WO2021100233A1 - Sputtering target and method for manufacturing same - Google Patents

Sputtering target and method for manufacturing same Download PDF

Info

Publication number
WO2021100233A1
WO2021100233A1 PCT/JP2020/024891 JP2020024891W WO2021100233A1 WO 2021100233 A1 WO2021100233 A1 WO 2021100233A1 JP 2020024891 W JP2020024891 W JP 2020024891W WO 2021100233 A1 WO2021100233 A1 WO 2021100233A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical
base material
target
cylindrical base
sputtering target
Prior art date
Application number
PCT/JP2020/024891
Other languages
French (fr)
Japanese (ja)
Inventor
享祐 寺村
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2020560296A priority Critical patent/JP7139453B2/en
Priority to CN202080078115.6A priority patent/CN114651086A/en
Priority to KR1020227014428A priority patent/KR20220104150A/en
Publication of WO2021100233A1 publication Critical patent/WO2021100233A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3423Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3491Manufacturing of targets

Definitions

  • a long cylindrical sputtering target with a length of 2 m or more is required.
  • a plurality of cylindrical target materials are placed on the outside of a long cylindrical base material in the axial direction. A plurality of them are arranged side by side.
  • Patent Documents 1 and 2 a plurality of target materials obtained by dividing the target material into a plurality of target materials in the axial direction are manufactured, and the plurality of target materials are arranged side by side in the axial direction on the outer peripheral side of the cylindrical base material. , It is disclosed that the sputtering target is manufactured by joining them with a joining material.
  • the cylindrical sputtering target becomes longer as described above, when the cylindrical base material becomes longer, the influence of the warp of the cylindrical base material cannot be ignored.
  • many long cylindrical base materials having a length of more than 2 m have a problem that they are warped and the warp width is large. If the warp of the cylindrical base material is large, the thickness of the bonding material becomes non-uniform, cooling is insufficient in the portion where the thickness of the bonding material is thin, and problems such as cracks occur during sputtering occur. ..
  • a sputtering apparatus for forming a film on a larger 10th generation glass substrate has been used, and the total length of the target has exceeded 3 m. When the total length of the target exceeds 3 m, the problem of warpage as described above is more remarkable.
  • Patent Document 2 attention is paid to the eccentricity between the base material and the target material, and in order to suppress this, the warp of the cylindrical base material is confirmed prior to manufacturing the cylindrical target, and when the warp is large, it is confirmed.
  • a method of correcting the warp of the cylindrical base material using a press machine or the like has been proposed.
  • Patent Document 3 assumes that the cylindrical base material is curved, and arranges each of the plurality of cylindrical target materials according to the bending deformation of the cylindrical base material. That is, the central axis of each cylindrical target material is tilted or offset in the radial direction at any position in the circumferential direction so that the inner peripheral surface of the cylindrical target material and the outer peripheral surface of the cylindrical base material are formed. Discloses a method of ensuring the required bonding material thickness between.
  • Patent Document 2 proposes to measure the warp of a cylindrical base material in advance, and if the warp is large, correct the warp using a press machine or the like.
  • the correction was made. It had a problem that the warp returned to its original state (also called "warp back").
  • Patent Document 3 since the invention described in Patent Document 3 is based on the premise that a curved cylindrical base material is used, when the axial length of the cylindrical target material is less than 750 mm, the required joint material thickness is obtained. On the other hand, if the axial length of the cylindrical target material is longer than that, it is difficult to secure the required thickness of the joint material.
  • the gap between the cylindrical target materials causes nodules during sputtering, so that the cylinder is cylindrical. It is preferable to reduce the number of divisions of the shape target material as much as possible.
  • the axial length of the cylindrical target material also increases year by year, and the cylindrical target material also tends to become longer, less than 750 mm. It's getting harder to settle down.
  • the present invention relates to a sputtering target capable of using a warped cylindrical base material as a constituent material and a method for manufacturing the same, even if the cylindrical target material has a relatively long axial length, and when the bonding material is filled. Even after the heating of the above, that is, at the time of filling the bonding material, the cylindrical base material is preheated, or the heat-melted bonding material is filled between the cylindrical base material and the target material, and the cylindrical base material is heated. Even if it is used, the influence of the warp of the cylindrical base material used can be suppressed, and as a result, the thickness of the bonding material is uniform and the amount of step between adjacent cylindrical target materials is small. Moreover, it is intended to provide a new method for manufacturing a sputtering target and a new sputtering target capable of manufacturing a sputtering target having a uniform axial distance between adjacent cylindrical target materials.
  • the present invention is also a sputtering target comprising a cylindrical base material and a cylindrical target material, and the cylindrical base material and the cylindrical target material are joined by a joining material.
  • At least one of the cylindrical target materials has an axial length of 750 mm or more, the difference between the maximum value and the minimum value of the thickness of the bonding material is 1.0 mm or less, and the adjacent cylindrical target materials
  • a sputtering target including a cylindrical base material and a plurality of cylindrical target materials, and at least one of the cylindrical target materials has an axial length.
  • the length is 750 mm or more, the difference between the maximum value and the minimum value of the thickness of the bonding material is 1.0 mm or less, and the maximum value of the step amount between the outer peripheral surfaces of adjacent cylindrical target materials is 0.5 mm or less. Therefore, it is possible to manufacture a sputtering target in which the difference between the maximum value and the minimum value of the axial distance between adjacent cylindrical target materials is 0.2 mm or less.
  • the thickness of the bonding layer is uniformly secured, not only is it difficult for cracks to occur during sputtering, but also the amount of steps between the outer peripheral surfaces between adjacent cylindrical target materials is large. Since it is small and the gaps are evenly spaced, the probability of abnormal occurrence during sputtering can be significantly reduced. Furthermore, since there is little warpage, that is, bending, blurring is small when the target is rotated, the distance between the cylindrical target and the substrate can be kept constant, and the quality of the film formed by sputtering can be made uniform. it can.
  • FIG. 5 is an enlarged cross-sectional view of a main part for explaining a step amount h between adjacent target materials and an axial distance d. It is a vertical sectional view which showed the manufacturing apparatus of the sputtering target used in an Example.
  • the method for manufacturing a sputtering target according to an example of the embodiment of the present invention is a sputtering target including a cylindrical base material 2 and a plurality of cylindrical target materials 3, 3, ... It is a manufacturing method of The warp width or warp direction of the cylindrical base material 2 is measured (referred to as “measurement step”).
  • the cylindrical base material 2 is warped in the direction opposite to the warped direction (referred to as "processing process”).
  • a plurality of cylindrical target materials 3, 3, ... Are arranged side by side at intervals in the axial direction of the cylindrical base material 2 on the outside of the processed cylindrical base material 2, and the cylindrical base material 2 and the cylindrical base material 2 are arranged.
  • This is a method for manufacturing a sputtering target which comprises joining the cylindrical target material 3 with a joining material 4.
  • the sputtering target (“this sputtering target”) 1 manufactured by the present target manufacturing method has a plurality of cylindrical target materials 3 on the outside of one cylindrical base material 2 and a cylindrical base. It is a sputtering target formed by arranging the materials 2 side by side at intervals in the axial direction and joining the cylindrical base material 2 and the cylindrical target material 3 with a bonding material 4 (not shown). Details of the sputtering target 1 will be described later. Here, first, the constituent members will be described.
  • the target material is composed of a plurality of cylindrical target materials 3, 3, ..., And the plurality of cylindrical target materials 3 are located on the outer peripheral side of the cylindrical base material 2 in the axial direction of the cylindrical base material 2. Arranged at appropriate intervals.
  • Each cylindrical target material 3 may have an inner diameter larger than the outer diameter of the cylindrical base material 2.
  • the axial length L 3 is greater than or equal to 750 mm, among others 850mm Above all, it is more preferably 950 mm or more, and more preferably 1400 mm or more.
  • the material of the cylindrical target material 3 is not particularly limited.
  • an oxide containing any one or more of Cu, Al, In, Sn, Ti, Ba, Ca, Zn, Mg, Ge, Y, La, Al, Si, Ga and W can be mentioned.
  • the oxide include In—Sn—O, In—Ti—O, In—Ga—Zn—O, In—Zn—Sn—O, In—Ga—Zn—Sn—O, Ga—Zn—.
  • the cylindrical base material 2 has a linear central axis and an outer peripheral surface having a cylindrical shape parallel to the axis.
  • the newly used cylindrical base material and the recycled cylindrical base material 2 are curved, in other words, warped in an arch shape, and the outer peripheral surface of the cylindrical base material 2 is from the linear axis direction. Has a deviation.
  • the material of the cylindrical base material 2 may be a metal such as Ti, SUS or Cu. However, it is not limited to these.
  • the bonding material 4 is supplied in a molten state to the gap between the cylindrical base material 2 and each cylindrical target material 3 arranged at a predetermined position on the outer peripheral side thereof at the time of manufacturing the sputtering target, and is supplied to the gap. After being filled, it is cured to join the cylindrical base material 2 and the cylindrical target material 3.
  • the material of the bonding material 4 is not particularly limited as long as it can be used for bonding this type of target material and the base material.
  • Examples thereof include low melting point solders such as In metal, In—Sn metal, and In alloy metal obtained by adding a trace metal component to In. Since the melting point of the low melting point solder is 150 to 250 ° C., when filling the bonding material 4, it is usual to heat the bonding material 4 to 150 to 300 ° C. to melt it.
  • the warp width or warp direction of the cylindrical base material 2 used as the constituent material is measured.
  • the method of measuring the warp width is not particularly limited.
  • the cylindrical base material 2 may be axially rotated to measure the displacement width of the outer peripheral surface, that is, the warp width, or the cylindrical base material 2 may be placed sideways on a surface plate and fixed.
  • the distance between the smooth surface of the plate and the outer peripheral surface 2a of the cylindrical meter base material 2 may be measured along the vertical line erected on the surface plate, that is, the displacement width, that is, the warp width. It may be measured by other methods.
  • the warp width may be measured at one place or two or more places in the length direction of the cylindrical base material 2. Since the cylindrical base material 2 is often warped in an arch shape, the maximum warp width and the warp direction can be measured by measuring the warp width in the vicinity of the central portion in the length direction. However, since it is not always warped in an arch shape, it is preferable to measure the warp width at a plurality of places at intervals in the length direction. For example, it is preferable to measure at intervals of 100 mm to 1000 mm, and it is more preferable to measure at intervals of 200 mm or more or 800 mm or less, and particularly preferably at intervals of 500 mm or less.
  • the cylindrical base material 2 is installed horizontally and axially rotatable, a dial gauge 5 is applied to the outer peripheral surface 2a of the cylindrical base material 2, and the cylindrical base material 2 is rotated once. The reading of the dial gauge 5 is measured. Then, the difference (Hmax-Hmin) between the maximum value Hmax and the minimum value Hmin of the reading of the dial gauge 5 can be set as the warp width.
  • the means for axially rotating the cylindrical base material 2 is arbitrary.
  • it can be placed on two rotating rollers to rotate it, or the vicinity of both ends of the cylindrical base material can be placed in the groove of a support base provided with a V-shaped groove and rotated by hand or by a roller.
  • the means of making it work is arbitrary.
  • the warp width X or the warp direction of the obtained cylindrical base material 2 may be measured as described above, or the obtained cylindrical base material 2 may be heated to form a heated cylinder.
  • the warp width Y to the warp direction of the shape base material 2 may be measured as described above.
  • the heating temperature of the cylindrical base material 2 is the same as that at the time of filling the bonding material, that is, the cylindrical base material 2.
  • the heating temperature of the cylindrical base material 2 it is preferable to heat the cylindrical base material 2 so that its surface temperature is 150 to 300 ° C., among which 160 ° C. or higher or 240 ° C. or lower, and 170 ° C. or higher among them. Alternatively, it is more preferable to heat the temperature to 230 ° C. or lower.
  • the heating method of the cylindrical base material 2 is not particularly limited.
  • the base material may be placed in an electric furnace or the like and heated from the outside, or a heater may be installed inside the base material and heated from the inside.
  • the cylindrical base material 2 is processed so as to warp in the direction opposite to the originally warped direction by a predetermined width ⁇ .
  • the cylindrical base material 2 is bent by applying pressure in the direction opposite to the warp direction measured in the measurement step, and is shown in FIG. 4 (B).
  • the cylindrical base material 2 may be processed so as to warp in the direction opposite to the warped direction by the width ⁇ , in other words, to displace by ⁇ from the linear axis.
  • the central portion in the axial direction can be pressurized and deformed at one place. Further, it is preferable to pressurize the position measured in the measuring step. For example, it is preferable to measure at intervals of 100 mm to 1000 mm and pressurize and deform at each measurement point.
  • the width ⁇ (mm) at which the cylindrical base material 2 is warped in the direction opposite to the warped direction is preferably determined based on the warp width X or Y measured in the measurement step. This is because the larger the warp width X or Y, the larger the size of the warp return due to heating after processing.
