WO2020248635A1 - 空调器及其室外机除霜控制方法 - Google Patents

空调器及其室外机除霜控制方法 Download PDF

Info

Publication number
WO2020248635A1
WO2020248635A1 PCT/CN2020/078580 CN2020078580W WO2020248635A1 WO 2020248635 A1 WO2020248635 A1 WO 2020248635A1 CN 2020078580 W CN2020078580 W CN 2020078580W WO 2020248635 A1 WO2020248635 A1 WO 2020248635A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
change
rate
outdoor unit
heating load
Prior art date
Application number
PCT/CN2020/078580
Other languages
English (en)
French (fr)
Inventor
何建奇
毛守博
远义忠
武运动
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2020248635A1 publication Critical patent/WO2020248635A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data

Definitions

  • the invention belongs to the technical field of air conditioners, and specifically relates to an air conditioner and a defrosting control method for an outdoor unit thereof.
  • an air conditioner includes an indoor unit, an outdoor unit, and a circulation circuit for connecting the indoor unit and the outdoor unit.
  • the refrigerant in the air conditioner continuously exchanges heat between the outdoor unit and the indoor unit through the circulation circuit to achieve the effect of changing the room temperature. .
  • the coil of the outdoor unit is always at a low temperature, and the outdoor temperature itself is low; at this time, if the outdoor environment still has high humidity, the coil of the outdoor unit is It is easy to produce frosting, and the occurrence of frosting will seriously affect the heat exchange efficiency of the air conditioner, thereby affecting the comfort of the indoor environment. Therefore, during the heating operation of the air conditioner, the air conditioner needs to constantly monitor whether the coil of the outdoor unit is frosted. At the same time, it should be noted that the timing when the air conditioner enters the defrost mode is also very important. If the selected defrost timing is not appropriate, the operating efficiency of the air conditioner will be reduced, which will cause unnecessary power loss.
  • Existing air conditioners often need to add many sensors to the air conditioner in order to accurately obtain the frosting condition of the outdoor coil, and then determine the frosting condition of the outdoor unit based on the measurement data of these sensors.
  • the air conditioner can measure the outdoor coil
  • the temperature and humidity of the outdoor environment can be used to determine the frosting of the outdoor unit; or, some air conditioners directly obtain the frosting of the outdoor unit by setting up a camera.
  • These judgment methods often require the addition of more electronic components, thus This leads to a sharp increase in the cost of air conditioners.
  • these judgment methods are often based on the appearance of the outdoor coil frosting to determine the timing of the air conditioner entering the defrost.
  • the actual frosting situation is often very complicated.
  • the outdoor unit will be in many cases. The phenomenon of uneven frosting occurs, so it is often not appropriate to judge the timing of the air conditioner entering the defrost only from the appearance of the outdoor coil frosting, which can easily lead to problems such as the reduction of the operating efficiency of the air conditioner.
  • the art needs a new air conditioner and its outdoor unit defrosting control method to solve the above problems.
  • the present invention provides an air conditioner An outdoor unit defrosting control method, the defrosting control method includes: acquiring the rate of change of the heating load per unit time of the air conditioner; and selectively controlling the heating load of the air conditioner according to the rate of change of the heating load per unit time of the air conditioner.
  • the air conditioner enters the defrost mode of the outdoor unit.
  • the step further includes: when the rate of change of the heating load per unit time of the air conditioner is greater than or equal to the preset rate of change, not making the air conditioner enter the outdoor unit defrosting mode.
  • the preset rate of change is zero.
  • the step of "obtaining the rate of change of the heating load per unit time of the air conditioner” specifically includes: obtaining the heating amount of the air conditioner; The heating capacity of the air conditioner determines the total heating load of the air conditioner; the heating load per unit time of the air conditioner is determined according to the total heating load of the air conditioner; the heating load per unit time of the air conditioner is determined according to the unit time of the air conditioner The heating load determines the rate of change of the heating load per unit time of the air conditioner.
  • the step of "obtaining the heating capacity of the air conditioner” specifically includes: obtaining the cooling capacity of the air conditioner and the compressor of the air conditioner The operating power of the air conditioner; the heating capacity of the air conditioner is determined according to the cooling capacity of the air conditioner and the operating power of the compressor of the air conditioner.
  • the defrosting control method further includes: acquiring the changing trend of the frequency of the compressor; and selectively executing “acquiring the unit time of the air conditioner” according to the changing trend of the frequency of the compressor.
  • the rate of change of heating load step.
  • step of “step” includes: if the frequency of the compressor shows an upward trend or tends to be constant, the step of "acquiring the rate of change of the heating load per unit time of the air conditioner" is performed.
  • step of “step” includes: if the frequency of the compressor shows a downward trend, the step of "obtaining the rate of change of the heating load per unit time of the air conditioner" is not executed.
  • the present invention also provides an air conditioner, which includes a controller, and the controller can execute the outdoor unit defrosting control method described in any one of the above-mentioned preferred technical solutions.
  • the defrosting control method of the present invention includes: obtaining the rate of change of the heating load per unit time of the air conditioner; and according to the unit time system of the air conditioner The rate of change of the heat load selectively causes the air conditioner to enter the outdoor unit defrosting mode.
  • the defrosting control method of the present invention uses the rate of change of the heating load per unit time of the air conditioner as a basic parameter to determine the time when the air conditioner enters the defrosting mode of the outdoor unit, so that the air conditioner can be in the most appropriate The time to enter the outdoor unit defrosting mode, thereby effectively improving the operating efficiency of the air conditioner.
  • the air conditioner does not need to add other electronic components when obtaining the rate of change of heating load per unit time, so as to effectively ensure that the manufacturing cost of the air conditioner will not increase; on the other hand, the unit time system of the air conditioner
  • the rate of change of the heat load can effectively reflect the attenuation of the heating capacity of the air conditioner, that is, the present invention preferably makes the air conditioner enter the outdoors only when the attenuation degree of the heating capacity of the air conditioner reaches a preset attenuation degree In order to effectively prevent the air conditioner from entering the outdoor unit defrosting mode when defrosting is unnecessary, unnecessary power consumption and unnecessary heating effect fluctuations can be avoided.
