WO2020250269A1 - 秘密除算システム、秘密計算装置、秘密除算方法、およびプログラム - Google Patents
秘密除算システム、秘密計算装置、秘密除算方法、およびプログラム Download PDFInfo
- Publication number
- WO2020250269A1 WO2020250269A1 PCT/JP2019/022895 JP2019022895W WO2020250269A1 WO 2020250269 A1 WO2020250269 A1 WO 2020250269A1 JP 2019022895 W JP2019022895 W JP 2019022895W WO 2020250269 A1 WO2020250269 A1 WO 2020250269A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secret
- value
- integer
- secret value
- digit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/70—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
- G06F21/71—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09C—CIPHERING OR DECIPHERING APPARATUS FOR CRYPTOGRAPHIC OR OTHER PURPOSES INVOLVING THE NEED FOR SECRECY
- G09C1/00—Apparatus or methods whereby a given sequence of signs, e.g. an intelligible text, is transformed into an unintelligible sequence of signs by transposing the signs or groups of signs or by replacing them by others according to a predetermined system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/085—Secret sharing or secret splitting, e.g. threshold schemes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/535—Dividing only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/46—Secure multiparty computation, e.g. millionaire problem
Definitions
- the present invention relates to a cryptographic application technique, and particularly to a technique for efficiently performing division without revealing input or output values.
- Non-Patent Document 1 There is a method called secret calculation as a method of obtaining a specific calculation result without recovering the encrypted numerical value (see, for example, Non-Patent Document 1).
- encryption is performed by distributing numerical fragments among three secret computing devices, and the three secret computing devices perform cooperative calculation to add or subtract the numerical values without restoring them.
- Constant addition, multiplication, constant multiplication, logical operation (negative, logical product, logical sum, exclusive OR), data format conversion (integer, binary number) results are distributed to three secret arithmetic units, that is It can be kept encrypted.
- Non-Patent Document 2 When performing division without revealing the input and output values, there is a method of realizing Goldschmidt division by secret calculation (see, for example, Non-Patent Document 2).
- An object of the present invention is to realize division with a small number of processing stages without using multiplication of fixed-point numbers in view of the above technical problems.
- R is an integer of 3 or more
- L 0 and L 1 are non-negative integers
- N is a real number of 0 or more and less than R L1 .
- D be a natural number
- N -L0 the value of each digit from the 0th digit after the decimal point in the R notation of N to the 1st digit of the integer part L
- j be L 1 -1.
- a secret value that represents the result of dividing N by D using the secret value [N] of N and the secret value [D] of D, including multiple secret calculators, for each integer from to -L 0.
- division since division is realized without using multiplication of fixed-point numbers, division can be realized with a small number of processing steps.
- FIG. 1 is a diagram illustrating a functional configuration of a secret division system.
- FIG. 2 is a diagram illustrating the functional configuration of the secret calculation device.
- FIG. 3 is a diagram illustrating the processing procedure of the secret division method.
- FIG. 4 is a diagram illustrating a functional configuration of a computer.
- a value whose value a is concealed by encryption or secret sharing is called a concealed value of a and is described as [a].
- [a] refers to the set of secret sharing fragments possessed by each secret computing device.
- [A, b] square brackets in the domain of the variable represents a closed interval
- (a, b) round brackets) represents an open interval.
- i ⁇ [a, b] means that i takes a value greater than or equal to a and less than or equal to b.
- i ⁇ [a, b) indicates that i takes a value greater than or equal to a and less than b.
- the comparison operation takes the secret values [a] and [b] of the two values a and b as inputs, and calculates the secret value [c] of the truth value c ⁇ ⁇ 0, 1 ⁇ of a ⁇ b.
- the boolean value is 1 when it is true and 0 when it is false. The execution of this operation is described as follows.
- the secret value [N] of the divisor N and the secret value [D] of the divisor D are input, and the integer part L from the 0th digit after the decimal point in the R notation of N / D.
- R is an integer of 3 or more
- L 0 and L 1 are non-negative integers
- N is a real number of 0 or more and less than R L1
- D is a natural number.