  • the warp width ⁇ (mm) is X (mm) ⁇ (0.10 to 2). It is preferably .00), among which X (mm) x 0.50 or more or X (mm) x 1.50 or less, and among them, X (mm) x 0.80 or more or X (mm) x 1.40.
  • the warp width ⁇ (mm) is Y. It is preferably (mm) ⁇ (0.50 to 1.50), among which Y (mm) ⁇ 0.80 or more or Y (mm) ⁇ 1.40 or less, and among them, Y (mm) ⁇ 0.90. It is more preferably Y (mm) ⁇ 1.30 or less, and more preferably Y (mm) ⁇ 0.95 or more or Y (mm) ⁇ 1.25 or less. If the warp width Y after actually heating and heating is measured and the warp width ⁇ is determined based on the warp width Y, the width ⁇ is determined in consideration of the heating behavior of the obtained cylindrical base material 2. Therefore, the warpage can be further reduced.
  • FIG. 4 (A) As a processing method for pressurizing and warping the cylindrical base material 2, for example, as shown in FIG. 4 (A), at the measurement position (one place or a plurality of places) in the measurement step, the direction opposite to the warp direction.
  • a method of pressurizing the cylindrical base material 2 can be mentioned.
  • P in FIG. 4A indicates a pressurizing direction.
  • the means for pressurizing for example, mechanical press working, forging processing and the like can be mentioned.
  • any means can be adopted as long as the cylindrical base material 2 can be warped by a desired width.
  • an arc-shaped terminal matching the shape of the cylindrical base material 2 may be used for the terminal to which the pressure is applied so that the roundness of the cylindrical base material does not change. Further, heat treatment (annealing) may be further performed if necessary.
  • the processing method of pressurizing and warping the cylindrical base material 2 may be repeated. That is, the cylindrical base material 2 may be repeatedly warped by applying pressure and warping, and then further pressurizing and warping, so that the cylindrical base material 2 is finally warped by a predetermined width ⁇ . Further, the cylindrical base material 2 is heated (measured by measuring the warp width Y) to be pressed and warped, and further heated and pressed to warp, and the like is repeatedly heated and pressurized to warp, and finally a predetermined value is obtained. The cylindrical base material 2 may be warped by the width ⁇ . At this time, the warp width Y needs to be measured only at the beginning after heating.
  • cylindrical target materials 3 are arranged side by side with an interval of 0.15 mm to 0.50 mm in the axial direction.
  • the cylindrical base material 2 and the cylindrical target material 3 are heated, and the bonded material in a molten state is formed in the gap between the cylindrical base material 2 and the cylindrical target material 3. 4 may be filled, the bonding material 4 may be cooled, and each cylindrical target material 3 may be bonded to the periphery of the cylindrical base material 2 by the bonding material 4.
  • the temperature for heating the cylindrical base material 2 and the cylindrical target material 3 before filling the bonding material 4 is preferably the temperature of the bonding material 4 or higher.
  • the temperature of the bonding material 4 when filling the bonding material 4 is a temperature equal to or higher than the melting point of the bonding material, and is preferably heated to 150 to 300 ° C., among which 160 ° C. or higher or 240 ° C. or lower, among which It is more preferable to heat the temperature to 170 ° C. or higher or 230 ° C. or lower.
  • a method for filling and cooling the joint material a known method can be adopted.
  • a sputtering target including a cylindrical base material 2 and a plurality of cylindrical target materials 3, 3, ... Of the plurality of cylindrical target materials 3, 3, ... , At least one has an axial length L 3 of 750 mm or more, a difference between the maximum value and the minimum value of the thickness of the bonding material 4 is 1.0 mm or less, and the adjacent cylindrical target materials 3 and 3 have.
  • the maximum value of the step amount h between the outer peripheral surfaces 3a and 3a is 0.5 mm or less, and the difference between the maximum value and the minimum value of the axial distance d between the adjacent cylindrical target materials 3 and 3 is 0.2 mm or less.
  • a certain sputtering target can be mentioned.
  • the length of the cylindrical base material 2 is preferably 2.0 m to 4 m, particularly 3.0 m or more or 3.8 m or less, and 3.3 m among them, from the viewpoint of further enjoying the effects of the present invention. It is more preferably more than or less than 3.7 m.
  • the outer diameter of the cylindrical base material 2 is preferably 125 mm to 140 mm, more preferably 130 mm or more or 135 mm or less, and more preferably 132 mm or more or 134 mm or less.
  • the inner diameter of the cylindrical target material 3 is preferably 127 mm to 142 mm, more preferably 132 mm or more or 137 mm or less, and more preferably 134 mm or more or 136 mm or less.
  • the wall thickness of the cylindrical target material 3 is preferably 5 mm to 20 mm, more preferably 6 mm or more or 16 mm or less, and more preferably 8 mm or more or 13 mm or less.
  • the axial length L 3 of at least one cylindrical target material 3, from the viewpoint of further enjoy the advantages of the present invention is preferably from 750 mm ⁇ 1500 mm, inter alia 850mm or more or 1450mm or less, 950 mm or more among them, or It is more preferably 1450 mm or less.
  • the difference between the maximum value and the minimum value of the thickness of the joint material 4 is 1.0 mm or less, the thickness of the joint material 4 is uniformly secured. It is possible to prevent the target from cracking, and it is possible to suppress the occurrence of cracking during sputtering. From this point of view, the difference between the maximum value and the minimum value of the thickness of the bonding material 4 is more preferably 0.5 mm or less, and further preferably 0.3 mm or less. At this time, the thickness of the bonding material 4 is preferably 0.5 mm or more, particularly 0.7 mm or more, and particularly preferably 1 mm or more. The thickness of the bonding material 4 can be measured by an ultrasonic flaw detector.
  • the maximum value of the step amount h is larger than 0.5 mm, the cylindrical target material 3 on one side has a protruding shape, and there is a possibility that an adverse effect such as abnormal discharge may occur at the protruding edge portion.
  • the maximum value of the step amount h is more preferably 0.3 mm or less, and further preferably 0.2 mm or less.
  • the step amount h can be measured using, for example, a depth gauge or the like.
  • the difference between the maximum value and the minimum value of the axial distance (interval) d between the adjacent cylindrical target materials 3 and 3 is 0.2 mm or less, an abnormality occurs during sputtering, for example, the end due to thermal expansion during sputtering. It is possible to further reduce the probability that the parts come into contact with each other and chipping or cracking occurs. For example, in a portion where the distance d in the axial direction is large, the cylindrical base material 2 may be exposed, and the base material components may be sputtered and mixed into the film as impurities.
  • the difference between the maximum value and the minimum value of the axial distance d between the adjacent cylindrical target materials 3 and 3 is more preferably 0.15 mm or less, and further preferably 0.1 mm or less.
  • the axial distance (interval) d can be measured using, for example, a filler gauge.
  • Example 1 A recycled cylindrical base material (length 3400 mm, diameter 133 mm, wall thickness 4 mm) is placed on a pedestal that can support axial rotation, and is installed horizontally and axially rotatable. A dial gauge suspended and fixed from above is applied to the outer surface of the central portion in the length direction, the cylindrical base material is rotated once to measure the reading of the dial gauge, and the maximum value Hmax and the minimum value Hmin of the reading are measured. The difference (Hmax-Hmin) from the above was measured as the warp width X (initial).
  • the cylindrical base material was placed in an electric furnace and heated so that its surface temperature was kept at 230 ° C. for 1 hour, and the warp width Y (after heating) after heating was measured in the same manner as above.
  • the ITO cylindrical sputtering target was manufactured as follows using the manufacturing apparatus 40 shown in FIG. 7.
  • ITO cylindrical split target materials having an outer diameter of 153 mm, an inner diameter of 133 mm, a length of 300 mm, 750 mm, 750 mm, and 300 mm are prepared, and the outer peripheral surface of the cylindrical split target material is masked with a heat-resistant film and tape and joined.
  • the surface (inner peripheral surface) was primed with In solder using an ultrasonic soldering iron.
  • the joint surface (outer peripheral surface) of the cylindrical base material processed as described above was also primed with In solder using an ultrasonic soldering iron.
  • the cylindrical base material was attached to a base material holding portion 43c to which an O-ring 48 manufactured by Teflon (registered trademark) was mounted.
  • an O-ring 47 manufactured by Teflon (registered trademark) was attached to the target material holding portion 43b, and one of the cylindrical divided target materials was attached to the target material holding portion 43b.
  • the lower end holding member 43 adjusted the deviation between the lower end of the cylindrical base material and the lower end of the cylindrical split target material to be 0.1 mm.
  • a gap 49 was formed between the cylindrical base material and the cylindrical division target material.
  • the remaining cylindrical division target material was stacked on the cylindrical division target material.
  • An O-ring 51 made of Teflon (registered trademark) having a thickness of 0.5 mm was interposed between the cylindrical split target materials.
  • the O-ring 50 is mounted on the cylindrical split target material placed on the top, the top cylindrical split target material is attached to the target material holding portion 44b, and the cylindrical target material is formed by the target material holding portion 44b.
  • the positions of the nine cylindrical divided target materials were adjusted so that all the steps between the cylindrical divided target materials were 0.2 mm or less. In this way, the upper end portion of the cylindrical target material was held by the target material holding member 44.
  • the base material holding portion 45b was pressed against the upper end portion of the cylindrical base material, and the upper end portion of the cylindrical base material was held by the base material holding member 45.
  • the jig Adjusted the position.
  • the lower holding member 43 is fixed to the titanium connecting member 46 with the fixture 43d
  • the target material holding member 44 is fixed to the fixture 44c
  • the base material holding member 45 is fixed to the titanium connecting member 46 with the fixture 45c.
  • the cylindrical target material was firmly fixed to the manufacturing apparatus 40.
  • the manufacturing apparatus 40, the cylindrical base material and the cylindrical target material were heated to 180 ° C. From the upper side of the target material holding member 44, a sufficient amount of melted In solder at 175 ° C.
  • the manufactured ITO cylindrical sputtering target (sample) was removed from the manufacturing apparatus 40, the O-ring was removed, and the In solder remaining between the cylindrical split target materials was scraped out.
  • the thickness of the bonding material was measured using an ultrasonic flaw detector (manufactured by Hitachi Power Solutions, Ltd .: FS LINE) as follows. Specifically, the thickness of the bonding layer is based on the difference in the detection time between the reflected wave at the interface between the target material and the bonding layer and the reflected wave at the interface between the bonding layer and the base material, and the propagation speed of ultrasonic waves in the bonding layer. was calculated. A probe of 10 MHz was used, and the propagation speed of ultrasonic waves in the bonding layer (In metal) was set to 2700 m / s.
  • the measurement position of the thickness of the joint material is two points 10 mm inward from each of both ends of the target segment in the axial direction for one target segment, and the value obtained by equally dividing the two points is 50 mm or less.
  • Each point is divided into equal parts so as to be equal to each other, and at each of the measurement points in the axial direction, 12 points (0 °, 30 °, 60 °, ..., And 330 ° positions) at intervals of 30 ° in the circumferential direction. did.
  • measurements were performed at the above-mentioned positions, and the difference between the maximum value and the minimum value was defined as the thickness difference of the bonding material.
  • step amounts h between the adjacent target materials were measured using a depth gauge, and the maximum value of the step amount h was obtained.
  • all axial distances d between adjacent target materials were measured using a filler gauge, and the difference between their maximum and minimum values was determined.
  • the measurement positions of all the steps h and the axial distance d between the adjacent target materials are 12 points every 30 ° in the circumferential direction (each position of 0 °, 30 °, 60 °, ..., And 330 °). And said.
  • Example 2 An ITO cylindrical sputtering target (sample) was produced in the same manner as in Example 1 except that the longest cylindrical target material was changed to 850 mm, and each value was measured.
  • Example 3 An ITO cylindrical sputtering target (sample) was produced in the same manner as in Example 1 except that the longest cylindrical target material was changed to 1100 mm, and each value was measured.
  • Example 4 An ITO cylindrical sputtering target (sample) was produced in the same manner as in Example 1 except that the longest cylindrical target material was changed to 1450 mm, and each value was measured.
  • Example 6 An IGZO cylindrical sputtering target (sample) was produced in the same manner as in Example 3 except that the material of the cylindrical target material was changed to IGZO, and each value was measured.
  • Example 2 an ITO cylindrical sputtering target (sample) was produced in the same manner as in Example 2 except that the process of warping the cylindrical base material was changed to not performed, and each value was measured.
  • Example 2 In Example 2, in the processing step of warping the cylindrical base material, an ITO cylindrical sputtering target (sample) was manufactured in the same manner as in Example 2 except that the side opposite to the originally warped direction was not warped. Each value was measured.
  • the joining material is also Even after heating at the time of filling, that is, at the time of filling the bonding material, the cylindrical base material is preheated, or the bonding material heated and melted between the cylindrical base material and the target material is filled, and the cylindrical base material is filled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Ceramic Products (AREA)

Abstract

The present invention relates to a sputtering target for which a warped cylindrical base material can be used as a constituent material and a method for manufacturing the sputtering target, and provides a novel sputtering target manufacturing method whereby it becomes possible to prevent the warpage of a cylindrical base material even when the axis-direction length of a cylindrical target material is relatively long or when the cylindrical base material is subjected to heating upon the filling of a bonding material. Proposed is a sputtering target manufacturing method comprising: measuring the width of warpage of a cylindrical base material; subjecting the cylindrical base material to a warping processing procedure in a direction opposite to the direction of the warpage; arranging a plurality of cylindrical target materials spaced from each other in the axis direction on the outside of the processed cylindrical base material; and bonding the cylindrical base material to the cylindrical target materials together with a bonding material.

