WO2022068968A1 - 空调器的制热控制方法 - Google Patents

空调器的制热控制方法 Download PDF

Info

Publication number
WO2022068968A1
WO2022068968A1 PCT/CN2021/129822 CN2021129822W WO2022068968A1 WO 2022068968 A1 WO2022068968 A1 WO 2022068968A1 CN 2021129822 W CN2021129822 W CN 2021129822W WO 2022068968 A1 WO2022068968 A1 WO 2022068968A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
outer coil
control method
air conditioner
heating control
Prior art date
Application number
PCT/CN2021/129822
Other languages
English (en)
French (fr)
Inventor
罗荣邦
崔俊
王明强
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022068968A1 publication Critical patent/WO2022068968A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the invention relates to the technical field of air conditioning, in particular to a heating control method of an air conditioner.
  • the opening of the electronic expansion valve is usually controlled based on the target discharge temperature of the compressor.
  • the actual discharge temperature of the compressor When the temperature is lower than the target exhaust temperature, the actual exhaust temperature is increased by controlling the opening of the electronic expansion valve; on the contrary, when the actual exhaust temperature of the compressor is greater than the target exhaust temperature, the opening degree of the electronic expansion valve is controlled to increase the opening to reduce the temperature. Actual exhaust temperature.
  • the above control method will have the following problems: when the air conditioner operates in the heating mode in a low temperature and high humidity environment, the evaporating temperature of the outdoor heat exchanger is low, and the temperature is lower than the dew point of the air. When the temperature is high, the surface of the outdoor heat exchanger will form frost. With the thickening of the frost layer, the heat exchange between the outdoor heat exchanger and the air is getting lower and lower, resulting in a decrease in the suction temperature and exhaust temperature of the compressor. , the indoor air temperature has also decreased.
  • the present application provides a system for making an air conditioner.
  • a thermal control method wherein the air conditioner includes a compressor, an indoor heat exchanger, an outdoor heat exchanger, and a throttle valve with a controllable opening,
  • the heating control method includes:
  • the opening degree of the throttle valve is adjusted according to the temperature range in which the temperature of the outer coil is located.
  • the step of "adjusting the opening degree of the throttle valve according to the temperature range in which the temperature of the outer coil is located" further includes:
  • the opening degree of the throttle valve is adjusted
  • the first temperature threshold, the second temperature threshold, the third temperature threshold and the condensation temperature decrease in sequence.
  • the step of "adjusting the opening degree of the throttle valve according to the comparison result" further includes:
  • the first valve opening speed is smaller than the second valve opening speed.
  • the fixed opening is determined based on an outdoor ambient temperature and an operating frequency of the compressor
  • the fixed opening is determined as follows:
  • the opening degree of the throttle valve is controlled according to the target discharge temperature of the compressor, and the fixed opening degree is the opening degree after the temperature of the outer coil is in the current temperature range and lasts for a first preset time period.
  • the heating control method further includes:
  • the throttle valve is controlled to stop opening.
  • the second temperature threshold and the third temperature threshold are determined based on the condensation temperature.
  • the heating control method further includes:
  • the opening degree of the throttle valve is controlled according to the target discharge temperature of the compressor.
  • the target exhaust gas temperature is determined based on an outdoor ambient temperature and an operating frequency of the compressor.
  • the heating control method further includes:
  • the air conditioner is controlled to operate a defrost mode.
  • the step of "determining the condensation temperature of the outdoor environment” further includes:
  • the condensation temperature is determined according to the outdoor ambient temperature.
  • the air conditioner includes a compressor, an indoor heat exchanger, an outdoor heat exchanger and a throttle valve with a controllable opening
  • the heating control method includes: determining the condensation of the outdoor environment. Dew temperature; obtain the outer coil temperature of the outdoor heat exchanger; compare the outer coil temperature with the first temperature threshold and condensation temperature; when the outer coil temperature is less than the first temperature threshold and greater than or equal to the condensation temperature, according to The temperature range in which the outer coil temperature is located adjusts the opening of the throttle valve.
  • the opening degree of the throttle valve is adjusted according to the temperature range where the temperature of the outer coil is located, so that the control method of the present application can delay the condensation of the outdoor heat exchanger.
  • Frost speed avoid under special outdoor environmental conditions, only control the opening of the throttle valve according to the target exhaust temperature, the more the throttle valve is closed, the smaller the throttle valve is, so as to ensure that the heating capacity curve of the air conditioner is stable and the decay is slow, improving the user experience. experience.
  • the throttle valve by controlling the throttle valve to be adjusted to a fixed opening when the temperature of the outer coil is less than the first temperature threshold and greater than or equal to the second temperature threshold, it is possible to avoid excessive throttling of the refrigerant caused by further closing the throttle valve, thereby delaying Frosting speed; when the temperature of the outer coil is less than the second temperature threshold and greater than or equal to the third temperature threshold, by controlling the throttle valve to continue to open the valve at the first valve opening speed, the opening degree of the throttle valve can be continuously increased, so that the The refrigerant circulation volume and the temperature in the outdoor heat exchanger are increased at a faster speed, and the frost formation is delayed; when the temperature of the outer coil is less than the third temperature threshold and greater than or equal to the condensation temperature, the throttle valve is controlled to continue at the second valve opening speed Opening the valve can quickly increase the opening of the throttle valve, thereby rapidly increasing the amount of refrigerant circulation and the temperature in the outdoor heat exchanger, and delaying frost formation.
  • control The throttle valve stops opening.
  • the control method of the present application can stop the opening of the valve when the temperature difference is less than the preset temperature difference threshold, and reduce the fluctuation of the indoor air outlet temperature from the perspective of user experience. , to ensure user experience.
  • Fig. 1 is the flow chart of the heating control method of the air conditioner of the present invention
  • FIG. 2 is a logic diagram of a possible embodiment of the heating control method of the air conditioner of the present invention.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of two components.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of two components.
  • the air conditioner of the present application includes a compressor, an indoor heat exchanger, an outdoor heat exchanger, and a throttle valve with a controllable opening.
  • the compressor, the outdoor heat exchanger, the throttle valve and the indoor heat exchanger are sequentially connected by pipelines, Constitute a complete refrigerant circulation loop.
  • the throttle valve is preferably an electronic expansion valve.
  • those skilled in the art can also select other valve bodies with a throttle function and a controllable opening degree, such as a solenoid valve.
  • the air conditioner may further include a four-way valve, and the four ports of the four-way valve are respectively connected to the air inlet, the exhaust port, the indoor heat exchanger and the outdoor heat exchange of the compressor through pipelines. The connection of the appliance to realize the switching between cooling and heating.
  • the air conditioner of the present application further includes the following components:
  • the outdoor temperature sensor is arranged in the outdoor unit, such as on the casing of the outdoor unit, or fixed at the air inlet of the outdoor unit, and is used to collect the outdoor ambient temperature.
  • the outer coil temperature sensor is arranged on the coil of the outdoor heat exchanger and is used to collect the temperature of the outer coil of the outdoor heat exchanger.
  • the specific installation position of the outer coil temperature sensor is not limited in this embodiment, as long as the outdoor The position of the outer coil temperature of the heat exchanger is acceptable.
  • the inner coil temperature sensor is arranged on the coil of the indoor heat exchanger and is used to collect the temperature of the inner coil of the indoor heat exchanger.
  • the specific installation position of the inner coil temperature sensor is not limited in this embodiment, as long as the indoor The position of the inner coil temperature of the heat exchanger is acceptable.
  • the exhaust gas temperature sensor which is arranged at the exhaust port of the compressor, such as the exhaust pipe of the compressor, is used to collect the actual exhaust temperature of the compressor.
  • the air conditioner is also equipped with a control unit, which is connected to the compressor, the electronic expansion valve, the four-way valve, and the above-mentioned sensors, and the control unit is configured to obtain the operation data of the air conditioner (such as the frequency of the compressor, the electronic expansion valve opening, etc.) and the data collected by each sensor, and perform data processing based on the data collected by each sensor, and control the operation of the air conditioner based on the data processing results, such as controlling the opening of the electronic expansion valve, the reversal of the four-way valve and Compressor operating frequency and start and stop, etc.
  • the control unit is configured to obtain the operation data of the air conditioner (such as the frequency of the compressor, the electronic expansion valve opening, etc.) and the data collected by each sensor, and perform data processing based on the data collected by each sensor, and control the operation of the air conditioner based on the data processing results, such as controlling the opening of the electronic expansion valve, the reversal of the four-way valve and Compressor operating frequency and start and stop, etc.
  • control unit may physically be the original control chip of the air conditioner, or may be a controller specially added to the air conditioner for performing the method of the present application, or may be a function of a general-purpose controller. module or functional unit.
  • control unit of the air conditioner also includes some other well-known structures, such as processors, memories, etc., wherein the memories include but are not limited to random access memory, flash memory, read-only memory, programmable read-only memory, Volatile memory, non-volatile memory, serial memory, parallel memory or registers, etc., processors include but are not limited to CPLD/FPGA, DSP, ARM processor, MIPS processor, etc. These well-known structures are not shown in the drawings in order to unnecessarily obscure the embodiments of the present disclosure.
  • FIG. 1 is a flowchart of the heating control method of the air conditioner of the present invention.
  • the heating control method of the air conditioner of the present application includes:
  • S101 Determine the condensation temperature of the outdoor environment; for example, determine the condensation temperature of the current outdoor environment according to the outdoor ambient temperature and/or humidity.
  • the temperature of the outer coil is lower than the condensation temperature, the frosting of the room heat exchanger is relatively serious. Requires defrosting.
