WO2021036872A1 - 空调制热控制方法、装置、空调及存储介质 - Google Patents

空调制热控制方法、装置、空调及存储介质 Download PDF

Info

Publication number
WO2021036872A1
WO2021036872A1 PCT/CN2020/109858 CN2020109858W WO2021036872A1 WO 2021036872 A1 WO2021036872 A1 WO 2021036872A1 CN 2020109858 W CN2020109858 W CN 2020109858W WO 2021036872 A1 WO2021036872 A1 WO 2021036872A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
preset
outer coil
air conditioner
expansion valve
Prior art date
Application number
PCT/CN2020/109858
Other languages
English (en)
French (fr)
Inventor
李辉增
樊明敬
郝本华
刘庆赟
张海超
张盼盼
杨通
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021036872A1 publication Critical patent/WO2021036872A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the invention belongs to the technical field of air conditioning control, and in particular relates to an air conditioning heating control method, device, air conditioner and storage medium.
  • inverter air conditioners generally use the target discharge temperature of the compressor to control the switch of the electronic expansion valve to adjust the circulation flow of the refrigerant, so as to achieve an effective cooling and heating effect.
  • the outdoor unit of the air conditioner starts to form frost after running for a period of time, which causes the heat exchange capacity of the outdoor unit to deteriorate.
  • the opening degree of the electronic expansion valve is continuously reduced.
  • the continuous decrease in the opening of the electronic expansion valve will cause the frosting speed of the outdoor unit to become faster, which will further reduce the heat exchange efficiency of the outdoor unit, and then the temperature detected by the outdoor coil sensor
  • the system will start defrosting operation and no longer heating, which undoubtedly shortens the heating time of the air conditioner and affects the user experience.
  • the invention provides an air conditioner heating control method, device, air conditioner and storage medium, so as to improve the heating capacity of the air conditioner.
  • the present invention provides a heating control method for an air conditioner, including:
  • the electronic expansion valve is adjusted according to the preset target discharge temperature of the compressor, and if the judgment result is no, the defrost mode is entered.
  • the method before the determining that the first temperature difference between the initial first temperature of the outer coil and the current second temperature of the outer coil is greater than or equal to the preset first temperature threshold, the method further includes:
  • the method before the determining that the first temperature difference between the initial first temperature of the outer coil and the current second temperature of the outer coil is greater than or equal to the preset first temperature threshold, the method further includes:
  • the first temperature is the exhaust temperature of the outer coil after the air conditioner operates for a second preset period of time.
  • the preset first temperature threshold is 3 degrees Celsius
  • the second temperature threshold is 1 degrees Celsius
  • the first preset duration is 5 minutes
  • the second preset duration is 3 minutes.
  • the present invention provides an air-conditioning heating control device, including:
  • a processing module configured to determine that the first temperature difference between the initial first temperature of the outer coil and the current second temperature of the outer coil is greater than or equal to a preset first temperature threshold
  • the control module is used to increase the opening of the electronic expansion valve to increase the refrigerant circulation
  • the processing module is further configured to determine whether the second temperature difference between the third temperature of the outer coil and the first temperature is less than a preset second temperature threshold within a first preset time period. A temperature threshold greater than the second temperature threshold;
  • the control module is further configured to adjust the electronic expansion valve according to a preset target discharge temperature of the compressor, or control the air conditioner to enter a defrosting mode.
  • the processing module is also used to determine that the current working state of the air conditioner is a heating state.
  • the air-conditioning heating control device further includes:
  • the acquiring module is configured to acquire the initial first temperature of the outer coil, where the first temperature is the exhaust temperature of the outer coil after the air conditioner operates for a second preset period of time.
  • the preset first temperature threshold is 3 degrees Celsius
  • the second temperature threshold is 1 degrees Celsius
  • the first preset duration is 5 minutes
  • the second preset duration is 3 minutes.
  • the present invention also provides an air conditioner, including:
  • the memory, the electronic expansion valve and the temperature sensor are respectively connected to the processor;
  • a memory for storing executable instructions of the processor
  • the processor is configured to execute any one of the possible air-conditioning heating control methods in the first aspect by executing the executable instruction;
  • the electronic expansion valve is used to adjust the amount of refrigerant circulating
  • the temperature sensor is used to obtain the exhaust gas temperature of the outer coil.
  • the present invention also provides a storage medium on which a computer program is stored, and when the program is executed by a processor, any one of the possible air-conditioning heating control methods in the first aspect is realized.
  • the air conditioner heating control method, device, air conditioner, and storage medium provided by the present invention are achieved through the fact that the first temperature difference between the initial first temperature of the outer coil and the current second temperature of the outer coil is greater than or equal to the preset first temperature threshold.
  • the opening of the electronic expansion valve is increased to increase the refrigerant circulation, thereby delaying the frosting speed of the air conditioner’s external unit, effectively prolonging the heating time, and, after the opening of the electronic expansion valve increases, the first pre-heating Within the set time period, determine whether to jump out of the control of increasing the opening of the electronic expansion valve by determining whether the outer coil returns to temperature to enter the mode of adjusting the electronic expansion valve according to the preset target discharge temperature of the compressor, or Directly enter the defrost mode, thereby reducing the frequency of the air conditioner entering the defrost mode under the premise of ensuring the overall heating effect of the air conditioner, and improving the average heating capacity in a single defrost cycle.
  • Fig. 1 is a schematic flow chart showing a heating control method of an air conditioner according to an exemplary embodiment of the present invention
  • Fig. 2 is a schematic flowchart of a heating control method for an air conditioner according to another exemplary embodiment of the present invention
  • Fig. 3 is a schematic structural diagram of an air-conditioning heating control device according to an exemplary embodiment of the present invention.
  • Fig. 4 is a schematic diagram showing the structure of an air-conditioning heating control device according to another exemplary embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of an air conditioner according to an exemplary embodiment of the present invention.
