WO2021149101A1 - 秘密選択積計算システム、秘密選択積計算方法、秘密計算装置、およびプログラム - Google Patents
秘密選択積計算システム、秘密選択積計算方法、秘密計算装置、およびプログラム Download PDFInfo
- Publication number
- WO2021149101A1 WO2021149101A1 PCT/JP2020/001677 JP2020001677W WO2021149101A1 WO 2021149101 A1 WO2021149101 A1 WO 2021149101A1 JP 2020001677 W JP2020001677 W JP 2020001677W WO 2021149101 A1 WO2021149101 A1 WO 2021149101A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secret
- value
- variance
- selective
- values
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 230000010354 integration Effects 0.000 claims abstract description 8
- 238000004364 calculation method Methods 0.000 claims description 51
- 239000006185 dispersion Substances 0.000 claims description 6
- 238000012545 processing Methods 0.000 description 24
- 230000006870 function Effects 0.000 description 12
- 238000004891 communication Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/085—Secret sharing or secret splitting, e.g. threshold schemes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09C—CIPHERING OR DECIPHERING APPARATUS FOR CRYPTOGRAPHIC OR OTHER PURPOSES INVOLVING THE NEED FOR SECRECY
- G09C1/00—Apparatus or methods whereby a given sequence of signs, e.g. an intelligible text, is transformed into an unintelligible sequence of signs by transposing the signs or groups of signs or by replacing them by others according to a predetermined system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/10—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols with particular housing, physical features or manual controls
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/46—Secure multiparty computation, e.g. millionaire problem
Definitions
- the present invention relates to a technique for calculating a selective product in secret calculation.
- Secret calculation is a cryptographic technology that calculates an arbitrary function while keeping data secret. Taking advantage of this feature, it is expected to be a form of data utilization that does not leak data to both system operators and data users.
- secret calculation There are several methods for secret calculation, and it is known that the one that uses secret sharing as a component has a small data processing unit and can perform high-speed processing.
- Secret sharing is a method of converting confidential information into several fragments called shares. For example, n shares can be generated from secret information, and secrets can be restored from k or more shares, but secret information is not leaked from shares less than k (k, n). A secret called the threshold method. There is dispersion. Shamir secret sharing, duplicate secret sharing, and the like are known as specific methods for configuring secret sharing. In the present specification, one fragment of the value distributed by secret sharing is referred to as "share”. Also, the entire set of all shares is called the "variance value”.
- Non-Patent Document 1 discloses a method of calculating an exponential function in secret calculation, in which calculation of a selective product is used.
- Non-Patent Document 1 has a problem that the calculation cost is high.
- An object of the present invention is to provide a secret calculation technique capable of calculating a selective product at high speed in view of the above technical problems.
- the secret selective product calculation system of one aspect of the present invention includes a plurality of secret calculation devices, and is a sequence of distributed values of n conditions c 0 ,..., c n-1 [c. 0 ],..., [c n-1 ] and a binary table that corresponds two multipliers to each condition m 0,0 , m 0,1 ,..., m n-1,0 , m n-1, It is a secret selective product calculation system that outputs the distribution value [A] of the total product of the multipliers selected according to the conditions with 1 as an input, and the secret calculation device distributes each even i of 0 or more and less than n.
- the selective product can be calculated at high speed in the secret calculation.
- FIG. 1 is a diagram illustrating a functional configuration of a secret selective product calculation system.
- FIG. 2 is a diagram illustrating the functional configuration of the secret calculation device.
- FIG. 3 is a diagram illustrating a processing procedure of the secret selective product calculation method.
- FIG. 4 is a diagram illustrating a functional configuration of a computer.
- [ ⁇ ] is the data that hides the numerical value.
- distributed values such as Shamir secret sharing and duplicate secret sharing can be used.
- the public decimal point position for an integer on the ring By setting the public decimal point position for an integer on the ring, it can be regarded as a fixed-point real number.