- [N -L0 ], [N -L0 + 1 ], ..., [N L1-2 ], [N L1-1 ] used in the embodiment represent the R-ary decomposition of N as shown in the following equation. It is a hidden value of N -L0 , N -L0 + 1 ,..., N L1-2 , N L1-1 .
- the secret division system 100 includes, for example, K ( ⁇ 2) secret calculation devices 1 1 , ..., 1 K, as shown in FIG.
- the secret computing devices 1 1 , ..., 1 K are connected to the communication network 9, respectively.
- the communication network 9 is a circuit-switched or packet-switched communication network configured so that each connected device can communicate with each other.
- the Internet LAN (Local Area Network), WAN (Wide Area Network). Etc. can be used. It should be noted that each device does not necessarily have to be able to communicate online via the communication network 9.
- the information to be input to the secret computing device 1 1 , ..., 1 K is stored in a portable recording medium such as a magnetic tape or a USB memory, and the portable recording medium is offline to the secret computing device 1 1 , ..., 1 K. It may be configured to be input with.
- a portable recording medium such as a magnetic tape or a USB memory
- the secret calculation device 1k includes, for example, an input unit 11, an initialization unit 12, a parallel comparison unit 13, an update unit 14, an iterative control unit 15, and an output unit 16.
- the secret computing device 1k is configured by loading a special program into, for example, a publicly known or dedicated computer having a central processing unit (CPU), a main storage device (RAM: Random Access Memory), and the like. It is a special device.
- the secret calculation device 1k executes each process under the control of the central processing unit, for example.
- the data input to the secret computing device 1k and the data obtained in each process are stored in, for example, the main storage device, and the data stored in the main storage device is read out to the central processing unit as needed. It is used for other processing.
- At least a part of each processing unit of the secret computing device 1k may be configured by hardware such as an integrated circuit.
- step S11 concealment value of the dividend N to the input unit 11 of the secure computing apparatus 1 k [N] and confidentiality values of divisor D [D] and is input.
- the concealed value [N] of the divisor N the concealed value of the concealed value of the divisor N
- the concealed value of N -L0 , N -L0 + 1 ,..., N L1-2 , N L1-1 representing the R-ary decomposition of the divisor N [N -L0 ], ..., [N L1-1 ] may be input to the input unit 11.
- the input unit 11 When the concealed value [N] of the divisor N is input to the input unit 11, the input unit 11 represents the R-ary decomposition of the divisor N from the concealed value [N] of the divisor N N -L0 , N -L0 + 1 , ..., N L1-2 , N L1-1 hidden values [N -L0 ],..., [N L1-1 ] are generated.
- the input unit 11 is a secret value [N -L0 ],..., [N L1-1 ] of N -L0 , N -L0 + 1 ,..., N L1-2 , N L1-1 representing the R-ary decomposition of the divisor N.
- the secret value [D] of the divisor D are output to the parallel comparison unit 13.
- the initialization unit 12 outputs the secret value [P L1 ] of the partial remainder P L1 to the parallel comparison unit 13. Further, the index j is output to the iterative control unit 15.
- step S14 the update unit 14 of each secret computing device 1k uses the concealed values [E 1 ], ..., [E R-1 ] of the comparison results E 1 , ..., E R-1 to obtain the quotient Q j.
- the update unit 14 calculates a secret value of the quotient Q j from the following equation concealment value of [Q j] and partial remainder P j [P j].
- Updating unit 14 outputs the confidential value of the quotient Q j concealment value of [Q j] and partial remainder P j and [P j] to the output unit 16.
- step S16 the output unit 16 of the secure computing apparatus 1 k is the quotient Q -L0, ..., concealment value of Q L1-1 [Q -L0], ... , and outputs the [Q L1-1].
- division can be realized by comparing L 0 + L 1 step. Since the number of steps required for one division is small, the execution time becomes short, especially when the division is repeatedly executed in series.
- R 2 in the above embodiment, it corresponds to the calculation of division in bit units.