  • the air conditioner enters the defrosting mode when its heating capacity has sharply attenuated, causing problems such as poor defrosting effect and long defrosting time, thereby effectively ensuring that the air conditioner can always maintain good operating efficiency, thereby effectively Improve user experience.
  • the air conditioner enters the outdoor unit defrosting mode to effectively ensure that the outdoor unit can defrost at a faster speed, thereby effectively improving the defrosting efficiency of the air conditioner and shortening its defrosting mode.
  • the frost time effectively ensures that the air conditioner can resume the heating mode again in a short time.
  • the air conditioner when the rate of change of the heating load per unit time of the air conditioner is greater than or equal to the preset rate of change, that is, when the heating capacity of the air conditioner does not drop sharply, the air conditioner is not turned on Enter the outdoor unit defrosting mode, so as to effectively ensure the heating capacity of the air conditioner, thereby effectively improving the user's heat exchange experience.
  • the preset rate of change is zero, that is, when the heating capacity of the air conditioner is attenuated, the air conditioner enters the outdoor unit defrosting mode.
  • the defrost control method of the present invention determines the heating capacity of the air conditioner according to the cooling capacity of the air conditioner and the operating power of the compressor of the air conditioner, so as to On the basis that no additional electronic components are required, the heating capacity of the air conditioner can be accurately obtained.
  • the defrost control method of the present invention also obtains the change trend of the frequency of the compressor to selectively The step of "acquiring the rate of change of the heating load per unit time of the air conditioner" is executed. It should be noted that for an air conditioner using an inverter compressor, if the outdoor unit is frosted, the frequency of the compressor will inevitably increase.
  • the present invention can also Firstly, determine whether the outdoor unit has frosted according to the change trend of the frequency of the compressor, and then according to the heating load per unit time of the air conditioner when the outdoor unit has frosted
  • the change rate of the air conditioner is used to determine the time when the air conditioner enters the outdoor unit defrosting mode, thereby effectively improving the execution efficiency of the defrosting control method.
  • the air conditioner determines that the outdoor unit has been frosted, and at this time, executes "Get the heating per unit time of the air conditioner Load change rate” in order to continue to determine when the air conditioner enters the defrosting mode of the outdoor unit; at the same time, if the frequency of the compressor shows a downward trend, the air conditioner determines that the outdoor unit does not appear to be frozen. For the frost phenomenon, at this time, the step of “obtaining the rate of change of the heating load per unit time of the air conditioner” is not executed, so as to effectively simplify the judgment step.
  • Figure 1 is a flow chart of the main steps of the defrost control method of the present invention.
  • Figure 2 is a graph of the heating capacity of the air conditioner in a preset time period
  • Figure 3 is a graph of the total heating load of the air conditioner in a preset time period
  • Figure 4 is a graph of the heating load per unit time of the air conditioner in a preset time period
  • Fig. 5 is a flowchart of the steps of a preferred embodiment of the defrost control method of the present invention.
  • the present invention provides a defrosting control method, the defrosting control method adopts the The rate of change of the heating load per unit time of the air conditioner is used as a basic parameter to determine when the air conditioner enters the outdoor unit defrosting mode, so that the air conditioner can enter the outdoor unit defrosting mode at the most appropriate time, thereby effectively Improve the operating efficiency of the air conditioner.
  • the air conditioner of the present invention includes an outdoor unit and an indoor unit connected to the outdoor unit, and a refrigerant circulation system is provided between the outdoor unit and the indoor unit, thereby realizing a heat exchange function; it should be noted that, The technician can set the specific number of the indoor unit and the outdoor unit according to actual usage requirements.
  • the air conditioner further includes a controller that can obtain operating parameters of the air conditioner, and the controller can also control the operating state of the air conditioner, for example, make the air conditioner enter different operating modes, etc. .
  • the present invention does not impose any restrictions on the specific structure and model of the controller, and the controller may be the original controller of the air conditioner, or it may be used to implement the present invention. For a controller with a separate defrosting control method, technicians can set the structure and model of the controller according to actual needs.
  • Figure 1 is a flowchart of the main steps of the defrost control method of the present invention.
  • the defrost control method of the present invention mainly includes the following steps:
  • step S1 the controller can obtain the rate of change of the heating load per unit time of the air conditioner, so as to use the rate of change of the heating load per unit time of the air conditioner as a basic parameter; Yes, the present invention does not impose any restrictions on the way the controller obtains the rate of change of heating load per unit time.
  • the technician can set the obtaining method according to actual use requirements. For example, the technician can set the calculation formula by himself.
  • step S2 the controller can selectively cause the air conditioner to enter the outdoor unit defrosting mode according to the rate of change of the heating load per unit time of the air conditioner. It should be noted that the present invention does not impose any restrictions on the specific judgment conditions for controlling the air conditioner to enter the outdoor unit defrosting mode. The technicians can set it according to actual use requirements, for example, set the judgment conditions as the air conditioner.
  • the air conditioner When the rate of change of the heating load per unit time of the air conditioner is less than the preset rate of change, the air conditioner is made to enter the outdoor unit defrosting mode; or the judgment condition can also be set as the heating load per unit time of the air conditioner When the rate of change satisfies a certain relationship, the air conditioner enters the outdoor unit defrosting mode; this change in the specific judgment conditions does not deviate from the basic principle of the present invention, as long as the defrosting control method adopts the air conditioner
  • the rate of change of heating load per unit time as a basic parameter belongs to the protection scope of the present invention.
  • FIG. 5 is a flowchart of the steps of the preferred embodiment of the defrost control method of the present invention. As shown in Fig. 5, based on the air conditioner described in the above embodiment, a preferred embodiment of the defrost control method of the present invention specifically includes the following steps:
  • the air conditioner in this preferred embodiment includes an inverter compressor.
  • the compressor of the air conditioner may also be a fixed frequency compressor; however, when the air conditioner When the compressor is a fixed frequency compressor, there is no need to perform step S101 and step S102, and step S103 can be performed directly.
  • the present invention does not impose any restrictions on the specific structure of the air conditioner, and technicians can correspondingly adjust the specific steps of the defrost control method of the present invention according to the specific structure of the air conditioner.
  • the controller can obtain the change trend of the frequency of the inverter compressor.
  • the controller can obtain the frequency of the compressor corresponding to two adjacent time points to determine the trend of the frequency of the inverter compressor, and the control The frequency converter can obtain the change trend of the frequency of the inverter compressor through the frequency of the compressor corresponding to the last time point and the frequency of the compressor corresponding to the current time point; that is, if the compressor corresponding to the last time point If the frequency of the compressor is greater than the frequency of the compressor corresponding to the current time point, the frequency of the inverter compressor shows a downward trend; if the frequency of the compressor corresponding to the previous time point is less than the frequency of the compressor corresponding to the current time point, Then the frequency of the inverter compressor shows an upward trend; if the frequency of the compressor corresponding to the last point in time is equal to the frequency of the compressor corresponding to the current point in time, the frequency of the inverter compressor tends to remain unchanged; of course , The interval between two adjacent time points needs to be short enough.
  • the controller can also determine the frequency change trend of the compressor by drawing the frequency change curve, and then by calculating the tangent slope of the point corresponding to the current time point on the frequency change curve.
  • the present invention does not impose any restriction on the specific method for the controller to obtain the change trend of the frequency of the inverter compressor, and the technician can set it by himself according to actual use requirements.
  • step S102 the controller can determine whether the frequency of the compressor shows an upward trend or tends to remain unchanged, so as to determine whether the outdoor unit has frosted. If the frequency of the compressor does not show an upward trend or tends to remain unchanged, that is, the frequency of the compressor shows a downward trend, the controller determines that the outdoor unit does not appear to be frosted. At this time, the The controller executes step S101 again, that is, the controller acquires the change trend of the frequency of the compressor again, so as to realize real-time monitoring. At the same time, if the frequency of the compressor shows an upward trend or tends to remain unchanged, the controller determines that the outdoor unit has frosted. At this time, the controller executes step S103 to further determine the When the air conditioner enters the defrost mode of the outdoor unit.
  • the controller can obtain the rate of change of the heating load per unit time of the air conditioner. It should be noted that the present invention does not allow the controller to obtain the rate of change of the heating load per unit time. There are any restrictions on the method, and the technicians can set their own acquisition method according to actual use needs.
  • the cooling capacity Q C of the multi-connected air conditioning unit can be calculated using the following calculation formula:
  • T e is the evaporation temperature of the air conditioner, that is, the saturation temperature corresponding to the low pressure pressure during the operation of the air conditioner, and its unit is °C
  • T c is the condensation temperature of the air conditioner, that is, the air conditioner is running
  • the unit of saturation temperature corresponding to the high pressure at the time is °C
  • C1, C2...C10 are all correction coefficients, and technicians need to fit the specific values of C1 to C10 through experiments according to the structure of different air conditioners.
  • the heating capacity Q h of the air conditioner can be calculated using the following formula:
  • W 1 is the operating power of the inverter compressor, and its unit is W.
  • the total heating load of the air conditioner in a certain time period (that is, t1 to t2) is equal to the result of integrating the heating amount Q h in [t1, t2], which can be calculated by the following formula:
  • the controller can select the specific values of t1 and t2 by itself according to actual use requirements, and this change in time period selection does not deviate from the basic principle of the present invention.
  • t1 can be selected as the moment when the air conditioner enters the outdoor unit defrosting mode
  • t2 can be selected as the next time the air conditioner enters the outdoor unit defrosting mode.
  • t1 can be selected as the time when the air conditioner starts to operate
  • t2 can be selected as the time when the air conditioner first enters the outdoor unit defrosting mode
  • the heating load per unit time of the air conditioner in a certain time period (that is, t1 to t2) is equal to the total heating load in the time period divided by the duration of the time period, which can be calculated by the following formula:
  • the point at which attenuation begins to appear is the time point when the air conditioner enters the outdoor unit defrosting mode, that is, the point where the tangent slope is zero on the heating load change curve per unit time; of course, a time point near this time point can also be selected.
  • the time point when the air conditioner enters the defrosting mode of the outdoor unit that is, although the preset change rate selected in the preferred embodiment is zero, the technician can obviously set the preset according to actual use requirements. The specific value of the rate of change.
  • step S104 is executed, that is, the controller can determine whether the rate of change of the heating load per unit time of the air conditioner is less than zero, so that The controller can determine whether the heating load per unit time of the air conditioner begins to decay. Based on the judgment result of step S104, if the rate of change of the heating load per unit time of the air conditioner is greater than or equal to zero, the controller judges that the heating load per unit time of the air conditioner has not decayed, in this case , Step S106 is executed, that is, the controller controls the air conditioner to continue to maintain the current operating mode.
  • step S105 is executed, that is, The controller controls the air conditioner to enter the outdoor unit defrosting mode.
  • the technician can set it according to the actual situation of the air conditioner; for example, the controller may Control the refrigerant in the air conditioner to reverse cycle to achieve the defrosting effect, or the controller can also achieve the defrosting function by turning on the heating device in the outdoor unit. This specific operation change does not deviate from the original
  • the basic principle of the invention belongs to the protection scope of the invention.

