WO2020246454A1 - 渦電流式減速装置 - Google Patents

渦電流式減速装置 Download PDF

Info

Publication number
WO2020246454A1
WO2020246454A1 PCT/JP2020/021722 JP2020021722W WO2020246454A1 WO 2020246454 A1 WO2020246454 A1 WO 2020246454A1 JP 2020021722 W JP2020021722 W JP 2020021722W WO 2020246454 A1 WO2020246454 A1 WO 2020246454A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
eddy current
nickel
alloy
copper
Prior art date
Application number
PCT/JP2020/021722
Other languages
English (en)
French (fr)
Inventor
岡田 浩一
野口 泰隆
奈央 大瀧
山田 哲也
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to EP20818066.1A priority Critical patent/EP3982523B1/en
Priority to US17/596,215 priority patent/US11764661B2/en
Priority to KR1020227000188A priority patent/KR102629948B1/ko
Priority to CN202080040980.1A priority patent/CN113906653B/zh
Priority to JP2021524848A priority patent/JP7211505B2/ja
Publication of WO2020246454A1 publication Critical patent/WO2020246454A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • H02K49/04Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
    • H02K49/043Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type with a radial airgap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • H02K49/04Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/106Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with a radial air gap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present disclosure relates to an eddy current type speed reducer.
  • eddy current speed reducer is also called a retarder.
  • the eddy current speed reducer is also called a retarder.
  • the eddy current type reduction device is operated to control the vehicle.
  • the power can be further increased and the traveling speed of a large vehicle can be effectively reduced.
  • improvement of fuel efficiency and reduction of displacement by electrification of vehicles have been promoted, and the braking force of the exhaust brake has been reduced accordingly.
  • eddy current type speed reducers are being installed in trucks and trailers with a larger load capacity than before. Therefore, there is a demand for an eddy current type speed reducer having a higher braking force.
  • An eddy current speed reducer using a permanent magnet includes a rotor and a stator housed in the rotor.
  • the rotor includes a cylindrical portion (drum), an annular wheel portion for fixing the rotor to the propeller shaft, and a plurality of arm portions connecting the cylindrical portion and the wheel portion.
  • the stator includes a cylindrical body, two types of permanent magnets having different polarities, and a plurality of pole pieces. A plurality of permanent magnets having different polarities are alternately arranged in the circumferential direction on the outer peripheral surface of the cylinder.
  • the pole piece is arranged between the inner peripheral surface of the cylindrical portion of the rotor and the permanent magnet.
  • a cylinder to which a plurality of permanent magnets are attached can rotate around the axis of the cylinder independently of the plurality of pole pieces.
  • the eddy current type speed reducer executes the braking operation and the non-braking operation.
  • the braking force of the eddy current type speed reducer depends on the amount of eddy current generated in the cylindrical part of the rotor during braking. Therefore, it is preferable that the amount of eddy current generated in the cylindrical portion of the rotor during braking is large. In order to increase the amount of eddy current generated during braking, it is preferable that the electric resistance of the cylindrical portion of the rotor is low.
  • a plating film may be formed on the inner peripheral surface of the cylindrical part of the rotor in order to reduce the electrical resistance. As a result, the braking force of the eddy current type speed reducer is further increased.
  • the rotor when braking the eddy current type speed reducer, the rotor is heated by the Joule heat generated with the eddy current. When braking the eddy current speed reducer, the rotor is exposed to temperatures above 600 ° C. On the other hand, when the eddy current speed reducer is not braked, the rotor is rapidly cooled (air-cooled) by a plurality of cooling fins formed on the outer peripheral surface of the cylindrical portion. That is, the rotor is loaded with a thermal cycle by repeating braking and non-braking. The plating film formed on the inner peripheral surface of the cylindrical portion of the rotor is required to have sufficient durability to withstand the above-mentioned thermal cycle.
  • JP-A-11-308851 (Patent Document 1)
  • JP-A-2005-020823 (Patent Document 2)
  • JP-A-2002-171744 (Patent Document 3) show when the rotor is exposed to a thermal cycle.
  • the eddy current type speed reducer disclosed in Patent Document 1 includes a rotor and a magnet provided so as to face the rotating surface of the rotor and is fixedly provided, and the magnetic flux of the magnet is used to generate an eddy current in the rotor. It is an eddy current type speed reducer.
  • This eddy current speed reducer is composed of a first layer made of a nickel alloy, a second layer made of copper or a copper alloy, a third layer made of a nickel alloy, and nickel on a rotating surface facing the magnet side. It is characterized in that the fourth layer is sequentially provided.
