WO2020248461A1 - 在线式合金熔配方法与装置 - Google Patents

在线式合金熔配方法与装置 Download PDF

Info

Publication number
WO2020248461A1
WO2020248461A1 PCT/CN2019/112402 CN2019112402W WO2020248461A1 WO 2020248461 A1 WO2020248461 A1 WO 2020248461A1 CN 2019112402 W CN2019112402 W CN 2019112402W WO 2020248461 A1 WO2020248461 A1 WO 2020248461A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
alloy
launder
aluminum liquid
guide tube
Prior art date
Application number
PCT/CN2019/112402
Other languages
English (en)
French (fr)
Inventor
孙宝德
张佼
东青
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to US17/288,030 priority Critical patent/US20210310101A1/en
Publication of WO2020248461A1 publication Critical patent/WO2020248461A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/007Treatment of the fused masses in the supply runners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D35/00Equipment for conveying molten metal into beds or moulds
    • B22D35/04Equipment for conveying molten metal into beds or moulds into moulds, e.g. base plates, runners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/005Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
    • B22D41/01Heating means
    • B22D41/015Heating means with external heating, i.e. the heat source not being a part of the ladle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/005Castings of light metals with high melting point, e.g. Be 1280 degrees C, Ti 1725 degrees C

Definitions

  • the invention relates to a technology in the field of alloy manufacturing, in particular to an online alloy melting method and device.
  • Aluminum alloys usually contain a variety of alloying elements, and corresponding alloy components need to be added to the primary aluminum liquid during the preparation process.
  • the addition form of alloy components can be either pure metals (such as Mg, Zn, Cu, Si, etc.), or intermediate alloys (such as Al-Fe, Al-Ni, Al-Zr, Al-Sr, etc.).
  • All alloys are often added in the holding furnace and melted and left to stand and then the casting process is started.
  • the main problem is that due to the different densities of different types of added elements, the addition of alloying elements is likely to produce specific gravity segregation in the large holding furnace.
  • the denser Cu and Zn elements will be concentrated in the lower part of the holding furnace, but the density is lower
  • the elements such as Mg and Li will be enriched in the upper part of the holding furnace, which requires more intense stirring to keep the melt uniform. Even so, the chemical composition is still prone to substandard and uneven composition, resulting in unqualified quality of the melted metal.
  • the present invention aims at the problem that the specific gravity segregation and uneven element distribution easily occur in the current large-scale holding furnace, and proposes an online alloy melting method and device, which can prevent the melt from standing for a long time to produce specific gravity segregation, and significantly improve the alloy At the same time, it can realize the preparation of gradient materials.
  • the invention relates to an on-line alloy melting method.
  • the alloy to be added is prepared into wire in advance, and the wire feeding speed required for the configuration of a specific composition alloy is calculated according to the flow rate of the raw aluminum liquid in a launder.
  • the wire is continuously and stably injected into the launder of the primary aluminum liquid at the wire feeding speed, and the alloy configuration is formed in real time.
  • the wire material is alloy wire or pure metal wire.
  • the real-time forming refers to: in order to quickly dissolve the wire into the primary aluminum liquid, the high-frequency instantaneous heating method is used to melt the high-melting-point alloy while the wire is being fed, and the high- Concentration of alloying elements.
  • the high melting point alloy refers to an alloy with a melting point higher than that of pure aluminum, such as Al-Mn, Al-Fe, Al-Cr and the like.
  • the present invention relates to a device for realizing the above method, comprising: an aluminum liquid flow tank and at least one guide tube with a wire feeding device arranged therein, wherein: the wire feeding device is arranged at the input end of the guide tube and is connected with a motion control device It is connected to adjust the introduction speed of the wire, and the output end of the guide tube is provided with a temperature control device to adjust the temperature of the wire when it enters the aluminum liquid launder.
  • the said guide tube is a hollow curved tube with a wire inside and the bending direction is the same as the flow direction of the aluminum liquid in the aluminum liquid trough.
  • the depth of the guide tube in the molten aluminum launder is determined according to the depth of the launder, and is preferably 1/2 to 2/3 of the depth of the launder.
  • the motion control device includes: a motion controller module and a driving module, an execution module, and a feedback sensor module respectively connected to the motion controller module, wherein the driving module converts the control command from the motion controller into a current or voltage control level, and feedback
  • the sensor module outputs the position of the execution module to the motion controller.