  • the opening degree of the electronic expansion valve needs to be closed. After the opening of the electronic expansion valve is reduced, the frosting speed of the outdoor heat exchanger is accelerated, which accelerates the speed of the air conditioner entering the defrosting mode, and also causes the indoor air temperature to fluctuate.
  • the opening degree of the electronic expansion valve is adjusted according to the temperature range where the temperature of the outer coil is located, such as stopping the valve closing or increasing the opening of the electronic expansion valve.
  • the opening degree, etc. can delay the frost formation speed of the outdoor heat exchanger, and avoid the throttle valve that is closed and smaller due to only controlling the opening degree of the throttle valve according to the target exhaust temperature under the outdoor environmental conditions of low temperature and high humidity.
  • the heating capacity curve of the air conditioner is stable and decays slowly, so as to improve the user experience.
  • step S101 further includes:
  • condensation temperature is determined by the following formula (1):
  • Tes is the condensation temperature
  • Tao is the outdoor ambient temperature
  • C and ⁇ are constants.
  • 6
  • step S107 further includes:
  • the electronic expansion valve when the temperature of the outer coil is less than the first temperature threshold and greater than or equal to the second temperature threshold, the electronic expansion valve is controlled to adjust to a fixed opening; when the temperature of the outer coil is less than the second temperature threshold and greater than or equal to the third temperature threshold, the control The electronic expansion valve continues to open the valve at the first valve opening speed; when the temperature of the outer coil is less than the third temperature threshold and greater than or equal to the condensation temperature, the electronic expansion valve is controlled to continue to open the valve at the second valve opening speed; wherein, the first valve opening When the speed is lower than the second valve opening speed, the first temperature threshold, the second temperature threshold, the third temperature threshold and the condensation temperature decrease sequentially.
  • the first temperature threshold may preferably be 0°C
  • the second temperature threshold and the third temperature threshold are determined based on the condensation temperature.
  • the specific determination method is as follows:
  • the fixed opening is determined based on the following formula (2):
  • P is the opening of the electronic expansion valve
  • Int() is the rounding operation
  • f is the operating frequency of the compressor
  • ap and bp are the coefficients
  • cp is the correction of the opening of the electronic expansion valve by the outdoor ambient temperature coefficient.
  • the specific values of ap, bp and cp may be determined based on experiments or empirically. When determined based on experiments, the compressor can be controlled to operate at different operating frequencies for heating under different outdoor ambient temperatures. At this time, by adjusting the opening of the electronic expansion valve, the frosting degree of the outdoor heat exchanger can be minimized. Thereby, the corresponding relationship between the operating frequency of the compressor, the outdoor ambient temperature and the opening degree of the electronic expansion valve is obtained, and then the solution is solved based on the corresponding relationship to obtain the specific values of ap, bp and cp.
  • the electronic expansion valve is controlled to continue to open at the first valve opening speed, so as to further slow down the frosting speed of the outdoor heat exchanger.
  • the first valve opening speed may be 1B/10s, that is, the opening degree of 1B is opened every 10s.
  • the second valve opening speed may be 1B/5s, that is, the opening degree of 1B is opened every 5s.
  • first valve opening speed and the second valve opening speed are not unique, and those skilled in the art can adjust them based on specific application scenarios, as long as the second valve opening speed satisfies the condition that is greater than the first development speed. Can.
  • the electronic expansion valve By controlling the electronic expansion valve to adjust to a fixed opening degree when the temperature of the outer coil is less than the first temperature threshold and greater than or equal to the second temperature threshold, it is possible to avoid excessive throttling of the refrigerant caused by the further closing of the electronic expansion valve, thereby delaying the rate of frost formation ;
  • the electronic expansion valve By controlling the electronic expansion valve to continue to open at the first valve opening speed when the temperature of the outer coil is less than the second temperature threshold and greater than or equal to the third temperature threshold, the opening of the electronic expansion valve can be continuously increased, so that the valve can be opened at a faster rate.
  • the speed increases the refrigerant circulation volume and the temperature in the outdoor heat exchanger, and delays frost formation; when the temperature of the outer coil is less than the third temperature threshold and greater than or equal to the condensation temperature, the electronic expansion valve is controlled to continue to open at the second valve opening speed. , the opening of the electronic expansion valve can be rapidly increased, thereby rapidly increasing the circulation amount of refrigerant and the temperature in the outdoor heat exchanger, and delaying frost formation.
  • the heating control method may further include:
  • the electronic expansion valve opens at a valve opening speed of 1B/10s
  • the difference between the two is obtained.
  • the effect is weakened, and the temperature of the outlet air in the room decreases, causing the temperature of the outlet air to fluctuate.
  • the electronic expansion valve is controlled to stop opening the valve to slow down the fluctuation of the outlet air temperature.
  • the control method of the present application can also start from the level of user experience, stop opening the valve when the temperature difference is less than the preset temperature difference threshold, reduce the fluctuation of indoor air outlet temperature, and ensure that users experience.
  • the heating control method of the present application further includes:
  • the opening degree of the electronic expansion valve is controlled according to the target discharge temperature of the compressor.
  • the opening of the electronic expansion valve is controlled according to the target exhaust gas temperature to Use the maximum heating capacity of the system.
  • the target exhaust gas temperature is determined based on the outdoor ambient temperature and the operating frequency of the compressor.
  • the target exhaust gas temperature is determined based on the following equation (3):
  • Tt is the target exhaust gas temperature
  • Int() is the rounding operation
  • f is the operating power of the compressor
  • Tao is the outdoor ambient temperature
  • a, b, and c are constants.
  • the determination methods of a, b, and c may be determined based on an experimental method, or may be determined based on experience, which will not be repeated here.
  • the opening degree of the electronic expansion valve is controlled based on the target exhaust gas temperature. Exhaust temperature; on the contrary, when the actual exhaust temperature of the compressor is greater than the target exhaust temperature, the actual exhaust temperature is reduced by controlling the electronic expansion valve to increase the opening degree.
  • the heating control method of the present application further includes:
  • the air conditioner is controlled to operate the defrost mode.
  • the second preset time period can be 2min.
  • the defrosting mode can be refrigeration defrosting (reversing the four-way valve, operating the refrigeration mode, and reverse circulation of the refrigerant) or bypass defrosting (extracting the circuit from the high-pressure end of the compressor to the outdoor heat exchanger).
  • the operating principle of the frost mode is relatively conventional in the art, and will not be repeated here.
  • the second preset duration is not limited to the above-mentioned 2 minutes, and those skilled in the art can adjust it, so that the adjusted solution is suitable for more specific application scenarios.
  • the second preset duration may also be 1 min, 3 min, 5 min, or the like.
  • the above-mentioned method for determining the condensation temperature is not static.
  • the condensation temperature of the outdoor environment can be reasonably determined, those skilled in the art can determine the above-mentioned method for determining the condensation temperature. Adjustments are made that do not deviate from the principles of the present application.
  • the condensation temperature can also be determined by using the outdoor ambient temperature and the outdoor ambient humidity, for example, by determining the corresponding relationship table between the outdoor ambient temperature, the outdoor ambient humidity and the condensation temperature, or based on the experience of the three Formula or fitting formula is determined, etc.
  • the specific values of the first temperature threshold, the second temperature threshold and the third temperature threshold are not limited to this, and those skilled in the art can perform the above thresholds based on specific application scenarios. Adjusted so that this application can be applied to more specific application scenarios.
  • the first temperature threshold can be appropriately increased or decreased, and the second temperature threshold and the third temperature threshold can be determined according to the comparison relationship with the condensation temperature.
  • the method for determining the fixed opening is not unique.
  • the fixed opening can also be determined in the following ways:
  • the opening of the electronic expansion valve is controlled according to the target discharge temperature of the compressor, and the fixed opening is determined as the temperature of the outer coil is in the current temperature range and continues for the first time.
  • the above implementation is described by determining the target exhaust gas temperature based on the outdoor ambient temperature and the operating frequency of the compressor, but this determination is only a more preferred implementation.
  • those skilled in the art can replace the above-mentioned embodiment, as long as the replaced embodiment can roughly determine a reasonable target exhaust gas temperature.
  • the target exhaust gas temperature may also be determined based on the corresponding relationship between the operating frequency of the compressor and the target exhaust gas temperature, or based on the corresponding relationship table between the target exhaust gas temperature and the outdoor ambient temperature and the frequency of the compressor.
  • the division of the temperature interval is not limited to this.
  • those skilled in the art can select a specific division method based on specific application scenarios. For example, only the second temperature threshold can be used to divide the temperature range, or other temperature thresholds can be further added to divide the temperature range in more detail. Wait.
  • FIG. 2 is a logic diagram of a possible embodiment of the heating control method of the air conditioner of the present invention.
  • the complete flow of the heating control method of the air conditioner may be:
  • step S307 further determine whether T2 ⁇ Te ⁇ T1 is established? If so, go to step S309; otherwise, go to step S311;
  • step S311 further determine whether T3 ⁇ Te ⁇ T2 is established? If so, execute step S313, otherwise, execute step S315;
  • step S313 control the electronic expansion valve to open the valve at a speed of 1B/10s, and then execute step S317;
  • step S315 control the electronic expansion valve to open the valve at a speed of 1B/5s, and then execute step S317;
  • the air conditioner operates in the defrosting mode.
  • step S101 and step S103 are not limited to the sequence listed above, and step S103 may be executed first, then step S101, or step S101 and step S103 may be executed simultaneously, which is not limited in this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及空气调节技术领域,具体涉及一种空调器的制热控制方法。本申请旨在解决空调器在低温高湿环境下制热运行时存在的结霜速度快、影响用户体验的问题。为此目的,本申请的制热控制方法包括:确定室外环境的凝露温度;获取室外换热器的外盘管温度;比较外盘管温度与第一温度阈值和凝露温度的大小;在外盘管温度小于第一温度阈值且大于或等于凝露温度时,根据外盘管温度所在的温度区间对节流阀的开度进行调节。本申请的控制方法能够延缓室外换热器的结霜速度,避免在特殊室外环境条件下,只根据目标排气温度控制节流阀的开度而导致的节流阀越关越小,确保制热能力曲线平稳、衰减慢,改善用户体验。