- Division calculated in bit units has a large number of comparison stages.
- the number of comparisons is increased by about (R-1) / (log 2 R) times as compared with the division calculated in bit units, but the number of stages is reduced by about 1 / (log 2 R) times. can do.
- the program that describes this processing content can be recorded on a computer-readable recording medium.
- the computer-readable recording medium may be, for example, a magnetic recording device, an optical disk, a photomagnetic recording medium, a semiconductor memory, or the like.
- the distribution of this program is carried out, for example, by selling, transferring, or renting a portable recording medium such as a DVD or CD-ROM on which the program is recorded.
- the program may be stored in the storage device of the server computer, and the program may be distributed by transferring the program from the server computer to another computer via a network.
- a computer that executes such a program first stores, for example, a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. Then, when the process is executed, the computer reads the program stored in its own storage device and executes the process according to the read program. Further, as another execution form of this program, a computer may read the program directly from a portable recording medium and execute processing according to the program, and further, the program is transferred from the server computer to this computer. It is also possible to execute the process according to the received program one by one each time. In addition, the above processing is executed by a so-called ASP (Application Service Provider) type service that realizes the processing function only by the execution instruction and result acquisition without transferring the program from the server computer to this computer. May be. It should be noted that the program in this embodiment includes information to be used for processing by a computer and equivalent to the program (data that is not a direct command to the computer but has a property of defining the processing of the computer, etc.).
- the present device is configured by executing a predetermined program on the computer, but at least a part of these processing contents may be realized by hardware.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Storage Device Security (AREA)
- Machine Translation (AREA)
- Complex Calculations (AREA)
Abstract
Description
ある値aを暗号化や秘密分散などにより秘匿化した値をaの秘匿値と呼び、[a]と表記する。秘匿化が秘密分散である場合は、[a]により各秘密計算装置が持つ秘密分散の断片の集合を参照する。
秘匿文に対する加算、減算、乗算の各演算は、2つの値a, bの秘匿値[a], [b]を入力とし、それぞれa+b, a-b, abの計算結果c1, c2, c3の秘匿値[c1], [c2], [c3]を計算する。これらの演算の実行をそれぞれ次式のように記述する。
比較の演算は、2つの値a, bの秘匿値[a], [b]を入力とし、a≦bの真偽値c∈{0, 1}の秘匿値[c]を計算する。真偽値は真のとき1、偽のとき0とする。この演算の実行を次式のように記述する。