Description

スパッタリングターゲット及びその製造方法Sputtering target and its manufacturing method
 本発明は、円筒形基材と、複数の円筒形ターゲット材とを備えたスパッタリングターゲット及びその製造方法に関し、特に湾曲変形して反った円筒形基材を材料として用いることができるスパッタリングターゲットの製造方法に関する。 The present invention relates to a sputtering target including a cylindrical base material and a plurality of cylindrical target materials and a method for manufacturing the same, and in particular, to manufacture a sputtering target capable of using a curved and deformed curved base material as a material. Regarding the method.
 有機EL、液晶ディスプレイやタッチパネル、その他の表示デバイスの製造に際し、ITO等からなる透明導電薄膜を形成するためのスパッタリングでは、平板状の基材上にターゲット材を接合してなる平板型スパッタリングターゲットを用いたマグネトロンスパッタリングが主流であった。
 近年、円筒形基材の外周面にターゲット材を接合した円筒形スパッタリングターゲットを軸線の周りで回転させてスパッタリングするロータリースパッタリングが実用化されている。このようなロータリースパッタリングによれば、平板型スパッタリングターゲットに比べて、格段に高い使用効率が実現できることから高い生産性が得られるなどのメリットがある。
In the production of organic EL, liquid crystal displays, touch panels, and other display devices, in sputtering for forming a transparent conductive thin film made of ITO or the like, a flat plate type sputtering target formed by bonding a target material on a flat plate-shaped base material is used. The magnetron sputtering used was the mainstream.
In recent years, rotary sputtering has been put into practical use in which a cylindrical sputtering target in which a target material is bonded to an outer peripheral surface of a cylindrical base material is rotated around an axis to be sputtered. According to such rotary sputtering, there is an advantage that high productivity can be obtained because a significantly higher usage efficiency can be realized as compared with a flat plate type sputtering target.
 フラットパネルディスプレイや太陽電池で使用されるガラス基板の大型化が進み、この大型化された基板上に薄膜を形成するために、長さ2m以上の長尺の円筒形スパッタリングターゲットが必要となっている。しかし、長さ2m以上の円筒形ターゲットを製造することは困難であるため、長尺な円筒形基材の外側に、複数の円筒形ターゲット材(「分割ターゲット材」とも称する)を軸線方向に複数個並べて配置することが行われている。 Glass substrates used in flat panel displays and solar cells are becoming larger, and in order to form thin films on these enlarged substrates, a long cylindrical sputtering target with a length of 2 m or more is required. There is. However, since it is difficult to manufacture a cylindrical target having a length of 2 m or more, a plurality of cylindrical target materials (also referred to as “divided target materials”) are placed on the outside of a long cylindrical base material in the axial direction. A plurality of them are arranged side by side.
 例えば特許文献1、2には、ターゲット材を軸線方向に複数個に分割した複数のターゲット材を製作し、かかる複数のターゲット材を、円筒形基材の外周側に軸線方向に並べて配置するとともに、それらを接合材により接合することにより、当該スパッタリングターゲットを製造することが開示されている。 For example, in Patent Documents 1 and 2, a plurality of target materials obtained by dividing the target material into a plurality of target materials in the axial direction are manufactured, and the plurality of target materials are arranged side by side in the axial direction on the outer peripheral side of the cylindrical base material. , It is disclosed that the sputtering target is manufactured by joining them with a joining material.
 前述のように円筒形スパッタリングターゲットが長尺となるのに伴い、円筒形基材が長尺となると、円筒形基材の反りの影響が無視できなくなる。特に2mを超える長尺な円筒形基材は、反っているものが多く、且つ、その反り幅も大きいという課題を抱えていた。円筒形基材の反りが大きいと、接合材の厚さが不均一になり、接合材の厚さが薄い部分では冷却不足になって、スパッタリング時にクラックの発生を招くなどの問題が生じてしまう。
 近年、さらに大型の第10世代のガラス基板に成膜するスパッタリング装置が使用されるようになってきており、ターゲットの全長は3mを超えるようになってきている。ターゲットの全長が3mを超える場合は、前記のような反りの課題はさらに顕著である。
As the cylindrical sputtering target becomes longer as described above, when the cylindrical base material becomes longer, the influence of the warp of the cylindrical base material cannot be ignored. In particular, many long cylindrical base materials having a length of more than 2 m have a problem that they are warped and the warp width is large. If the warp of the cylindrical base material is large, the thickness of the bonding material becomes non-uniform, cooling is insufficient in the portion where the thickness of the bonding material is thin, and problems such as cracks occur during sputtering occur. ..
In recent years, a sputtering apparatus for forming a film on a larger 10th generation glass substrate has been used, and the total length of the target has exceeded 3 m. When the total length of the target exceeds 3 m, the problem of warpage as described above is more remarkable.
 そこで、特許文献2には、基材とターゲット材との偏心に着目し、これを抑制するため、円筒形ターゲットを製造するに先立って円筒形基材の反りを確認し、反りが大きい場合は、プレス機等を用いて円筒形基材の反りを矯正する方法が提案されている。 Therefore, in Patent Document 2, attention is paid to the eccentricity between the base material and the target material, and in order to suppress this, the warp of the cylindrical base material is confirmed prior to manufacturing the cylindrical target, and when the warp is large, it is confirmed. , A method of correcting the warp of the cylindrical base material using a press machine or the like has been proposed.
 また、特許文献3は、円筒形基材が湾曲していることを前提として、複数の円筒形ターゲット材のそれぞれを円筒形基材の湾曲変形に合わせて配置する。すなわち、各円筒形ターゲット材の中心軸線を傾斜させたり、周方向のいずれかの位置で径方向に片寄せしたりして、円筒形ターゲット材の内周面と円筒形基材の外周面との間の所要の接合材厚みを確保する方法を開示している。 Further, Patent Document 3 assumes that the cylindrical base material is curved, and arranges each of the plurality of cylindrical target materials according to the bending deformation of the cylindrical base material. That is, the central axis of each cylindrical target material is tilted or offset in the radial direction at any position in the circumferential direction so that the inner peripheral surface of the cylindrical target material and the outer peripheral surface of the cylindrical base material are formed. Discloses a method of ensuring the required bonding material thickness between.
特開2010-100930号公報Japanese Unexamined Patent Publication No. 2010-100930 国際公開2016/067717号International Publication 2016/0677717 特開2018-159105号公報JP-A-2018-159105
 特許文献2に記載の発明は、円筒形基材の反りを予め測定し、反りが大きい場合は、プレス機等を用いて反りを矯正することを提案している。しかし、接合材充填時に、円筒形基材を予め加熱したり、円筒形基材とターゲット材との間に加熱溶融された接合材が充填され、円筒形基材が加熱されたりすると、矯正した反りが元に戻ってしまう(「反り戻り」とも称する)という課題を抱えていた。 The invention described in Patent Document 2 proposes to measure the warp of a cylindrical base material in advance, and if the warp is large, correct the warp using a press machine or the like. However, when the cylindrical base material was preheated during filling of the bonding material, or when the bonding material heated and melted between the cylindrical base material and the target material was filled and the cylindrical base material was heated, the correction was made. It had a problem that the warp returned to its original state (also called "warp back").
 また、特許文献3に記載の発明は、湾曲している円筒形基材を用いることを前提としているため、円筒形ターゲット材の軸方向長さが750mm未満の場合には、所要の接合材厚みを確保することができる反面、円筒形ターゲット材の軸方向長さがそれ以上になると、所要の接合材厚みを確保することが困難であるという課題を抱えていた。
 円筒形基材の外側に、複数の円筒形ターゲット材を複数個並べて配設して円筒形スパッタリングターゲットを構成する場合、円筒形ターゲット材間の隙間が、スパッタリング時にノジュールの原因となるため、円筒形ターゲット材の分割数はできる限り減らすことが好ましい。そのため、前述のように円筒形スパッタリングターゲットの長さが年々長くなるのに伴い、円筒形ターゲット材の軸方向長さも年々長くなってきており、円筒形ターゲット材も長くなる傾向にあり、750mm未満にはおさまらなくなってきている。
Further, since the invention described in Patent Document 3 is based on the premise that a curved cylindrical base material is used, when the axial length of the cylindrical target material is less than 750 mm, the required joint material thickness is obtained. On the other hand, if the axial length of the cylindrical target material is longer than that, it is difficult to secure the required thickness of the joint material.
When a plurality of cylindrical target materials are arranged side by side on the outside of a cylindrical base material to form a cylindrical sputtering target, the gap between the cylindrical target materials causes nodules during sputtering, so that the cylinder is cylindrical. It is preferable to reduce the number of divisions of the shape target material as much as possible. Therefore, as described above, as the length of the cylindrical sputtering target increases year by year, the axial length of the cylindrical target material also increases year by year, and the cylindrical target material also tends to become longer, less than 750 mm. It's getting harder to settle down.
 そこで本発明は、反った円筒形基材を構成材料として使用することができるスパッタリングターゲット及びその製造方法に関し、円筒形ターゲット材の軸方向長さが比較的長くても、また、接合材充填時の加熱を経ても、すなわち、接合材充填時に、円筒形基材を予め加熱したり、円筒形基材とターゲット材との間に加熱溶融された接合材が充填され、円筒形基材が加熱されたりしても、使用する円筒形基材の反りの影響を抑制することができ、その結果、接合材の厚さが均一で、且つ、隣り合う円筒形ターゲット材間の段差量が小さく、且つ、隣り合う円筒形ターゲット材間の軸方向距離が均一であるスパッタリングターゲットを製造することができる、新たなスパッタリングターゲットの製造方法及び新たなスパッタリングターゲットを提供せんとするものである。 Therefore, the present invention relates to a sputtering target capable of using a warped cylindrical base material as a constituent material and a method for manufacturing the same, even if the cylindrical target material has a relatively long axial length, and when the bonding material is filled. Even after the heating of the above, that is, at the time of filling the bonding material, the cylindrical base material is preheated, or the heat-melted bonding material is filled between the cylindrical base material and the target material, and the cylindrical base material is heated. Even if it is used, the influence of the warp of the cylindrical base material used can be suppressed, and as a result, the thickness of the bonding material is uniform and the amount of step between adjacent cylindrical target materials is small. Moreover, it is intended to provide a new method for manufacturing a sputtering target and a new sputtering target capable of manufacturing a sputtering target having a uniform axial distance between adjacent cylindrical target materials.
 本発明は、円筒形基材と、円筒形ターゲット材とを備えたスパッタリングターゲットの製造方法であって、
 円筒形基材の反り幅を測定し、
 反っていた方向とは反対方向に円筒形基材を反らせる加工をし、
 前記加工された円筒形基材の外側に、複数の円筒形ターゲット材を軸方向に間隔をおいて並べて配置し、該円筒形基材と前記円筒形ターゲット材を接合材で接合することを特徴とする、スパッタリングターゲットの製造方法を提案する。
The present invention is a method for manufacturing a sputtering target including a cylindrical base material and a cylindrical target material.
Measure the warp width of the cylindrical base material and
Processed to warp the cylindrical base material in the direction opposite to the warped direction,
A plurality of cylindrical target materials are arranged side by side at axial intervals on the outside of the processed cylindrical base material, and the cylindrical base material and the cylindrical target material are joined by a joining material. We propose a method for manufacturing a sputtering target.
 本発明はまた、円筒形基材と、円筒形ターゲット材とを備え、前記円筒形基材と前記円筒形ターゲット材を接合材で接合してなるスパッタリングターゲットであって、
 前記円筒形ターゲット材のうち少なくとも1個の軸方向の長さが750mm以上であり、接合材の厚さの最大値と最小値の差が1.0mm以下であり、隣り合う円筒形ターゲット材の外周面間における段差量の最大値が0.5mm以下であり、隣り合う円筒形ターゲット材間の軸方向距離の最大値と最小値の差が0.2mm以下であるスパッタリングターゲットを提案する。
The present invention is also a sputtering target comprising a cylindrical base material and a cylindrical target material, and the cylindrical base material and the cylindrical target material are joined by a joining material.
At least one of the cylindrical target materials has an axial length of 750 mm or more, the difference between the maximum value and the minimum value of the thickness of the bonding material is 1.0 mm or less, and the adjacent cylindrical target materials We propose a sputtering target in which the maximum value of the step amount between the outer peripheral surfaces is 0.5 mm or less, and the difference between the maximum value and the minimum value of the axial distance between adjacent cylindrical target materials is 0.2 mm or less.
 本発明が提案する製造方法は、円筒形基材を加工した後の加熱によって再び変形する、すなわち前述の反り戻りを考慮して、もともと反っていた方向とは反対方向に所定の幅だけ逆に反るように円筒形基材を加工する方法である。よって、円筒形ターゲット材の軸方向長さが比較的長くても、また、接合材充填時の加熱を経ても、使用した円筒形基材の反りの影響を解消することができ、接合材の厚さが均一で、且つ、隣り合う円筒形ターゲット材間の段差量が小さく、且つ、隣り合う円筒形ターゲット材間の軸方向距離が均一であるスパッタリングターゲットを製造することができる。
 したがって、本発明が提案する製造方法によれば、円筒形基材と、複数の円筒形ターゲット材とを備えたスパッタリングターゲットであって、前記円筒形ターゲット材のうち、少なくとも1つは軸方向長さが750mm以上であり、接合材の厚さの最大値と最小値の差が1.0mm以下であり、隣り合う円筒形ターゲット材の外周面間における段差量の最大値が0.5mm以下であり、隣り合う円筒形ターゲット材間の軸方向距離の最大値と最小値の差が0.2mm以下であるスパッタリングターゲットを製造することができる。