Description

空调器的制热控制方法 技术领域
本发明涉及空气调节技术领域,具体涉及一种空调器的制热控制方法。
背景技术
对于安装有电子膨胀阀的空调器来说,为了达到较佳的制冷/制热效果,通常都会基于压缩机的目标排气温度来控制电子膨胀阀的开度,当压缩机的实际排气温度小于目标排气温度时,通过控制电子膨胀阀减小开度来提高实际排气温度;反之当压缩机的实际排气温度大于目标排气温度时,通过控制电子膨胀阀增大开度来降低实际排气温度。
但是,在空调器运行于低温高湿环境时,上述控制方式会出现如下问题:空调器在低温高湿环境运行制热模式时,室外换热器的蒸发温度较低,在低于空气的露点温度时室外换热器表面会结霜,随着霜层的加厚,室外换热器与空气之间的换热量越来越低,导致压缩机吸气温度和排气温度均有所降低,室内出风温度也有所降低。另一方面,在室外环境未发生明显变化时目标排气温度基本保持不变,因此为了尽快达到目标排气温度,电子膨胀阀的开度将逐渐减小,这将导致室外换热器结霜速度加快,如此恶性循环,导致电子膨胀阀越关越小,最终在结霜达到一定程度时空调器开始除霜,导致室内温度波动很大,影响用户体验。
相应地,本领域需要一种新的空调器的制热控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述至少一个问题,即为了解决空调器在低温高湿环境下制热运行时存在的结霜速度快、影响用户体验的问题,本申请提供了一种空调器的制热控制方法,所述空调器包括压缩机、室内换热器、室外换热器以及开度可控的节流阀,
所述制热控制方法包括:
确定室外环境的凝露温度;
获取所述室外换热器的外盘管温度;
比较所述外盘管温度与第一温度阈值和所述凝露温度的大小;
在所述外盘管温度小于所述第一温度阈值且大于或等于所述凝露温度时,根据所述外盘管温度所在的温度区间对所述节流阀的开度进行调节。
在上述空调器的制热控制方法的优选技术方案中,“根据所述外盘管温度所在的温度区间对所述节流阀的开度进行调节”的步骤进一步包括:
比较所述外盘管温度与第二温度阈值和第三温度阈值的大小;
根据比较结果,对所述节流阀的开度进行调节;
其中所述第一温度阈值、所述第二温度阈值、所述第三温度阈值和所述凝露温度依次减小。
在上述空调器的制热控制方法的优选技术方案中,“根据比较结果,对所述节流阀的开度进行调节”的步骤进一步包括:
在所述外盘管温度小于所述第一温度阈值且大于等于所述第二温度阈值时,控制所述节流阀调节至固定开度;
在所述外盘管温度小于所述第二温度阈值且大于等于所述第三温度阈值时,控制所述节流阀以第一开阀速度持续开阀;
在所述外盘管温度小于第三温度阈值且大于等于所述凝露温度时,控制所述节流阀以第二开阀速度持续开阀;
其中,所述第一开阀速度小于所述第二开阀速度。
在上述空调器的制热控制方法的优选技术方案中,所述固定开度基于室外环境温度和所述压缩机的运行频率确定;或者
所述固定开度通过如下方式确定:
在所述外盘管温度小于所述第一温度阈值且大于等于所述第二温度阈值时,根据所述压缩机的目标排气温度控制所述节流阀的开 度,所述固定开度为所述外盘管温度处于当前温度区间并持续第一预设时长后的开度。
在上述空调器的制热控制方法的优选技术方案中,在所述节流阀持续开阀的过程中,所述制热控制方法还包括:
获取所述压缩机的实际排气温度和所述室内换热器的内盘管温度;
计算所述实际排气温度与所述内盘管温度的差值;
判断所述差值是否小于预设温差阈值;
在所述差值小于所述温差阈值时,控制所述节流阀停止开阀。
在上述空调器的制热控制方法的优选技术方案中,所述第二温度阈值和所述第三温度阈值基于所述凝露温度确定。
在上述空调器的制热控制方法的优选技术方案中,所述制热控制方法还包括:
在所述外盘管温度大于等于所述第一温度阈值时,根据所述压缩机的目标排气温度控制所述节流阀的开度。
在上述空调器的制热控制方法的优选技术方案中,所述目标排气温度基于室外环境温度和所述压缩机的运行频率确定。
在上述空调器的制热控制方法的优选技术方案中,所述制热控制方法还包括:
在所述外盘管温度小于所述凝露温度且持续第二预设时长时,控制所述空调器运行化霜模式。
在上述空调器的制热控制方法的优选技术方案中,“确定所述室外环境的凝露温度”的步骤进一步包括:
获取室外环境温度;
根据所述室外环境温度,确定所述凝露温度。
需要说明的是,在本申请的优选技术方案中,空调器包括压缩机、室内换热器、室外换热器以及开度可控的节流阀,制热控制方法包括:确定室外环境的凝露温度;获取室外换热器的外盘管温度;比较外盘管温度与第一温度阈值和凝露温度的大小;在外盘管温度小于第一温度阈值且大于或等于凝露温度时,根据外盘管温度所在的温度区间对节流阀的开度进行调节。
通过在外盘管温度处于第一温度阈值与凝露温度之间时,根据外盘管温度所在的温度区间对节流阀的开度进行调节,本申请的控制方法能够延缓室外换热器的结霜速度,避免在特殊室外环境条件下,只根据目标排气温度控制节流阀的开度而导致的节流阀越关越小,确保空调器的制热能力曲线平稳、衰减慢,改善用户体验。
进一步地,通过在外盘管温度小于第一温度阈值且大于等于第二温度阈值时,控制节流阀调节至固定开度,可以避免节流阀进一步关小而导致的冷媒过度节流,从而延缓结霜速度;通过在外盘管温度小于第二温度阈值且大于等于第三温度阈值时,控制节流阀以第一开阀速度持续开阀,可以使节流阀的开度持续变大,从而以较快的速度提高冷媒循环量和室外换热器内的温度,延缓结霜;通过在外盘管温度小于第三温度阈值且大于等于凝露温度时,控制节流阀以第二开阀速度持续开阀,可以使节流阀的开度迅速变大,从而快速提高冷媒循环量和室外换热器内的温度,延缓结霜。
进一步地,通过在节流阀持续开阀的过程中,判断压缩机的实际排气温度与内盘管温度的差值与预设温差阈值的大小,并且在差值小于预设温差阈值时控制节流阀停止开阀,本申请的控制方法在延缓结霜速度的基础上,还能够从用户体验的层面出发,在温差小于预设温差阈值时停止开阀,减小室内出风温度的波动,保证用户体验。
附图说明
下面参照附图来描述本申请的空调器的制热控制方法。附图中:
图1为本发明的空调器的制热控制方法的流程图;
图2为本发明的空调器的制热控制方法的一种可能的实施方式的逻辑图。
具体实施方式
