であって、
     中心軸を周回する外周面が前記バッキングチューブの外周面と同じ曲率で構成され、前記外周面から外側に突出する凸部を有する円柱状の芯棒であって、筒状の型によって前記外周面が囲まれたときに、前記外周面と前記型とによって形成される空間が前記凸部によって前記中心軸の周りに複数の空間部に画定される前記芯棒を準備し、
     前記芯棒と前記型とによって前記複数の空間部を形成し、
     前記複数の空間部のそれぞれに粉体を充填し、
     前記粉体に前記型を介して等方的に圧力をかけることによって前記粉体による成形体を形成し、
     前記成形体を加熱することにより、前記粉体が焼結した焼結体を形成する
     スパッタリングターゲットの製造方法。
    A sputtering target having a tubular backing tube, a target body surrounding the backing tube, and a bonding material interposed between the backing tube and the target body and joining the backing tube and the target body. It ’s a manufacturing method,
    A columnar core rod having an outer peripheral surface orbiting the central axis having the same curvature as the outer peripheral surface of the backing tube and having a convex portion protruding outward from the outer peripheral surface, and the outer peripheral surface is formed by a tubular mold. The core rod is prepared so that the space formed by the outer peripheral surface and the mold is defined by the convex portion in a plurality of space portions around the central axis when the outer peripheral surface and the mold are surrounded.
    The plurality of space portions are formed by the core rod and the mold.
    Each of the plurality of spaces is filled with powder, and
    By applying isotropic pressure to the powder through the mold, a molded product made of the powder is formed.
    A method for producing a sputtering target, which forms a sintered body in which the powder is sintered by heating the molded body.
  7.  請求項6に記載のスパッタリングターゲットの製造方法において、
     前記空間を前記凸部によって前記中心軸の周りに並ぶ一対の空間部に画定する
     スパッタリングターゲットの製造方法。
    In the method for manufacturing a sputtering target according to claim 6.
    A method for manufacturing a sputtering target, in which the space is defined by the convex portion in a pair of space portions arranged around the central axis.
  8.  請求項6または7に記載のスパッタリングターゲットの製造方法において、
     前記一対の空間部に充填されて形成された前記成形体の長手方向が前記成形体を支持する支持台の支持面に対して平行になるように前記支持台に前記成形体を載置し、
     前記成形体が前記芯棒の前記外周面に当接した当接面と前記支持台との間に前記成形体と同じ成分で構成された支持冶具を介在させ、
     前記支持冶具によって前記当接面を支持しながら前記成形体を焼成する
     スパッタリングターゲットの製造方法。
    In the method for manufacturing a sputtering target according to claim 6 or 7.
    The molded body is placed on the support so that the longitudinal direction of the molded body formed by filling the pair of spaces is parallel to the support surface of the support that supports the molded body.
    A support jig composed of the same components as the molded body is interposed between the contact surface where the molded body is in contact with the outer peripheral surface of the core rod and the support base.
    A method for manufacturing a sputtering target in which a molded product is fired while supporting the contact surface with the support jig.
PCT/JP2020/017913 2019-06-10 2020-04-27 Sputtering target and sputtering target manufacturing method WO2020250586A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080016634.XA CN113508187B (en) 2019-06-10 2020-04-27 Sputtering target and method for producing sputtering target
KR1020217027471A KR102429251B1 (en) 2019-06-10 2020-04-27 Sputtering target and manufacturing method of sputtering target
JP2020560496A JP7016432B2 (en) 2019-06-10 2020-04-27 Sputtering target and manufacturing method of sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019107932 2019-06-10
JP2019-107932 2019-06-10

Publications (1)

Publication Number Publication Date
WO2020250586A1 true WO2020250586A1 (en) 2020-12-17

Family

ID=73781760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017913 WO2020250586A1 (en) 2019-06-10 2020-04-27 Sputtering target and sputtering target manufacturing method

Country Status (5)

Country Link
JP (1) JP7016432B2 (en)
KR (1) KR102429251B1 (en)
CN (1) CN113508187B (en)
TW (1) TWI815011B (en)
WO (1) WO2020250586A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024965A (en) * 1988-06-09 1990-01-09 Hitachi Ltd Sputtering target and magnetron sputtering device using the same
US20040206620A1 (en) * 2003-04-08 2004-10-21 Hong Wang Segmented sputtering target and method/apparatus for using same
JP2006083408A (en) * 2004-09-14 2006-03-30 Shin Meiwa Ind Co Ltd Vacuum film-forming apparatus
JP2015004116A (en) * 2013-06-24 2015-01-08 株式会社アルバック Target assembly and manufacturing method of the same
JP2015120975A (en) * 2013-11-25 2015-07-02 株式会社フルヤ金属 Production method of sputtering target, and sputtering target