- the fixed-point real number represented on the ring in this way is simply referred to as a real number.
- n 2 be the largest even number less than or equal to n.
- [a i ]: [c i c i + 1 ] (m 00 + m 11 -m 01 -m 10 ) + [c i ] (m i + 1,0 -m i, 0 ) + [c i + 1 ] (m i, 1 -m i, 0 ) + m i, 0 is calculated.
- n is an odd number, the remaining m n-1,0 and m n-1,1 are selected by [c n-1 ] and multiplied by [A] to output.
- the selective public multiplication executed in step 7 of the algorithm 1 can be efficiently performed by using, for example, the following algorithm 2.
- the public value multiplication executed in step 1 of the algorithm 2 can be efficiently performed, for example, by combining the following two algorithms.
- the quotient obtained in step 1 of Algorithm 4 can be efficiently obtained by quotient transfer (see Reference 1).
- Algorithm 1 results in n / 2 integer multiplications and (n / 2) -1 real multiplications, which is approximately right-shifted n / 2 times more efficient. Further, in the algorithm 1, when n is an odd number, the algorithm 2 is used, and the fractions that cannot be combined with the quaternary table are also efficient.
- the multiplication by the selective public multiplier executed in step 4 of the algorithm 3 can be efficiently performed by using the algorithm 1.
- the secret selective product calculation system 100 of the embodiment is an information processing system that executes the above-mentioned binary public table reference.
- the secret selective product calculation system 100 includes N ( ⁇ 3) secret calculation devices 1 1 , ..., 1 N.
- the secret computing devices 1 1 , ..., 1 N are connected to the communication network 9, respectively.
- the communication network 9 is a circuit-switched or packet-switched communication network configured so that each connected device can communicate with each other.
- the Internet LAN (Local Area Network), WAN (Wide Area Network). Etc. can be used. It should be noted that each device does not necessarily have to be able to communicate online via the communication network 9.
- the secret calculation device 1 n included in the secret selective product calculation system 100 of the embodiment includes a condition integration unit 11, a table conversion unit 12, a public value multiplication unit 13, a real number multiplication unit 14, and a real number multiplication unit 14.
- a selective multiplication unit 15 is provided.
- the secret computing device 1 n is configured by loading a special program into a known or dedicated computer having, for example, a central processing unit (CPU), a main storage device (RAM: Random Access Memory), or the like. It is a special device.
- the secret calculation device 1 n executes each process under the control of the central processing unit, for example.
- the data input to the secret computing device 1 n and the data obtained by each process are stored in, for example, the main storage device, and the data stored in the main storage device is read out to the central arithmetic processing unit as needed. It is used for other processing.
- At least a part of each processing unit of the secret calculation device 1 n may be configured by hardware such as an integrated circuit.
- Each storage unit included in the secret computing device 1 n is, for example, a main storage device such as RAM (Random Access Memory), an auxiliary storage device composed of a hard disk, an optical disk, or a semiconductor memory element such as a flash memory. Alternatively, it can be configured by middleware such as a relational database or a key value store.
- a main storage device such as RAM (Random Access Memory)
- auxiliary storage device composed of a hard disk, an optical disk, or a semiconductor memory element such as a flash memory.
- middleware such as a relational database or a key value store.
- n 2 is the maximum even number of n or less.
- steps S11 to S13 are executed for each even number i of 0 or more and n 2 -2 or less.
- step S11 the condition integration unit 11 of the secure computing apparatus 1 n, the condition c variance of i [c i] the condition c i + 1 of the variance [c i + 1] and multiplied by the integration condition c i variance value of c i + 1 to calculate the [c i c i + 1] .
- the condition integration unit 11 outputs the variance value [c i c i + 1 ] to the public value multiplication unit 13.
- Table conversion unit 12 the table m of 4 values '00, m' 01, m '10, m' 11 and outputs to the public value multiplying unit 13.