The manufacturing method proposed by the present invention deforms again by heating after processing the cylindrical base material, that is, in consideration of the above-mentioned warpage, the direction opposite to the originally warped direction is reversed by a predetermined width. This is a method of processing a cylindrical base material so as to warp. Therefore, even if the axial length of the cylindrical target material is relatively long, and even if the bonding material is heated during filling, the influence of the warp of the used cylindrical base material can be eliminated, and the bonding material can be used. It is possible to manufacture a sputtering target having a uniform thickness, a small step amount between adjacent cylindrical target materials, and a uniform axial distance between adjacent cylindrical target materials.
Therefore, according to the manufacturing method proposed by the present invention, it is a sputtering target including a cylindrical base material and a plurality of cylindrical target materials, and at least one of the cylindrical target materials has an axial length. The length is 750 mm or more, the difference between the maximum value and the minimum value of the thickness of the bonding material is 1.0 mm or less, and the maximum value of the step amount between the outer peripheral surfaces of adjacent cylindrical target materials is 0.5 mm or less. Therefore, it is possible to manufacture a sputtering target in which the difference between the maximum value and the minimum value of the axial distance between adjacent cylindrical target materials is 0.2 mm or less.
 そして、このようなスパッタリングターゲットであれば、接合層の厚さが均一に確保されているため、スパッタリング時に割れが発生しにくいばかりか、隣り合う円筒形ターゲット材間の外周面間における段差量が小さく、しかも、当該隙間の間隔が均一であるから、スパッタリング時の異常発生の確率を顕著に少なくすることができる。さらには、反り、すなわち曲がりが少ないため、ターゲットを回転させた際にブレが小さく、円筒形ターゲットと基板の距離を一定に保つことができ、スパッタリングにより形成する膜の質を均一にすることができる。 With such a sputtering target, since the thickness of the bonding layer is uniformly secured, not only is it difficult for cracks to occur during sputtering, but also the amount of steps between the outer peripheral surfaces between adjacent cylindrical target materials is large. Since it is small and the gaps are evenly spaced, the probability of abnormal occurrence during sputtering can be significantly reduced. Furthermore, since there is little warpage, that is, bending, blurring is small when the target is rotated, the distance between the cylindrical target and the substrate can be kept constant, and the quality of the film formed by sputtering can be made uniform. it can.
スパッタリングターゲットの一例を概念的に示した斜視図である。It is a perspective view which conceptually showed an example of a sputtering target. 反った円筒形基材の一例を概念的に示した斜視図である。It is a perspective view which conceptually showed an example of a warped cylindrical base material. 円筒形基材の反り幅を測定する方法の一例を概念的に示した図である。It is a figure which conceptually showed an example of the method of measuring the warp width of a cylindrical base material. 円筒形基材の加工方法の一例を概念的に示した側面図であり、(A)は加工前の状態、(B)は加工後の状態を示した図である。It is a side view which conceptually showed an example of the processing method of a cylindrical base material, (A) is the state before processing, (B) is a figure which showed the state after processing. 製造したスパッタリングターゲットの一例の要部を拡大して示した縦断面図である。It is a vertical cross-sectional view which showed the main part of the example of the manufactured sputtering target in an enlarged manner. 隣り合うターゲット材間の段差量hと、軸方向距離dとを説明するための要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a main part for explaining a step amount h between adjacent target materials and an axial distance d. 実施例で使用したスパッタリングターゲットの製造装置を示した縦断面図である。It is a vertical sectional view which showed the manufacturing apparatus of the sputtering target used in an Example.
 次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。 Next, the present invention will be described based on an example embodiment. However, the present invention is not limited to the embodiments described below.
<本ターゲット製造方法>
 本発明の実施形態の一例に係るスパッタリングターゲットの製造方法(「本ターゲット製造方法」と称する)は、円筒形基材2と、複数の円筒形ターゲット材3、3・・とを備えたスパッタリングターゲットの製造方法であって、
 円筒形基材2の反り幅乃至反り方向を測定し(「測定工程」と称する)、
 反っていた方向とは反対方向に円筒形基材2を反らせる加工をし(「加工工程」と称する)、
 前記加工された円筒形基材2の外側に、複数の円筒形ターゲット材3、3・・を、円筒形基材2の軸方向に間隔をおいて並べて配置し、該円筒形基材2と前記円筒形ターゲット材3を接合材4で接合することを特徴とする、スパッタリングターゲットの製造方法である。
<This target manufacturing method>
The method for manufacturing a sputtering target according to an example of the embodiment of the present invention (referred to as "the present target manufacturing method") is a sputtering target including a cylindrical base material 2 and a plurality of cylindrical target materials 3, 3, ... It is a manufacturing method of
The warp width or warp direction of the cylindrical base material 2 is measured (referred to as “measurement step”).
The cylindrical base material 2 is warped in the direction opposite to the warped direction (referred to as "processing process").
A plurality of cylindrical target materials 3, 3, ... Are arranged side by side at intervals in the axial direction of the cylindrical base material 2 on the outside of the processed cylindrical base material 2, and the cylindrical base material 2 and the cylindrical base material 2 are arranged. This is a method for manufacturing a sputtering target, which comprises joining the cylindrical target material 3 with a joining material 4.
(本スパッタリングターゲット)
 図1に示すように、本ターゲット製造方法で製造するスパッタリングターゲット(「本スパッタリングターゲット」)1は、一本の円筒形基材2の外側に、複数の円筒形ターゲット材3を、円筒形基材2の軸方向に間隔をおいて並べて配置し、円筒形基材2と前記円筒形ターゲット材3とを、接合材4(図示しない)で接合してなるスパッタリングターゲットである。
 本スパッタリングターゲット1の詳細については後述する。ここでは先ず、構成部材について説明する。
(This sputtering target)
As shown in FIG. 1, the sputtering target (“this sputtering target”) 1 manufactured by the present target manufacturing method has a plurality of cylindrical target materials 3 on the outside of one cylindrical base material 2 and a cylindrical base. It is a sputtering target formed by arranging the materials 2 side by side at intervals in the axial direction and joining the cylindrical base material 2 and the cylindrical target material 3 with a bonding material 4 (not shown).
Details of the sputtering target 1 will be described later. Here, first, the constituent members will be described.
(ターゲット材)
 ターゲット材は、複数の円筒形ターゲット材3、3・・からなるものであり、当該複数の円筒形ターゲット材3は、円筒形基材2の外周側に、円筒形基材2の軸線方向に適宜間隔をおいて配置される。
(Target material)
The target material is composed of a plurality of cylindrical target materials 3, 3, ..., And the plurality of cylindrical target materials 3 are located on the outer peripheral side of the cylindrical base material 2 in the axial direction of the cylindrical base material 2. Arranged at appropriate intervals.
 各円筒形ターゲット材3は、円筒形基材2の外径よりも大きな内径を有していればよい。 Each cylindrical target material 3 may have an inner diameter larger than the outer diameter of the cylindrical base material 2.
 円筒形ターゲット材の長さは年々長くなる傾向にある反面、円筒形ターゲット材の長さが長くなると、特に750mm以上になると、接合材厚みを確保できなくなる課題が指摘されていた。しかし、本ターゲット製造方法によれば、そのような課題を解消することができ、本発明の効果をより一層享受することができる。
 よって、前記複数の円筒形ターゲット材3、3・・のうち少なくとも1つは、本発明の効果をより享受できる観点から、その軸方向長さLが750mm以上であるのが好ましく、中でも850mm以上、中でも950mm以上、その中でも1400mm以上であるのがさらに好ましい。
While the length of the cylindrical target material tends to increase year by year, it has been pointed out that when the length of the cylindrical target material becomes long, especially when it becomes 750 mm or more, the thickness of the joint material cannot be secured. However, according to the present target manufacturing method, such a problem can be solved, and the effect of the present invention can be further enjoyed.
Therefore, at least one of the plurality of cylindrical target material 3, 3 ... is preferably from the viewpoint of further enjoy the advantages of the present invention, the axial length L 3 is greater than or equal to 750 mm, among others 850mm Above all, it is more preferably 950 mm or more, and more preferably 1400 mm or more.
 円筒形ターゲット材3は、その材料を特に限定するものではない。例えばCu、Al、In、Sn、Ti、Ba、Ca、Zn、Mg、Ge、Y、La、Al、Si、Ga、Wのいずれか一種以上を含む酸化物を挙げることができる。
 前記酸化物としては、例えば、In-Sn-O、In-Ti-O、In-Ga-Zn-O、In-Zn-Sn-O、In-Ga-Zn-Sn-O、Ga-Zn-O、In-Zn-O、In-Ga-O、I-W-O、I-Zn-W-O、Zn-O、Sn-Ba-O、Sn-Zn-O、Sn-Ti-O、Sn-Ca-O、Sn-Mg-O、Zn-Mg-O、Zn-Ge-O、Zn-Ca-O、Zn-Sn-Ge-O、CuO、CuAlO、CuGaO、CuInOなどを挙げることができる。
The material of the cylindrical target material 3 is not particularly limited. For example, an oxide containing any one or more of Cu, Al, In, Sn, Ti, Ba, Ca, Zn, Mg, Ge, Y, La, Al, Si, Ga and W can be mentioned.
Examples of the oxide include In—Sn—O, In—Ti—O, In—Ga—Zn—O, In—Zn—Sn—O, In—Ga—Zn—Sn—O, Ga—Zn—. O, In-Zn-O, In-Ga-O, I-W-O, I-Zn-W-O, Zn-O, Sn-Ba-O, Sn-Zn-O, Sn-Ti-O, Sn-Ca-O, Sn-Mg-O, Zn-Mg-O, Zn-Ge-O, Zn-Ca-O, Zn-Sn-Ge-O, Cu 2 O, CuAlO 2 , CuGaO 2 , CuInO 2 And so on.
(円筒形基材)
 円筒形基材2は、中心軸が直線であり、外周面も当該軸と並行である円筒形を為しているのが理想的である。しかし、新たに使用する円筒形基材やリサイクル使用する円筒形基材2は、図2に示すように、湾曲状言い換えればアーチ状に反り、円筒形基材2の外周面が直線軸方向から偏差を有している。
(Cylindrical base material)
Ideally, the cylindrical base material 2 has a linear central axis and an outer peripheral surface having a cylindrical shape parallel to the axis. However, as shown in FIG. 2, the newly used cylindrical base material and the recycled cylindrical base material 2 are curved, in other words, warped in an arch shape, and the outer peripheral surface of the cylindrical base material 2 is from the linear axis direction. Has a deviation.
 円筒形基材2の材質は、Ti、SUS又はCu等の金属であればよい。但し、これらに限定するものではない。 The material of the cylindrical base material 2 may be a metal such as Ti, SUS or Cu. However, it is not limited to these.
(接合材)
 接合材4は、スパッタリングターゲットの製造時に、円筒形基材2と、その外周側の所定箇所に配置された各円筒形ターゲット材3との間の間隙に溶融状態で供給されて、当該間隙に充填された後に硬化して、円筒形基材2と円筒形ターゲット材3とを接合するものである。
(Joint material)
The bonding material 4 is supplied in a molten state to the gap between the cylindrical base material 2 and each cylindrical target material 3 arranged at a predetermined position on the outer peripheral side thereof at the time of manufacturing the sputtering target, and is supplied to the gap. After being filled, it is cured to join the cylindrical base material 2 and the cylindrical target material 3.
 接合材4の材質は、この種のターゲット材と基材との接合に用いられ得るものであれば特に限定されない。例えばInメタル、In-Snメタルまたは、Inに微量金属成分を添加したIn合金メタル等の低融点半田を挙げることができる。
 前記低融点半田の融点は150~250℃であるから、接合材4を充填する際は、接合材4を150~300℃に加熱して溶融させるのが通常である。
The material of the bonding material 4 is not particularly limited as long as it can be used for bonding this type of target material and the base material. Examples thereof include low melting point solders such as In metal, In—Sn metal, and In alloy metal obtained by adding a trace metal component to In.
Since the melting point of the low melting point solder is 150 to 250 ° C., when filling the bonding material 4, it is usual to heat the bonding material 4 to 150 to 300 ° C. to melt it.
<測定工程>
 測定工程では、構成材料として使用する円筒形基材2の反り幅乃至反り方向を測定する。
<Measurement process>
In the measuring step, the warp width or warp direction of the cylindrical base material 2 used as the constituent material is measured.
 反り幅の測定方法は、特に限定するものではない。例えば、円筒形基材2を軸回転させて外周面の変位幅、すなわち反り幅を測定するようにしてもよいし、又、円筒形基材2を横向きに定盤上に載置し、定盤の平滑面と円筒計基材2の外周面2aとの距離を、定盤に立てた垂線に沿って変位幅、すなわち反り幅を測定するようにしてもよい。その他の方法で測定してもよい。 The method of measuring the warp width is not particularly limited. For example, the cylindrical base material 2 may be axially rotated to measure the displacement width of the outer peripheral surface, that is, the warp width, or the cylindrical base material 2 may be placed sideways on a surface plate and fixed. The distance between the smooth surface of the plate and the outer peripheral surface 2a of the cylindrical meter base material 2 may be measured along the vertical line erected on the surface plate, that is, the displacement width, that is, the warp width. It may be measured by other methods.