  • the structure disclosed in Patent Document 2 has a first layer made of a nickel alloy from the surface side of the structure, and copper, a copper alloy, and aluminum having a conductivity higher than the conductivity of the members mainly constituting the structure.
  • it includes a second layer forming a high conductivity layer containing at least one of aluminum alloys, a third layer made of a nickel alloy, and a fourth layer made of a single nickel.
  • the first layer and the third layer are at least one selected from phosphorus, tungsten, boron, iron, or cobalt, and the first and third layers are made of the same type of alloy component, and the mass of the alloy component is formed.
  • the content of the first layer of the alloy component is less than the content of the third layer, and at least a part of the conductive film is provided.
  • the eddy current type speed reducer disclosed in Patent Document 3 includes a plurality of rotors having a rotating body made of a ferromagnetic material and connected to a rotating shaft, and a plurality of eddy current type speed reducers installed at positions facing each other at predetermined intervals with the inner wall surface of the rotating body. It is an eddy current type speed reducer that includes a number of magnets and generates eddy current in the rotor to decelerate by the magnetic flux of the magnets.
  • the surface roughness of the surface of the rotating body facing the magnet is 10 ⁇ m or less in terms of ten-point average roughness Rz
  • the first layer made of copper or a copper alloy is made of a nickel alloy. It is characterized in that a second layer and a third layer made of nickel are sequentially provided.
  • An object of the present disclosure is to provide an eddy current speed reducer having excellent durability even when exposed to a heat cycle of 700 ° C.
  • the eddy current type speed reducer of the present disclosure is A stator having a cylinder and a plurality of magnets arranged on the outer peripheral surface of the cylinder, A rotor including a cylindrical portion for accommodating the cylindrical body is provided. On the inner peripheral surface of the cylindrical portion of the rotor, in order from the inner peripheral surface side. A first layer made of a Ni-P alloy, which is a Ni alloy containing P and the balance being Ni and impurities, or a Ni-B alloy, which is a Ni alloy containing B and the balance being Ni and impurities. A second layer of nickel and A third layer made of copper or a copper alloy, The fourth layer made of nickel alloy and It has a fifth layer made of nickel.
  • the eddy current speed reducer according to the present disclosure has excellent durability even when exposed to a heat cycle of 700 ° C.
  • FIG. 1 is a front view of the eddy current type speed reducer.
  • FIG. 2 is a cross-sectional view of the eddy current type reduction device shown in FIG. 1 in the axial direction of the propeller shaft when the eddy current type reduction device is fixed to the propeller shaft.
  • FIG. 3 is a cross-sectional view (diameter cross-sectional view) perpendicular to the axial direction of the eddy current type speed reducer during non-braking.
  • FIG. 4 is a cross-sectional view (diameter cross-sectional view) perpendicular to the axial direction of the eddy current type speed reducer during braking.
  • FIG. 5 is an enlarged view of a cross section perpendicular to the axial direction of the cylindrical portion of the rotor.
  • the present inventors investigated and examined the durability of the eddy current type speed reducer when exposed to a heat cycle of 700 ° C.
  • the plating film formed on the inner peripheral surface of the cylindrical portion of the rotor preferably has low electrical resistance. If the plating layer contains copper, the electric resistance can be lowered and the braking force of the eddy current type speed reducer can be increased.
  • the plating layer containing copper is also referred to as a "copper layer”.
  • the inner surface of the rotor is exposed to thermal cycles above 600 ° C. Within the normal temperature range, the adhesion of the copper layer is unlikely to decrease even when exposed to a thermal cycle. However, when exposed to a severe heat cycle exceeding 600 ° C., the adhesion of the copper layer may decrease. If the adhesion of the copper layer can be improved, the thermal durability of the eddy current type speed reducer will be improved.
  • Patent Document 2 described above describes suppressing cargendal voids by forming a plating layer made of a nickel alloy between the cylindrical portion of the rotor and the copper layer.
  • paragraph [0015] of Patent Document 2 it is necessary to eliminate the generation of Kirkendal voids caused by diffusion in the first layer and the third layer made of nickel alloy, and the alloy component is added in order to increase the effect of preventing diffusion. It is described that when the concentration is high, the generation of cargendal voids is eliminated and the peeling of the coating film can be suppressed.
  • Patent Document 3 also describes that cargendal voids are suppressed by forming a plating layer made of a nickel alloy.