Abstract

本发明属于空调器技术领域,具体涉及一种空调器及其室外机除霜控制方法。本发明旨在解决现有空调器的除霜控制方法很难准确判断空调器进入除霜模式的最佳时机的问题。为此,本发明的除霜控制方法包括:获取空调器的单位时间制热负荷的变化率;根据空调器的单位时间制热负荷的变化率,选择性地使空调器进入室外机除霜模式,以使空调器能够在其制热能力出现衰减时再进入室外机除霜模式,以便有效避免空调器在不恰当的时机进入除霜模式而容易导致不必要的电能消耗和制热效果波动的问题,同时还能够有效避免空调器在其制热能力已经出现急剧衰减时才进入除霜模式而导致除霜效果不佳、除霜时间过长的问题,从而有效提升空调器的运行效率。

Description

空调器及其室外机除霜控制方法 技术领域
本发明属于空调器技术领域,具体涉及一种空调器及其室外机除霜控制方法。
背景技术
随着人们生活水平的不断提高,人们对生活环境也提出了越来越高的要求。为了维持舒适的环境温度,空调器已经成为人们生活中必不可少的一种设备。通常地,空调器包括室内机、室外机以及用于连接室内机与室外机的循环回路,空调器中的冷媒通过循环回路在室外机与室内机之间不断换热,从而达到改变室温的效果。以空调器制热运行时为例,室外机的盘管始终处于温度较低的状态,并且室外温度本身就较低;此时,如果室外环境还具有较高湿度,则室外机的盘管就很容易产生结霜现象,结霜现象的产生会严重影响空调器的换热效率,进而影响室内环境的舒适度。因此,在空调器制热运行时,空调器需要时常监测室外机的盘管是否产生结霜现象。同时,还需要注意的是,空调器进入除霜模式的时机也十分重要,如果选取的除霜时机不合适很容易导致空调器的运行效率降低,从而造成不必要的电量损耗。
现有空调器为了准确获取室外盘管的结霜情况往往需要在空调器上增设很多传感器,然后根据这些传感器的测量数据来判断室外机的结霜情况,例如,空调器可以通过测量室外盘管的温度和室外环境的湿度来判断室外机的结霜情况;或者,还有部分空调器直接通过设置摄影装置来获取室外机的结霜情况,这些判断方式往往都需要增设较多电子元件,从而导致空调器的成本急剧增加。此外,这些判断方式往往都是从室外盘管结霜情况的表象来判断空调器进入除霜的时机,而现实中的结霜情况往往都是十分复杂的,例如,室外机在很多情况下都会出现结霜不均匀的现象,因而仅从室外盘管结霜情况的表象来判断空调器进入除霜的时机往往都不够合适,从而很容易导致空调器的运行效率降低等问题。
相应地,本领域需要一种新的空调器及其室外机除霜控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有空调器的除霜控制方法很难准确判断空调器进入除霜模式的最佳时机的问题,本发明提供了一种用于空调器的室外机除霜控制方法,所述除霜控制方法包括:获取所述空调器的单位时间制热负荷的变化率;根据所述空调器的单位时间制热负荷的变化率,选择性地使所述空调器进入室外机除霜模式。
在上述用于空调器的室外机除霜控制方法的优选技术方案中,“根据所述空调器的单位时间制热负荷的变化率,选择性地使所述空调器进入室外机除霜模式”的步骤包括:当所述空调器的单位时间制热负荷的变化率小于预设变化率时,则使所述空调器进入室外机除霜模式。
在上述用于空调器的室外机除霜控制方法的优选技术方案中,“根据所述空调器的单位时间制热负荷的变化率,选择性地使所述空调器进入室外机除霜模式”的步骤还包括:当所述空调器的单位时间制热负荷的变化率大于或等于所述预设变化率时,则不使所述空调器进入室外机除霜模式。
在上述用于空调器的室外机除霜控制方法的优选技术方案中,所述预设变化率为零。
在上述用于空调器的室外机除霜控制方法的优选技术方案中,“获取所述空调器的单位时间制热负荷的变化率”的步骤具体包括:获取所述空调器的制热量;根据所述空调器的制热量,确定所述空调器的总制热负荷;根据所述空调器的总制热负荷,确定所述空调器的单位时间制热负荷;根据所述空调器的单位时间制热负荷,确定所述空调器的单位时间制热负荷的变化率。
在上述用于空调器的室外机除霜控制方法的优选技术方案中,“获取所述空调器的制热量”的步骤具体包括:获取所述空调器的制冷量和所述空调器的压缩机的运行功率;根据所述空调器的制冷量和所述空调器的压缩机的运行功率,确定所述空调器的制热量。
在上述用于空调器的室外机除霜控制方法的优选技术方案中,在所述空调器的压缩机为变频压缩机的情况下,在“获取所述空调器的单位时间制热负荷的变化率”的步骤之前,所述除霜控制方法还包括:获取所述压缩机的频率的变化趋势;根据所述压缩机的频率的变化趋势,选择性地执行“获取所述空调器的单位时间制热负荷的变化率”的步骤。
在上述用于空调器的室外机除霜控制方法的优选技术方案中,“根据所述压缩机的频率的变化趋势,选择性地执行“获取所述空调器的单位时间制热负荷的变化率”的步骤”的步骤包括:如果所述压缩机的频率呈上升趋势或趋于不变,则执行“获取所述空调器的单位时间制热负荷的变化率”的步骤。
在上述用于空调器的室外机除霜控制方法的优选技术方案中,“根据所述压缩机的频率的变化趋势,选择性地执行“获取所述空调器的单位时间制热负荷的变化率”的步骤”的步骤包括:如果所述压缩机的频率呈下降趋势,则不执行“获取所述空调器的单位时间制热负荷的变化率”的步骤。
本发明还提供了一种空调器,所述空调器包括控制器,所述控制器能够执行上述任一项优选技术方案中所述的室外机除霜控制方法。