下面参照附图来描述本申请的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本申请的技术原理,并非旨在限制本申请的保护范围。下述实施例中虽然将各个步骤按照先后次 序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,这些简单的变化都在本申请的保护范围之内。
需要说明的是,在本申请的描述中,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本申请的描述中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本申请中的具体含义。
首先对本申请的空调器进行简单介绍。本申请的空调器包括压缩机、室内换热器、室外换热器以及开度可控的节流阀,压缩机、室外换热器、节流阀和室内换热器依次通过管路连接,构成完整的冷媒循环回路。其中,节流阀优选地采用电子膨胀阀,当然,本领域技术人员还可以选用其他具有节流功能且开度可控的阀体,如电磁阀等。另外,在一些可能的实施方式中,空调器还可以包括四通阀,四通阀的四个接口通过管路分别与压缩机的进气口、排气口、室内换热器和室外换热器的连接,以实现制冷与制热的切换。
为了实现下述制热控制方法,本申请的空调器还包括如下部件:
室外温度传感器,其设置在室外机中,如设置在室外机的机壳上,或者固定在室外机的进风口处,用来采集室外环境温度。
外盘管温度传感器,其设置在室外换热器的盘管上,用来采集室外换热器的外盘管温度,外盘管温度传感器的具体设置位置本实施方式不作限制,只要能获取室外换热器的外盘管温度的位置均可。
内盘管温度传感器,其设置在室内换热器的盘管上,用来采集室内换热器的内盘管温度,内盘管温度传感器的具体设置位置本实施方式不作限制,只要能获取室内换热器的内盘管温度的位置均可。
排气温度传感器,其设置在压缩机的排气口处,如压缩机的排气管上,用于采集压缩机的实际排气温度。
当然,空调器还配置有控制单元,该控制单元与压缩机、电子膨胀阀、四通阀以及上述各传感器连接,控制单元配置成能够获取空调器运行数据(如压缩机的频率、电子膨胀阀的开度等)和各传感器采集的数据,并基于各传感器采集的数据进行数据处理,以及基于数据处理结果控制空调器的运行,如控制电子膨胀阀的开度、四通阀的换向和压缩机的运行频率和启停等。
需要说明的是,上述控制单元物理上可以是空调器原有的控制芯片,也可以是为了用于执行本申请方法而专门在空调器中增设的控制器,还可以是通用控制器的一个功能模块或功能单元。
本领域技术人员可以理解,上述空调器的控制单元还包括一些其他公知结构,例如处理器、存储器等,其中,存储器包括但不限于随机存储器、闪存、只读存储器、可编程只读存储器、易失性存储器、非易失性存储器、串行存储器、并行存储器或寄存器等,处理器包括但不限于CPLD/FPGA、DSP、ARM处理器、MIPS处理器等。为了不必要地模糊本公开的实施例,这些公知的结构未在附图中示出。
接下来参照图1并以电子膨胀阀为例,对本申请的空调器的制热控制方法进行描述。其中,图1为本发明的空调器的制热控制方法的流程图。
如图1所示,为了解决空调器在低温高湿环境下制热运行时存在的结霜速度快、影响用户体验的问题,本申的空调器的制热控制方法包括:
S101、确定室外环境的凝露温度;例如,根据室外环境温度和/或湿度确定当前室外环境的凝露温度,当外盘管温度小于凝露温度时,室换热器的结霜相对严重,需要进行化霜处理。
S103、获取室外换热器的外盘管温度;例如,获取外盘管温度传感器采集的室外换热器的外盘管温度。
S105、比较外盘管温度与第一温度阈值和凝露温度的大小;例如,通过差值或比值等比较外盘管温度与第一温度阈值和凝露温度的 大小;其中,第一温度阈值大于凝露温度,当外盘管温度小于第一温度阈值时,室外换热器容易结霜。
S107、在外盘管温度小于第一温度阈值且大于或等于凝露温度时,根据外盘管温度所在的温度区间对电子膨胀阀的开度进行调节;例如,在外盘管温度小于第一温度阈值且大于等于凝露温度时,证明室外换热器容易结霜,但还未达到化霜的程度,此时根据外盘管温度所在的温度区间对电子膨胀阀的开度进行调节,比如控制电子膨胀阀停止关阀或增加开度等。
通常,以目标排气温度对电子膨胀阀进行控制时,室外换热器一旦结霜,则压缩机的吸气温度和排气温度均有所降低,此时为使压塑机的实际排气温度尽快达到目标排气温度,需要将电子膨胀阀的开度关小。电子膨胀阀开度减小后,室外换热器结霜速度加快,加快了空调器进入化霜模式的速度,也导致室内出风温度出现波动。而本申请通过在外盘管温度处于第一温度阈值与凝露温度之间时,根据外盘管温度所在的温度区间对电子膨胀阀的开度进行调节,如停止关阀或增加电子膨胀阀的开度等,能够延缓室外换热器的结霜速度,避免在低温高湿的室外环境条件下,只根据目标排气温度控制节流阀的开度而导致的节流阀越关越小的情况出现,确保空调器的制热能力曲线平稳、衰减慢,改善用户体验。
下面对本申请的较为优选的实施方式进行描述。
在一种较为优选的实施方式中,步骤S101进一步包括:
获取室外环境温度;根据室外环境温度,确定凝露温度。
举例而言,通过如下公式(1)来确定凝露温度:
Tes=C×Tao-α     (1)
公式(1)中,Tes为凝露温度;Tao为室外环境温度;C和α为常数。其中,常数C和α可以基于试验或者经验值进行确定。在一种可能的实施方式中,申请人通过试验的方式确定出:α=6,常数C的取值基于室外环境温度Tao确定,当Tao<0℃时,C=0.8,当Tao≥0℃时,C=0.6。当按照上述试验确定出的C和α进行计算时,能够较好的反映出室外换热器的凝露程度,为空调器的化霜模式的运行提供准确的判断依据。
在一种较为优选的实施方式中,步骤S107进一步包括:
比较外盘管温度与第二温度阈值和第三温度阈值的大小;根据比较结果,对电子膨胀阀的开度进行调节。
具体地,在外盘管温度小于第一温度阈值且大于等于第二温度阈值时,控制电子膨胀阀调节至固定开度;在外盘管温度小于第二温度阈值且大于等于第三温度阈值时,控制电子膨胀阀以第一开阀速度持续开阀;在外盘管温度小于第三温度阈值且大于等于凝露温度时,控制电子膨胀阀以第二开阀速度持续开阀;其中,第一开阀速度小于第二开阀速度,第一温度阈值、第二温度阈值、第三温度阈值和凝露温度依次减小。