 反り幅を測定する箇所は、円筒形基材2の長さ方向において一か所でもよいし、二か所以上でもよい。
 円筒形基材2はアーチ状に反っていることが多いから、長さ方向中心部付近において反り幅を測定すれば、最大反り幅とその反り方向を測定することができる。
 但し、必ずしもアーチ状に反っているとは限らないから、長さ方向に間隔をおいて複数個所で、反り幅を測定するのが好ましい。例えば、100mm~1000mmの間隔で測定するのが好ましく、その中でも200mm以上或いは800mm以下の間隔、その中でも特に500mm以下の間隔で測定するのがさらに好ましい。
The warp width may be measured at one place or two or more places in the length direction of the cylindrical base material 2.
Since the cylindrical base material 2 is often warped in an arch shape, the maximum warp width and the warp direction can be measured by measuring the warp width in the vicinity of the central portion in the length direction.
However, since it is not always warped in an arch shape, it is preferable to measure the warp width at a plurality of places at intervals in the length direction. For example, it is preferable to measure at intervals of 100 mm to 1000 mm, and it is more preferable to measure at intervals of 200 mm or more or 800 mm or less, and particularly preferably at intervals of 500 mm or less.
 反り幅を測定する具体的な測定方法の一例について説明する。
 図3に示すように、円筒形基材2を水平かつ軸回転可能に設置し、前記円筒形基材2の外周面2aにダイヤルゲージ5を当て、前記円筒形基材2を1回転させて前記ダイヤルゲージ5の読みを測定する。そして、前記ダイヤルゲージ5の読みの最大値Hmaxと最小値Hminとの差(Hmax-Hmin)を反り幅とすることができる。
An example of a specific measuring method for measuring the warp width will be described.
As shown in FIG. 3, the cylindrical base material 2 is installed horizontally and axially rotatable, a dial gauge 5 is applied to the outer peripheral surface 2a of the cylindrical base material 2, and the cylindrical base material 2 is rotated once. The reading of the dial gauge 5 is measured. Then, the difference (Hmax-Hmin) between the maximum value Hmax and the minimum value Hmin of the reading of the dial gauge 5 can be set as the warp width.
 この際、円筒形基材2を軸回転させる手段は任意である。例えば2つの回転ローラ間上に載せて回転させるようにしたり、円筒形基材の両端付近を、V字状の溝を備えた支持台の該溝に入れて載せて、手で又はローラで回転させるようにしたり、その手段は任意である。 At this time, the means for axially rotating the cylindrical base material 2 is arbitrary. For example, it can be placed on two rotating rollers to rotate it, or the vicinity of both ends of the cylindrical base material can be placed in the groove of a support base provided with a V-shaped groove and rotated by hand or by a roller. The means of making it work is arbitrary.
 測定工程では、入手した円筒形基材2のそのままの反り幅X乃至反り方向を上述のように測定してもよいし、又、入手した円筒形基材2を加熱して、加熱後の円筒形基材2の反り幅Y乃至反り方向を上述のように測定してもよい。 In the measurement step, the warp width X or the warp direction of the obtained cylindrical base material 2 may be measured as described above, or the obtained cylindrical base material 2 may be heated to form a heated cylinder. The warp width Y to the warp direction of the shape base material 2 may be measured as described above.
 円筒形基材2を加熱して、加熱後の円筒形基材の反り幅Y乃至反り方向を測定する場合、円筒形基材2の加熱温度は、接合材充填時すなわち円筒形基材2と円筒形ターゲット材3との間に加熱溶融された接合材4を充填する際に円筒形基材2を加熱する温度、若しくは、充填した接合材4によって円筒形基材2が加熱される温度を想定するのが好ましい。但し、高温過ぎると、円筒形基材2が表面酸化する可能性がある。かかる観点から、この際の円筒形基材2の加熱温度に関しては、その表面温度が150~300℃になるように加熱するのが好ましく、中でも160℃以上或いは240℃以下、その中でも170℃以上或いは230℃以下になるように加熱するのがさらに好ましい。
 円筒形基材2の加熱方法は特に限定するものではない。例えば基材を電気炉などに入れ、外部から加熱してもよいし、基材の内部にヒーターを設置し、内部から加熱してもよい。
When the cylindrical base material 2 is heated and the warp width Y to the warp direction of the cylindrical base material after heating is measured, the heating temperature of the cylindrical base material 2 is the same as that at the time of filling the bonding material, that is, the cylindrical base material 2. The temperature at which the cylindrical base material 2 is heated when the bonding material 4 heated and melted with the cylindrical target material 3 is filled, or the temperature at which the cylindrical base material 2 is heated by the filled bonding material 4. It is preferable to assume. However, if the temperature is too high, the cylindrical base material 2 may be surface-oxidized. From this point of view, regarding the heating temperature of the cylindrical base material 2 at this time, it is preferable to heat the cylindrical base material 2 so that its surface temperature is 150 to 300 ° C., among which 160 ° C. or higher or 240 ° C. or lower, and 170 ° C. or higher among them. Alternatively, it is more preferable to heat the temperature to 230 ° C. or lower.
The heating method of the cylindrical base material 2 is not particularly limited. For example, the base material may be placed in an electric furnace or the like and heated from the outside, or a heater may be installed inside the base material and heated from the inside.
<加工工程>
 加工工程では、もともと反っていた方向とは反対方向に所定の幅αだけ逆に反るように円筒形基材2を加工する。
<Processing process>
In the processing step, the cylindrical base material 2 is processed so as to warp in the direction opposite to the originally warped direction by a predetermined width α.
 例えば、図4に示すように、測定工程における測定位置において、前記測定工程で測定された、反り方向とは反対方向に加圧して円筒形基材2を曲げて、図4(B)に示すように、反っていた方向とは反対方向に幅αだけ逆に反るように、言い換えれば、直線軸からαだけ変位するように円筒形基材2を加工すればよい。 For example, as shown in FIG. 4, at the measurement position in the measurement step, the cylindrical base material 2 is bent by applying pressure in the direction opposite to the warp direction measured in the measurement step, and is shown in FIG. 4 (B). As described above, the cylindrical base material 2 may be processed so as to warp in the direction opposite to the warped direction by the width α, in other words, to displace by α from the linear axis.
 加圧する位置に関しては、例えば、円筒形基材2がアーチ状に反っている場合など、軸方向中央部を1か所加圧して変形させることができる。また、測定工程で測定された位置を加圧するのが好ましい。例えば100mm~1000mmの間隔で測定し、各測定点で加圧して変形させるのが好ましい。 Regarding the position to pressurize, for example, when the cylindrical base material 2 is warped in an arch shape, the central portion in the axial direction can be pressurized and deformed at one place. Further, it is preferable to pressurize the position measured in the measuring step. For example, it is preferable to measure at intervals of 100 mm to 1000 mm and pressurize and deform at each measurement point.
 円筒形基材2を、反っていた方向とは反対方向に反らせる幅α(mm)は、前記測定工程で測定された反り幅X又はYに基づいて決定するのが好ましい。反り幅X又はYが大きければ大きいだけ、加工後の加熱によって、反り戻りの大きさが大きいからである。 The width α (mm) at which the cylindrical base material 2 is warped in the direction opposite to the warped direction is preferably determined based on the warp width X or Y measured in the measurement step. This is because the larger the warp width X or Y, the larger the size of the warp return due to heating after processing.
 例えば、測定工程において、入手した円筒形基材2のそのままの反り幅を測定して反り幅Xが得られた場合、反らせる幅α(mm)は、X(mm)×(0.10~2.00)とするのが好ましく、中でもX(mm)×0.50以上或いはX(mm)×1.50以下、その中でもX(mm)×0.80以上或いはX(mm)×1.40以下、その中でもX(mm)×0.90以上或いはX(mm)×1.30以下とするのがさらに好ましい。 For example, in the measurement step, when the warp width X of the obtained cylindrical base material 2 is measured as it is and the warp width X is obtained, the warp width α (mm) is X (mm) × (0.10 to 2). It is preferably .00), among which X (mm) x 0.50 or more or X (mm) x 1.50 or less, and among them, X (mm) x 0.80 or more or X (mm) x 1.40. Hereinafter, among them, it is more preferable that X (mm) × 0.90 or more or X (mm) × 1.30 or less.
 また、測定工程において、入手した円筒形基材2を加熱して、加熱後の円筒形基材2の反り幅を測定して反り幅が得られた場合、反らせる幅α(mm)は、Y(mm)×(0.50~1.50)とするのが好ましく、中でもY(mm)×0.80以上或いはY(mm)×1.40以下、その中でもY(mm)×0.90以上或いはY(mm)×1.30以下、その中でもY(mm)×0.95以上或いはY(mm)×1.25以下とするのがさらに好ましい。
 実際に加熱して加熱後の反り幅Yを測定し、当該反り幅Yに基づいて反らせる幅αを決定すれば、入手した円筒形基材2の加熱挙動を加味した上で幅αを決定することができるから、反り戻りをより一層少なくすることができる。
Further, in the measurement step, when the obtained cylindrical base material 2 is heated and the warp width of the heated cylindrical base material 2 is measured to obtain the warp width, the warp width α (mm) is Y. It is preferably (mm) × (0.50 to 1.50), among which Y (mm) × 0.80 or more or Y (mm) × 1.40 or less, and among them, Y (mm) × 0.90. It is more preferably Y (mm) × 1.30 or less, and more preferably Y (mm) × 0.95 or more or Y (mm) × 1.25 or less.
If the warp width Y after actually heating and heating is measured and the warp width α is determined based on the warp width Y, the width α is determined in consideration of the heating behavior of the obtained cylindrical base material 2. Therefore, the warpage can be further reduced.
 円筒形基材2を加圧して反らせる加工方法としては、例えば、図4(A)に示すように、測定工程における測定位置(1か所又は複数個所)において、反っていた方向とは反対方向に円筒形基材2を加圧する方法を挙げることができる。なお、図4(A)におけるPは加圧方向を示す。この際、加圧する手段としては、例えば機械的なプレス加工、鍛造加工などを挙げることができる。
 但し、円筒形基材2を所望の幅だけ反らすことができる手段であれば、任意の手段を採用することができる。
 この際、円筒形基材の真円度が変化しないように、加圧を加える端子に円筒形基材2の形状に合わせた円弧状のものを使用するなどしてもよい。
 また、必要に応じて更に熱処理(焼きなまし)を施してもよい。
As a processing method for pressurizing and warping the cylindrical base material 2, for example, as shown in FIG. 4 (A), at the measurement position (one place or a plurality of places) in the measurement step, the direction opposite to the warp direction. A method of pressurizing the cylindrical base material 2 can be mentioned. Note that P in FIG. 4A indicates a pressurizing direction. At this time, as the means for pressurizing, for example, mechanical press working, forging processing and the like can be mentioned.
However, any means can be adopted as long as the cylindrical base material 2 can be warped by a desired width.
At this time, an arc-shaped terminal matching the shape of the cylindrical base material 2 may be used for the terminal to which the pressure is applied so that the roundness of the cylindrical base material does not change.
Further, heat treatment (annealing) may be further performed if necessary.
 なお、円筒形基材2を加圧して反らせる加工方法を繰り返し行ってもよい。すなわち、円筒形基材2を加圧して反らせ、さらに加圧して反らせるなど、加圧して反らせる処理を繰り返し行って、最終的に所定幅αだけ円筒形基材2を反らせるようにしてもよい。
 また、円筒形基材2を加熱し(反り幅Yを測定し)加圧して反らせ、さらに加熱して加圧して反らせるなど、加熱して加圧して反らせる処理を繰り返し行って、最終的に所定幅αだけ円筒形基材2を反らせるようにしてもよい。この際、加熱した後に反り幅Yを測定するのは、最初だけ行えばよい。
The processing method of pressurizing and warping the cylindrical base material 2 may be repeated. That is, the cylindrical base material 2 may be repeatedly warped by applying pressure and warping, and then further pressurizing and warping, so that the cylindrical base material 2 is finally warped by a predetermined width α.
Further, the cylindrical base material 2 is heated (measured by measuring the warp width Y) to be pressed and warped, and further heated and pressed to warp, and the like is repeatedly heated and pressurized to warp, and finally a predetermined value is obtained. The cylindrical base material 2 may be warped by the width α. At this time, the warp width Y needs to be measured only at the beginning after heating.
<円筒形ターゲット材の配置>
 上記のように加工を施した円筒形基材2を用いて、該円筒形基材2の外周側に、複数の円筒形ターゲット材3、3・・を軸線方向に適宜間隔をおいて並べて配置する。
<Arrangement of cylindrical target material>
Using the cylindrical base material 2 processed as described above, a plurality of cylindrical target materials 3, 3, ... Are arranged side by side at appropriate intervals in the axial direction on the outer peripheral side of the cylindrical base material 2. To do.
 円筒形ターゲット材3は、軸線方向に0.15mm~0.50mmの間隔を介して並べて配置するのが好ましい。 It is preferable that the cylindrical target materials 3 are arranged side by side with an interval of 0.15 mm to 0.50 mm in the axial direction.
<接合>
 上述のように円筒形ターゲット材3を配置したら、円筒形基材2及び円筒形ターゲット材3を加温し、円筒形基材2と円筒形ターゲット材3との隙間に、溶融状態の接合材4を充填し、接合材4を冷却し、接合材4により円筒形基材2の周囲に各円筒形ターゲット材3を接合するようにすればよい。
 接合材4を充填する前に、円筒形基材2及び円筒形ターゲット材3を加温する温度は、接合材4の温度以上とするのが好ましい。
 接合材4を充填する際の接合材4の温度は、接合材の融点以上の温度であり、150~300℃になるように加熱するのが好ましく、中でも160℃以上或いは240℃以下、その中でも170℃以上或いは230℃以下になるように加熱するのがさらに好ましい。
 接合材の充填及び冷却の方法は、公知の方法を採用することができる。
<Joining>
After arranging the cylindrical target material 3 as described above, the cylindrical base material 2 and the cylindrical target material 3 are heated, and the bonded material in a molten state is formed in the gap between the cylindrical base material 2 and the cylindrical target material 3. 4 may be filled, the bonding material 4 may be cooled, and each cylindrical target material 3 may be bonded to the periphery of the cylindrical base material 2 by the bonding material 4.