本领域技术人员能够理解的是,在本发明的技术方案中,本发明的除霜控制方法包括:获取所述空调器的单位时间制热负荷的变化率;根据所述空调器的单位时间制热负荷的变化率,选择性地使所述空调器进入室外机除霜模式。本发明的除霜控制方法采用所述空调器的单位时间制热负荷的变化率作为基础参数来判断所述空调器进入室外机除霜模式的时机,以使所述空调器能够在最恰当的时机进入室外机除霜模式,从而有效提升所述空调器的运行效率。一方面,所述空调器在获取单位时间制热负荷的变化率时无需增设其他电子元件,以便有效保证所述空调器的制造成本不会增加;另一方面,所述空调器的单位时间制热负荷的变化率能够有效反映所述空调器的制热能力的衰减情况,即本发明优选在所述空调器的制热能力的衰减程度达到预设衰减程度时才使所述空调器进入室外机除霜模式,以便有效避免所述空调器在不必要进行除霜的情况下进入室外机除霜模式而导致不必要的电能消耗以及不必要的制热效果波动,同时还能够有效避免所述空调器在其制热能力已经出现急 剧衰减时才进入除霜模式而导致除霜效果不佳、除霜时间过长等问题,从而有效保证所述空调器始终能够保持良好的运行效率,进而有效提升用户体验。
进一步地,在本发明的优选技术方案中,当所述空调器的单位时间制热负荷的变化率小于所述预设变化率时,即所述空调器的制热能力的衰减程度已经达到预设衰减程度时,则使所述空调器进入室外机除霜模式,以便有效保证所述室外机能够以较快的速度进行除霜,从而有效提高所述空调器的除霜效率,缩短其除霜时间,进而有效保证所述空调器能够在较短时间内再次恢复制热模式。同时,当所述空调器的单位时间制热负荷的变化率大于或等于所述预设变化率时,即所述空调器的制热能力并没有出现急剧下降时,则不使所述空调器进入室外机除霜模式,以便有效保证所述空调器的制热能力,进而有效提升用户的换热体验。优选地,所述预设变化率为零,即当所述空调器的制热能力出现衰减时就使所述空调器进入室外机除霜模式。
进一步地,在本发明的优选技术方案中,本发明的除霜控制方法根据所述空调器的制冷量和所述空调器的压缩机的运行功率来确定所述空调器的制热量,以便在无需增设电子元件的基础上,还能够准确获取所述空调器的制热量。
进一步地,在本发明的优选技术方案中,在所述空调器的压缩机为变频压缩机的情况下,本发明的除霜控制方法还通过获取所述压缩机的频率的变化趋势来选择性地执行“获取所述空调器的单位时间制热负荷的变化率”的步骤。需要说明的是,对于使用变频压缩机的空调器而言,如果所述室外机出现结霜现象,则所述压缩机的频率必然会呈上升趋势,因此,为了简化判断步骤,本发明还可以先通过所述压缩机的频率的变化趋势来判断所述室外机是否已经出现结霜现象,并在所述室外机出现结霜现象的情况下,再根据所述空调器的单位时间制热负荷的变化率来判断所述空调器进入室外机除霜模式的时机,从而有效提高所述除霜控制方法的执行效率。具体地,如果所述压缩机的频率呈上升趋势或趋于不变,则所述空调器判断所述室外机已经出现结霜现象,此时,执行“获取所述空调器的单位时间制热负荷的变化率”的步骤,以便继续判断所述空调器进入室外机除霜模式的时机;同时,如果所述压缩机 的频率呈下降趋势,则所述空调器判断所述室外机没有出现结霜现象,此时,不执行“获取所述空调器的单位时间制热负荷的变化率”的步骤,以便有效简化判断步骤。
附图说明
图1是本发明的除霜控制方法的主要步骤流程图;
图2是空调器的制热量在预设时间段的曲线图;
图3是空调器的总制热负荷在预设时间段的曲线图;
图4是空调器的单位时间制热负荷在预设时间段的曲线图;
图5是本发明的除霜控制方法的优选实施例的步骤流程图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,尽管本申请中按照特定顺序描述了本发明的方法的各个步骤,但是这些顺序并不是限制性的,在不偏离本发明的基本原理的前提下,本领域技术人员可以按照不同的顺序来执行所述步骤。此外,还需要说明的是,本发明中所述的空调器既可以是一托一的空调器,也可以是多联机空调机组,这种应用对象的改变并不偏离本发明的基本原理,属于本发明的保护范围。
基于背景技术中提出的现有空调器的除霜控制方法很难准确判断空调器进入除霜模式的时机的问题,本发明提供了一种除霜控制方法,所述除霜控制方法采用所述空调器的单位时间制热负荷的变化率作为基础参数来判断所述空调器进入室外机除霜模式的时机,以使所述空调器能够在最恰当的时机进入室外机除霜模式,从而有效提升所述空调器的运行效率。
具体地,本发明的空调器包括室外机以及与所述室外机相连的室内机,所述室外机与所述室内机之间设置有冷媒循环系统,从而实现换热功能;需要说明的是,技术人员可以根据实际使用需求自行设定所述室内机和所述室外机的具体数量。所述空调器还包括控制器,所述控制器能够获取所述空调器的运行参数,并且所述控制器还能够控制所述 空调器的运行状态,例如使所述空调器进入不同运行模式等。本领域技术人员能够理解的是,本发明不对所述控制器的具体结构和型号作任何限制,并且所述控制器可以是所述空调器原有的控制器,也可以是为执行本发明的除霜控制方法单独设置的控制器,技术人员可以根据实际使用需求自行设定所述控制器的结构和型号。
首先参阅图1,该图是本发明的除霜控制方法的主要步骤流程图。如图1所示,基于上述实施例中所述的空调器,本发明的除霜控制方法主要包括下列步骤:
S1:获取空调器的单位时间制热负荷的变化率;
S2:根据空调器的单位时间制热负荷的变化率,选择性地使空调器进入室外机除霜模式。
进一步地,在步骤S1中,所述控制器能够获取所述空调器的单位时间制热负荷的变化率,以便将所述空调器的单位时间制热负荷的变化率作为基础参数;需要说明的是,本发明不对所述控制器获取单位时间制热负荷的变化率的方式作任何限制,技术人员可以根据实际使用需求自行设定其获取方式,例如,技术人员可以通过自行设定计算式来计算所述空调器的单位时间制热负荷的变化率,也可以通过在坐标系中建立单位时间制热负荷和时间的曲线图,再获取曲线图上对应点的切线斜率来得到单位时间制热负荷的变化率,这种具体获取方式的改变均不偏离本发明的基本原理,属于本发明的保护范围。