  • connection and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection. , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between the two components.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection. , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between the two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • inverter air conditioners generally use the target discharge temperature of the compressor to control the switching of the electronic expansion valve to adjust the circulating flow of the refrigerant, so as to achieve an effective cooling and heating effect.
  • the outside unit of the air conditioner When the air conditioner needs to be used for the heating season, if the outdoor temperature is low and the humidity is high, the outside unit of the air conditioner will start to frost after running for a period of time. The frosting of the outside unit will easily cause the heat exchange capacity of the outside unit to deteriorate.
  • the opening of the electronic expansion valve In the operation of the air conditioner, in order to reach the target exhaust temperature set by the system, the opening of the electronic expansion valve will usually be continuously reduced when the temperature of the outside machine drops but does not reach the critical temperature of defrosting. At this time, as the opening degree of the electronic expansion valve continuously decreases, the frosting speed of the outdoor machine will be further increased, which will further reduce the heat exchange efficiency of the outdoor machine, thereby making the frosting speed faster.
  • the system When the temperature detected by the outdoor coil sensor drops to the defrosting condition, the system will start the defrosting operation. It is worth noting that when the air conditioner starts to run in the defrosting mode, the air conditioner internal unit no longer heats up, because the air conditioner frequently Entering the defrost mode will undoubtedly shorten the heating time of the air conditioner and affect the user experience.
  • an embodiment of the present invention provides an air-conditioning heating control method.
  • the first temperature difference between the initial first temperature of the outer coil and the current second temperature of the outer coil is greater than or equal to the preset temperature.
  • At the first temperature threshold increase the opening of the electronic expansion valve to increase the amount of refrigerant circulating, thereby delaying the speed of frosting on the outside of the air conditioner, effectively prolonging the heating time, and after the opening of the electronic expansion valve increases
  • it is determined whether to jump out of the control of increasing the opening degree of the electronic expansion valve by determining whether the outer coil returns to temperature, so as to enter the adjustment of the electronic expansion valve according to the preset target discharge temperature of the compressor Or directly enter the defrost mode, thereby reducing the frequency of the air conditioner entering the defrost mode while ensuring the overall heating effect of the air conditioner, and improving the average heating capacity in a single defrost cycle.
  • the heating control method of the air conditioner will be described in detail below through several specific
  • Fig. 1 is a schematic flow chart showing a heating control method of an air conditioner according to an exemplary embodiment of the present invention. As shown in Figure 1, the air-conditioning heating control method provided in this embodiment includes:
  • Step 101 Determine that the first temperature difference between the initial first temperature of the outer coil and the current second temperature of the outer coil is greater than or equal to a preset first temperature threshold.
  • the temperature of the outer coil can be obtained in real time by setting a temperature sensor at the outer coil of the outdoor unit of the air conditioner.
  • the initial first temperature of the outer coil may be the temperature measured when the air conditioner first enters the working state, or it may be the temperature of the outer coil measured after the air conditioner is running for a preset period of time, for example, after the second preset period of time.
  • the second preset duration may be determined according to the specific performance of the air conditioner, and the time required for the air conditioner from starting to entering stable operation may be selected as the second preset duration.
  • the aforementioned preset second duration may be selected as an example of 3 minutes.
  • the preset second duration is uniformly selected as 3 minutes for illustration in the following description.
  • the temperature of the outer coil is acquired by the temperature sensor as the first temperature T pw1 .
  • the current second temperature T pw2 of the outer coil is obtained in real time.
  • it is calculated whether the difference between the first temperature and the second temperature is greater than or equal to a preset first temperature threshold, where the preset first temperature threshold can be selected as an example of 3 degrees Celsius. Then the air conditioner judges in real time whether the following conditions are met:
  • step 102 is executed. If the above-mentioned temperature difference judgment condition is satisfied, step 102 is executed. If the above-mentioned temperature difference judgment condition is not satisfied, the air conditioner continues to adjust the electronic expansion valve according to the preset target discharge temperature of the compressor.
  • the method of adjusting the target exhaust temperature of the compressor to the electronic expansion valve can be the conventional control method of the inverter air conditioner in the heating mode in the prior art. For example, it can be the proportional-integral-derivative (Proportion -Integral-Differential (PID for short) control method.
  • PID proportional-integral-derivative
  • the method of adjusting the electronic expansion valve according to the preset target discharge temperature of the compressor is not described here.
  • Step 102 Increase the opening degree of the electronic expansion valve.
  • the original preset compressor target exhaust temperature can be stopped to adjust the electronic expansion valve, and It is to increase the opening degree of the electronic expansion valve.
  • the increased opening degree can be determined according to the specific parameters of the air conditioner, and it can be a fixed preset opening degree step number, for example, it can be 100 steps. As a result, the circulation volume of the refrigerant in the outer coil becomes larger, and the heat absorption speed of the intermediate refrigerant in the outer coil becomes slower.
  • Step 103 Determine whether the second temperature difference between the third temperature of the outer coil and the first temperature within the first preset time period is less than a preset second temperature threshold.
  • the air conditioner After increasing the opening degree of the electronic expansion valve, the air conditioner continues to operate for the first preset period of time, continues to obtain the third temperature T pw3 of the outer coil through the temperature sensor, and calculates whether the difference between the first temperature and the third temperature is greater than or Equal to the preset second temperature threshold, the first temperature threshold is greater than the second temperature threshold, where the preset second temperature threshold can be exemplarily selected as 1 degree Celsius, and the first preset duration can be exemplarily selected as 5 minutes . Then the air conditioner judges in real time whether the following conditions are met:
  • step 104 is executed, and if the aforementioned temperature difference condition is not satisfied (as shown in FIG. 1, it is judged as N), then step 105 is executed.
  • the defrosting mode is a mode provided in various types of air conditioners at present, and its specific working process and method will not be described in detail in this embodiment.
  • Step 104 Adjust the electronic expansion valve according to the preset temperature of the outer coil.