- Calculate (m i + 1,0 -m i, 0 ) + [c i + 1 ] (m i, 1 -m i, 0 ) + m i, 0.
- the public value multiplication unit 13 outputs the variance value [a i ] to the real number multiplication unit 14.
- step S14 the real multiplication unit 14 of the secure computing apparatus 1 n calculates a dispersion value dispersion value of [a i] multiplied all the values A [A]. That is, the following equation is calculated. Since multiplication is a real number multiplication, it is necessary to perform a right shift at the end, but if n is an odd number, the right shift is not performed here.
- the program that describes this processing content can be recorded on a computer-readable recording medium.
- the computer-readable recording medium may be, for example, a magnetic recording device, an optical disk, a photomagnetic recording medium, a semiconductor memory, or the like.
- the distribution of this program is carried out, for example, by selling, transferring, or renting a portable recording medium such as a DVD or CD-ROM on which the program is recorded.
- the program may be stored in the storage device of the server computer, and the program may be distributed by transferring the program from the server computer to another computer via a network.
- a computer that executes such a program first stores, for example, a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. Then, when the process is executed, the computer reads the program stored in its own storage device and executes the process according to the read program. Further, as another execution form of this program, a computer may read the program directly from a portable recording medium and execute processing according to the program, and further, the program is transferred from the server computer to this computer. Each time, the processing according to the received program may be executed sequentially. In addition, the above processing is executed by a so-called ASP (Application Service Provider) type service that realizes the processing function only by the execution instruction and result acquisition without transferring the program from the server computer to this computer. May be.
- the program in this embodiment includes information to be used for processing by a computer and equivalent to the program (data that is not a direct command to the computer but has a property of defining the processing of the computer, etc.).
- the present device is configured by executing a predetermined program on the computer, but at least a part of these processing contents may be realized by hardware.
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Computer Security & Cryptography (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Complex Calculations (AREA)
- Hardware Redundancy (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