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110172A1 (en) * 2006-03-23 2007-10-04 W. C. Heraeus Gmbh Tubular target
JP5482020B2 (en) * 2008-09-25 2014-04-23 東ソー株式会社 Cylindrical sputtering target and manufacturing method thereof
EP2384374B1 (en) * 2009-01-30 2014-03-26 Praxair S.T. Technology, Inc. Tubular target
JP6089983B2 (en) * 2012-07-18 2017-03-08 三菱マテリアル株式会社 Cylindrical sputtering target and manufacturing method thereof
JP2015168832A (en) 2014-03-05 2015-09-28 東ソー株式会社 Cylindrical sputtering target and method for manufacturing the same
JP5887625B1 (en) * 2015-03-27 2016-03-16 Jx金属株式会社 Cylindrical sputtering target, cylindrical sintered body, cylindrical molded body, and manufacturing method thereof
JP6861035B2 (en) * 2017-01-13 2021-04-21 三井金属鉱業株式会社 Manufacturing method of cylindrical sputtering target
JP6895263B2 (en) * 2017-01-24 2021-06-30 三井金属鉱業株式会社 Manufacturing Methods for Cylindrical Sputtering Targets, Backing Tubes, and Cylindrical Sputtering Targets

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024965A (en) * 1988-06-09 1990-01-09 Hitachi Ltd Sputtering target and magnetron sputtering device using the same
US20040206620A1 (en) * 2003-04-08 2004-10-21 Hong Wang Segmented sputtering target and method/apparatus for using same
JP2006083408A (en) * 2004-09-14 2006-03-30 Shin Meiwa Ind Co Ltd Vacuum film-forming apparatus
JP2015004116A (en) * 2013-06-24 2015-01-08 株式会社アルバック Target assembly and manufacturing method of the same
JP2015120975A (en) * 2013-11-25 2015-07-02 株式会社フルヤ金属 Production method of sputtering target, and sputtering target

Also Published As

Publication number Publication date
CN113508187A (en) 2021-10-15
TWI815011B (en) 2023-09-11
JP7016432B2 (en) 2022-02-04
JPWO2020250586A1 (en) 2021-09-13
KR102429251B1 (en) 2022-08-03
KR20210118173A (en) 2021-09-29
CN113508187B (en) 2024-02-27
TW202102702A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
KR101896701B1 (en) Cylindrical sputtering target, and method for manufacturing same
JP5103911B2 (en) Cylindrical sputtering target and manufacturing method thereof
JP4961672B2 (en) Cylindrical sputtering target, ceramic sintered body, and manufacturing method thereof
JP5283354B2 (en) Rotary target assembly
JP5194460B2 (en) Cylindrical sputtering target and manufacturing method thereof
TW201615873A (en) Cylindrical ceramics spattering target, and apparatus and method for making same
JP6052137B2 (en) Target material for cylindrical sputtering target, cylindrical sputtering target and method for manufacturing the same
WO2020250586A1 (en) Sputtering target and sputtering target manufacturing method
JP2011252237A (en) Method of manufacturing cylindrical sputtering target
WO2021060267A1 (en) Cylindrical sputtering target and method for manufacturing same
JP6768606B2 (en) Manufacturing method of cylindrical sputtering target
JP6861048B2 (en) Manufacturing method of cylindrical sputtering target, sintered body and cylindrical sputtering target
WO2021100233A1 (en) Sputtering target and method for manufacturing same
JP4000813B2 (en) Sputtering target
TWI704245B (en) Sputtering target and method of manufacturing the same
JP6774702B2 (en) Manufacturing method of cylindrical sputtering target
JP6053977B2 (en) Cylindrical sputtering target
KR101980465B1 (en) Sputtering target and method for producing same
JP6968300B2 (en) Sputtering target and manufacturing method of sputtering target
WO2020250587A1 (en) Sputtering target and sputtering target manufacturing method
JP6830421B2 (en) Manufacturing method of cylindrical sputtering target
JP6774910B2 (en) Manufacturing method of cylindrical sputtering target

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020560496

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217027471

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20823223

Country of ref document: EP

Kind code of ref document: A1