  • a second layer made of a nickel alloy is formed between the first layer, which is a copper layer, and the third layer, which is a nickel layer.
  • Paragraph [0036] of Patent Document 3 states that the formation of diffusion voids caused by the diffusion of copper or the copper alloy of the first layer and nickel of the third layer is suppressed in the second layer made of a nickel alloy. is there.
  • Patent Document 3 in a nickel alloy containing tungsten, iron, boron, cobalt, phosphorus and the like as alloying elements, the diffusion rate of copper is smaller than that of nickel, and the copper atom is nickel or iron lattice. There is a description about making it difficult to enter inside.
  • paragraph [0017] of Patent Document 1 when nickel is used as a buffer material between the copper layer and the cylindrical portion, diffusion from copper to nickel occurs when nickel is used for a long time, so that the interface between copper and nickel occurs. It has been pointed out that holes (Kirkendal voids) may occur on the copper side of the copper side, from which the plating layer containing copper may peel off or fall off. Further, paragraph [0022] of Patent Document 1 describes that the function of diffusion prevention and the cushioning material is satisfied by forming a nickel-based alloy layer as a cushioning material between the copper layer and the cylindrical portion. ..
  • a plating layer made of a nickel alloy (hereinafter, also referred to as a nickel alloy layer) is formed between the cylindrical portion of the rotor and the copper layer in order to suppress cargendal voids.
  • nickel alloy layer a plating layer made of a nickel alloy
  • a passivation film is formed on the nickel alloy layer.
  • the copper layer is formed through this passive coating.
  • this passivation coating can cause exfoliation at the interface between the nickel alloy layer and the copper layer.
  • the present inventors have investigated a method for suppressing peeling of the copper layer due to a passivation film on the nickel alloy layer. As a result, the following findings were obtained. If a plating layer made of nickel (hereinafter, also referred to as a nickel layer) is formed on the nickel alloy layer, the passivation film on the nickel alloy layer is removed. Further, it is difficult to form a passivation film on the nickel layer. Therefore, the present inventors considered that if a nickel layer is further formed between the nickel alloy layer and the copper layer, peeling of the copper layer due to the passive coating can be suppressed. In this case, the adhesion of the copper layer when exposed to a heat cycle of 700 ° C. can be improved, and the thermal durability of the eddy current type speed reducer can be further improved.
  • the present inventors further obtained the following findings. If a nickel layer is formed on a nickel alloy layer made of Ni-P alloy or Ni-B alloy, the alloy component from the nickel alloy layer made of Ni-P alloy or Ni-B alloy to the nickel layer in an environment of 700 ° C. (P or B) diffuses. P and B that have penetrated and diffused into the nickel layer reach the interface between the nickel layer and the copper layer, which reduces the diffusion rate of copper into the nickel layer. Therefore, even if a nickel layer is further formed between the nickel alloy layer made of a Ni-P alloy or a Ni-B alloy and the copper layer, cargendal voids are suppressed.
  • P or B the alloy component from the nickel alloy layer made of Ni-P alloy or Ni-B alloy to the nickel layer in an environment of 700 ° C.
  • P and B have relatively small atomic radius. Since P and B have relatively small atomic radii, they diffuse in the nickel layer while penetrating into the crystal lattice (penetration type). Therefore, P and B have a high diffusion rate in the nickel layer. Since P and B have a high diffusion rate in the nickel layer, they can quickly reach the interface between the nickel layer and the copper layer and suppress the diffusion of copper into the nickel layer.
  • an element having a relatively large atomic radius such as iron (Fe), cobalt (Co) and tungsten (W)
  • Fe iron
  • Co cobalt
  • W tungsten
  • Fe, Co, and W have a low diffusion rate in the nickel layer. Since Fe, Co, and W have a low diffusion rate in the nickel layer, they cannot reach the interface between the nickel layer and the copper layer quickly, and the diffusion of copper into the nickel layer cannot be suppressed.
  • the present inventors have made nickel composed of a Ni-P alloy or a Ni-B alloy. It has been found that by further forming a nickel layer between the alloy layer and the copper layer, the adhesion of the copper layer when subjected to a heat cycle of 700 ° C. can be improved.
  • the eddy current type speed reducer of the present disclosure based on the above knowledge has the following configuration.