本発明の実施形態は、n個の条件の分散値の列と、各条件に対応する2個の公開値からなる2値の表とを入力とし、各条件に応じて2値の表を参照し、すべての参照結果を乗じた値の分散値を出力する秘密選択積計算システムおよび方法である。以下、実施形態の秘密選択積計算システムが実行する選択的公開乗算プロトコルの概要について説明する。
入力:乗数m0,0, m0,1, …, mn-1,0, mn-1,1、条件[c0], …, [cn-1]
出力:
入力:[a]、乗数m0, m1、条件[c]
出力:[m1a] if c=1, [m0a] if c=0
入力:[x]、乗数m、シフト量σ
出力:シフト後の[mx]
入力:[a]、除数d0, d1, …, dn-1
出力:[a/d0], [a/d1], …, [a/dn-1]
入力:[a]
出力:[exp(a)]
パラメータ:t:=-1
実施形態の秘密選択積計算システム100は、上記の2値の公開表参照のべきを実行する情報処理システムである。秘密選択積計算システム100は、図1に示すように、N(≧3)台の秘密計算装置11, …, 1Nを含む。この実施形態では、秘密計算装置11, …, 1Nはそれぞれ通信網9へ接続される。通信網9は、接続される各装置が相互に通信可能なように構成された回線交換方式もしくはパケット交換方式の通信網であり、例えばインターネットやLAN(Local Area Network)、WAN(Wide Area Network)等を用いることができる。なお、各装置は必ずしも通信網9を介してオンラインで通信可能である必要はない。例えば、秘密計算装置1n(n=1, …, N)へ入力する情報を磁気テープやUSBメモリ等の可搬型記録媒体に記憶し、その可搬型記録媒体から秘密計算装置1nへオフラインで入力するように構成してもよい。
上記実施形態で説明した各装置における各種の処理機能をコンピュータによって実現する場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムを図4に示すコンピュータの記憶部1020に読み込ませ、制御部1010、入力部1030、出力部1040等に動作させることにより、上記各装置における各種の処理機能がコンピュータ上で実現される。
Claims (4)
- 複数の秘密計算装置を含み、n個の条件c0, …, cn-1の分散値の列[c0], …, [cn-1]と前記条件それぞれに2個の乗数を対応させる2値の表m0,0, m0,1, …, mn-1,0, mn-1, 1とを入力とし、前記条件に応じて選択した前記乗数の総積の分散値[A]を出力する秘密選択積計算システムであって、
前記秘密計算装置は、
0以上n未満の各偶数iについて、前記分散値[ci]と前記分散値[ci+1]とを乗じた分散値[cici+1]を計算する条件統合部と、
0以上n未満の各偶数iについて、m'00:=mi,0mi+1,0、m'01:=mi,0mi+1,1、m'10:=mi,1mi+1,0、m'11:=mi,1mi+1,1からなる4値の表m'00, m'01, m'10, m'11を生成する表変換部と、
0以上n未満の各偶数iについて、[cici+1](m00+m11-m01-m10)+[ci](mi+1,0-mi,0)+[ci+1](mi,1-mi,0)+mi,0を計算した値aiの分散値[ai]を生成する公開値乗算部と、
前記分散値[ai]をすべて乗じた値Aの分散値[A]を計算する実数乗算部と、
nが奇数のとき、前記条件cn-1に応じて乗数mn-1,1, mn-1,0から選択した乗数を前記分散値[A]に乗じる選択乗算部と、
を含む秘密選択積計算システム。 - 複数の秘密計算装置を含み、n個の条件c0, …, cn-1の分散値の列[c0], …, [cn-1]と前記条件それぞれに2個の乗数を対応させる2値の表m0,0, m0,1, …, mn-1,0, mn-1, 1とを入力とし、前記条件に応じて選択した前記乗数の総積の分散値[A]を出力する秘密選択積計算システムが実行する秘密選択積計算方法であって、
各秘密計算装置の条件統合部が、0以上n未満の各偶数iについて、前記分散値[ci]と前記分散値[ci+1]とを乗じた分散値[cici+1]を計算し、
表変換部が、0以上n未満の各偶数iについて、m'00:=mi,0mi+1,0、m'01:=mi,0mi+1,1、m'10:=mi,1mi+1,0、m'11:=mi,1mi+1,1からなる4値の表m'00, m'01, m'10, m'11を生成し、
公開値乗算部が、0以上n未満の各偶数iについて、[cici+1](m00+m11-m01-m10)+[ci](mi+1,0-mi,0)+[ci+1](mi,1-mi,0)+mi,0を計算した値aiの分散値[ai]を生成し、
実数乗算部が、前記分散値[ai]をすべて乗じた値Aの分散値[A]を計算し、
選択乗算部が、nが奇数のとき、前記条件cn-1に応じて乗数mn-1,1, mn-1,0から選択した乗数を前記分散値[A]に乗じる、
秘密選択積計算方法。 - 請求項1の秘密選択積計算システムにおいて用いられる前記秘密計算装置。
- 請求項3に記載の秘密計算装置としてコンピュータを機能させるためのプログラム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021572123A JP7405156B2 (ja) | 2020-01-20 | 2020-01-20 | 秘密選択積計算システム、秘密選択積計算方法、秘密計算装置、およびプログラム |
CN202080093590.0A CN114981864A (zh) | 2020-01-20 | 2020-01-20 | 秘密选择积计算系统、秘密选择积计算方法、秘密计算装置以及程序 |
US17/791,228 US20230036496A1 (en) | 2020-01-20 | 2020-01-20 | Secure selective product computation system, secure selective product computation method, secure computation apparatus, and program |
EP20916206.4A EP4095834A4 (en) | 2020-01-20 | 2020-01-20 | SECURE SELECTIVE PRODUCT CALCULATION SYSTEM, SECURE SELECTIVE PRODUCT CALCULATION METHOD, SECURE CALCULATION DEVICE AND PROGRAM |