The temperature for heating the cylindrical base material 2 and the cylindrical target material 3 before filling the bonding material 4 is preferably the temperature of the bonding material 4 or higher.
The temperature of the bonding material 4 when filling the bonding material 4 is a temperature equal to or higher than the melting point of the bonding material, and is preferably heated to 150 to 300 ° C., among which 160 ° C. or higher or 240 ° C. or lower, among which It is more preferable to heat the temperature to 170 ° C. or higher or 230 ° C. or lower.
As a method for filling and cooling the joint material, a known method can be adopted.
<本スパッタリングターゲット>
 本ターゲット製造方法によれば、接合材充填時の加熱を経ても円筒形基材2の反りの影響を解消することができるから、次のような本スパッタリングターゲットを製造することが可能である。
<This sputtering target>
According to this target manufacturing method, the influence of the warp of the cylindrical base material 2 can be eliminated even after heating at the time of filling the bonding material, so that the following sputtering target can be manufactured.
 本スパッタリングターゲットの好ましい一例として、円筒形基材2と、複数の円筒形ターゲット材3,3・・とを備えたスパッタリングターゲットであって、前記複数の円筒形ターゲット材3,3・・のうち、少なくとも1つは軸方向の長さLが750mm以上であり、接合材4の厚さの最大値と最小値の差が1.0mm以下であり、隣り合う円筒形ターゲット材3,3の外周面間3a、3aにおける段差量hの最大値が0.5mm以下であり、隣り合う円筒形ターゲット材3,3間の軸方向距離dの最大値と最小値の差が0.2mm以下であるスパッタリングターゲットを挙げることができる。 As a preferable example of the present sputtering target, a sputtering target including a cylindrical base material 2 and a plurality of cylindrical target materials 3, 3, ... Of the plurality of cylindrical target materials 3, 3, ... , At least one has an axial length L 3 of 750 mm or more, a difference between the maximum value and the minimum value of the thickness of the bonding material 4 is 1.0 mm or less, and the adjacent cylindrical target materials 3 and 3 have. The maximum value of the step amount h between the outer peripheral surfaces 3a and 3a is 0.5 mm or less, and the difference between the maximum value and the minimum value of the axial distance d between the adjacent cylindrical target materials 3 and 3 is 0.2 mm or less. A certain sputtering target can be mentioned.
 なお、円筒形基材2の長さは、本発明の効果をより享受できる観点から、2.0m~4mであるのが好ましく、中でも3.0m以上或いは3.8m以下、その中でも3.3m以上或いは3.7m以下であるのがさらに好ましい。
 円筒形基材2の外径は、125mm~140mmであるのが好ましく、中でも130mm以上或いは135mm以下、その中でも132mm以上或いは134mm以下であるのがさらに好ましい。
 円筒形ターゲット材3の内径は、127mm~142mmであるのが好ましく、中でも132mm以上或いは137mm以下、その中でも134mm以上或いは136mm以下であるのがさらに好ましい。
 円筒形ターゲット材3の肉厚は、5mm~20mmであるのが好ましく、中でも6mm以上或いは16mm以下、その中でも8mm以上或いは13mm以下であるのがさらに好ましい。
 円筒形ターゲット材3の少なくとも1本の軸方向長さLは、本発明の効果をより享受できる観点から、750mm~1500mmであるのが好ましく、中でも850mm以上或いは1450mm以下、その中でも950mm以上或いは1450mm以下であるのがさらに好ましい。
The length of the cylindrical base material 2 is preferably 2.0 m to 4 m, particularly 3.0 m or more or 3.8 m or less, and 3.3 m among them, from the viewpoint of further enjoying the effects of the present invention. It is more preferably more than or less than 3.7 m.
The outer diameter of the cylindrical base material 2 is preferably 125 mm to 140 mm, more preferably 130 mm or more or 135 mm or less, and more preferably 132 mm or more or 134 mm or less.
The inner diameter of the cylindrical target material 3 is preferably 127 mm to 142 mm, more preferably 132 mm or more or 137 mm or less, and more preferably 134 mm or more or 136 mm or less.
The wall thickness of the cylindrical target material 3 is preferably 5 mm to 20 mm, more preferably 6 mm or more or 16 mm or less, and more preferably 8 mm or more or 13 mm or less.
The axial length L 3 of at least one cylindrical target material 3, from the viewpoint of further enjoy the advantages of the present invention is preferably from 750 mm ~ 1500 mm, inter alia 850mm or more or 1450mm or less, 950 mm or more among them, or It is more preferably 1450 mm or less.
 接合材4の厚さの最大値と最小値の差が1.0mm以下であれば、接合材4の厚さが均一に確保されているため、例えば接合材の厚さが薄い部分において冷却不足になってターゲットが割れることなどを防ぐことができ、スパッタリング時の割れの発生を抑制することができる。
 かかる観点から、接合材4の厚さの最大値と最小値の差は0.5mm以下であるのがさらに好ましく、0.3mm以下であるのがさらに好ましい。
 この際、接合材4の厚みは0.5mm以上、中でも0.7mm以上、中でも1mm以上であるのが好ましい。
 接合材4の厚みは、超音波探傷装置により測定することができる。
If the difference between the maximum value and the minimum value of the thickness of the joint material 4 is 1.0 mm or less, the thickness of the joint material 4 is uniformly secured. It is possible to prevent the target from cracking, and it is possible to suppress the occurrence of cracking during sputtering.
From this point of view, the difference between the maximum value and the minimum value of the thickness of the bonding material 4 is more preferably 0.5 mm or less, and further preferably 0.3 mm or less.
At this time, the thickness of the bonding material 4 is preferably 0.5 mm or more, particularly 0.7 mm or more, and particularly preferably 1 mm or more.
The thickness of the bonding material 4 can be measured by an ultrasonic flaw detector.
 隣り合う円筒形ターゲット材3,3の外周面3a、3a間における段差量hの最大値、すなわち、軸線方向に隣り合う一対の円筒形ターゲット材3,3において、それぞれの外周面3a、3aにおける、互いに隣り合う軸線方向の外端縁の段差量hの最大値が0.5mm以下であれば、スパッタリング時の異常発生、具体的にはアーキングの発生や、それに伴うチッピングや割れの発生などの発生確率を少なくすることができる。逆に段差量hの最大値が0.5mmより大きいと、片側の円筒形ターゲット材3が飛び出た形状になり、飛び出たエッジ部で異常放電などの悪影響が生じる可能性がある。
 かかる観点から、当該段差量hの最大値は0.3mm以下であるのがさらに好ましく、0.2mm以下であるのがさらに好ましい。
 なお、当該段差量hは、例えばデプスゲージなどを使用して測定することができる。
The maximum value of the step amount h between the outer peripheral surfaces 3a and 3a of the adjacent cylindrical target materials 3 and 3, that is, the pair of cylindrical target materials 3 and 3 adjacent to each other in the axial direction, on the outer peripheral surfaces 3a and 3a, respectively. If the maximum value of the step amount h of the outer edge in the axial direction adjacent to each other is 0.5 mm or less, an abnormality occurs during sputtering, specifically, arcing occurs, and chipping or cracking accompanying the occurrence of chipping or cracking occurs. The probability of occurrence can be reduced. On the contrary, when the maximum value of the step amount h is larger than 0.5 mm, the cylindrical target material 3 on one side has a protruding shape, and there is a possibility that an adverse effect such as abnormal discharge may occur at the protruding edge portion.
From this point of view, the maximum value of the step amount h is more preferably 0.3 mm or less, and further preferably 0.2 mm or less.
The step amount h can be measured using, for example, a depth gauge or the like.
 さらに隣り合う円筒形ターゲット材3,3間の軸方向距離(間隔)dの最大値と最小値の差が0.2mm以下であれば、スパッタリング時の異常発生、例えばスパッタリング時の熱膨張により端部同士が接触してチッピングや割れなどが発生する確率をさらに少なくすることができる。例えば、軸方向の距離dが大きい部分では、円筒形基材2が露出し、基材成分がスパッタされて膜に不純物として混入する可能性がある。他方、軸方向の距離dが小さい部分では、隣り合う円筒形ターゲット材3,3同士がスパッタリングの熱により熱膨張した際に突き当たって円筒形ターゲット材3が割れる可能性がある。
 かかる観点から、隣り合う円筒形ターゲット材3,3間の軸方向距離dの最大値と最小値の差は0.15mm以下であるのがさらに好ましく、0.1mm以下であるのがさらに好ましい。
 なお、前記軸方向距離(間隔)dは、例えばフィラーゲージなどを使用して測定することができる。
Further, if the difference between the maximum value and the minimum value of the axial distance (interval) d between the adjacent cylindrical target materials 3 and 3 is 0.2 mm or less, an abnormality occurs during sputtering, for example, the end due to thermal expansion during sputtering. It is possible to further reduce the probability that the parts come into contact with each other and chipping or cracking occurs. For example, in a portion where the distance d in the axial direction is large, the cylindrical base material 2 may be exposed, and the base material components may be sputtered and mixed into the film as impurities. On the other hand, in the portion where the distance d in the axial direction is small, there is a possibility that the cylindrical target materials 3 may be cracked by hitting each other when the adjacent cylindrical target materials 3 and 3 thermally expand due to the heat of sputtering.
From this point of view, the difference between the maximum value and the minimum value of the axial distance d between the adjacent cylindrical target materials 3 and 3 is more preferably 0.15 mm or less, and further preferably 0.1 mm or less.
The axial distance (interval) d can be measured using, for example, a filler gauge.
<語句の説明>
 本明細書において「A~B」(当該A,Bは任意の数字)と表現する場合、特にことわらない限り「A以上B以下」の意と共に、「好ましくはAより大きい」或いは「好ましくはBより小さい」の意も包含する。
 また、「A以上」(Aは任意の数字)或いは「B以下」(Bは任意の数字)と表現した場合、「Aより大きいことが好ましい」或いは「B未満であることが好ましい」旨の意図も包含する。
<Explanation of words>
When expressed as "A to B" (the A and B are arbitrary numbers) in the present specification, unless otherwise specified, they mean "A or more and B or less" and "preferably larger than A" or "preferably larger than A". It also includes the meaning of "smaller than B".
Further, when expressed as "A or more" (A is an arbitrary number) or "B or less" (B is an arbitrary number), it means "preferably larger than A" or "preferably less than B". Including intention.
 以下の実施例により、更に本発明について説明する。但し、以下の実施例は本発明を限定することを意図するものではない。 The present invention will be further described with reference to the following examples. However, the following examples are not intended to limit the present invention.
<実施例1>
 リサイクル品である円筒形基材(長さ3400mm、直径133mm、肉厚4mm)を、軸回転可能に支持し得る台座に載置し、水平かつ軸回転可能に設置し、当該円筒形基材の長さ方向中央部の外表面に、上方から垂下固定されたダイヤルゲージを当てて、当該円筒形基材を1回転させて前記ダイヤルゲージの読みを測定し、読みの最大値Hmaxと最小値Hminとの差(Hmax-Hmin)を反り幅X(初期)として測定した。
<Example 1>
A recycled cylindrical base material (length 3400 mm, diameter 133 mm, wall thickness 4 mm) is placed on a pedestal that can support axial rotation, and is installed horizontally and axially rotatable. A dial gauge suspended and fixed from above is applied to the outer surface of the central portion in the length direction, the cylindrical base material is rotated once to measure the reading of the dial gauge, and the maximum value Hmax and the minimum value Hmin of the reading are measured. The difference (Hmax-Hmin) from the above was measured as the warp width X (initial).
 次に、上記円筒形基材を電気炉内にいれて、その表面温度が230℃を1時間だけ保持するように加熱し、加熱後の反り幅Y(加熱後)を上記同様に測定した。 Next, the cylindrical base material was placed in an electric furnace and heated so that its surface temperature was kept at 230 ° C. for 1 hour, and the warp width Y (after heating) after heating was measured in the same manner as above.
 次に、上記円筒形基材の長さ方向中央部を、プレス機を用いて、反っていた方向(+方向)とは反対方向(-方向)に加圧して、当該反対方向(-方向)に幅α(=Y×1.0)だけ反るように加工した。 Next, the central portion of the cylindrical base material in the length direction is pressed in a direction (-direction) opposite to the warped direction (+ direction) by using a press machine, and the opposite direction (-direction) is applied. It was processed so as to warp by the width α (= Y × 1.0).
 次に、上記のように加工した円筒形基材を用いて、図7に示した製造装置40を用いて、次のようにITO円筒形スパッタリングターゲットを製造した。 Next, using the cylindrical base material processed as described above, the ITO cylindrical sputtering target was manufactured as follows using the manufacturing apparatus 40 shown in FIG. 7.
 すなわち、外径153mm、内径133mm、長さ300mm、750mm、750mm、300mmのITO円筒形分割ターゲット材4個を準備し、円筒形分割ターゲット材の外周面を耐熱性フィルムとテープでマスキングし、接合面(内周面)に超音波半田鏝を用いてIn半田を下塗りした。
 他方、上記のように加工した円筒形基材の接合面(外周面)にも超音波半田鏝を用いてIn半田を下塗りした。
 前記円筒形基材をテフロン(登録商標)製Oリング48が装着された基材保持部43cに取り付けた。
That is, four ITO cylindrical split target materials having an outer diameter of 153 mm, an inner diameter of 133 mm, a length of 300 mm, 750 mm, 750 mm, and 300 mm are prepared, and the outer peripheral surface of the cylindrical split target material is masked with a heat-resistant film and tape and joined. The surface (inner peripheral surface) was primed with In solder using an ultrasonic soldering iron.
On the other hand, the joint surface (outer peripheral surface) of the cylindrical base material processed as described above was also primed with In solder using an ultrasonic soldering iron.
The cylindrical base material was attached to a base material holding portion 43c to which an O-ring 48 manufactured by Teflon (registered trademark) was mounted.