  • the eddy current type speed reducer of [1] is A stator having a cylinder and a plurality of magnets arranged on the outer peripheral surface of the cylinder, A rotor including a cylindrical portion for accommodating the cylindrical body is provided. On the inner peripheral surface of the cylindrical portion of the rotor, in order from the inner peripheral surface side. A first layer made of a Ni-P alloy, which is a Ni alloy containing P and the balance being Ni and impurities, or a Ni-B alloy, which is a Ni alloy containing B and the balance being Ni and impurities. A second layer of nickel and A third layer made of copper or a copper alloy, The fourth layer made of nickel alloy and It has a fifth layer made of nickel.
  • the eddy current type speed reducer of the present disclosure has a nickel layer between the first layer made of Ni-P alloy or Ni-B alloy and the third layer which is a copper layer on the inner peripheral surface of the cylindrical portion of the rotor. A second layer is formed. Therefore, cargendal voids are suppressed, peeling of the copper layer due to the passive coating on the nickel alloy layer is suppressed, and the adhesion of the copper layer when exposed to a heat cycle of 700 ° C. is enhanced.
  • the eddy current type speed reducer of [2] is The eddy current type speed reducer according to [1].
  • the first layer contains the Ni-P alloy containing 2.0 to 20.0% by mass of P and the balance being Ni and impurities, or the balance containing 1.0 to 20.0% by mass of B. Is made of the Ni-B alloy made of Ni and impurities.
  • the cargendal void can be suppressed more stably.
  • the eddy current type speed reducer of [3] is The eddy current type speed reducer according to [1] or [2].
  • the thickness of the second layer is 0.1 to 5.0 ⁇ m.
  • the passivation film on the first layer can be removed more sufficiently, and cargendal voids can be suppressed more stably.
  • FIG. 1 is a front view of the eddy current type speed reducer.
  • the eddy current speed reducer 1 includes a rotor 10 and a stator 20.
  • FIG. 2 is a cross-sectional view of the eddy current type speed reducer 1 in the axial direction of the propeller shaft when the eddy current type speed reducer shown in FIG. 1 is fixed to the propeller shaft.
  • the rotor 10 is fixed to the propeller shaft 30 and the stator 20 is fixed to a transmission (not shown).
  • the rotor 10 includes a cylindrical portion (drum) 11, an arm portion 12, and a wheel portion 13.
  • the cylindrical portion 11 is cylindrical and has an inner diameter larger than the outer diameter of the stator 20.
  • the wheel portion 13 is an annular member having an outer diameter smaller than the inner diameter of the cylindrical portion 11, and has a through hole in the central portion.
  • the wheel portion 13 is fixed to the propeller shaft 30 by inserting the propeller shaft 30 into the through hole.
  • the arm portion 12 connects the end portion of the cylindrical portion 11 and the wheel portion 13.
  • a plurality of cooling fins 11F are formed on the outer peripheral surface of the cylindrical portion 11.
  • FIG. 3 is a cross-sectional view (diameter cross-sectional view) perpendicular to the axial direction of the eddy current type speed reducer 1 during non-braking.
  • the stator 20 includes a cylindrical magnet holding ring 21, a plurality of permanent magnets 22 and 23, and a plurality of pole pieces 24.
  • the permanent magnets 22 and the permanent magnets 23 are alternately arranged in the circumferential direction on the outer peripheral surface of the magnet holding ring 21.
  • the inner peripheral surface of the cylindrical portion 11 of the rotor 10 faces the permanent magnets 22 and 23 arranged on the outer peripheral surface of the holding ring 21 of the stator 20.
  • the surface facing the inner peripheral surface of the cylindrical portion 11 of the rotor 10 is the north pole.
  • the surface facing the inner peripheral surface of the cylindrical portion 11 of the rotor 10 is the S pole.
  • the plurality of pole pieces 24 are arranged in the circumferential direction of the stator 20. The plurality of pole pieces 24 are arranged between the plurality of permanent magnets 22 and 23 and the inner peripheral surface of the cylindrical portion 11.
  • each permanent magnet 22 or 23 overlaps with two pole pieces 24 adjacent to each other.
  • the magnetic flux B flows in the stator 20 as shown in FIG. 3, specifically, between the permanent magnets 22 and 23, the pole piece 24, and the magnet holding ring 21.
  • no magnetic circuit is formed between the rotor 10 and the permanent magnets 22 and 23, and Lorentz force is not generated in the rotor 10. Therefore, no braking force is generated.
  • FIG. 4 is a cross-sectional view (diameter cross-sectional view) perpendicular to the axial direction of the eddy current type speed reducer 1 during braking.
  • the magnet holding ring 21 in the stator 20 rotates to shift the positions of the permanent magnets 22 and 23 relative to the pole piece 24 as compared to FIG.