実施形態の秘密除算システムは、被除数Nの秘匿値[N]と除数Dの秘匿値[D]とを入力とし、N/DのR進法での小数点以下のL0桁目から整数部L1桁目までの各桁の値Q-L0, …, QL1-1の秘匿値[Q-L0], …, [QL1-1]を計算して出力する。ここで、Rは3以上の整数、L0, L1は非負の整数、Nは0以上RL1未満の実数、Dは自然数とする。なお、実施形態中で用いる[N-L0], [N-L0+1], …, [NL1-2], [NL1-1]は、次式のようにNのR進分解を表すN-L0, N-L0+1, …, NL1-2, NL1-1の秘匿値である。
上記実施形態で説明した各装置における各種の処理機能をコンピュータによって実現する場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムを図4に示すコンピュータの記憶部1020に読み込ませ、制御部1010、入力部1030、出力部1040などに動作させることにより、上記各装置における各種の処理機能がコンピュータ上で実現される。
Claims (6)
- Rを3以上の整数とし、L0, L1を非負の整数とし、Nを0以上RL1未満の実数とし、Dを自然数とし、N-L0, …, NL1-1をNのR進法での小数点以下L0桁目から整数部L1桁目までの各桁の値とし、jをL1-1から-L0までの各整数とし、
複数の秘密計算装置を含み、Nの秘匿値[N]とDの秘匿値[D]を用いてNをDで除算した結果を表す秘匿値を得る秘密除算システムであって、
上記秘密計算装置は、
部分剰余PL1の秘匿値[PL1]を0に設定する初期化部と、
部分除数n=Pj+1R+Njの秘匿値[n]と1以上R未満の各整数gについての[D]×gとを並列に比較した比較結果E1, …, ER-1の秘匿値[E1], …, [ER-1]を計算する並列比較部と、
上記比較結果E1, …, ER-1の秘匿値[E1], …, [ER-1]を用いてn=DQj+Pjを満たす商Qjの秘匿値[Qj]と部分剰余Pjの秘匿値[Pj]とを計算する更新部と、
を含む秘密除算システム。 - Rを3以上の整数とし、L0, L1を非負の整数とし、Nを0以上RL1未満の実数とし、Dを自然数とし、N-L0, …, NL1-1をNのR進法での小数点以下L0桁目から整数部L1桁目までの各桁の値とし、jをL1-1から-L0までの各整数とし、
Nの秘匿値[N]とDの秘匿値[D]を用いてNをDで除算した結果を表す秘匿値を得る秘密除算システムで用いられる秘密計算装置であって、
部分剰余PL1の秘匿値[PL1]を0に設定する初期化部と、
部分除数n=Pj+1R+Njの秘匿値[n]と1以上R未満の各整数gについての[D]×gとを並列に比較した比較結果E1, …, ER-1の秘匿値[E1], …, [ER-1]を計算する並列比較部と、
上記比較結果E1, …, ER-1の秘匿値[E1], …, [ER-1]を用いてn=DQj+Pjを満たす商Qjの秘匿値[Qj]と部分剰余Pjの秘匿値[Pj]とを計算する更新部と、
を含む秘密計算装置。 - Rを3以上の整数とし、L0, L1を非負の整数とし、Nを0以上RL1未満の実数とし、Dを自然数とし、N-L0, …, NL1-1をNのR進法での小数点以下L0桁目から整数部L1桁目までの各桁の値とし、jをL1-1から-L0までの各整数とし、
複数の秘密計算装置を含み、Nの秘匿値[N]とDの秘匿値[D]を用いてNをDで除算した結果を表す秘匿値を得る秘密除算システムが実行する秘密除算方法であって、
各秘密計算装置の初期化部が、部分剰余PL1の秘匿値[PL1]を0に設定し、
各秘密計算装置の並列比較部が、部分除数n=Pj+1R+Njの秘匿値[n]と1以上R未満の各整数gについての[D]×gとを並列に比較した比較結果E1, …, ER-1の秘匿値[E1], …, [ER-1]を計算し、
各秘密計算装置の更新部が、上記比較結果E1, …, ER-1の秘匿値[E1], …, [ER-1]を用いてn=DQj+Pjを満たす商Qjの秘匿値[Qj]と部分剰余Pjの秘匿値[Pj]とを計算する、
秘密除算方法。 - 請求項4に記載の秘密計算装置としてコンピュータを機能させるためのプログラム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021525410A JP7173328B2 (ja) | 2019-06-10 | 2019-06-10 | 秘密除算システム、秘密計算装置、秘密除算方法、およびプログラム |
AU2019450855A AU2019450855B2 (en) | 2019-06-10 | 2019-06-10 | Secure division system, secure computation apparatus, secure division method, and program |
EP19932542.4A EP3982282B1 (en) | 2019-06-10 | 2019-06-10 | Secret division system, secret calculation device, secret division method, and program |
PCT/JP2019/022895 WO2020250269A1 (ja) | 2019-06-10 | 2019-06-10 | 秘密除算システム、秘密計算装置、秘密除算方法、およびプログラム |
CN201980097230.5A CN113966511A (zh) | 2019-06-10 | 2019-06-10 | 秘密除法系统、秘密计算装置、秘密除法方法以及程序 |
US17/615,106 US12010220B2 (en) | 2019-06-10 | 2019-06-10 | Secure division system, secure computation apparatus, secure division method, and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/022895 WO2020250269A1 (ja) | 2019-06-10 | 2019-06-10 | 秘密除算システム、秘密計算装置、秘密除算方法、およびプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020250269A1 true WO2020250269A1 (ja) | 2020-12-17 |
Family
ID=73781404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/022895 WO2020250269A1 (ja) | 2019-06-10 | 2019-06-10 | 秘密除算システム、秘密計算装置、秘密除算方法、およびプログラム |