  • the temperature control device includes: an electric temperature transmitter module, an electronic potentiometer module, an electric controller module and a thyristor voltage regulator module, wherein: the temperature change is measured by a thermocouple and converted into an electric temperature transmitter
  • the standard signal 0 ⁇ 10mA DC current signal of the model meter is transmitted to the electronic potentiometer for recording and at the same time to the electric controller.
  • the controller outputs 0 ⁇ 10mA DC according to the magnitude and direction of the deviation and after the calculation of the predetermined control law
  • the current signal is sent to the thyristor voltage regulator to adjust the AC voltage and realize automatic control.
  • Figure 1 is a schematic diagram of the device of the present invention
  • the online alloy melting and fitting involved in this embodiment includes: several sets of guide tubes 3 with wire feeding devices 1, the output ends of the guide tubes 3 are arranged in the launder 5 and each The output end of the guide tube 3 is provided with a high-frequency induction coil 4 connected to the temperature control device 7.
  • the wire feeder 1 is connected to the motion control device 6 to control the speed of the wire 2 entering the launder 5, and the output end of the guide tube 3 passes through
  • the high-frequency induction coil 4 heats and melts the wire 2 into molten droplets 8 and introduces them into the raw aluminum liquid 9.
  • the guide tube 3 is immersed in the raw aluminum liquid 9.
  • the raw aluminum liquid flows steadily in the launder at a speed v L ( ⁇ 3m/s), and the alloy wires with diameters d 1 , d 2 , d 3 ( ⁇ 30mm) that need to be added are fed through the wire
  • the device is fed into the ceramic guide tube at speeds v 1 , v 2 , v 3 ( ⁇ 5m/s), and the wire feeding speed is related to the concentration level of the element in the ingot to be prepared, and is controlled by a motion control device.
  • the alloy wire moves downward in the ceramic guide tube under the push of the wire feeding device, and the local area corresponding to the high-frequency induction coil heating is controlled by the temperature control device to the temperature T 1 , T 2 , T 3 (>Alloy wire Melting point), the alloy wire is quickly melted to form molten droplets, and the formed droplets continue to enter the raw aluminum liquid along the ceramic guide tube, and complete the alloying and uniform distribution with the movement of the raw aluminum liquid.
  • the guide tube 3 with the wire feeding device 1 can be determined according to the number of elements to be added, and multiple groups can work simultaneously to complete the online alloying of multiple alloying elements. After the alloying is completed, the alloy melt can enter the casting device Casting is performed to form an ingot.
  • the Al-Mg-Si alloy is prepared by the above-mentioned device: the primary aluminum liquid is controlled to flow stably in the launder at a speed of 0.22m/s, and the pure magnesium wire with a diameter of 1.8mm and the Al-Mg-Si alloy with a diameter of 3.0mm are combined.
  • the 20Si alloy wire is fed into the ceramic guide tube through the wire feeding device at speeds of 1.8cm/s and 2.6cm/s.
  • the alloy wire is moved downward in the ceramic guide tube under the push of the wire feeding device, and the local area corresponding to the heating of the high-frequency induction coil is controlled by the temperature control device to 700 °C and 720 °C, so that the alloy wire is rapidly melted and formed.
  • the formed molten droplet will continue to enter the primary aluminum liquid along the ceramic guide tube, and complete the alloying and uniform distribution with the movement of the primary aluminum liquid.
  • the alloy melt enters the casting device for casting to form an Al-Mg-Si alloy ingot.
  • the Al-Zn-Mg-Cu alloy with a composition gradient is prepared by the above device: the raw aluminum liquid is controlled to flow stably in the launder at a speed of 0.28m/s, and the pure zinc wire with a diameter of 4.0mm is Pure magnesium wire of 1.8mm and Al-20Cu alloy wire of 1.5mm in diameter are respectively fed into the ceramic guide tube at speeds of 2.2cm/s, 2.5cm/s, and 1.8mm/s through the wire feeding device.
  • the alloy wire moves downward in the ceramic guide tube under the push of the wire feeding device, and the local area corresponding to the high-frequency induction coil heating is controlled to 460°C, 700°C, 740°C through the temperature control device, so that the alloy wire can be quickly Melt to form droplets, the formed droplets continue to enter the raw aluminum liquid along the ceramic guide tube, and complete the alloying and uniform distribution with the movement of the raw aluminum liquid.
  • the alloy melt enters the casting device for casting to form an Al-Zn-Mg-Cu alloy ingot.
  • the wire feeding speed of the pure zinc wire is uniformly reduced (the wire feeding speed is reduced by 0.1 cm/s every 5 minutes), and the wire feeding speed of the pure zinc wire is reduced to 1.0 cm/s after the casting is completed.
  • the zinc content of the prepared alloy is 6.5% at the head of the ingot and 3% at the tail of the ingot.
  • the gradient changes uniformly from the head to the tail of the ingot.