  • FIG. 4 when viewed in the radial direction of the eddy current type speed reducer 1, each permanent magnet 22 or 23 overlaps with only one pole piece 24, and the two pole pieces 24 have It will be in a non-overlapping state. Therefore, as shown in FIG. 4, the magnetic flux B flows between the magnet holding ring 21, the permanent magnet 22 or 23, the pole piece 24, and the cylindrical portion 11.
  • a magnetic circuit is formed between the rotor 10 and the permanent magnets 22 or 23.
  • an eddy current is generated in the cylindrical portion 11 of the rotor 10.
  • Lorentz force is generated with the generation of eddy current. This Lorentz force becomes the braking torque, and the braking force is generated.
  • the eddy current type speed reducer 1 generates a braking force by the eddy current generated in the rotor 10. Therefore, it is preferable that the cylindrical portion 11 of the rotor 10 generates a large amount of eddy current.
  • the eddy current flows near the inner peripheral surface of the cylindrical portion 11 of the rotor 10.
  • a plating layer is formed on the inner peripheral surface of the cylindrical portion 11 of the rotor 10 to reduce the electric resistance in the vicinity of the inner peripheral surface of the cylindrical portion 11 of the rotor 10.
  • the rotor 10 is further loaded with a thermal cycle by repeating braking and non-braking.
  • the eddy current speed reducer 1 preferably has excellent durability even when exposed to a heat cycle of 700 ° C. Therefore, it is preferable that the plating layer formed on the inner peripheral surface of the cylindrical portion 11 of the rotor 10 has excellent durability when exposed to a heat cycle of 700 ° C.
  • the rotor 10 will be described in detail.
  • FIG. 5 is an enlarged view of a cross section perpendicular to the axial direction of the cylindrical portion 11 of the rotor 10.
  • the cylindrical portion 11 of the rotor 10 is placed on the inner peripheral surface 100 in the order of the inner peripheral surface 100 side, the first layer 110, the second layer 120, the third layer 130, and the fourth layer.
  • a layer 140 and a fifth layer 150 are provided.
  • the first layer 110 to the fifth layer 150 are plating layers, respectively. Hereinafter, each plating layer will be described in detail.
  • the first layer 110 is a plating layer formed on the inner peripheral surface 100 of the cylindrical portion 11 of the rotor 10.
  • the first layer 110 is made of a nickel alloy.
  • the first layer 110 relaxes the inelastic strain caused by the difference in the coefficient of thermal expansion between the cylindrical portion 11 of the rotor 10 and the third layer 130, which is a high conductivity layer.
  • the first layer 110 further suppresses the diffusion of copper atoms contained in the third layer 130 into the cylindrical portion 11.
  • the Ni alloy of the first layer 110 is a Ni-P alloy containing P and having a balance of Ni and impurities, or a Ni-alloy containing B and having a balance of Ni and impurities. It is one of B alloys.
  • the nickel alloy contains phosphorus (P) or boron (B) as an alloying element in addition to Ni
  • the diffusion rate of copper in the nickel alloy is slower than the diffusion rate of copper in nickel (pure nickel). Therefore, the copper atoms contained in the third layer 130 are less likely to enter the first layer 110. Further, P or B contained in the first layer 110 diffuses into the second layer 120 in an environment of 700 ° C. As a result, the copper atoms contained in the third layer 130 are less likely to enter the second layer 120.
  • the nickel alloy When the nickel alloy is a Ni-P alloy, the nickel alloy contains phosphorus (P), and the balance consists of nickel (Ni) and impurities.
  • the preferable lower limit of the P content in the Ni—P alloy is 0.1% by mass, and more preferably 0.5% by mass.
  • the preferred upper limit of the P content in the Ni—P alloy is 20.0% by mass. When the P content is 20.0% by mass or less, the hardness of the first layer 110 can be suppressed, the toughness can be increased, and the peeling and cracking of the first layer 110 can be suppressed.
  • the lower limit of the P content in the Ni-P alloy is 2.0% by mass, more preferably 3.0% by mass in order to further stabilize the cargendal void.
  • a more preferable upper limit of the P content is 15.0% by mass.
  • the nickel alloy When the nickel alloy is a Ni-B alloy, the nickel alloy contains boron (B), and the rest consists of nickel (Ni) and impurities.
  • the preferable lower limit of the B content in the Ni—B alloy is 0.1% by mass, and more preferably 0.2% by mass.
  • the preferable upper limit of the B content in the Ni—B alloy is 20.0% by mass.