  • Step 105 Enter the defrost mode.
  • the opening of the electronic expansion valve is increased to Increase the refrigerant circulation, thereby delaying the frosting speed of the air conditioner’s external unit, effectively prolonging the heating time, and within the first preset time after the opening of the electronic expansion valve increases, by determining whether the external coil is back It is determined whether to jump out of the control of increasing the opening degree of the electronic expansion valve to enter the method of adjusting the electronic expansion valve according to the preset target discharge temperature of the compressor, or directly enter the defrost mode, thereby ensuring that the air conditioner Under the premise of the overall heating effect, the frequency of the air conditioner entering the defrost mode is reduced, and the average heating capacity in a single defrost cycle is improved.
  • Fig. 2 is a schematic flowchart showing a heating control method of an air conditioner according to another exemplary embodiment of the present invention. As shown in FIG. 2, the air-conditioning heating control method provided in this embodiment includes:
  • Step 201 Determine that the current working state of the air conditioner is a heating state.
  • Step 202 Obtain the initial first temperature of the outer coil and the current second temperature of the outer coil.
  • the temperature of the outer coil can be obtained in real time by setting a temperature sensor at the outer coil of the outdoor unit of the air conditioner.
  • the initial first temperature of the outer coil may be the temperature measured when the air conditioner first enters the working state, or it may be the temperature of the outer coil measured after the air conditioner is running for a preset period of time, for example, after the second preset period of time.
  • the second preset duration may be determined according to the specific performance of the air conditioner, and the time required for the air conditioner from starting to entering stable operation may be selected as the second preset duration.
  • the above-mentioned preset second duration may be selected as an example of 3 minutes.
  • Step 203 Determine that the first temperature difference between the initial first temperature of the outer coil and the current second temperature of the outer coil is greater than or equal to a preset first temperature threshold.
  • Step 204 Increase the opening degree of the electronic expansion valve.
  • Step 205 Determine whether the second temperature difference between the third temperature of the outer coil and the first temperature within the first preset time period is less than a preset second temperature threshold.
  • Step 206 If the determination is yes (Y), adjust the electronic expansion valve according to the preset outer coil temperature.
  • Step 207 If the determination is negative (N), enter the defrosting mode.
  • steps 203-207 in this embodiment refer to the description of steps 101-105 in the embodiment shown in FIG. 1, which will not be repeated here.
  • Fig. 3 is a schematic structural diagram of an air-conditioning heating control device according to an exemplary embodiment of the present invention. As shown in FIG. 3, the air-conditioning heating control device 300 provided in this embodiment includes:
  • the processing module 301 is configured to determine that the first temperature difference between the initial first temperature of the outer coil and the current second temperature of the outer coil is greater than or equal to a preset first temperature threshold;
  • the control module 302 is used to increase the opening degree of the electronic expansion valve so as to increase the circulation of the refrigerant
  • the processing module 301 is further configured to determine whether the second temperature difference between the third temperature of the outer coil and the first temperature is less than a preset second temperature threshold within a first preset time period.
  • the first temperature threshold is greater than the second temperature threshold;
  • the control module 302 is further configured to adjust the electronic expansion valve according to a preset target discharge temperature of the compressor, or control the air conditioner to enter a defrosting mode.
  • the processing module 301 is also used to determine that the current working state of the air conditioner is a heating state.
  • FIG. 4 is a schematic structural diagram of an air-conditioning heating control device according to another exemplary embodiment of the present invention.
  • the air-conditioning heating control device 300 provided in this embodiment further includes:
  • the acquiring module 303 is configured to acquire the initial first temperature of the outer coil, where the first temperature is the exhaust temperature of the outer coil after the air conditioner is operated for a second preset period of time.
  • the preset first temperature threshold is 3 degrees Celsius
  • the second temperature threshold is 1 degrees Celsius
  • the first preset duration is 5 minutes
  • the second preset duration is 3 minutes.
  • the above processing module 301 may be configured as one or more integrated circuits that implement the above methods, for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC for short), or one or more microprocessors (digital singnal processor, DSP for short), or one or more Field Programmable Gate Array (FPGA for short), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital singnal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU for short) or other processors that can call program codes.
  • these modules can also be integrated together and implemented in the form of a system-on-chip.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • Fig. 5 is a schematic structural diagram of an air conditioner according to an exemplary embodiment of the present invention.
  • the air conditioner 400 provided in this embodiment includes:
  • a processor 401 a memory 402, an electronic expansion valve 403, and a temperature sensor 404;
  • the memory 402, the electronic expansion valve 403, and the temperature sensor 404 are respectively connected to the processor 401;
  • the memory 402 is configured to store executable instructions of the processor 401.
  • the memory can also be flash (flash memory);
  • the processor 401 is configured to execute each step in the foregoing method by executing the executable instruction.
  • the processor 401 is configured to execute each step in the foregoing method by executing the executable instruction.
  • the electronic expansion valve 403 is used to adjust the amount of refrigerant circulating
  • the temperature sensor 404 is used to obtain the exhaust gas temperature of the outer coil.
  • the memory 402 may be independent or integrated with the processor 401.
  • the air conditioner 400 may further include:
  • the bus 405 is used to connect the processor 401, the memory 402, the electronic expansion valve 403, and the temperature sensor 404.
  • This embodiment also provides a readable storage medium in which a computer program is stored.
  • the air conditioner executes the methods provided in the various embodiments described above.
  • This embodiment also provides a program product, which includes a computer program, and the computer program is stored in a readable storage medium. At least one processor of the electronic device can read the computer program from a readable storage medium, and at least one processor executes the computer program to make the air conditioner implement the methods provided in the various embodiments described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调制热控制方法、装置、空调及存储介质。制热控制方法包括:确定外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值;增加电子膨胀阀的开度;判断在第一预设时长内,外盘管的第三温度与第一温度之间的第二温差是否小于预设第二温度阈值;若判断结果为是,则根据预设的压缩机目标排气温度对电子膨胀阀进行调节,若判断结果为否,则进入除霜模式。