Abstract

一种在线式合金熔配装置,将待添加的合金预先制备成丝材,根据原铝液在流槽中的流量计算配置特定成分合金所需的送丝速度,在连续铸锭过程中将丝材按送丝速度连续稳定地注入原铝液的流槽中,实时成形合金配置,能够避免熔体长时间静置产生比重偏析,显著提高合金化效率的同时能够实现梯度材料制备;还涉及一种在线式合金熔配方法。

Description

在线式合金熔配方法与装置 技术领域
本发明涉及的是一种合金制造领域的技术,具体是一种在线式合金熔配方法与装置。
背景技术
铝合金通常含有多种合金元素,在制备过程中需要向原铝液中添加相应的合金组元。合金组元的添加形式既可以是纯金属(如Mg、Zn、Cu、Si等),也可以是中间合金(如Al-Fe、Al-Ni、Al-Zr、Al-Sr等)。在实际生产中,往往在保温炉中将所有的合金加入并熔化静置后开始浇铸过程。存在的主要问题是由于不同种类添加元素的密度不同,合金元素添加后容易在大型保温炉中产生比重偏析,如密度较大的Cu和Zn元素会在保温炉的下部富集,而密度较小的Mg、Li等元素则会在保温炉的上部富集,需要进行较大强度的搅拌使熔体保持均匀。即使如此,仍然容易出现化学成分不达标,成分不均匀的现象,导致熔配合金质量不合格。
发明内容
本发明针对当前大型保温炉内熔配合金易出现比重偏析和元素分布不均匀的问题,提出一种在线式合金熔配方法与装置,能够避免熔体长时间静置产生比重偏析,显著提高合金化效率的同时能够实现梯度材料制备。
本发明是通过以下技术方案实现的:
本发明涉及一种在线式合金熔配方法,将待添加的合金预先制备成丝材,根据原铝液在流槽中的流量计算配置特定成分合金所需的送丝速度,在连续铸锭过程中将丝材按送丝速度连续稳定地注入原铝液的流槽中,实时成形合金配置。
所述的丝材为合金丝或纯金属丝。
所述的送丝速度,根据流槽中铝液的流速V l确定送丝速度V ,即V =kV l,k为固定常数。
所述的实时成形是指:为使丝材迅速溶入原铝液,在送丝同时利用高频瞬时加热方式将高熔点合金熔化,使之导流进入铝液后实现快速混合达到所需的合金元素浓度。
所述的高熔点合金是指:熔点温度高于纯铝的合金,例如Al-Mn、Al-Fe、Al-Cr等。
本发明涉及一种实现上述方法的装置,包括:铝液流槽以及设置于其中的至少一个带有送丝装置的导向管,其中:送丝装置设置于导向管的输入端并与运动控制装置相连以调整丝材的导入速度,导向管的输出端设有温度控制装置以调整丝材进入铝液流槽时的温度。
所述的导向管为空心弯管状,其内部设有丝材且弯折方向与铝液流槽中铝液的流向相同。
所述的导向管位于铝液流槽中的深度根据流槽的深度确定,优选为流槽深度的1/2~2/3。
所述的运动控制装置包括:运动控制器模块和分别与之相连的驱动模块、执行模块以及反馈传感器模块,其中:驱动模块将来自运动控制器的控制指令转换为电流或电压控制电平,反馈传感器模块将执行模块的位置输出至运动控制器。
所述的温度控制装置包括:电动温度变送器模块、电子电位差计模块、电动控制器模块以及可控硅电压调整器模块,其中:温度变化由热电偶测量通过电动温度变送器转化为型表的标准信号0~10mA直流电流信号,传送到电子电位差计进行记录,同时传送给电动控制器,控制器按偏差的大小、方向,通过预定控制规律的运算后,输出0~10mA直流电流信号给可控硅电压调整器,调节交流电压,实现自动控制。