作为一种较佳的实施方式,第一温度阈值优选地可以取0℃,第二温度阈值和第三温度阈值基于凝露温度确定。具体确定方式如下:
在计算出凝露温度后,计算凝露温度与第一温度阈值的差值,然后令第二温度阈值等于该差值的三分之一,令第三温度阈值等于第二温度阈值的二倍,即:T1=0℃,T2=(Tes-T1)/3,T3=2×T2。
举例而言,如果室外环境温度为5℃,则根据公式(1)可得Tes=0.6×5-6=-3℃,此时,T1=0℃,T2=(-3-0)/3=-1℃,T3=2×(-1)=-2℃。
再如,如果室外环境温度为-3℃,则根据公式(1)可得Tes=0.6×(-5)-6=-9℃,此时,T1=0℃,T2=(-9-0)/3=-3℃,T3=2×(-3)=-6℃。
当确定出T1、T2、T3和Tes后,将获取的外盘管温度Te分别与T1、T2、T3和Tes比较,确定外盘管温度的所处的温度区间。
i)当在外盘管温度小于第一温度阈值且大于等于第二温度阈值时,控制电子膨胀阀调节至固定开度。以Tes=-3℃,T1=0℃,T2=-1℃,T3=-2℃为例,如果外盘管温度-1≤Te<0,证明此时室外换热器的外盘管温度小于0℃,室外换热器开始结霜,如果仍按照目标排气温度控制电子膨胀阀的开度,会导致结霜速度加快。此时则控制电子膨胀阀调节至固定开度,以减缓室外换热器的结霜速度。
作为一种优选的实施方式,固定开度基于如下公式(2)确定:
P=Int(ap×f+bp+cp)     (2)
公式(2)中,P为电子膨胀阀的开度,Int()为取整运算;f为压缩机的运行频率;ap、bp为系数,cp为室外环境温度对电子膨胀阀开度的修正系数。其中,ap、bp和cp的具体数值可以基于试验确定,也可以基于经验确定。当基于试验进行确定时,可以通过控制压缩机在不同的室外环境温度下以不同的运行频率制热运行,此时通过调整电子膨胀阀的开度,使得室外换热器的结霜程度最低,从而得到压缩机的运行频率、室外环境温度与电子膨胀阀的开度之间的对应关系,然后基于对应关系进行求解,得到ap、bp和cp的具体数值。
ii)当外盘管温度小于第二温度阈值且大于等于第三温度阈值时,控制电子膨胀阀以第一开阀速度持续开阀。仍以Tes=-3℃,T1=0℃,T2=-1℃,T3=-2℃为例,如果外盘管温度-2≤Te<-1,证明此时室外换热器的外盘管温度小于0℃并进一步降低,室外换热器的结霜程度升高,此时需进一步采取措施来抑制室外换热器的结霜速度。此时控制电子膨胀阀以第一开阀速度持续开阀,以进一步减缓室外换热器的结霜速度。举例而言,第一开阀速度可以为1B/10s,即每10s打开1B的开度。
iii)当外盘管温度小于第三温度阈值且大于等于凝露温度时,控制电子膨胀阀以第二开阀速度持续开阀。仍以Tes=-3℃,T1=0℃,T2=-1℃,T3=-2℃为例,如果外盘管温度-3≤Te<-2,证明此时室外换热器的外盘管温度急剧降低,室外换热器的结霜严重,此时需更进一步地采取措施来抑制室外换热器的结霜速度。此时控制电子膨胀阀以第二开阀速度持续开阀,以迅速减缓室外换热器的结霜速度。举例而言,第二开阀速度可以为1B/5s,即每5s打开1B的开度。
当然,上述第一开阀速度和第二开阀速度的具体数值并非唯一,本领域技术人员可以基于具体应用场景对其进行调整,只要该第二开阀速度满足大于第一开发速度的条件即可。
通过在外盘管温度小于第一温度阈值且大于等于第二温度阈值时,控制电子膨胀阀调节至固定开度,可以避免电子膨胀阀进一步关小而导致的冷媒过度节流,从而延缓结霜速度;通过在外盘管温度小于第二温度阈值且大于等于第三温度阈值时,控制电子膨胀阀以第一开阀速度持续开阀,可以使电子膨胀阀的开度持续变大,从而以较快的速 度提高冷媒循环量和室外换热器内的温度,延缓结霜;通过在外盘管温度小于第三温度阈值且大于等于凝露温度时,控制电子膨胀阀以第二开阀速度持续开阀,可以使电子膨胀阀的开度迅速变大,从而快速提高冷媒循环量和室外换热器内的温度,延缓结霜。
在一种较为优选的实施方式中,当电子膨胀阀以第一开阀速度或第二开阀速度持续开阀的过程中,制热控制方法还可以包括:
获取压缩机的实际排气温度和室内换热器的内盘管温度;计算实际排气温度与内盘管温度的差值;判断差值是否小于预设温差阈值;在差值小于温差阈值时,控制电子膨胀阀停止开阀。
举例而言,在电子膨胀阀以1B/10s的开阀速度进行开阀时,获取到压缩机的实际排气温度Td=55℃,内盘管温度Tp=46℃,此时二者的差值△T=Td-Tp=9℃,由于电子膨胀阀开阀过程中,压缩机的实际排气温度会降低,且冷媒的流动速度加快,这将导致室内换热器与室内空气的换热效果减弱,室内的出风温度降低,导致出风温度波动,此时通过控制电子膨胀阀停止开阀,以减缓出风温度的波动。
通过在电子膨胀阀持续开阀的过程中,判断压缩机的实际排气温度与内盘管温度的差值与预设温差阈值的大小,并且在差值小于预设温差阈值时控制电子膨胀阀停止开阀,本申请的控制方法在延缓结霜速度的基础上,还能够从用户体验的层面出发,在温差小于预设温差阈值时停止开阀,减小室内出风温度的波动,保证用户体验。
在一种可能的实施方式中,本申请的制热控制方法还包括:
在外盘管温度大于等于第一温度阈值时,根据压缩机的目标排气温度控制电子膨胀阀的开度。
以第一温度阈值为0℃为例,当外盘管温度Te≥0℃时,室外换热器的结霜风险较低,此时电子膨胀阀的开度按照目标排气温度进行控制,以发挥系统的最大制热能力。其中,较为优选地,目标排气温度基于室外环境温度和压缩机的运行频率确定。
举例而言,目标排气温度基于如下公式(3)确定:
Tt=Int(a×f+b×Tao+c)       (3)
公式(3)中,Tt为目标排气温度;Int()为取整运算;f为压缩机的运行功率;Tao为室外环境温度;a、b、c为常数。其中a、b、 c的确定方式可以基于试验方式确定,也可以基于经验确定,在此不再赘述。
当确定出目标排气温度后,基于目标排气温度控制电子膨胀阀的开度,即当压缩机的实际排气温度小于目标排气温度时,通过控制电子膨胀阀减小开度来提高实际排气温度;反之当压缩机的实际排气温度大于目标排气温度时,通过控制电子膨胀阀增大开度来降低实际排气温度。
在一种可能的实施方式中,本申请的制热控制方法还包括:
在外盘管温度小于凝露温度且持续第二预设时长时,控制空调器运行化霜模式。
仍以凝露温度Tes=-3℃为例,第二预设时长可以为2min,当外盘管温度Te<-3℃且持续2min时,证明此时室外换热器结霜已经较为严重,需要立即化霜操作。此时控制空调器进入化霜模式运行。其中,化霜模式可以为制冷除霜(使四通阀换向,运行制冷模式,冷媒逆循环)或者旁通除霜(从压缩机的高压端单独引出回路至室外换热器),上述化霜模式的运行原理在本领域中较为常规,在此不再赘述。
当然,第二预设时长并非仅限于上述2min,本领域技术人员可以对其进行调整,以便调整后的方案适用于更加具体的应用场景。如第二预设时长还可以为1min、3min、5min等。
需要说明的是,上述优选的实施方式仅仅用于阐述本申请的原理,并非旨在于限制本申请的保护范围。在不偏离本申请原理的前提下,本领域技术人员可以对上述设置方式进行调整,以便本申请能够适用于更加具体的应用场景。
例如,在一种可替换的实施方式中,上述凝露温度的确定方式并非一成不变,在能够合理确定出室外环境的凝露温度的前提下,本领域技术人员可以对上述凝露温度的确定方式进行调整,这种调整并未偏离本申请的原理。例如在其他实施方式中,还可以采用室外环境温度与室外环境湿度共同确定凝露温度,如通过室外环境温度、室外环境湿度与凝露温度之间的对应关系表确定,或者基于三者的经验公式或拟合公式确定等。
再如,在另一种可替换的实施方式中,第一温度阈值、第二温度阈值和第三温度阈值的具体数值并非仅限于此,本领域技术人员可以基于具体的应用场景对上述阈值进行调整,以便本申请能适用于更加具体的应用场景。比如第一温度阈值可以适当提高或降低、第二温度阈值和第三温度阈值可以根据与凝露温度之间的对照关系确定。
再如,在另一种可替换的实施方式中,固定开度的确定方式并不唯一,在其他实施方式中,还可以通过如下方式确定固定开度:
在外盘管温度小于第一温度阈值且大于等于第二温度阈值时,根据压缩机的目标排气温度控制电子膨胀阀的开度,确定固定开度为外盘管温度处于当前温度区间并持续第一预设时长后的开度。以Tes=-3℃,T1=0℃,T2=-1℃,T3=-2℃为例,第一预设时长可以为2min,在外盘管温度满足-1≤Te<0的条件下,先按照目标排气温度对电子膨胀阀进行调节,当-1≤Te<0持续2min时,将2min时电子膨胀阀的开度作为固定开度,控制电子膨胀阀保持该开度不变。
申请人发现,在外盘管温度小于第一温度阈值且大于等于第二温度阈值,通过先根据目标排气温度控制电子膨胀阀的开度,然后在持续第一预设时长时控制电子膨胀阀保持在固定开度,能够使电子膨胀阀的开度调节得到缓冲,保证制热过程的平稳性,避免在调节电子膨胀阀至固定开度时由于开度的突变而引起的运行噪音和出风温度的波动。
再如,在另一种可替换的实施方式中,上述实施方式是以目标排气温度基于室外环境温度和压缩机的运行频率确定进行描述的,但是这种确定方式仅仅为较为优选的实施方式,本领域技术人员可以对上述实施方式进行替换,只要替换后的实施方式能够大致确定出合理的目标排气温度即可。比如,目标排气温度还可以基于压缩机的运行频率与目标排气温度之间的对应关系确定,或者基于目标排气温度与室外环境温度和压缩机的频率之间的对应关系表确定等。
再如,在另一种可替换的实施方式中,尽管上述实施方式是结合第二温度阈值和第三温度阈值对温度区间划分进行介绍的,但是这种温度区间的划分方式并非仅限于此,在其他实施方式中,本领域技术人员可以基于具体应用场景选择具体的划分方式,例如可以只使用第二 温度阈值对温度区间进行划分,也可以进一步增加其他温度阈值对温度区间进行更详细的划分等。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。
下面结合图2对本申请的一种可能的控制过程作简要说明。其中,图2为本发明的空调器的制热控制方法的一种可能的实施方式的逻辑图。
如图2所示,在一种可能的控制过程中,空调器的制热控制方法的完整流程可以是:
S301,获取室外环境温度Tao和外盘管温度Te,然后执行步骤S303;
S303,获取第一温度阈值T1=0℃,基于室外环境温度Tao计算凝露温度Tes,基于凝露温度确定第二温度阈值T2和第三温度阈值T3,然后执行步骤S305;
S305,判断Tes≤Te<T1是否成立?如果成立,则执行步骤S307,否则,执行步骤S323;
S307,进一步判断T2≤Te<T1是否成立?如果成立,则执行步骤S309,否则,执行步骤S311;
S309,计算固定开度P,并调节电子膨胀阀的开度至固定开度P;
S311,进一步判断T3≤Te<T2是否成立?如果成立,则执行步骤S313,否则,执行步骤S315;
S313,控制电子膨胀阀以1B/10s的速度开阀,然后执行步骤S317;
S315,控制电子膨胀阀以1B/5s的速度开阀,然后执行步骤S317;
S317,获取压缩机的实际排气温度Td和内盘管温度Tp,计算二者的差值△T=Td-Tp,然后执行步骤S319;
S319,判断△T<10℃是否成立?如果成立,则执行步骤S321,否则,返回执行步骤S307;
S321,控制电子膨胀阀停止开阀;
S323,判断Te>T1是否成立?如果成立,则执行步骤S325,否则,执行步骤S327;
S325,根据目标排气温度控制电子膨胀阀的开度P;
S327,进一步判断Te≤Tes且持续2min是否成立?如果成立,则执行步骤S329,否则,返回执行步骤S301;
S329,空调器运行化霜模式。
需要说明的是,尽管上文详细描述了本申请方法的详细步骤,但是,在不偏离本申请的基本原理的前提下,本领域技术人员可以对上述步骤进行组合、拆分及调换顺序,如此修改后的技术方案并没有改变本申请的基本构思,因此也落入本申请的保护范围之内。例如,步骤S101与步骤S103的执行顺序不限于上述列举的顺序,也可以先执行步骤S103,再执行步骤S101,或者同时执行步骤S101和步骤S103,本申请对此不作任何的限制。
至此,已经结合附图所示的优选实施方式描述了本申请的技术方案,但是,本领域技术人员容易理解的是,本申请的保护范围显然不局限于这些具体实施方式。在不偏离本申请的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本申请的保护范围之内。