Description

空调制热控制方法、装置、空调及存储介质 技术领域
本发明属于空调控制技术领域,具体涉及一种空调制热控制方法、装置、空调及存储介质。
背景技术
随着近几年国家大力推广煤改电供暖,采用变频空调进行取暖越来越受到用户的青睐。
目前,变频空调普遍采用压缩机目标排气温度来控制电子膨胀阀的开关,以调整冷媒循环流量,从而到达有效的制冷制热效果。在制热季节时,当室外温度较低并且湿度较大的时候,空调器外机运行一段时间后开始结霜,从而导致外机换热能力变差。现有技术中,为达到系统设定的目标排气温度,此时,电子膨胀阀开度会处于连续减小状态。
而在制热工况下,电子膨胀阀开度连续减小则会导致外机结霜速度变快,从而会使得外机换热效率进一步被降低,进而在室外盘管传感器所检测到的温度降至除霜条件时,系统就会开始除霜运行,不再进行制热,这无疑使得空调的制热时间变短,影响用户体验。
发明内容
本发明提供一种空调制热控制方法、装置、空调及存储介质,以提高了空调的制热能力。
第一方面,本发明提供一种空调制热控制方法,包括:
确定外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值;
增加电子膨胀阀的开度,以使冷媒循环量变大;
判断在第一预设时长内,所述外盘管的第三温度与所述第一温度之间的第二温差是否小于预设第二温度阈值,所述第一温度阈值大于所述第二温度阈值;
若判断结果为是,则根据预设的压缩机目标排气温度对所述电子膨胀阀进行调节,若判断结果为否,则进入除霜模式。
在一种可能的设计中,在所述确定外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值之前,还包括:
确定空调当前的工作状态为制热状态。
在一种可能的设计中,在所述确定外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值之前,还包括:
获取所述外盘管初始的所述第一温度,其中,所述第一温度为空调运行第二预设时长之后,所述外盘管的排气温度。
在一种可能的设计中,所述预设第一温度阈值为3摄氏度,所述第二温度阈值为1摄氏度。
在一种可能的设计中,所述第一预设时长为5分钟,所述第二预设时长为3分钟。
第二方面,本发明提供一种空调制热控制装置,包括:
处理模块,用于确定外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值;
控制模块,用于增加电子膨胀阀的开度,以使冷媒循环量变大;
所述处理模块,还用于判断在第一预设时长内,所述外盘管的第三温度与所述第一温度之间的第二温差是否小于预设第二温度阈值,所述第一温度阈值大于所述第二温度阈值;
所述控制模块,还用于根据预设的压缩机目标排气温度对所述电子膨胀阀进行调节,或者,控制所述空调进入除霜模式。
在一种可能的设计中,所述处理模块,还用于确定空调当前的工作状态为制热状态。
在一种可能的设计中,所述空调制热控制装置,还包括:
获取模块,用于获取所述外盘管初始的所述第一温度,其中,所述第一温度为空调运行第二预设时长之后,所述外盘管的排气温度。
在一种可能的设计中,所述预设第一温度阈值为3摄氏度,所述第二温度阈值为1摄氏度。
在一种可能的设计中,所述第一预设时长为5分钟,所述第二预设时长为3分钟。
第三方面,本发明还提供一种空调,包括:
处理器、存储器、电子膨胀阀以及温度传感器;
所述存储器、所述电子膨胀阀以及所述温度传感器分别与所述处理器连接;
存储器,用于存储所述处理器的可执行指令;
其中,所述处理器配置为经由执行所述可执行指令来执行第一方面中任意一种可能的空调制热控制方法;
所述电子膨胀阀用于调节冷媒循环量;
所述温度传感器用于获取外盘管的排气温度。
第四方面,本发明还提供一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现第一方面中任意一种可能的空调制热控制方法。
本发明提供的空调制热控制方法、装置、空调及存储介质,通过在外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值时,增加电子膨胀阀的开度,以使冷媒循环量变大,从而延缓空调外机结霜的速度,有效地延长了制热时间,并且,在电子膨胀阀的开度增加后的第一预设时长内,通过确定外盘管是否回温的方式确定是否跳出电子膨胀阀的开度增加的控制以进入根据预设的压缩机目标排气温度对所述电子膨胀阀进行调节的方式,或者直接进入除霜模式,从而在保证了空调整体制热效果的前提下,减少了空调进入除霜模式的频次,提高了单个除霜周期内平均制热的能力。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明根据一示例性实施例示出的空调制热控制方法流程示意图;
图2是本发明根据另一示例性实施例示出的空调制热控制方法流程示意图;
图3是本发明根据一示例性实施例示出的空调制热控制装置结构示意图;
图4是本发明根据另一示例性实施例示出的空调制热控制装置结构示意 图;
图5是本发明根据一示例性实施例示出的空调结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