附图说明
图1为本发明装置示意图;
图中:1送丝装置、2丝材、3陶瓷导向管、4高频感应线圈、5流槽、6运动控制装置、7温度控制装置、8熔滴、9原铝液。
具体实施方式
实施例1
如图1所示,为本实施例涉及的一种在线式合金熔配,包括:若干组带有送丝装置1的导向管3,导向管3的输出端设置于流槽5内且每个导向管3的输出端设有与温度控制装置7相连的高频感应线圈4,送丝装置1与运动控制装置6相连以控制丝材2进入流槽5的速度,导向管3的输出端经高频感应线圈4加热将丝材2熔化为熔滴8并导入原铝液9中。
所述的导向管3浸没在原铝液9中。
合金化过程中,原铝液以速度v L(<3m/s)在流槽中稳定流动,将需要添加的直径分别为d 1、d 2、d 3(<30mm)合金丝材通过送丝装置分别以速度v 1、v 2、v 3(<5m/s)送入陶瓷导向管,送丝速度与需要制备的铸锭中该元素的浓度水平相关联,并通过运动控制装置进行控制。合金丝材在送丝装置的推动下在陶瓷导向管中向下运动,通过温度控制装置分别控制高频感应线圈加热所对应的局部区域至温度T 1、T 2、T 3(>合金丝材熔点),使合金丝材迅速熔化形成熔滴,所形成的熔滴继续沿陶瓷导向管进入原铝液,随原铝液的运动完成合金化和分布的均匀化。
所述的带有送丝装置1的导向管3可根据需要添加的元素数量确定,多组同时工作可以同时完成多种合金元素的在线合金化,合金化完成后,合金熔体可进入铸造装置进行浇铸形成铸锭。
本实施例通过上述装置进行Al-Mg-Si合金的制备:控制原铝液以速度0.22m/s在流槽中稳定流动,将直径为1.8mm的纯镁丝、直径为3.0mm的Al-20Si合金丝材通过送丝装置分 别以速度1.8cm/s、2.6cm/s送入陶瓷导向管。合金丝材在送丝装置的推动下在陶瓷导向管中向下运动,通过温度控制装置分别控制高频感应线圈加热所对应的局部区域至700℃、720℃,使合金丝材迅速熔化形成熔滴,所形成的熔滴继续沿陶瓷导向管进入原铝液,随原铝液的运动完成合金化和分布的均匀化。合金熔体进入铸造装置进行浇铸形成Al-Mg-Si合金铸锭。
实施例2
本实施例通过上述装置进行具有成分梯度的Al-Zn-Mg-Cu合金的制备:控制原铝液以速度0.28m/s在流槽中稳定流动,将直径为4.0mm的纯锌丝、直径为1.8mm的纯镁丝、直径为1.5mm的Al-20Cu合金丝通过送丝装置分别以速度2.2cm/s、2.5cm/s、1.8mm/s送入陶瓷导向管。合金丝材在送丝装置的推动下在陶瓷导向管中向下运动,通过温度控制装置分别控制高频感应线圈加热所对应的局部区域至460℃、700℃、740℃,使合金丝材迅速熔化形成熔滴,所形成的熔滴继续沿陶瓷导向管进入原铝液,随原铝液的运动完成合金化和分布的均匀化。合金熔体进入铸造装置进行浇铸形成Al-Zn-Mg-Cu合金铸锭。在制备过程中均匀降低纯锌丝的送丝速度(每隔5分钟将送丝速度降低0.1cm/s),至浇铸完成后纯锌丝送丝速度降为1.0cm/s。经测试,所制备合金的锌含量铸锭头部为6.5%,铸锭尾部为3%,从铸锭头部至尾部为梯度均匀变化。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (8)