 次いで、ターゲット材保持部43bにテフロン(登録商標)製Oリング47を装着し、前記円筒形分割ターゲット材をターゲット材保持部43bに1個取り付けた。このとき、下部保持部材43により、前記円筒形基材下端部と前記円筒形分割ターゲット材下端部のズレは0.1mmとなるように調整した。また、前記円筒形基材と前記円筒形分割ターゲット材の間に空隙部49を形成した。
 さらに前記円筒形分割ターゲット材の上に残りの円筒形分割ターゲット材を積み重ねた。円筒形分割ターゲット材間には厚み0.5mmのテフロン(登録商標)製Oリング51を介在させた。一番上に置かれた円筒形分割ターゲット材の上にOリング50を装着し、一番上の円筒形分割ターゲット材をターゲット材保持部44bに取り付け、ターゲット材保持部44bにより円筒形ターゲット材をその上側から押さえつけた。このとき9個の円筒形分割ターゲット材の位置を調整し、円筒形分割ターゲット材間のすべての段差が0.2mm以下になるようにした。このようにターゲット材保持部材44によって円筒形ターゲット材の上端部を保持した。
 次に、前記円筒形基材の上端部に基材押え部45bを押し当て、基材保持部材45によって円筒形基材の上端部を保持した。このとき、円筒形基材上端部と円筒形ターゲット材上端部とのズレが0.1mm以下になるようにデプスゲージで円筒形ターゲット材の表面と円筒形基材表面の距離を測りながら、冶具の位置を調整した。
 最後に下部保持部材43を固定具43dで、ターゲット材保持部材44を固定具44cで、基材保持部材45を固定具45cでチタン製の連結部材46に固定することによって、円筒形基材および円筒形ターゲット材をしっかり製造装置40に固定した。
 製造装置40、円筒形基材および円筒形ターゲット材を180℃に加温した。
 ターゲット材保持部材44の上側から、円筒形ターゲット材と円筒形基材との接合に十分な量の融解した175℃のIn半田を空隙部49に注入した。
 製造装置40、円筒形基材、円筒形ターゲット材および空隙部49に注入された融解した半田を冷却した。
 In半田が固化していることを確認後、製造されたITO円筒形スパッタリングターゲット(サンプル)を製造装置40から取り外し、Oリングを取り除き、円筒形分割ターゲット材間に残存するIn半田を掻き出した。
Next, an O-ring 47 manufactured by Teflon (registered trademark) was attached to the target material holding portion 43b, and one of the cylindrical divided target materials was attached to the target material holding portion 43b. At this time, the lower end holding member 43 adjusted the deviation between the lower end of the cylindrical base material and the lower end of the cylindrical split target material to be 0.1 mm. In addition, a gap 49 was formed between the cylindrical base material and the cylindrical division target material.
Further, the remaining cylindrical division target material was stacked on the cylindrical division target material. An O-ring 51 made of Teflon (registered trademark) having a thickness of 0.5 mm was interposed between the cylindrical split target materials. The O-ring 50 is mounted on the cylindrical split target material placed on the top, the top cylindrical split target material is attached to the target material holding portion 44b, and the cylindrical target material is formed by the target material holding portion 44b. Was pressed down from above. At this time, the positions of the nine cylindrical divided target materials were adjusted so that all the steps between the cylindrical divided target materials were 0.2 mm or less. In this way, the upper end portion of the cylindrical target material was held by the target material holding member 44.
Next, the base material holding portion 45b was pressed against the upper end portion of the cylindrical base material, and the upper end portion of the cylindrical base material was held by the base material holding member 45. At this time, while measuring the distance between the surface of the cylindrical target material and the surface of the cylindrical base material with a depth gauge so that the deviation between the upper end of the cylindrical base material and the upper end of the cylindrical target material is 0.1 mm or less, the jig Adjusted the position.
Finally, the lower holding member 43 is fixed to the titanium connecting member 46 with the fixture 43d, the target material holding member 44 is fixed to the fixture 44c, and the base material holding member 45 is fixed to the titanium connecting member 46 with the fixture 45c. The cylindrical target material was firmly fixed to the manufacturing apparatus 40.
The manufacturing apparatus 40, the cylindrical base material and the cylindrical target material were heated to 180 ° C.
From the upper side of the target material holding member 44, a sufficient amount of melted In solder at 175 ° C. was injected into the void portion 49 to join the cylindrical target material and the cylindrical base material.
The molten solder injected into the manufacturing apparatus 40, the cylindrical base material, the cylindrical target material, and the void 49 was cooled.
After confirming that the In solder had solidified, the manufactured ITO cylindrical sputtering target (sample) was removed from the manufacturing apparatus 40, the O-ring was removed, and the In solder remaining between the cylindrical split target materials was scraped out.
 このように製造したITO円筒形スパッタリングターゲット(サンプル)において、接合材の厚みを、次のように超音波探傷検査機(株式会社日立パワーソリューションズ製:FS LINE)を使用して測定した。具体的には、ターゲット材と接合層の界面での反射波と、接合層と基材の界面での反射波の検出時間の差と、接合層中の超音波の伝播速度から接合層の厚みを算出した。なお、プローブは10MHzのものを使用し、接合層(Inメタル)中の超音波の伝播速度は2700m/sとした。
 接合材の厚みの測定位置は、1個のターゲットセグメントにつき、軸線方向で、ターゲットセグメントの両端のそれぞれから内側に10mm離れた2点と、それらの2点間を等分した値が50mm以下となるように等分した各点とし、軸線方向の当該測定点のそれぞれにおいて、周方向で30°おきの12箇所(0°、30°、60°、・・・及び330°の各位置)とした。1つの基材において、接合された各ターゲットセグメントについて、前述の位置で測定を行い、最大値と最小値の差を接合材の厚み差とした。
 また、隣り合うターゲット材間の全ての段差量hを、デプスゲージを用いて測定して、段差量hの最大値を求めた。
 また、隣り合うターゲット材間の全ての軸方向距離dを、フィラーゲージを用いて測定し、それらの最大値と最小値の差を求めた。
 隣り合うターゲット材間の全ての段差量hおよび軸方向距離dの測定位置は、周方向で30°おきの12箇所(0°、30°、60°、・・・及び330°の各位置)とした。
In the ITO cylindrical sputtering target (sample) manufactured in this way, the thickness of the bonding material was measured using an ultrasonic flaw detector (manufactured by Hitachi Power Solutions, Ltd .: FS LINE) as follows. Specifically, the thickness of the bonding layer is based on the difference in the detection time between the reflected wave at the interface between the target material and the bonding layer and the reflected wave at the interface between the bonding layer and the base material, and the propagation speed of ultrasonic waves in the bonding layer. Was calculated. A probe of 10 MHz was used, and the propagation speed of ultrasonic waves in the bonding layer (In metal) was set to 2700 m / s.
The measurement position of the thickness of the joint material is two points 10 mm inward from each of both ends of the target segment in the axial direction for one target segment, and the value obtained by equally dividing the two points is 50 mm or less. Each point is divided into equal parts so as to be equal to each other, and at each of the measurement points in the axial direction, 12 points (0 °, 30 °, 60 °, ..., And 330 ° positions) at intervals of 30 ° in the circumferential direction. did. For each of the bonded target segments on one base material, measurements were performed at the above-mentioned positions, and the difference between the maximum value and the minimum value was defined as the thickness difference of the bonding material.
Further, all the step amounts h between the adjacent target materials were measured using a depth gauge, and the maximum value of the step amount h was obtained.
In addition, all axial distances d between adjacent target materials were measured using a filler gauge, and the difference between their maximum and minimum values was determined.
The measurement positions of all the steps h and the axial distance d between the adjacent target materials are 12 points every 30 ° in the circumferential direction (each position of 0 °, 30 °, 60 °, ..., And 330 °). And said.
<実施例2>
 実施例1において、最長の円筒形ターゲット材を850mmのものに変更した以外、実施例1と同様にITO円筒形スパッタリングターゲット(サンプル)を製造し、各値を測定した。
<Example 2>
In Example 1, an ITO cylindrical sputtering target (sample) was produced in the same manner as in Example 1 except that the longest cylindrical target material was changed to 850 mm, and each value was measured.
<実施例3>
 実施例1において、最長の円筒形ターゲット材を1100mmのものに変更した以外、実施例1と同様にITO円筒形スパッタリングターゲット(サンプル)を製造し、各値を測定した。
<Example 3>
In Example 1, an ITO cylindrical sputtering target (sample) was produced in the same manner as in Example 1 except that the longest cylindrical target material was changed to 1100 mm, and each value was measured.
<実施例4>
 実施例1において、最長の円筒形ターゲット材を1450mmのものに変更した以外、実施例1と同様にITO円筒形スパッタリングターゲット(サンプル)を製造し、各値を測定した。
<Example 4>
In Example 1, an ITO cylindrical sputtering target (sample) was produced in the same manner as in Example 1 except that the longest cylindrical target material was changed to 1450 mm, and each value was measured.
<実施例5>
 実施例4において、円筒形基材の加熱を未実施に変更した。すなわち、円筒形基材を電気炉内に入れて加熱し、加熱後の反り幅Yを測定する代わりに、加熱せずに、円筒形基材の長さ方向中央部を、プレス機を用いて、反っていた方向(+方向)とは反対方向(-方向)に加圧して、当該反対方向(-方向)に幅α(=X×1.0)だけ反るように加工した以外、実施例4と同様にITO円筒形スパッタリングターゲット(サンプル)を製造し、各値を測定した。
<Example 5>
In Example 4, the heating of the cylindrical base material was changed to unimplemented. That is, instead of putting the cylindrical base material in an electric furnace and heating it and measuring the warp width Y after heating, the central portion of the cylindrical base material in the length direction is pressed using a press machine without heating. , Except that the pressure was applied in the direction opposite to the warped direction (+ direction) (-direction) and processed so as to warp by the width α (= X × 1.0) in the opposite direction (-direction). An ITO cylindrical sputtering target (sample) was manufactured in the same manner as in Example 4, and each value was measured.
<実施例6>
 実施例3において、円筒形ターゲット材の材質をIGZOに変更した以外、実施例3と同様にIGZO円筒形スパッタリングターゲット(サンプル)を製造し、各値を測定した。
<Example 6>
In Example 3, an IGZO cylindrical sputtering target (sample) was produced in the same manner as in Example 3 except that the material of the cylindrical target material was changed to IGZO, and each value was measured.
<比較例1>
 実施例2において、円筒形基材を反らせる加工を未実施に変更した以外、実施例2と同様にITO円筒形スパッタリングターゲット(サンプル)を製造し、各値を測定した。
<Comparative example 1>
In Example 2, an ITO cylindrical sputtering target (sample) was produced in the same manner as in Example 2 except that the process of warping the cylindrical base material was changed to not performed, and each value was measured.
<比較例2>
 実施例2において、円筒形基材を反らせる加工工程において、もともと反っていた方向の反対側までは反らせないようにした以外、実施例2と同様にITO円筒形スパッタリングターゲット(サンプル)を製造し、各値を測定した。
<Comparative example 2>
In Example 2, in the processing step of warping the cylindrical base material, an ITO cylindrical sputtering target (sample) was manufactured in the same manner as in Example 2 except that the side opposite to the originally warped direction was not warped. Each value was measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 使用する円筒形基材の反り幅を測定し、もともと反っていた方向とは反対方向に該円筒形基材を加圧して、反っていた方向とは反対方向に逆に円筒形基材を反らせるように加工することにより、円筒形ターゲット材の軸方向長さが長くても、すなわち、少なくとも1つの円筒形ターゲット材の軸方向長さが750mm以上である場合であっても、また、接合材充填時の加熱を経ても、すなわち、接合材充填時に、円筒形基材を予め加熱したり、円筒形基材とターゲット材との間に加熱溶融された接合材が充填され、円筒形基材が加熱されたりしても、円筒形基材の反りの影響を解消することができ、その結果、接合材の厚さの最大値と最小値の差を小さくでき、隣り合う円筒形ターゲット材の外周面間における段差量も小さくでき、隣り合う円筒形ターゲット材間の軸方向距離の最大値と最小値の差も小さくできることが分かった。 Measure the warp width of the cylindrical base material to be used, pressurize the cylindrical base material in the direction opposite to the originally warped direction, and warp the cylindrical base material in the direction opposite to the warped direction. By processing in this way, even if the axial length of the cylindrical target material is long, that is, even if the axial length of at least one cylindrical target material is 750 mm or more, the joining material is also Even after heating at the time of filling, that is, at the time of filling the bonding material, the cylindrical base material is preheated, or the bonding material heated and melted between the cylindrical base material and the target material is filled, and the cylindrical base material is filled. Even if the cylinder is heated, the influence of the warp of the cylindrical base material can be eliminated, and as a result, the difference between the maximum value and the minimum value of the thickness of the bonding material can be reduced, and the adjacent cylindrical target materials can be used. It was found that the amount of steps between the outer peripheral surfaces can be reduced, and the difference between the maximum and minimum axial distances between adjacent cylindrical target materials can also be reduced.
 1 スパッタリングターゲット
 2 基材
 2a 外周面
 3 ターゲット材
 4 接合材
 5 ダイヤルゲージ
 40 製造装置
 43 下部保持部材
 43b ターゲット材保持部
 43c 基材保持部
 43d 固定具
 44 ターゲット材保持部材
 44b ターゲット材保持部
 44c 固定具
 45 基材保持部材
 45b 基材押え部
 45c 固定具
 46 連結部材
 47 Oリング
 48 Oリング
 49 空隙部
 50 Oリング
 51 Oリング
 