其次,需要说明的是,在本发明的描述中,术语“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或构件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个构件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
在现有技术中,变频空调普遍采用压缩机目标排气温度来控制电子膨胀阀的开关,以调整冷媒循环流量,从而到达有效的制冷制热效果。
在需要利用空调进行制热季节时,如果室外温度较低并且湿度较大的,空调器外机运行一段时间后开始结霜,外机的结霜容易导致外机换热能力变差。在空调运行过程中,为达到系统设定的目标排气温度,在外机发生温度下降而未到达除霜临界温度的过程中,电子膨胀阀的开度通常会处于连续减小状态。此时,由于电子膨胀阀开度连续减小,则会进一步导致外机结霜速度变快,从而会使得外机换热效率进一步被降低,进而使得结霜速度变快。当室外盘管传感器所检测到的温度降至除霜条件时,系统就会开始除霜运行,值得说明的,空调开始运行除霜模式时,空调内机不再进行制热,由于空调频繁地进入除霜模式,这无疑会使得空调的制热时间变短,影响用户体验。
针对上述存在的各个问题,本发明实施例提供一种空调制热控制方法,可以通过在外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值时,增加电子膨胀阀的开度,以使冷媒循环量变大,从而延缓空调外机结霜的速度,有效地延长了制热时间,并且,在电子膨胀阀的开度增加后的第一预设时长内,通过确定外盘管是否回温的方式确定是否跳出电子膨胀阀的开度增加的控制以进入根据预设的压缩机目标排气温度对所述电子膨胀阀进行调节的方式,或者直接进入除霜模式,从而在保证了空调整体制热效果的前提下,减少了空调进入除霜模式的频次,提高了单个除霜周期内平均制热的能力。下面通过几个具体实现方式对该空调制热控制方法进行详细说明。
图1是本发明根据一示例性实施例示出的空调制热控制方法流程示意图。如图1所述,本实施例提供的空调制热控制方法,包括:
步骤101、确定外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值。
具体的,在空调中可以通过在空调外机的外盘管处设置温度传感器来实时获取外盘管的温度。其中,外盘管初始的第一温度可以是空调刚开始进入工作状态时所测量的温度,也可以是空调在运行预设时长,例如,第二预设时长之后所测量的外盘管温度。值得说明的,第二预设时长可以根据空调的具体性能进行确定,可以选取空调从启动到进入稳定工作时所需要的耗时作为第二预设时长。
在一种可能的设计中,上述的预设第二时长可以示例性的选取为3分钟,为了方便说明,在下述的描述中将预设第二时长统一选取为3分钟进行举例说明。
在空调进入制热模式,并且运行3分钟之后,通过温度传感器获取外盘管的温度作为第一温度T pw1。在空调进入稳定运行之后,实时获取外盘管当前的第二温度T pw2。并且,计算第一温度与第二温度的差值是否大于或等于预设第一温度阈值,其中,预设第一温度阈值可以示例性地选取为3摄氏度。则空调实时判断是否满足下述条件:
T pw1-T pw2≥3℃
若满足上述温差判断条件,则执行步骤102,若不满足上述温差判断条件,则空调继续根据预设的压缩机目标排气温度对电子膨胀阀进行调节,其 中,值得说明的,根据预设的压缩机目标排气温度对电子膨胀阀进行调节的方式可以是采用的现有技术中的变频空调在制热模式下的常规控制方式,例如,可以是所采用的是比例-积分-微分(Proportion-Integral-Differential,简称PID)控制方式,此处不对所采用的根据预设的压缩机目标排气温度对电子膨胀阀进行调节的方式进行赘述。但是,值得说明的,在现有的根据预设的压缩机目标排气温度对电子膨胀阀进行调节的方式中,为达到系统设定的目标排气温度,在外机发生温度下降而未到达除霜临界温度的过程中,电子膨胀阀的开度通常会处于连续减小状态,这势必就会导致空调从制热模式频繁进入除霜模式的时间,从而导致有效的制热时长变短。
此外,值得说明的,当上述温差判断条件时,说明此时由于电子膨胀阀的连续关闭,已经导致了在短时间内,外盘管的温度下降的速度较快,如果继续保持原有预设的压缩机目标排气温度对电子膨胀阀进行调节的方式,只会使得电子膨胀阀的继续关小,进而会使得外盘管的温度的下降速度进一步变快,从而会使得空调外机需要频繁地进行出霜。
步骤102、增加电子膨胀阀的开度。
值得说明的,当第一温度与第二温度的差值是否大于或等于预设第一温度阈值时,可以停止原有预设的压缩机目标排气温度对电子膨胀阀进行调节的方式,而是增加电子膨胀阀的开度,其增加的开度可以根据空调的具体参数进行确定,可以是固定的预设开度步数,例如可以为100步。从而使得外盘管中的冷媒循环量变大,进而使得外盘管的中冷媒吸热的速度变慢。
步骤103、判断在第一预设时长内,外盘管的第三温度与第一温度之间的第二温差是否小于预设第二温度阈值。
在增加电子膨胀阀的开度后,空调继续运行第一预设时长,继续通过温度传感器获取外盘管的第三温度T pw3,并且,计算第一温度与第三温度的差值是否大于或等于预设第二温度阈值,第一温度阈值大于第二温度阈值,其中,预设第二温度阈值可以示例性地选取为1摄氏度,而第一预设时长则可以示例性地选取为5分钟。则空调实时判断是否满足下述条件:
T pw1-T pw3≥1℃
若满足上述温差条件(如图1所示,判定为Y),则执行步骤104,若不满足上述温差条件(如图1所示,判定为N),则执行步骤105。
值得说明的,当满足上述温差条件时,则说明在第一预设时长,由于之 前增加电子膨胀阀的开度的方式,使得冷媒循环量变大,进而使得外盘管的温度有所上升,已经减缓的结霜的速度,此时,则可以跳出而外增加电子膨胀阀的开度的控制程序,继续采用原有预设的压缩机目标排气温度对电子膨胀阀进行调节的方式。
但是,当超过第一预设时长,通过增加电子膨胀阀的开度的方式,仍然无法使得外盘管的温度有所上升,无法减缓的结霜的速度,则可以进入除霜模式。值得说明的,除霜模式为目前各类空调中均设置有的模式,对于其具体的工作过程以及方式,在本实施例中不再进行赘述。
步骤104、根据预设的外盘管温度对电子膨胀阀进行调节。
步骤105、进入除霜模式。
在本实施例中,通过在外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值时,增加电子膨胀阀的开度,以使冷媒循环量变大,从而延缓空调外机结霜的速度,有效地延长了制热时间,并且,在电子膨胀阀的开度增加后的第一预设时长内,通过确定外盘管是否回温的方式确定是否跳出电子膨胀阀的开度增加的控制以进入根据预设的压缩机目标排气温度对所述电子膨胀阀进行调节的方式,或者直接进入除霜模式,从而在保证了空调整体制热效果的前提下,减少了空调进入除霜模式的频次,提高了单个除霜周期内平均制热的能力。
图2是本发明根据另一示例性实施例示出的空调制热控制方法流程示意图。如图2所示,本实施例提供的空调制热控制方法,包括:
步骤201、确定空调当前的工作状态为制热状态。
其中,在进行本实施例提供的空调制热控制方法之前,需要先确定空调当前的工作状态为制热状态。
步骤202、获取所述外盘管初始的第一温度以及外盘管当前的第二温度。
具体的,在空调中可以通过在空调外机的外盘管处设置温度传感器来实时获取外盘管的温度。其中,外盘管初始的第一温度可以是空调刚开始进入工作状态时所测量的温度,也可以是空调在运行预设时长,例如,第二预设时长之后所测量的外盘管温度。值得说明的,第二预设时长可以根据空调的具体性能进行确定,可以选取空调从启动到进入稳定工作时所需要的耗时作为第二预设时长。
在一种可能的设计中,上述的预设第二时长可以示例性的选取为3分钟。
步骤203、确定外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值。
步骤204、增加电子膨胀阀的开度。
步骤205、判断在第一预设时长内,外盘管的第三温度与第一温度之间的第二温差是否小于预设第二温度阈值。
步骤206、若判定为是(Y),根据预设的外盘管温度对电子膨胀阀进行调节。
步骤207、若判定为否(N),进入除霜模式。
值得说明的,本实施例中步骤203-207的具体实现方式参照图1所示实施例中步骤101-105的描述,这里不再赘述。
图3是本发明根据一示例性实施例示出的空调制热控制装置结构示意图。如图3所示,本实施例提供的空调制热控制装置300,包括:
处理模块301,用于确定外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值;
控制模块302,用于增加电子膨胀阀的开度,以使冷媒循环量变大;
所述处理模块301,还用于判断在第一预设时长内,所述外盘管的第三温度与所述第一温度之间的第二温差是否小于预设第二温度阈值,所述第一温度阈值大于所述第二温度阈值;
所述控制模块302,还用于根据预设的压缩机目标排气温度对所述电子膨胀阀进行调节,或者,控制所述空调进入除霜模式。
在一种可能的设计中,所述处理模块301,还用于确定空调当前的工作状态为制热状态。
在图3所示实施例的基础上,图4是本发明根据另一示例性实施例示出的空调制热控制装置结构示意图。如图4所示,本实施例提供的空调制热控制装置300,还包括:
获取模块303,用于获取所述外盘管初始的所述第一温度,其中,所述第一温度为空调运行第二预设时长之后,所述外盘管的排气温度。
在一种可能的设计中,所述预设第一温度阈值为3摄氏度,所述第二温度阈值为1摄氏度。
在一种可能的设计中,所述第一预设时长为5分钟,所述第二预设时长为3分钟。
值得说明的,图3-图4所示实施例中所提供的装置,可用于执行上述任一实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
以上处理模块301可以被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,简称ASIC),或,一个或多个微处理器(digital singnal processor,简称DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块还可以是集成在一起,以片上系统的形式实现。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