进一步地,在步骤S2中,所述控制器能够根据所述空调器的单位时间制热负荷的变化率选择性地使所述空调器进入室外机除霜模式。需要说明的是,本发明不对控制所述空调器进入室外机除霜模式的具体判断条件作任何限制,技术人员可以根据实际使用需求自行设定,例如,将判断条件设定成当所述空调器的单位时间制热负荷的变化率小于预设变化率时,则使所述空调器进入室外机除霜模式;或者还可以将判断条件设定成当所述空调器的单位时间制热负荷的变化率满足某关系式时,则使所述空调器进入室外机除霜模式;这种具体判断条件的改变并不偏离本发明的基本原理,只要所述除霜控制方法采用所述空调器的单位时间制热负荷的变化率作为基础参数就属于本发明的保护范围。
下面参阅图2至5,其中,图2是空调器的制热量在预设时间段的曲线图;图3是空调器的总制热负荷在预设时间段的曲线图;图4是空调器的单位时间制热负荷在预设时间段的曲线图;图5是本发明的除霜控制方法的优选实施例的步骤流程图。如图5所示,基于上述实施例中所述的空调器,本发明的除霜控制方法的优选实施例具体包括下列步骤:
S101:获取压缩机的频率的变化趋势;
S102:判断压缩机的频率是否呈上升趋势或趋于不变;如果是,则执行步骤S103;如果否,则执行步骤S101;
S103:获取空调器的单位时间制热负荷的变化率;
S104:判断空调器的单位时间制热负荷的变化率是否小于零;如果是,则执行步骤S105;如果否,则执行步骤S106;
S105:使空调器进入室外机除霜模式;
S106:使空调器维持当前运行模式。
进一步地,本优选实施例中的空调器包括变频压缩机,当然,这种设置并不是限制性的,所述空调器的压缩机也可以是定频压缩机;但是,当所述空调器的压缩机为定频压缩机时就无需执行步骤S101和步骤S102,直接执行步骤S103即可。本发明不对所述空调器的具体结构作任何限制,技术人员可以根据所述空调器的具体结构对应调整本发明的除霜控制方法的具体步骤。在步骤S101中,所述控制器能够获取所述变频压缩机的频率的变化趋势。具体而言,作为一种实施例,在该步骤中,所述控制器能够获取相邻两个时间点所对应的压缩机的频率来判断所述变频压缩机的频率的变化趋势,所述控制器通过上一个时间点所对应的压缩机的频率和当前时间点所对应的压缩机的频率就可以得出所述变频压缩机的频率的变化趋势;即如果上一个时间点所对应的压缩机的频率大于当前时间点所对应的压缩机的频率,则所述变频压缩机的频率呈下降趋势;如果上一个时间点所对应的压缩机的频率小于当前时间点所对应的压缩机的频率,则所述变频压缩机的频率呈上升趋势;如果上一个时间点所对应的压缩机的频率等于当前时间点所对应的压缩机的频率,则所述变频压缩机的频率趋于不变;当然,相邻两个时间点之间的间隔时间需要足够短。同时,所述控制器还可以通过绘制频率变 化曲线,然后通过计算频率变化曲线上与当前时间点所对应的点的切线斜率来确定压缩机的频率的变化趋势。当然,还需要说明的是,本发明不对所述控制器获取变频压缩机的频率的变化趋势的具体方式作任何限制,技术人员可以根据实际使用需求自行设定。
进一步地,在步骤S102中,所述控制器能够判断所述压缩机的频率是否呈上升趋势或趋于不变,以便判断所述室外机是否已经出现结霜现象。如果所述压缩机的频率没有呈上升趋势或趋于不变,即所述压缩机的频率呈下降趋势,则所述控制器判断所述室外机并未出现结霜现象,此时,所述控制器再次执行步骤S101,即所述控制器再次获取所述压缩机的频率的变化趋势,以便实现实时监测。同时,如果所述压缩机的频率呈上升趋势或趋于不变,则所述控制器判断所述室外机已经出现结霜现象,此时,所述控制器执行步骤S103,以便进一步判断所述空调器进入室外机除霜模式的时机。
进一步地,在步骤S103中,所述控制器能够获取所述空调器的单位时间制热负荷的变化率,需要说明的是,本发明不对所述控制器获取单位时间制热负荷的变化率的方式作任何限制,技术人员可以根据实际使用需求自行设定其获取方式。作为一种实施例,所述多联机空调机组的制冷量Q C可以用如下计算式进行计算:
Figure PCTCN2020078580-appb-000001
其中,T e为所述空调器的蒸发温度,即所述空调器运行时的低压压力对应的饱和温度,其单位为℃;T c为所述空调器的冷凝温度,即所述空调器运行时的高压压力对应的饱和温度,其单位为℃;C1、C2……C10均为修正系数,技术人员需要根据不同空调器的结构自行通过实验拟合出C1至C10的具体数值。所述空调器的制热量Q h可以用如下计算式进行计算:
Q h=Q C+W 1
其中,W 1为所述变频压缩机的运行功率,其单位为W。
所述空调器在某个时间段(即t1至t2)的总制热负荷等于在[t1,t2]内对制热量Q h进行积分的结果,其可以用如下计算式进行计算:
Figure PCTCN2020078580-appb-000002
需要说明的是,所述控制器可以根据实际使用需求自行选定t1和t2的具体值,这种时间段选取的改变并不偏离本发明的基本原理。作为一种优选实施例,在所述空调器的运行过程中,t1可以选定为所述空调器进入室外机除霜模式的时刻,t2可以选定为所述空调器下一次进入室外机除霜模式的时刻;在所述空调器刚开始运行时,t1可以选定为所述空调器开始运行的时刻,t2可以选定为所述空调器第一次进入室外机除霜模式的时刻;当然,这种描述显然是示例性的,技术人员还可以根据实际使用需求自行选定t1和t2的具体值。
所述空调器在某个时间段(即t1至t2)的单位时间制热负荷等于该时间段内的总制热负荷除以该时间段的时长,其可以用如下计算式进行计算:
Figure PCTCN2020078580-appb-000003