1 Sputtering target 2 Base material 2a Outer peripheral surface 3 Target material 4 Joining material 5 Dial gauge 40 Manufacturing equipment 43 Lower holding member 43b Target material holding part 43c Base material holding part 43d Fixture 44 Target material holding member 44b Target material holding part 44c Fixing Tool 45 Base material holding member 45b Base material holding part 45c Fixing tool 46 Connecting member 47 O-ring 48 O-ring 49 Void part 50 O-ring 51 O-ring

Claims (10)

  1.  円筒形基材と、円筒形ターゲット材とを備えたスパッタリングターゲットの製造方法であって、
     円筒形基材の反り幅を測定し(「測定工程」と称する)、
     反っていた方向とは反対方向に円筒形基材を反らせる加工をし(「加工工程」と称する)、
     前記加工された円筒形基材の外側に、複数の円筒形ターゲット材を軸方向に間隔をおいて並べて配置し、該円筒形基材と前記円筒形ターゲット材を接合材で接合することを特徴とする、スパッタリングターゲットの製造方法。
    A method for manufacturing a sputtering target including a cylindrical base material and a cylindrical target material.
    Measure the warpage width of the cylindrical substrate (referred to as the "measurement process") and
    The cylindrical base material is warped in the direction opposite to the warped direction (referred to as "processing process").
    A plurality of cylindrical target materials are arranged side by side at axial intervals on the outside of the processed cylindrical base material, and the cylindrical base material and the cylindrical target material are joined by a joining material. A method for manufacturing a sputtering target.
  2.  前記加工工程では、前記測定工程で測定された反り幅に基づいて、反っていた方向とは反対方向に円筒形基材を反らせる幅を決定することを特徴とする、請求項1に記載のスパッタリングターゲットの製造方法。 The sputtering according to claim 1, wherein in the processing step, the width at which the cylindrical base material is warped in a direction opposite to the warped direction is determined based on the warp width measured in the measuring step. How to make the target.
  3.  前記加工工程では、前記測定工程で反り幅Xが測定された場合、X×0.10~2.00の幅だけ、反っていた方向とは反対方向に円筒形基材を反らせる加工をすることを特徴とする、請求項1又は2に記載のスパッタリングターゲットの製造方法。 In the processing step, when the warp width X is measured in the measurement step, the cylindrical base material is warped by a width of X × 0.10 to 2.00 in the direction opposite to the warped direction. The method for producing a sputtering target according to claim 1 or 2, wherein the sputtering target is produced.
  4.  前記測定工程では、前記円筒形基材を加熱した後、加熱後の円筒形基材の反り幅を測定し、
     前記加工工程では、前記測定工程で反り幅Yが測定された場合、Y×0.50~1.50の幅だけ、反っていた方向とは反対方向に円筒形基材を反らせる加工をすることを特徴とする、請求項1又は2に記載のスパッタリングターゲットの製造方法。
    In the measurement step, after heating the cylindrical base material, the warp width of the heated cylindrical base material is measured.
    In the processing step, when the warp width Y is measured in the measurement step, the cylindrical base material is warped by a width of Y × 0.50 to 1.50 in the direction opposite to the warped direction. The method for producing a sputtering target according to claim 1 or 2, wherein the sputtering target is produced.
  5.  前記測定工程では、前記円筒形基材を150~300℃に加熱した後、加熱後の円筒形基材の反り幅Yを測定することを特徴とする、請求項4に記載のスパッタリングターゲットの製造方法。 The production of the sputtering target according to claim 4, wherein in the measurement step, the cylindrical base material is heated to 150 to 300 ° C., and then the warp width Y of the heated cylindrical base material is measured. Method.
  6.  前記測定工程では、円筒形基材の外周面が変位している幅を反り幅として測定することを特徴とする、請求項1~5の何れかに記載のスパッタリングターゲットの製造方法。 The method for manufacturing a sputtering target according to any one of claims 1 to 5, wherein in the measurement step, the width in which the outer peripheral surface of the cylindrical base material is displaced is measured as the warp width.
  7.  前記円筒形ターゲット材のうち少なくとも1個は、軸方向長さが750mm以上である、請求項1~6の何れかに記載のスパッタリングターゲットの製造方法。 The method for manufacturing a sputtering target according to any one of claims 1 to 6, wherein at least one of the cylindrical target materials has an axial length of 750 mm or more.
  8.  製造されたスパッタリングターゲットは、接合材の厚さの最大値と最小値の差が1.0mm以下であり、隣り合う円筒形ターゲット材間の外周面間における段差量の最大値が0.5mm以下であり、隣り合う円筒形ターゲット材間の軸方向距離の最大値と最小値の差が0.2mm以下である、請求項1~7の何れかに記載のスパッタリングターゲットの製造方法。 In the manufactured sputtering target, the difference between the maximum value and the minimum value of the thickness of the bonding material is 1.0 mm or less, and the maximum value of the step amount between the outer peripheral surfaces between the adjacent cylindrical target materials is 0.5 mm or less. The method for manufacturing a sputtering target according to any one of claims 1 to 7, wherein the difference between the maximum value and the minimum value of the axial distance between adjacent cylindrical target materials is 0.2 mm or less.
  9.  円筒形基材と、円筒形ターゲット材とを備え、前記円筒形基材と前記円筒形ターゲット材を接合材で接合してなるスパッタリングターゲットであって、
     前記円筒形ターゲット材のうち少なくとも1個の軸方向の長さが750mm以上であり、接合材の厚さの最大値と最小値の差が1.0mm以下であり、隣り合う円筒形ターゲット材の外周面間における段差量の最大値が0.5mm以下であり、隣り合う円筒形ターゲット材間の軸方向距離の最大値と最小値の差が0.2mm以下であるスパッタリングターゲット。
    A sputtering target comprising a cylindrical base material and a cylindrical target material, and the cylindrical base material and the cylindrical target material are joined by a joining material.
    At least one of the cylindrical target materials has an axial length of 750 mm or more, the difference between the maximum value and the minimum value of the thickness of the bonding material is 1.0 mm or less, and the adjacent cylindrical target materials A sputtering target in which the maximum value of the step amount between the outer peripheral surfaces is 0.5 mm or less, and the difference between the maximum value and the minimum value of the axial distance between adjacent cylindrical target materials is 0.2 mm or less.
  10.  前記円筒形基材の長さが2m以上である請求項9に記載のスパッタリングターゲット。 The sputtering target according to claim 9, wherein the length of the cylindrical base material is 2 m or more.
PCT/JP2020/024891 2019-11-21 2020-06-24 Sputtering target and method for manufacturing same WO2021100233A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020560296A JP7139453B2 (en) 2019-11-21 2020-06-24 Sputtering target and manufacturing method thereof
CN202080078115.6A CN114651086A (en) 2019-11-21 2020-06-24 Sputtering target and method for producing same
KR1020227014428A KR20220104150A (en) 2019-11-21 2020-06-24 Sputtering target and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019210822 2019-11-21
JP2019-210822 2019-11-21

Publications (1)

Publication Number Publication Date
WO2021100233A1 true WO2021100233A1 (en) 2021-05-27

Family

ID=75980495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024891 WO2021100233A1 (en) 2019-11-21 2020-06-24 Sputtering target and method for manufacturing same

Country Status (5)

Country Link
JP (1) JP7139453B2 (en)
KR (1) KR20220104150A (en)
CN (1) CN114651086A (en)
TW (1) TWI815025B (en)
WO (1) WO2021100233A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116143547B (en) * 2022-12-15 2023-12-05 先导薄膜材料(广东)有限公司 Method for reducing warping of ITO planar target after sintering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122071A (en) * 1988-10-28 1990-05-09 Tanaka Kikinzoku Kogyo Kk Manufacture of sputtering target
WO2016067717A1 (en) * 2014-10-28 2016-05-06 三井金属鉱業株式会社 Cylindrical ceramic sputtering target and manufacturing device and manufacturing method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3937085B2 (en) * 1999-11-12 2007-06-27 株式会社高純度化学研究所 Method for producing sputtering target assembly
JP5482020B2 (en) 2008-09-25 2014-04-23 東ソー株式会社 Cylindrical sputtering target and manufacturing method thereof
SG11201601755PA (en) * 2013-09-12 2016-04-28 Tanaka Precious Metal Ind Warp correction method for sputtering target with backing plate
JP6220091B1 (en) * 2017-03-22 2017-10-25 Jx金属株式会社 Sputtering target and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122071A (en) * 1988-10-28 1990-05-09 Tanaka Kikinzoku Kogyo Kk Manufacture of sputtering target
WO2016067717A1 (en) * 2014-10-28 2016-05-06 三井金属鉱業株式会社 Cylindrical ceramic sputtering target and manufacturing device and manufacturing method therefor
JP2019183285A (en) * 2014-10-28 2019-10-24 三井金属鉱業株式会社 Cylindrical ceramic sputtering target and manufacturing apparatus and manufacturing method of the same

Also Published As

Publication number Publication date
TWI815025B (en) 2023-09-11
CN114651086A (en) 2022-06-21
JPWO2021100233A1 (en) 2021-11-25
KR20220104150A (en) 2022-07-26
TW202120721A (en) 2021-06-01
JP7139453B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
CN106232860B (en) Cylindrical ceramic sputtering target, and apparatus and method for manufacturing the same
TWI491750B (en) Cylindrical sputtering target and method for manufacturing the same
JP5103911B2 (en) Cylindrical sputtering target and manufacturing method thereof
JP6286088B2 (en) Backing plate, sputtering target, and manufacturing method thereof
WO2021100233A1 (en) Sputtering target and method for manufacturing same
TWI649295B (en) Sputtering target and its manufacturing method
KR101000339B1 (en) Sputtering target
JP2018135590A (en) Cylindrical sputtering target, sintered body, and manufacturing method of cylindrical sputtering target
JP4000813B2 (en) Sputtering target
JP7016432B2 (en) Sputtering target and manufacturing method of sputtering target
JP6677853B1 (en) Sputtering target, method for joining target material and backing plate, and method for manufacturing sputtering target
JP2002322560A (en) Sputtering target and manufacturing method thereof
CN116770243A (en) Method for preparing dissimilar metal target material
KR20000041950A (en) Method for fabricating plasma display panel
JP2016023320A (en) Sputtering target

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020560296

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889694

Country of ref document: EP

Kind code of ref document: A1