AU2020423805A AU2020423805B2 (en) | 2020-01-20 | 2020-01-20 | Secure selective product computation system, secure selective product computation method, secure computation apparatus, and program |
PCT/JP2020/001677 WO2021149101A1 (ja) | 2020-01-20 | 2020-01-20 | 秘密選択積計算システム、秘密選択積計算方法、秘密計算装置、およびプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/001677 WO2021149101A1 (ja) | 2020-01-20 | 2020-01-20 | 秘密選択積計算システム、秘密選択積計算方法、秘密計算装置、およびプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021149101A1 true WO2021149101A1 (ja) | 2021-07-29 |
Family
ID=76992090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/001677 WO2021149101A1 (ja) | 2020-01-20 | 2020-01-20 | 秘密選択積計算システム、秘密選択積計算方法、秘密計算装置、およびプログラム |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230036496A1 (ja) |
EP (1) | EP4095834A4 (ja) |
JP (1) | JP7405156B2 (ja) |
CN (1) | CN114981864A (ja) |
AU (1) | AU2020423805B2 (ja) |
WO (1) | WO2021149101A1 (ja) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1596529B1 (en) * | 2004-04-30 | 2007-12-05 | Research In Motion Limited | Cryptographic device authentication |
CN101099327B (zh) * | 2004-11-11 | 2011-08-24 | 塞尔蒂卡姆公司 | 用于通用密钥导出函数支持的安全接口 |
CN101729554B (zh) * | 2008-11-27 | 2013-05-29 | 北京大学 | 一种分布式计算中基于密码学的除法协议构造方法 |
EP2423904B1 (en) * | 2009-04-24 | 2015-01-07 | Nippon Telegraph And Telephone Corporation | Secret sharing system, sharing apparatus, share management apparatus, acquisition apparatus, processing methods therefore, secret sharing method, program, and recording medium |
JP6016948B2 (ja) * | 2013-01-17 | 2016-10-26 | 日本電信電話株式会社 | 秘匿計算システム、演算装置、秘匿計算方法、およびプログラム |
JP6060800B2 (ja) * | 2013-04-25 | 2017-01-18 | 株式会社Jvcケンウッド | 情報選択装置、情報選択方法、および情報選択プログラム |
JP5957126B1 (ja) * | 2015-06-24 | 2016-07-27 | 日本電信電話株式会社 | 秘密計算装置、秘密計算方法、およびプログラム |
-
2020
- 2020-01-20 CN CN202080093590.0A patent/CN114981864A/zh active Pending
- 2020-01-20 AU AU2020423805A patent/AU2020423805B2/en active Active
- 2020-01-20 JP JP2021572123A patent/JP7405156B2/ja active Active
- 2020-01-20 WO PCT/JP2020/001677 patent/WO2021149101A1/ja unknown
- 2020-01-20 US US17/791,228 patent/US20230036496A1/en active Pending
- 2020-01-20 EP EP20916206.4A patent/EP4095834A4/en active Pending
Non-Patent Citations (6)
Title |
---|
IGARASHI, DAI: "Secure Elementary Functions Exceeded M op/s", 2020 SYMPOSIUM ON CRYPTOGRAPHY AND INFORMATION SECURITY; JANUARY 28-31, 2020, 21 January 2020 (2020-01-21), JP, pages 1 - 8, XP009530137 * |
MISHINA, IBUKI ET AL.: "Can the Logistic Regression in Secure Computation Really be Used?", PREPRINTS OF THE 2019 SYMPOSIUM ON CRYPTOGRAPHY AND INFORMATION SECURITY; JANUARY 22-25, 2019, January 2019 (2019-01-01), JP, pages 1 - 8, XP009530138 * |
OHATA, SATSUYA: "3F1-5: Reconsidering privacy-preserving deep neural networks", PREPRINTS OF THE 2018 SYMPOSIUM ON CRYPTOGRAPHY AND INFORMATION SECURITY (SCIS2018); 23-26/01/2018, 23 January 2018 (2018-01-23), JP, pages 1 - 8, XP009530172 * |