Claims (10)

  1. 一种空调器的制热控制方法,其特征在于,所述空调器包括压缩机、室内换热器、室外换热器以及开度可控的节流阀,
    所述制热控制方法包括:
    确定室外环境的凝露温度;
    获取所述室外换热器的外盘管温度;
    比较所述外盘管温度与第一温度阈值和所述凝露温度的大小;
    在所述外盘管温度小于所述第一温度阈值且大于或等于所述凝露温度时,根据所述外盘管温度所在的温度区间对所述节流阀的开度进行调节。
  2. 根据权利要求1所述的空调器的制热控制方法,其特征在于,“根据所述外盘管温度所在的温度区间对所述节流阀的开度进行调节”的步骤进一步包括:
    比较所述外盘管温度与第二温度阈值和第三温度阈值的大小;
    根据比较结果,对所述节流阀的开度进行调节;
    其中所述第一温度阈值、所述第二温度阈值、所述第三温度阈值和所述凝露温度依次减小。
  3. 根据权利要求2所述的空调器的制热控制方法,其特征在于,“根据比较结果,对所述节流阀的开度进行调节”的步骤进一步包括:
    在所述外盘管温度小于所述第一温度阈值且大于等于所述第二温度阈值时,控制所述节流阀调节至固定开度;
    在所述外盘管温度小于所述第二温度阈值且大于等于所述第三温度阈值时,控制所述节流阀以第一开阀速度持续开阀;
    在所述外盘管温度小于第三温度阈值且大于等于所述凝露温度时,控制所述节流阀以第二开阀速度持续开阀;
    其中,所述第一开阀速度小于所述第二开阀速度。
  4. 根据权利要求3所述的空调器的制热控制方法,其特征在于,所述固定开度基于室外环境温度和所述压缩机的运行频率确定;或者
    所述固定开度通过如下方式确定:
    在所述外盘管温度小于所述第一温度阈值且大于等于所述第二温度阈值时,根据所述压缩机的目标排气温度控制所述节流阀的开度,所述固定开度为所述外盘管温度处于当前温度区间并持续第一预设时长后的开度。
  5. 根据权利要求3所述的空调器的制热控制方法,其特征在于,在所述节流阀持续开阀的过程中,所述制热控制方法还包括:
    获取所述压缩机的实际排气温度和所述室内换热器的内盘管温度;
    计算所述实际排气温度与所述内盘管温度的差值;
    判断所述差值是否小于预设温差阈值;
    在所述差值小于所述温差阈值时,控制所述节流阀停止开阀。
  6. 根据权利要求2所述的空调器的制热控制方法,其特征在于,所述第二温度阈值和所述第三温度阈值基于所述凝露温度确定。
  7. 根据权利要求1所述的空调器的制热控制方法,其特征在于,所述制热控制方法还包括:
    在所述外盘管温度大于等于所述第一温度阈值时,根据所述压缩机的目标排气温度控制所述节流阀的开度。
  8. 根据权利要求7所述的空调器的制热控制方法,其特征在于,所述目标排气温度基于室外环境温度和所述压缩机的运行频率确定。
  9. 根据权利要求1所述的空调器的制热控制方法,其特征在于,所述制热控制方法还包括:
    在所述外盘管温度小于所述凝露温度且持续第二预设时长时,控制所述空调器运行化霜模式。
  10. 根据权利要求1所述的空调器的制热控制方法,其特征在于,“确定所述室外环境的凝露温度”的步骤进一步包括:
    获取室外环境温度;
    根据所述室外环境温度,确定所述凝露温度。
PCT/CN2021/129822 2021-04-08 2021-11-10 空调器的制热控制方法 WO2022068968A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110379578.2 2021-04-08
CN202110379578.2A CN113091215B (zh) 2021-04-08 2021-04-08 空调器的制热控制方法

Publications (1)

Publication Number Publication Date
WO2022068968A1 true WO2022068968A1 (zh) 2022-04-07

Family

ID=76675324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129822 WO2022068968A1 (zh) 2021-04-08 2021-11-10 空调器的制热控制方法