接着参阅图2至图4,作为一个示例,将t1选定为所述空调器进入室外机除霜模式的时刻,则所述空调器的制热量变化曲线如图2所示,所述空调器的总制热负荷变化曲线如图3所示,所述空调器的单位时间制热负荷如图4所示。由图2可知,在所述空调器制热运行的过程中,所述空调器的制热量从A点开始衰减,而由图3可知,所述空调器的总制热负荷在此时还处于缓慢增长的态势;同时,由图4可知,在所述空调器制热运行的过程中,所述空调器的单位时间制热负荷的变化率就是曲线上各点的切线的斜率,由此可见,所述空调器的单位时间制热负荷量从B点才开始衰减,此时,所述空调器的单位时间制热负荷的变化率为零,从图2和图4的时间轴可知,A点和B点并不是同一时间点,即制热量出现衰减的时间点与单位时间制热负荷出现衰减的时间点并不会出现在同一时间点,而本发明采用的正是单位时间制热负荷开始出现衰减的点作为所述空调器进入室外机除霜模式的时间点,即在单位时间制热负荷变化曲线图上切线斜率为零的点;当然,也可以选取该时间点附近的时间点作为所述空调器进入室外机除霜模式的时间点,即虽然本优选实施例中所选取的预设变化率为零,但是,技术人员显然还可以根据实际使用需求自行设定所述预设变化率的具体值。
进一步地,在获取到所述空调器的单位时间制热负荷的变化率之后,执行步骤S104,即所述控制器能够判断所述空调器的单位时间制 热负荷的变化率是否小于零,以便所述控制器能够判断所述空调器的单位时间制热负荷是否开始出现衰减。基于步骤S104的判断结果,如果所述空调器的单位时间制热负荷的变化率大于或等于零,则所述控制器判断所述空调器的单位时间制热负荷还未出现衰减,在此情形下,执行步骤S106,即,所述控制器控制所述空调器继续维持当前运行模式。同时,如果所述空调器的单位时间制热负荷的变化率小于零,则所述控制器判断所述空调器的单位时间制热负荷已经开始出现衰减,此时,执行步骤S105,即,所述控制器控制所述空调器进入室外机除霜模式。需要说明的是,本发明不对所述空调器进入室外机除霜模式时所执行的具体操作进行任何限制,技术人员可以根据所述空调器的实际情况自行设定;例如,所述控制器可以控制所述空调器中的冷媒进行逆循环而达到除霜效果,或者所述控制器也可以通过开启所述室外机中的加热装置而实现除霜功能,这种具体操作的改变并不偏离本发明的基本原理,属于本发明的保护范围。
最后需要说明的是,上述实施例均是本发明的优选实施方案,并不作为对本发明保护范围的限制。本领域技术人员在实际使用本发明时,可以根据需要适当添加或删减一部分步骤,或者调换不同步骤之间的顺序。这种改变并没有超出本发明的基本原理,属于本发明的保护范围。
至此,已经结合附图描述了本发明的优选实施方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种用于空调器的室外机除霜控制方法,其特征在于,所述除霜控制方法包括:
    获取所述空调器的单位时间制热负荷的变化率;
    根据所述空调器的单位时间制热负荷的变化率,选择性地使所述空调器进入室外机除霜模式。
  2. 根据权利要求1所述的室外机除霜控制方法,其特征在于,“根据所述空调器的单位时间制热负荷的变化率,选择性地使所述空调器进入室外机除霜模式”的步骤包括:
    当所述空调器的单位时间制热负荷的变化率小于预设变化率时,则使所述空调器进入室外机除霜模式。
  3. 根据权利要求2所述的室外机除霜控制方法,其特征在于,“根据所述空调器的单位时间制热负荷的变化率,选择性地使所述空调器进入室外机除霜模式”的步骤还包括:
    当所述空调器的单位时间制热负荷的变化率大于或等于所述预设变化率时,则不使所述空调器进入室外机除霜模式。
  4. 根据权利要求3所述的室外机除霜控制方法,其特征在于,所述预设变化率为零。
  5. 根据权利要求1所述的室外机除霜控制方法,其特征在于,“获取所述空调器的单位时间制热负荷的变化率”的步骤具体包括:
    获取所述空调器的制热量;
    根据所述空调器的制热量,确定所述空调器的总制热负荷;
    根据所述空调器的总制热负荷,确定所述空调器的单位时间制热负荷;
    根据所述空调器的单位时间制热负荷,确定所述空调器的单位时间制热负荷的变化率。
  6. 根据权利要求5所述的室外机除霜控制方法,其特征在于,“获取所述空调器的制热量”的步骤具体包括:
    获取所述空调器的制冷量和所述空调器的压缩机的运行功率;
    根据所述空调器的制冷量和所述空调器的压缩机的运行功率,确定所述空调器的制热量。
  7. 根据权利要求1至6中任一项所述的室外机除霜控制方法,其特征在于,在所述空调器的压缩机为变频压缩机的情况下,在“获取所述空调器的单位时间制热负荷的变化率”的步骤之前,所述除霜控制方法还包括:
    获取所述压缩机的频率的变化趋势;
    根据所述压缩机的频率的变化趋势,选择性地执行“获取所述空调器的单位时间制热负荷的变化率”的步骤。
  8. 根据权利要求7所述的室外机除霜控制方法,其特征在于,“根据所述压缩机的频率的变化趋势,选择性地执行“获取所述空调器的单位时间制热负荷的变化率”的步骤”的步骤包括:
    如果所述压缩机的频率呈上升趋势或趋于不变,则执行“获取所述空调器的单位时间制热负荷的变化率”的步骤。
  9. 根据权利要求8所述的室外机除霜控制方法,其特征在于,“根据所述压缩机的频率的变化趋势,选择性地执行“获取所述空调器的单位时间制热负荷的变化率”的步骤”的步骤包括:
    如果所述压缩机的频率呈下降趋势,则不执行“获取所述空调器的单位时间制热负荷的变化率”的步骤。
  10. 一种空调器,其特征在于,所述空调器包括控制器,所述控制器能够执行权利要求1至9中任一项所述的室外机除霜控制方法。
PCT/CN2020/078580 2019-06-13 2020-03-10 空调器及其室外机除霜控制方法 WO2020248635A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910511834.1A CN112082248B (zh) 2019-06-13 2019-06-13 空调器及其室外机除霜控制方法
CN201910511834.1 2019-06-13