  • the B content is 20.0% by mass or less, the hardness of the first layer 110 can be suppressed, the toughness can be increased, and peeling and cracking of the first layer 110 can be suppressed.
  • a further preferable lower limit of the B content in the Ni-B alloy for further stabilizing the cargendal void is 1.0% by mass, more preferably 2.0% by mass, still more preferably 5.0% by mass. %.
  • a more preferable upper limit of the B content is 18.0% by mass, and even more preferably 15.0% by mass.
  • the thickness of the first layer 110 is preferably 2 to 20 ⁇ m.
  • the lower limit of the thickness of the first layer 110 is 2 ⁇ m or more, the inelastic strain caused by the difference in the coefficient of thermal expansion between the cylindrical portion 11 and the second layer 120 can be relaxed more stably.
  • the thickness of the first layer 110 is 20 ⁇ m or less, defects and cracks that may occur in the first layer 110 can be suppressed more stably.
  • the lower limit of the thickness of the first layer 110 is more preferably 5 ⁇ m, still more preferably 8 ⁇ m.
  • the upper limit of the thickness of the first layer 110 is more preferably 15 ⁇ m, still more preferably 12 ⁇ m.
  • the second layer 120 is a plating layer laminated on the first layer 110.
  • the second layer 120 is made of nickel.
  • the passive film formed on the surface of the first layer 110 can be removed, and the adhesion between the first layer 110 and the second layer 120 can be enhanced. Further, almost no passive film is formed on the surface of the second layer 120.
  • P or B contained in the first layer 110 diffuses into the second layer 120.
  • the copper atoms contained in the third layer 130 are less likely to enter the second layer 120. This makes it possible to improve the adhesion between the second layer 120 and the third layer 130 when exposed to a heat cycle of 700 ° C.
  • the term "consisting of nickel" includes the case where impurities are contained. That is, the second layer 120 may be a plating layer made of nickel and impurities.
  • the thickness of the second layer 120 is 0.1 to 5.0 ⁇ m.
  • the passive coating on the first layer 110 can be more sufficiently removed.
  • the thickness of the second layer 120 is 5.0 ⁇ m or less, alloying elements such as P and B are likely to diffuse from the first layer 110, and the diffusion rate of copper in the second layer 120 is likely to decrease. Therefore, if the thickness of the second layer 120 is 5.0 ⁇ m or less, the car due to mutual diffusion between nickel in the second layer 120 and copper in the third layer 130 even when used for a long time Gendal voids can be suppressed more stably.
  • the lower limit of the thickness of the second layer 120 is more preferably 0.2 ⁇ m, still more preferably 0.3 ⁇ m.
  • the upper limit of the thickness of the second layer 120 is more preferably 4.5 ⁇ m, still more preferably 4.0 ⁇ m.
  • the third layer 130 is a plating layer laminated on the second layer 120.
  • the third layer 130 is made of copper or a copper alloy. Both copper and copper alloys have low electrical resistance and high conductivity.
  • the third layer 130 having a small electric resistance, the amount of eddy current generated during braking of the eddy current type speed reducer 1 is increased. As a result, the braking force of the eddy current type speed reducer 1 is increased.
  • the third layer 130 is not particularly limited as long as it is copper or a copper alloy.
  • the copper alloy is not particularly limited as long as it is an alloy containing 80% by mass or more of copper.
  • the third layer 130 is preferably a plating layer made of copper.
  • the term "composed of copper or copper alloy" includes the case where impurities are contained. That is, the third layer 130 may be a plating layer made of copper and impurities, or may be a plating layer made of a copper alloy and impurities.
  • the thickness of the third layer 130 is preferably 90 to 300 ⁇ m. When the thickness of the third layer 130 is 90 ⁇ m or more, high conductivity can be stably ensured. Even if the thickness of the third layer 130 is thicker than 300 ⁇ m, the conductive performance is saturated.
  • the lower limit of the thickness of the third layer 130 is more preferably 100 ⁇ m, still more preferably 120 ⁇ m.
  • the upper limit of the thickness of the third layer 130 is more preferably 280 ⁇ m, still more preferably 250 ⁇ m.
  • the fourth layer 140 is a plating layer laminated on the third layer 130.
  • the fourth layer 140 is made of a nickel alloy.
  • the fourth layer 140 is arranged between the third layer 130 and the fifth layer 150.
  • the fourth layer 140 suppresses the thermal diffusion of copper atoms from the third layer 130 and the thermal diffusion of nickel atoms from the fifth layer 150.