Country Status (2)

Country Link
CN (1) CN113091215B (zh)
WO (1) WO2022068968A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114857749A (zh) * 2022-04-29 2022-08-05 海信(广东)空调有限公司 空调器和控制空调器除霜的方法
CN114963439A (zh) * 2022-04-27 2022-08-30 青岛海尔空调器有限总公司 空调器控制方法、装置、空调器及存储介质
CN115614925A (zh) * 2022-10-12 2023-01-17 宁波奥克斯电气股份有限公司 一种空调器及其控制方法、装置和可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091215B (zh) * 2021-04-08 2022-07-19 青岛海尔空调器有限总公司 空调器的制热控制方法
CN115307273B (zh) * 2022-08-16 2024-07-19 珠海格力电器股份有限公司 基于模糊算法的化霜控制方法、装置、空调器及存储介质
CN115654658A (zh) * 2022-11-04 2023-01-31 青岛海尔空调器有限总公司 空调器的除霜控制方法、装置及空调器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220881A (ja) * 1997-02-05 1998-08-21 Toshiba Corp 空気調和機の制御方法
CN108317680A (zh) * 2017-12-29 2018-07-24 青岛海尔空调器有限总公司 空调防凝露的控制方法及装置
CN109373514A (zh) * 2018-11-19 2019-02-22 青岛海尔空调电子有限公司 一种空调室外机化霜控制方法
CN110594959A (zh) * 2019-09-18 2019-12-20 宁波奥克斯电气股份有限公司 一种空调器控制方法
CN110762748A (zh) * 2019-11-20 2020-02-07 重庆大学 空调器防凝露的控制方法、装置、空调器及可读存储介质
CN112283878A (zh) * 2020-09-18 2021-01-29 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
WO2021037138A1 (zh) * 2019-08-30 2021-03-04 青岛海尔空调器有限总公司 空调器预热控制方法、装置及空调器
CN113091215A (zh) * 2021-04-08 2021-07-09 青岛海尔空调器有限总公司 空调器的制热控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139415A (ja) * 2001-10-31 2003-05-14 Hitachi Ltd 空気調和機
CN101975440B (zh) * 2010-11-26 2012-05-23 四川长虹空调有限公司 一种缓解空调机室外冷凝器结霜的控制方法
JP5549773B1 (ja) * 2013-09-30 2014-07-16 株式会社富士通ゼネラル 空気調和装置
JP2015224845A (ja) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 冷凍サイクル装置
CN105004101B (zh) * 2015-07-30 2017-04-26 天津大学 利用电子膨胀阀防止蒸发器结霜的热泵系统及其调节方法
CN105222285B (zh) * 2015-11-03 2018-01-23 珠海格力电器股份有限公司 一种空调制热结霜的控制系统及控制方法
CN108758972B (zh) * 2018-05-16 2020-12-22 广东美的制冷设备有限公司 空调器制热化霜控制方法、空调器及存储介质
CN110836440A (zh) * 2018-08-17 2020-02-25 青岛海尔空调器有限总公司 空调器抑制结霜控制方法
CN110195914A (zh) * 2019-06-03 2019-09-03 宁波奥克斯电气股份有限公司 一种延缓结霜的控制方法、装置及空调器
CN211084494U (zh) * 2019-10-31 2020-07-24 广东志高暖通设备股份有限公司 一种具有延缓结霜和不停机除霜功能的多联机系统
CN110762756B (zh) * 2019-11-01 2021-11-30 宁波奥克斯电气股份有限公司 一种空调系统及空调结霜控制方法
CN111141007B (zh) * 2019-12-30 2021-10-22 宁波奥克斯电气股份有限公司 一种调节空调结霜的控制方法、控制系统及空调
CN111141001B (zh) * 2019-12-31 2021-08-24 Tcl空调器(中山)有限公司 空调器的控制方法、空调器及计算机可读存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220881A (ja) * 1997-02-05 1998-08-21 Toshiba Corp 空気調和機の制御方法
CN108317680A (zh) * 2017-12-29 2018-07-24 青岛海尔空调器有限总公司 空调防凝露的控制方法及装置
CN109373514A (zh) * 2018-11-19 2019-02-22 青岛海尔空调电子有限公司 一种空调室外机化霜控制方法
WO2021037138A1 (zh) * 2019-08-30 2021-03-04 青岛海尔空调器有限总公司 空调器预热控制方法、装置及空调器
CN110594959A (zh) * 2019-09-18 2019-12-20 宁波奥克斯电气股份有限公司 一种空调器控制方法
CN110762748A (zh) * 2019-11-20 2020-02-07 重庆大学 空调器防凝露的控制方法、装置、空调器及可读存储介质
CN112283878A (zh) * 2020-09-18 2021-01-29 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
CN113091215A (zh) * 2021-04-08 2021-07-09 青岛海尔空调器有限总公司 空调器的制热控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114963439A (zh) * 2022-04-27 2022-08-30 青岛海尔空调器有限总公司 空调器控制方法、装置、空调器及存储介质
CN114857749A (zh) * 2022-04-29 2022-08-05 海信(广东)空调有限公司 空调器和控制空调器除霜的方法
CN114857749B (zh) * 2022-04-29 2023-10-13 海信(广东)空调有限公司 空调器和控制空调器除霜的方法
CN115614925A (zh) * 2022-10-12 2023-01-17 宁波奥克斯电气股份有限公司 一种空调器及其控制方法、装置和可读存储介质

Also Published As

Publication number Publication date
CN113091215B (zh) 2022-07-19
CN113091215A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022068968A1 (zh) 空调器的制热控制方法
CN107131611B (zh) 空调器除霜控制方法
WO2018223927A1 (zh) 空调装置及其控制方法
WO2021223531A1 (zh) 空调器及其控制方法
WO2018214609A1 (zh) 空调器及其除霜控制方法
CN110762756B (zh) 一种空调系统及空调结霜控制方法
CN110030665B (zh) 一种化霜控制方法、装置及空调器
CN111981640B (zh) 一种除霜控制方法、装置、空调器及存储介质
CN111043712A (zh) 一种空调器制热模式的除霜控制方法、控制系统、空调器
CN108895719B (zh) 一种热泵机组及其供暖控制方法
CN110579010B (zh) 一种多联机内机电子膨胀阀控制方法、控制装置及空调器
CN111141007A (zh) 一种调节空调结霜的控制方法、控制系统及空调
TW202014644A (zh) 空調機、空調機的控制方法以及程式
WO2019158048A1 (zh) 空调器除霜控制方法
WO2021036842A1 (zh) 同时冷暖多联机空调系统的控制方法
WO2018233457A1 (zh) 空调及其室外机除霜方法
CN107120796B (zh) 空调器除霜控制方法
CN112050378A (zh) 一种化霜控制方法、化霜控制装置、空调及计算机设备
CN108692426B (zh) 空调器除霜控制方法
CN111207486A (zh) 一种空调智能化霜控制方法、计算机可读存储介质及空调
JP2003240391A (ja) 空気調和機
CN107289576B (zh) 空调器除霜控制方法
WO2020143133A1 (zh) 空调器除霜控制方法
CN108592297B (zh) 空调器除霜控制方法
WO2021052193A1 (zh) 多联机空调系统中室外机均衡结霜的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874622

Country of ref document: EP

Kind code of ref document: A1