图5是本发明根据一示例性实施例示出的空调结构示意图。如图5所示,本实施例提供的空调400,包括:
处理器401、存储器402、电子膨胀阀403以及温度传感器404;
所述存储器402、所述电子膨胀阀403以及所述温度传感器404分别与所述处理器401连接;
存储器402,用于存储所述处理器401的可执行指令。该存储器还可以是flash(闪存);
其中,所述处理器401配置为经由执行所述可执行指令来执行上述方法中的各个步骤。具体可以参见前面方法实施例中的相关描述;
所述电子膨胀阀403用于调节冷媒循环量;
所述温度传感器404用于获取外盘管的排气温度。
可选地,存储器402既可以是独立的,也可以跟处理器401集成在一起。
当所述存储器402是独立于处理器401之外的器件时,所述空调400,还可以包括:
总线405,用于连接所述处理器401、所述存储器402、所述电子膨胀阀403以及所述温度传感器404。
本实施例还提供一种可读存储介质,可读存储介质中存储有计算机程 序,当空调的至少一个处理器执行该计算机程序时,空调执行上述的各种实施方式提供的方法。
本实施例还提供一种程序产品,该程序产品包括计算机程序,该计算机程序存储在可读存储介质中。电子设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得空调实施上述的各种实施方式提供的方法。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或对其中部分或全部技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种空调制热控制方法,包括:
    确定外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值;
    增加电子膨胀阀的开度,以使冷媒循环量变大;
    判断在第一预设时长内,所述外盘管的第三温度与所述第一温度之间的第二温差是否小于预设第二温度阈值,其中,所述第一温度阈值大于所述第二温度阈值;
    若判断结果为是,则根据预设的压缩机目标排气温度对所述电子膨胀阀进行调节,若判断结果为否,则进入除霜模式。
  2. 根据权利要求1所述的空调制热控制方法,其中,在所述确定外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值之前,还包括:
    确定空调当前的工作状态为制热状态。
  3. 根据权利要求1或2所述的空调制热控制方法,其中,在所述确定外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值之前,还包括:
    获取所述外盘管初始的所述第一温度,其中,所述第一温度为空调运行第二预设时长之后,所述外盘管的排气温度。
  4. 根据权利要求3所述的空调制热控制方法,其中,所述预设第一温度阈值为3摄氏度,所述第二温度阈值为1摄氏度。
  5. 根据权利要求4所述的空调制热控制方法,其中,所述第一预设时长为5分钟,所述第二预设时长为3分钟。
  6. 一种空调制热控制装置,包括:
    处理模块,用于确定外盘管初始的第一温度与外盘管当前的第二温度之间的第一温差大于或等于预设第一温度阈值;
    控制模块,用于增加电子膨胀阀的开度,以使冷媒循环量变大;
    所述处理模块,还用于判断在第一预设时长内,所述外盘管的第三温度与所述第一温度之间的第二温差是否小于预设第二温度阈值,所述第一温度阈值大于所述第二温度阈值;
    所述控制模块,还用于根据预设的压缩机目标排气温度对所述电子膨胀 阀进行调节,或者,控制所述空调进入除霜模式。
  7. 根据权利要求6所述的空调制热控制装置,其中,所述处理模块还用于确定空调当前的工作状态为制热状态。
  8. 根据权利要求6或7所述的空调制热控制装置,还包括:
    获取模块,用于获取所述外盘管初始的所述第一温度,其中,所述第一温度为空调运行第二预设时长之后,所述外盘管的排气温度。
  9. 一种空调,包括:
    处理器、存储器、电子膨胀阀以及温度传感器;
    所述存储器、所述电子膨胀阀以及所述温度传感器分别与所述处理器连接;
    存储器,用于存储所述处理器的可执行指令;
    其中,所述处理器配置为经由执行所述可执行指令来执行权利要求1至5中任一项所述的空调制热控制方法;
    所述电子膨胀阀用于调节冷媒循环量;
    所述温度传感器用于获取外盘管的排气温度。
  10. 一种存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现权利要求1至5中任一项所述的空调制热控制方法。
PCT/CN2020/109858 2019-08-23 2020-08-18 空调制热控制方法、装置、空调及存储介质 WO2021036872A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910782359.1 2019-08-23
CN201910782359.1A CN112413817A (zh) 2019-08-23 2019-08-23 空调制热控制方法、装置、空调及存储介质