Country Status (6)
Country | Link |
---|---|
US (1) | US12010220B2 (ja) |
EP (1) | EP3982282B1 (ja) |
JP (1) | JP7173328B2 (ja) |
CN (1) | CN113966511A (ja) |
AU (1) | AU2019450855B2 (ja) |
WO (1) | WO2020250269A1 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016129363A1 (ja) * | 2015-02-12 | 2016-08-18 | 学校法人東京理科大学 | 秘密分散を用いた秘匿演算システムに関する計算装置 |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US102014A (en) * | 1870-04-19 | Improved boot-jack and brush | ||
US61998A (en) * | 1867-02-12 | Improvement in skates | ||
US82016A (en) * | 1868-09-08 | Improvement in fire-proof safes | ||
US72017A (en) * | 1867-12-10 | William b | ||
US32014A (en) * | 1861-04-09 | Charles f | ||
US12019A (en) * | 1854-12-05 | Steam-boiler | ||
US62018A (en) * | 1867-02-12 | Self and abraham emanitel | ||
US32020A (en) * | 1861-04-09 | Head for screws and tacks | ||
US82011A (en) * | 1868-09-08 | Improvement in fanning-mills | ||
US62004A (en) * | 1867-02-12 | children | ||
US916A (en) * | 1838-09-12 | Henry g | ||
US809A (en) * | 1838-06-27 | Improved mode of changing the poles of electro-magnets | ||
US12014A (en) * | 1854-11-28 | Improvement in binding-guides for sewing-machines | ||
US62005A (en) * | 1867-02-12 | John s | ||
US32007A (en) * | 1861-04-09 | Iprovement in sewing-machines | ||
US52018A (en) * | 1866-01-16 | Window-shade | ||
US82017A (en) * | 1868-09-08 | Improvement in hammee and mallet | ||
EP0739559B1 (en) * | 1993-09-09 | 2003-04-09 | BRITISH TELECOMMUNICATIONS public limited company | Method for key distribution using quantum cryptography |
AU2001282852A1 (en) * | 2000-04-28 | 2001-11-20 | The Regents Of The University Of California | Method and apparatus for free-space quantum key distribution in daylight |
US7581093B2 (en) * | 2003-12-22 | 2009-08-25 | Nortel Networks Limited | Hitless manual cryptographic key refresh in secure packet networks |
US7437081B2 (en) * | 2004-11-01 | 2008-10-14 | Magiq Technologies, Inc | System and method for providing two-way communication of quantum signals, timing signals, and public data |
US7826749B2 (en) * | 2005-09-19 | 2010-11-02 | The Chinese University Of Hong Kong | Method and system for quantum key distribution over multi-user WDM network with wavelength routing |
US7889868B2 (en) * | 2005-09-30 | 2011-02-15 | Verizon Business Global Llc | Quantum key distribution system |
US7940757B2 (en) * | 2006-02-23 | 2011-05-10 | Cisco Technology, Inc. | Systems and methods for access port ICMP analysis |
JP5631743B2 (ja) * | 2008-01-25 | 2014-11-26 | キネテイツク・リミテツド | 量子暗号装置 |
US8345861B2 (en) * | 2008-08-22 | 2013-01-01 | Red Hat, Inc. | Sharing a secret using polynomial division over GF(Q) |
US7995765B2 (en) * | 2008-08-28 | 2011-08-09 | Red Hat, Inc. | Sharing a secret using hyperplanes over GF(q) |