  1. 一种在线式合金熔配方法,其特征在于,将待添加的合金预先制备成丝材,根据原铝液在流槽中的流量计算配置特定成分合金所需的送丝速度,在连续铸锭过程中将丝材按送丝速度连续稳定地注入原铝液的流槽中,实时成形合金配置。
  2. 根据权利要求1所述的在线式合金熔配方法,其特征是,所述的丝材为合金丝或纯金属丝;所述的高熔点合金是指:熔点温度高于纯铝的合金。
  3. 根据权利要求1或2所述的在线式合金熔配方法,其特征是,所述的高熔点合金为Al-Mn、Al-Fe、Al-Cr。
  4. 根据权利要求1所述的在线式合金熔配方法,其特征是,所述的送丝速度,根据流槽中铝液的流速V l确定送丝速度V ,即V =kV l,k为固定常数。
  5. 根据权利要求1所述的在线式合金熔配方法,其特征是,所述的实时成形是指:为使丝材迅速溶入原铝液,在送丝同时利用高频瞬时加热方式将高熔点合金熔化,使之导流进入铝液后实现快速混合达到所需的合金元素浓度。
  6. 一种实现上述任一权利要求所述方法的装置,其特征在于,包括:铝液流槽以及设置于其中的至少一个带有送丝装置的导向管,其中:送丝装置设置于导向管的输入端并与运动控制装置相连以调整丝材的导入速度,导向管的输出端设有温度控制装置以调整丝材进入铝液流槽时的温度;
    所述的导向管为空心弯管状,其内部设有丝材且弯折方向与铝液流槽中铝液的流向相同。
  7. 根据权利要求6所述的装置,其特征是,所述的导向管位于铝液流槽中的深度流槽深度的1/2~2/3。
  8. 根据权利要求6所述的装置,其特征是,所述的温度控制装置包括:电动温度变送器模块、电子电位差计模块、电动控制器模块以及可控硅电压调整器模块,其中:温度变化由热电偶测量通过电动温度变送器转化为型表的标准信号0~10mA直流电流信号分别输出至电子电位差计和电动控制器,电动控制器按偏差的大小和方向,通过预定控制规律的运算后,输出 0~10mA直流电流信号给可控硅电压调整器以调节交流电压,实现自动控制。
PCT/CN2019/112402 2019-06-14 2019-10-22 在线式合金熔配方法与装置 WO2020248461A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/288,030 US20210310101A1 (en) 2019-06-14 2019-10-22 Method and apparatus for synchronously melting and preparing alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910513397.7 2019-06-14
CN201910513397.7A CN110153382B (zh) 2019-06-14 2019-06-14 在线式合金熔配方法与装置

Publications (1)

Publication Number Publication Date
WO2020248461A1 true WO2020248461A1 (zh) 2020-12-17

Family

ID=67628761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112402 WO2020248461A1 (zh) 2019-06-14 2019-10-22 在线式合金熔配方法与装置

Country Status (3)