RADU SION: "Financial Cryptography and Data Security", vol. 6052, 25 January 2010, SPRINGER BERLIN HEIDELBERG, Berlin, Heidelberg, ISBN: 978-3-642-14576-6, article OCTAVIAN CATRINA ; AMITABH SAXENA: "Secure Computation with Fixed-Point Numbers", pages: 35 - 50, XP019147523 * |
RYO KIKUCHIDAI IKARASHITAKAHIRO MATSUDAKOKI HAMADAKOJI CHIDA: "Efficient bit-decomposition and modulus-conversion protocols with an honest majority", PROCEEDINGS OF INFORMATION SECURITY AND PRIVACY - 23RD AUSTRALASIAN CONFERENCE, 11 July 2018 (2018-07-11), pages 64 - 82, XP055932868, DOI: 10.1007/978-3-319-93638-3_5 |
See also references of EP4095834A4 |
Also Published As
Publication number | Publication date |
---|---|
CN114981864A (zh) | 2022-08-30 |
EP4095834A4 (en) | 2023-10-25 |
JPWO2021149101A1 (ja) | 2021-07-29 |
AU2020423805B2 (en) | 2023-04-06 |
AU2020423805A1 (en) | 2022-07-14 |
US20230036496A1 (en) | 2023-02-02 |
JP7405156B2 (ja) | 2023-12-26 |
EP4095834A1 (en) | 2022-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alabdulatif et al. | Towards secure big data analytic for cloud-enabled applications with fully homomorphic encryption | |
JP7067633B2 (ja) | 秘密右シフト演算システム、秘密除算システム、それらの方法、秘密計算装置、およびプログラム | |
CN110199338B (zh) | 秘密计算系统、秘密计算装置、秘密计算方法、记录介质 | |
JP6766182B2 (ja) | 秘密計算システム、秘密計算装置、秘密計算方法、プログラム | |
EP4016506B1 (en) | Softmax function secret calculation system, softmax function secret calculation device, softmax function secret calculation method, neural network secret calculation system, neural network secret learning system, and program | |
JP7327511B2 (ja) | 秘密乱数生成システム、秘密計算装置、秘密乱数生成方法、およびプログラム | |
Hu et al. | Securing fast learning! ridge regression over encrypted big data | |
WO2021149101A1 (ja) | 秘密選択積計算システム、秘密選択積計算方法、秘密計算装置、およびプログラム | |
JP7540501B2 (ja) | 秘匿msb正規化システム、分散処理装置、秘匿msb正規化方法、およびプログラム | |
WO2021149098A1 (ja) | 秘密平方根計算システム、秘密正規化システム、それらの方法、秘密計算装置、およびプログラム | |
WO2021149100A1 (ja) | 秘密指数関数計算システム、秘密指数関数計算方法、秘密計算装置、およびプログラム | |
WO2021149099A1 (ja) | 秘密平方根逆数計算システム、秘密正規化システム、それらの方法、秘密計算装置、およびプログラム | |
WO2021149102A1 (ja) | 秘密逆数計算システム、秘密正規化システム、それらの方法、秘密計算装置、およびプログラム | |
JP7173328B2 (ja) | 秘密除算システム、秘密計算装置、秘密除算方法、およびプログラム | |
Mirataei et al. | Fast secure calculation of the open key cryptography procedures for iot in clouds | |
Wei | New residue signed-digit addition algorithm | |
Lisha et al. | Analysis of cryptographic algorithms based on vedic-mathematics | |
Mohan et al. | Modulo Multiplication and Modulo Squaring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20916206 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021572123 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020423805 Country of ref document: AU Date of ref document: 20200120 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020916206 Country of ref document: EP Effective date: 20220822 |