US20110206204A1 (en) * | 2008-10-17 | 2011-08-25 | Dmitry Ivanovich Sychev | Methods and devices of quantum encoding on dwdm (roadm) network and fiber optic links . |
GB0819665D0 (en) * | 2008-10-27 | 2008-12-03 | Qinetiq Ltd | Quantum key dsitribution |
KR101351012B1 (ko) * | 2009-12-18 | 2014-01-10 | 한국전자통신연구원 | 다자간 양자 통신에서의 사용자 인증 방법 및 장치 |
US9237098B2 (en) * | 2012-07-03 | 2016-01-12 | Cisco Technologies, Inc. | Media access control (MAC) address summation in Datacenter Ethernet networking |
JP6030925B2 (ja) * | 2012-11-12 | 2016-11-24 | ルネサスエレクトロニクス株式会社 | 半導体装置及び情報処理システム |
US10560265B2 (en) * | 2013-06-08 | 2020-02-11 | Quantumctek Co., Ltd. | Mobile secret communications method based on quantum key distribution network |
KR101776137B1 (ko) * | 2014-10-30 | 2017-09-19 | 에스케이 텔레콤주식회사 | 양자 키 분배 시스템에서 복수의 장치에 키를 공급하는 장치 및 방법 |
CN105991285B (zh) * | 2015-02-16 | 2019-06-11 | 阿里巴巴集团控股有限公司 | 用于量子密钥分发过程的身份认证方法、装置及系统 |
JP6400513B2 (ja) * | 2015-03-18 | 2018-10-03 | 株式会社東芝 | 量子鍵配送装置、量子鍵配送方法およびプログラム |
CN106301769B (zh) * | 2015-06-08 | 2020-04-10 | 阿里巴巴集团控股有限公司 | 量子密钥输出方法、存储一致性验证方法、装置及系统 |
US11588783B2 (en) * | 2015-06-10 | 2023-02-21 | Cisco Technology, Inc. | Techniques for implementing IPV6-based distributed storage space |
US9960465B2 (en) * | 2015-07-30 | 2018-05-01 | Lg Chem, Ltd. | Battery pack |
KR101860234B1 (ko) * | 2016-12-20 | 2018-05-21 | 엘에스산전 주식회사 | 듀얼 포트 스위치의 링크 속도 설정 방법 |
US10476794B2 (en) * | 2017-07-30 | 2019-11-12 | Mellanox Technologies Tlv Ltd. | Efficient caching of TCAM rules in RAM |
US10673883B2 (en) * | 2018-05-14 | 2020-06-02 | Cisco Technology, Inc. | Time synchronization attack detection in a deterministic network |
US11212294B2 (en) * | 2018-09-12 | 2021-12-28 | Grid7 LLC | Data packet security with expiring time-based hash message authentication codes (HMACs) |
-
2019
- 2019-06-10 AU AU2019450855A patent/AU2019450855B2/en active Active
- 2019-06-10 US US17/615,106 patent/US12010220B2/en active Active
- 2019-06-10 EP EP19932542.4A patent/EP3982282B1/en active Active
- 2019-06-10 WO PCT/JP2019/022895 patent/WO2020250269A1/ja unknown
- 2019-06-10 JP JP2021525410A patent/JP7173328B2/ja active Active
- 2019-06-10 CN CN201980097230.5A patent/CN113966511A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016129363A1 (ja) * | 2015-02-12 | 2016-08-18 | 学校法人東京理科大学 | 秘密分散を用いた秘匿演算システムに関する計算装置 |
Non-Patent Citations (5)
Title |
---|
CATRINA, O. ET AL.: "Multiparty Computation of Fixed-Point Multiplication and Reciprocal", 20TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEM APPLICATION, 2009, pages 107 - 111, XP031569590 * |
DAN BOGDANOVMARGUS NIITSOOTOMAS TOFTJAN WILLEMSON: "High-performance secure multi-party computation for data mining applications", INTERNATIONAL JOURNAL OF INFORMATION SECURITY, vol. 11, no. 6, 2012, pages 403 - 418, XP055577139, DOI: 10.1007/s10207-012-0177-2 |