  • the fourth layer 140 is made of a nickel alloy.
  • the nickel alloy is not particularly limited as long as it is an alloy containing 50% by mass or more of nickel.
  • the nickel alloy is selected from, for example, the group consisting of Ni-W alloys, Ni-Fe alloys, Ni-B alloys, Ni-Co alloys, Ni-P alloys and Ni-P-B alloys.
  • the term "composed of nickel alloy" includes the case where impurities are contained. That is, the fourth layer 140 may be a plating layer made of a nickel alloy and impurities. Further, the nickel alloy may contain a plurality of alloying elements.
  • the nickel alloy contains at least one selected from the group consisting of tungsten (W), iron (Fe), boron (B), cobalt (Co) and phosphorus (P), and the balance is from nickel and impurities. It may be a plating layer.
  • the diffusion rate of copper in the nickel alloy containing these alloying elements is Slow compared to the diffusion rate of copper in nickel. Therefore, the copper atoms contained in the third layer 130 are less likely to invade the fourth layer 140.
  • the nickel alloy When the nickel alloy is a Ni-W alloy, the nickel alloy contains tungsten (W), and the rest consists of nickel (Ni) and impurities.
  • W tungsten
  • the W content is less than 1-50% by mass.
  • the W content is 1% by mass or more, the diffusion suppressing effect of copper can be enhanced.
  • the W content is less than 50% by mass, the hardness of the fourth layer 140 can be suppressed, and peeling and cracking can be suppressed.
  • the lower limit of the W content is more preferably 10% by mass.
  • the upper limit of the W content is more preferably 40% by mass.
  • the nickel alloy When the nickel alloy is a Ni-Fe alloy, the nickel alloy contains iron (Fe), and the rest consists of nickel (Ni) and impurities.
  • the Fe content is 1 to 15% by mass.
  • the Fe content is 1% by mass or more, the diffusion suppressing effect of copper can be enhanced.
  • the Fe content is 15% by mass or less, it is possible to prevent the coefficient of thermal expansion from becoming excessively small. As a result, the adhesion of the fourth layer 140 when subjected to a heat cycle can be improved.
  • the lower limit of the Fe content is more preferably 3% by mass.
  • the upper limit of the Fe content is more preferably 12% by mass.
  • the nickel alloy is a Ni-B alloy
  • the nickel alloy contains boron (B), and the rest consists of nickel (Ni) and impurities.
  • the content of B is 1 to 20% by mass.
  • the content of B is 1% by mass or more, the diffusion suppressing effect of copper can be enhanced, and the cargendal void can be suppressed more stably.
  • the content of B is 20% by mass or less, the hardness of the fourth layer 140 can be suppressed, the toughness can be increased, and the peeling and cracking of the fourth layer 140 can be suppressed.
  • the lower limit of the content of B is more preferably 2% by mass, still more preferably 5% by mass.
  • the upper limit of the content of B is more preferably 18% by mass, still more preferably 15% by mass.
  • the nickel alloy When the nickel alloy is a Ni-Co alloy, the nickel alloy contains cobalt (Co), and the rest consists of nickel (Ni) and impurities.
  • the Co content is less than 1-50% by weight.
  • the Co content is 1% by mass or more, the diffusion suppressing effect of copper can be enhanced.
  • the Co content is less than 50% by mass, the hardness of the fourth layer 140 can be suppressed, and peeling and cracking of the fourth layer 140 can be suppressed.
  • the lower limit of the Co content is more preferably 10% by mass.
  • the upper limit of the Co content is more preferably 40% by mass.
  • the nickel alloy When the nickel alloy is a Ni-P alloy, the nickel alloy contains phosphorus (P), and the rest consists of nickel (Ni) and impurities.
  • the content of P is 1 to 20% by mass.
  • the content of P is 1% by mass or more, the diffusion suppressing effect of copper can be enhanced.
  • the P content is 20% by mass or less, the hardness of the fourth layer 140 can be suppressed, and peeling and cracking can be suppressed.
  • the lower limit of the content of P is more preferably 2% by mass.
  • the upper limit of the content of P is more preferably 14% by mass.
  • the total content of the alloying elements (W, Fe, B, Co and P) is 1 to less than 50% by mass, the W content is less than 50% by mass, and the Fe content is 15% by mass or less.
  • B content is 20% by mass or less, Co content is less than 50% by mass, and P content is 20% by mass or less.
  • the upper limit of the total content of the alloying elements (W, Fe, B, Co and P) is more preferably 40% by mass.