Publications (1)

Publication Number Publication Date
WO2021036872A1 true WO2021036872A1 (zh) 2021-03-04

Family

ID=74683467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109858 WO2021036872A1 (zh) 2019-08-23 2020-08-18 空调制热控制方法、装置、空调及存储介质

Country Status (2)

Country Link
CN (1) CN112413817A (zh)
WO (1) WO2021036872A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124011A1 (zh) * 2021-12-27 2023-07-06 青岛海尔空调器有限总公司 用于控制电子膨胀阀的方法及装置、空调、存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113701305B (zh) * 2021-07-26 2022-11-15 宁波奥克斯电气股份有限公司 空调停机压差平衡控制方法、装置及空调器
CN114413454B (zh) * 2021-12-09 2023-04-14 珠海格力电器股份有限公司 基于模糊算法的空调制热抑霜控制方法、系统及空调器
CN115371208A (zh) * 2022-08-17 2022-11-22 宁波奥克斯电气股份有限公司 一种空调器及其化霜控制方法、装置和可读存储介质
CN115325661A (zh) * 2022-08-18 2022-11-11 宁波奥克斯电气股份有限公司 一种电加热带的控制方法、空调、计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287311A (ja) * 2002-03-27 2003-10-10 Sanyo Electric Co Ltd 空気調和装置および空気調和装置の制御方法
CN105650813A (zh) * 2016-01-11 2016-06-08 广东美的制冷设备有限公司 空调的化霜控制方法及装置
CN108444132A (zh) * 2018-02-14 2018-08-24 青岛海尔空调器有限总公司 空调器除霜控制方法
CN109323371A (zh) * 2018-10-16 2019-02-12 奥克斯空调股份有限公司 一种空气调节器制热模式下的控制方法及空气调节器
CN110094832A (zh) * 2019-05-16 2019-08-06 滁州星联电子有限公司 一种变频空调的工作除霜方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287311A (ja) * 2002-03-27 2003-10-10 Sanyo Electric Co Ltd 空気調和装置および空気調和装置の制御方法
CN105650813A (zh) * 2016-01-11 2016-06-08 广东美的制冷设备有限公司 空调的化霜控制方法及装置
CN108444132A (zh) * 2018-02-14 2018-08-24 青岛海尔空调器有限总公司 空调器除霜控制方法
CN109323371A (zh) * 2018-10-16 2019-02-12 奥克斯空调股份有限公司 一种空气调节器制热模式下的控制方法及空气调节器
CN110094832A (zh) * 2019-05-16 2019-08-06 滁州星联电子有限公司 一种变频空调的工作除霜方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124011A1 (zh) * 2021-12-27 2023-07-06 青岛海尔空调器有限总公司 用于控制电子膨胀阀的方法及装置、空调、存储介质

Also Published As

Publication number Publication date
CN112413817A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2021036872A1 (zh) 空调制热控制方法、装置、空调及存储介质
CN110579010B (zh) 一种多联机内机电子膨胀阀控制方法、控制装置及空调器
CN111023455B (zh) 除霜控制方法、除霜控制装置、空调器及可读存储介质
WO2019148972A1 (zh) 空调防凝露控制的方法、装置及计算机存储介质
WO2021120497A1 (zh) 空调器、空调器的制冷控制方法和存储介质
WO2022068968A1 (zh) 空调器的制热控制方法
WO2018149417A1 (zh) 空调机组及其运行控制方法、装置、存储介质和处理器
CN109631254A (zh) 空调器、空调器制热控制方法及计算机可读存储介质
CN108826585A (zh) 一种空调的控制方法、装置、存储介质及空调
WO2020107721A1 (zh) 热泵热水器控制方法及热泵热水器
WO2021042666A1 (zh) 空调器中间能力的控制方法、空调器和存储器
CN105042987A (zh) 一种冰箱变温室控制方法及装置
CN108758975B (zh) 空调系统的控制方法、系统及空调
CN112781286B (zh) 除霜控制方法及设备、风冷模块机组
CN108592297B (zh) 空调器除霜控制方法
CN113639406B (zh) 空调机组除霜方法、装置、空调机组、计算机设备和介质
CN113375274A (zh) 一种空调器控制方法及装置、空调器
CN108692425B (zh) 空调器除霜控制方法
WO2024045623A1 (zh) 用于空调防冻结的控制方法、装置、空调、存储介质
WO2023098833A1 (zh) 空调机组的控制方法、装置、电子设备和可读存储介质
CN108800451B (zh) 空调器除霜控制方法
CN114963632B (zh) 电子膨胀阀的控制方法、装置、设备及存储介质
CN113915723B (zh) 一种空调器室外机的控制方法和空调器
CN113834246B (zh) 旁通阀的控制方法、装置、控制器及制冷设备
CN108870689B (zh) 空调机组的压力控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858949

Country of ref document: EP

Kind code of ref document: A1