KOJI CHIDAKOKI HAMADADAI IGARASHIKATSUMI TAKAHASHI: "A Three-party Secure Function Evaluation with Lightweight Verifiability Revisited", CSS, 2010 |
MEHRDAD ALIASGARI; MARINA BLANTON; YIHUA ZHANG; AARON STEELE: "Secure Computation on Floating Point Numbers", INTERNATIONAL ASSOCIATION FOR CRYPTOLOGIC RESEARCH, 10 December 2012 (2012-12-10), pages 1 - 31, XP061007014, Retrieved from the Internet <URL:https:eprint.iacr.org/2012/405> [retrieved on 20190807] * |
See also references of EP3982282A4 |
Also Published As
Publication number | Publication date |
---|---|
US20220224516A1 (en) | 2022-07-14 |
JP7173328B2 (ja) | 2022-11-16 |
EP3982282A1 (en) | 2022-04-13 |
AU2019450855A1 (en) | 2021-12-23 |
EP3982282A4 (en) | 2023-01-18 |
US12010220B2 (en) | 2024-06-11 |
EP3982282B1 (en) | 2024-01-03 |
CN113966511A (zh) | 2022-01-21 |
JPWO2020250269A1 (ja) | 2020-12-17 |
AU2019450855B2 (en) | 2023-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180011996A1 (en) | Secret shared random access machine | |
JP7067633B2 (ja) | 秘密右シフト演算システム、秘密除算システム、それらの方法、秘密計算装置、およびプログラム | |
JP6766182B2 (ja) | 秘密計算システム、秘密計算装置、秘密計算方法、プログラム | |
JP7067632B2 (ja) | 秘密シグモイド関数計算システム、秘密ロジスティック回帰計算システム、秘密シグモイド関数計算装置、秘密ロジスティック回帰計算装置、秘密シグモイド関数計算方法、秘密ロジスティック回帰計算方法、プログラム | |
US11121868B2 (en) | Secure computation system, secure computation device, secure computation method, and program | |
WO2017065123A1 (ja) | 秘密乱数合成装置、秘密乱数合成方法、およびプログラム | |
EP4016506A1 (en) | Softmax function secret calculation system, softmax function secret calculation device, softmax function secret calculation method, neural network secret calculation system, neural network secret learning system, and program | |
Hu et al. | Securing fast learning! ridge regression over encrypted big data | |
WO2021124520A1 (ja) | 秘密乱数生成システム、秘密計算装置、秘密乱数生成方法、およびプログラム | |
WO2018008547A1 (ja) | 秘密計算システム、秘密計算装置、秘密計算方法、およびプログラム | |
JP6977882B2 (ja) | 秘密一括近似システム、秘密計算装置、秘密一括近似方法、およびプログラム | |
JP6825119B2 (ja) | 秘密読み込み装置、秘密書き込み装置、それらの方法、およびプログラム | |
WO2020250269A1 (ja) | 秘密除算システム、秘密計算装置、秘密除算方法、およびプログラム | |
JP7540501B2 (ja) | 秘匿msb正規化システム、分散処理装置、秘匿msb正規化方法、およびプログラム | |
JP7205623B2 (ja) | 秘密共役勾配法計算システム、秘密計算装置、共役勾配法計算装置、秘密共役勾配法計算方法、共役勾配法計算方法、およびプログラム | |
WO2021149101A1 (ja) | 秘密選択積計算システム、秘密選択積計算方法、秘密計算装置、およびプログラム | |
WO2021144973A1 (ja) | 秘密最大値計算装置、方法及びプログラム | |
WO2021149099A1 (ja) | 秘密平方根逆数計算システム、秘密正規化システム、それらの方法、秘密計算装置、およびプログラム | |
WO2021149098A1 (ja) | 秘密平方根計算システム、秘密正規化システム、それらの方法、秘密計算装置、およびプログラム | |
WO2022254599A1 (ja) | 秘密共役勾配法計算方法、秘密共役勾配法計算システム、秘密計算装置、およびプログラム | |
Huang et al. | Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19932542 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021525410 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019450855 Country of ref document: AU Date of ref document: 20190610 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019932542 Country of ref document: EP Effective date: 20220110 |