Publications (1)

Publication Number Publication Date
WO2020248635A1 true WO2020248635A1 (zh) 2020-12-17

Family

ID=73733713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078580 WO2020248635A1 (zh) 2019-06-13 2020-03-10 空调器及其室外机除霜控制方法

Country Status (2)

Country Link
CN (1) CN112082248B (zh)
WO (1) WO2020248635A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109163416A (zh) * 2018-08-13 2019-01-08 珠海格力电器股份有限公司 一种设备的化霜控制方法和装置、设备
CN113237258A (zh) * 2021-05-31 2021-08-10 青岛海尔空调电子有限公司 空调机组及其除霜控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217146A (ja) * 1988-02-23 1989-08-30 Sanyo Electric Co Ltd 除霜制御方法
JPH11281213A (ja) * 1998-03-27 1999-10-15 Matsushita Electric Ind Co Ltd 空気調和機の除霜制御装置
CN104180478A (zh) * 2014-08-22 2014-12-03 广东美的集团芜湖制冷设备有限公司 空调器的除霜控制方法、空调器的除霜控制装置和空调器
CN108800439A (zh) * 2018-05-24 2018-11-13 青岛海尔空调器有限总公司 空调器除霜控制方法
CN109163416A (zh) * 2018-08-13 2019-01-08 珠海格力电器股份有限公司 一种设备的化霜控制方法和装置、设备
CN109323369A (zh) * 2018-09-30 2019-02-12 广东美的制冷设备有限公司 空调及其化霜方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108151231A (zh) * 2017-12-25 2018-06-12 广东美的制冷设备有限公司 除霜控制方法、除霜控制装置和空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217146A (ja) * 1988-02-23 1989-08-30 Sanyo Electric Co Ltd 除霜制御方法
JPH11281213A (ja) * 1998-03-27 1999-10-15 Matsushita Electric Ind Co Ltd 空気調和機の除霜制御装置
CN104180478A (zh) * 2014-08-22 2014-12-03 广东美的集团芜湖制冷设备有限公司 空调器的除霜控制方法、空调器的除霜控制装置和空调器
CN108800439A (zh) * 2018-05-24 2018-11-13 青岛海尔空调器有限总公司 空调器除霜控制方法
CN109163416A (zh) * 2018-08-13 2019-01-08 珠海格力电器股份有限公司 一种设备的化霜控制方法和装置、设备
CN109323369A (zh) * 2018-09-30 2019-02-12 广东美的制冷设备有限公司 空调及其化霜方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109163416A (zh) * 2018-08-13 2019-01-08 珠海格力电器股份有限公司 一种设备的化霜控制方法和装置、设备
CN109163416B (zh) * 2018-08-13 2023-06-30 珠海格力电器股份有限公司 一种设备的化霜控制方法和装置、设备
CN113237258A (zh) * 2021-05-31 2021-08-10 青岛海尔空调电子有限公司 空调机组及其除霜控制方法

Also Published As

Publication number Publication date
CN112082248B (zh) 2022-09-23
CN112082248A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
CN107621048B (zh) 一种空调的控制方法及装置
CN104819542B (zh) 空调器的化霜控制方法、装置和空调器
CN108317668B (zh) 用于空调器的室内机防冻结控制方法和空调器
WO2021169525A1 (zh) 用于空调机组的除霜控制方法
CN108488998B (zh) 用于空调器的室内机防冻结控制方法
CN110513816B (zh) 一种恒温除湿控制方法、空调及存储介质
WO2020248635A1 (zh) 空调器及其室外机除霜控制方法
WO2019148973A1 (zh) 利用自清洁进行防凝露的方法及空调
CN108692426B (zh) 空调器除霜控制方法
CN109237727A (zh) 用于空调器的除霜控制方法
CN112963941A (zh) 空调器、其控制方法和化霜控制装置
CN104566836A (zh) 空调器及其自动控制方法、装置
WO2022222940A1 (zh) 空调机组及其除霜控制方法
WO2021036872A1 (zh) 空调制热控制方法、装置、空调及存储介质
WO2019158047A1 (zh) 用于空调器的室内机防冻结控制方法
WO2020233116A1 (zh) 用于空调器的除霜控制方法
CN109631254A (zh) 空调器、空调器制热控制方法及计算机可读存储介质
CN108800416A (zh) 空调器除霜控制方法
CN108592297B (zh) 空调器除霜控制方法
CN112325457B (zh) 一种多联机与复合新风联合运行控制方法与控制系统
CN108692425B (zh) 空调器除霜控制方法
CN110332653B (zh) 室外机除霜控制方法、装置及设备
WO2023005570A1 (zh) 用于空调器的静音控制方法
CN108800451B (zh) 空调器除霜控制方法
CN110594995B (zh) 提升空调低温制热舒适性的控制方法、装置、空调器及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20823597

Country of ref document: EP

Kind code of ref document: A1