Country Link
US (1) US20210310101A1 (zh)
CN (1) CN110153382B (zh)
WO (1) WO2020248461A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110153382B (zh) * 2019-06-14 2022-02-08 上海交通大学 在线式合金熔配方法与装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162050A (zh) * 2011-01-28 2011-08-24 江苏中天科技股份有限公司 一种制造59%导电率的中强度铝合金线方法
US9376737B2 (en) * 2013-04-12 2016-06-28 Honda Motor Co., Ltd. Method for producing zinc alloy
US20170362685A1 (en) * 2016-06-15 2017-12-21 Brilo Technology Co., Ltd. Titanium Composite Material and Method for Making It
CN108690917A (zh) * 2018-06-26 2018-10-23 安徽沪源铝业有限公司 一种铝合金精炼处理工艺
CN110153382A (zh) * 2019-06-14 2019-08-23 上海交通大学 在线式合金熔配方法与装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE795116A (fr) * 1972-02-08 1973-05-29 Cockerill Procede d'alimentation de bain d'evaporation
DE3712619A1 (de) * 1987-04-14 1988-10-27 Odermath Stahlwerkstechnik Verfahren zur steuerung einer drahtinjektionseinrichtung, entsprechender drahtvorrat und entsprechende drahtvortriebsmaschine
JPH08257709A (ja) * 1995-03-20 1996-10-08 Nippon Steel Corp 連続鋳造用浸漬ノズル
JPH0987729A (ja) * 1995-09-28 1997-03-31 Kawasaki Steel Corp 溶鋼成分調整用合金鉄ワイヤおよびその使用に適した小ロット用タンディッシュ
JP2003080352A (ja) * 2001-09-07 2003-03-18 Kawasaki Steel Corp 連続鋳造鋳片の製造方法
CN101434026B (zh) * 2008-11-19 2010-06-09 西安交通大学 一种高熔点金属电弧喷涂快速制模方法
CN102140589B (zh) * 2011-05-05 2012-11-07 山东创新金属科技股份有限公司 一种铝镁硅系铝合金的微合金化熔炼工艺
CN102248139A (zh) * 2011-07-09 2011-11-23 中国铝业股份有限公司 一种生产3005铝塑带材坯料的连续铸轧工艺
CN202639258U (zh) * 2012-09-26 2013-01-02 山东创新金属科技股份有限公司 一种自动化喂丝系统
CN103740958B (zh) * 2014-01-09 2016-05-25 佛山市深达美特种铝合金有限公司 一种4032铝合金及其变质方法
CN104561624A (zh) * 2014-12-29 2015-04-29 镇江鼎胜铝业股份有限公司 铸轧法生产4045合金助焊片坯料的方法
CN108372296A (zh) * 2016-12-20 2018-08-07 中国航空制造技术研究院 一种电子束熔丝制备功能梯度材料的方法
CN109487100B (zh) * 2018-11-29 2020-01-17 长江师范学院 一种导电铝合金杆连铸连轧及硼化处理方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162050A (zh) * 2011-01-28 2011-08-24 江苏中天科技股份有限公司 一种制造59%导电率的中强度铝合金线方法
US9376737B2 (en) * 2013-04-12 2016-06-28 Honda Motor Co., Ltd. Method for producing zinc alloy
US20170362685A1 (en) * 2016-06-15 2017-12-21 Brilo Technology Co., Ltd. Titanium Composite Material and Method for Making It
CN108690917A (zh) * 2018-06-26 2018-10-23 安徽沪源铝业有限公司 一种铝合金精炼处理工艺
CN110153382A (zh) * 2019-06-14 2019-08-23 上海交通大学 在线式合金熔配方法与装置

Also Published As

Publication number Publication date
CN110153382B (zh) 2022-02-08
US20210310101A1 (en) 2021-10-07
CN110153382A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
CN103602823B (zh) 自耗电极的电渣重熔方法及电渣炉
CN105463219B (zh) 一种高性能无氧铜杆及其制备方法
EP0275228B1 (fr) Dispositif de fusion et coulée continue de métaux, son procédé de mise en oeuvre et son utilisation
CN105154697B (zh) 一种中间合金线材的生产系统及其生产工艺
JP5562252B2 (ja) ガラス被覆ワイヤの製造装置及び製造方法
WO2020248461A1 (zh) 在线式合金熔配方法与装置
WO2021134950A1 (zh) 一种电渣炉喂线方法
JP2007132654A (ja) スクリューコンベア型精製装置及びそれを使用した精製方法
CN108356270A (zh) 一种基于接触电阻加热的金属3d打印方法
US20110214830A1 (en) Method and apparatus for producing hollow fusing blocks
RU2725537C1 (ru) Способ электронно-лучевого аддитивного получения заготовок
US2380238A (en) Method and apparatus for producing cast metal bodies
US4207454A (en) Method for electroslag welding of metals
US3791172A (en) Apparatus for making a glass or the like coated wire
RU2701698C1 (ru) Способ легирования заготовки при помощи плавящегося электрода с покрытием в процессе электрошлакового переплава
DE3316795A1 (de) Vorrichtung zur glastropfen-gewichtskonstanthaltung
CN107160051A (zh) 一种用于熔化极焊接的变截面实心焊丝
WO2013011838A1 (ja) ガラス溶融装置、ガラス繊維製造装置及びガラス繊維製造方法
CN113732458A (zh) 熔化极绞丝电弧磁旋控焊接方法
CN205501388U (zh) 一种真空电弧重熔炉
CN109848409A (zh) 一种用于3d打印的液态金属线材及其制备方法
EP1276914B1 (en) Consumable electrode continuous feed system and method in electroslag refining
SE440321B (sv) Sett och anordning for framstellning av ett ihaligt metallgot
JP2004529774A (ja) ガラス被覆金属ワイヤを連続加工するための装置と該連続加工法
CN218503287U (zh) 一种铜合金真空连续铸造用加热流槽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932624

Country of ref document: EP

Kind code of ref document: A1