  • the thickness of the fourth layer 140 is preferably 5 to 20 ⁇ m.
  • the thickness of the fourth layer 140 is 5 ⁇ m or more, the thermal diffusion of copper atoms from the third layer 130 and the thermal diffusion of nickel atoms from the fifth layer 150 can be suppressed more stably.
  • the thickness of the fourth layer 140 is 20 ⁇ m or less, cracks caused by strain caused by the difference in thermal expansion coefficient between the third layer 130 and the fourth layer 140 can be suppressed more stably.
  • the lower limit of the thickness of the fourth layer 140 is more preferably 8 ⁇ m, still more preferably 10 ⁇ m.
  • the upper limit of the thickness of the fourth layer 140 is more preferably 15 ⁇ m, still more preferably 12 ⁇ m.
  • the fifth layer 150 is a plating layer laminated on the fourth layer 140.
  • the fifth layer 150 is made of nickel.
  • Nickel has excellent oxidation resistance in the temperature range of 600 to 700 ° C.
  • Nickel is also soft and ductile. Therefore, if the fifth layer 150 is a layer made of nickel, it is possible to suppress the occurrence of cracks in the entire plating layer even when it receives a thermal cycle or a thermal shock. As a result, it acts to prevent oxidation of the third layer 130, which is a high conductivity layer.
  • the term "consisting of nickel" includes the case where impurities are contained. That is, the fifth layer 150 may be a plating layer made of nickel and impurities.
  • the thickness of the fifth layer 150 is preferably 20 to 150 ⁇ m.
  • the thickness of the fifth layer 150 is 20 ⁇ m or more, the exposure of the plating layer under the fifth layer 150 can be suppressed more stably. Even if the thickness of the fifth layer 150 exceeds 100 ⁇ m, the obtained effect does not change.
  • the lower limit of the thickness of the fifth layer 150 is more preferably 30 ⁇ m, still more preferably 40 ⁇ m.
  • the upper limit of the thickness of the fifth layer 150 is more preferably 140 ⁇ m, still more preferably 130 ⁇ m.
  • the eddy current type speed reducer 1 of the present disclosure may further include another plating layer on the inner peripheral surface of the cylindrical portion 11 of the rotor 10.
  • nickel strike plating may be further performed between the fourth layer 140 and the fifth layer 150.
  • adhesion between the fourth layer 140 and the fifth layer 150 can be further improved.
  • composition of each plating layer is measured using, for example, WDX (Wavelength Dispersive X-ray; wavelength dispersive X-ray), SEM (scanning electron microscope), and EDX (Energy Dispersive X-ray).
  • WDX Widelength Dispersive X-ray; wavelength dispersive X-ray
  • SEM scanning electron microscope
  • EDX Electronic Datapersive X-ray
  • a test piece having a cross section perpendicular to the axial direction of the cylindrical portion 11 of the rotor 10 and including a plating layer is cut out, embedded in a resin, and polished.
  • Each plating layer is specified by observing the cross section perpendicular to the axial direction of the cylindrical portion 11 of each plating layer using SEM.
  • the elemental composition is analyzed using WDX or EDX for the cross section of each of the identified plating layers. If it is the second layer 120 and the fifth layer 150, nickel is specified. If it is the third layer 130, copper is specified. In the case of the first layer 110 and the fourth layer 140, the ratio (mass%) of the alloying elements (for example, W, Fe, B, Co or P) is 100% by mass with the whole detected elements (Ni and alloying elements) as 100% by mass. Is calculated.
  • the alloying elements for example, W, Fe, B, Co or P
  • the thickness of each plating layer is measured by the following method. Specifically, a test piece having a cross section perpendicular to the axial direction of the cylindrical portion 11 of the rotor 10 and including a plating layer is cut out, embedded in a resin, and polished. Each plating layer is identified by observing the cross section perpendicular to the axial direction of the cylindrical portion 11 of each plating layer using an optical microscope. Measure the thickness of each identified plating layer. The thickness of the plating layer is the shortest distance in the radial direction of the cylindrical portion 11 in each plating layer. The thickness of each plating layer can also be measured with a film thickness meter.
  • a film thickness meter of ultrasonic type, electromagnetic type, eddy current type, etc. is pressed against the inner peripheral surface 100 (surface of each plating layer) of the rotor 10 after forming each plating layer, and each plating layer. Measure the thickness of.
  • the manufacturing method of the eddy current type speed reducer 1 of the present disclosure includes a cylindrical part forming step of molding the cylindrical part 11 of the rotor 10 of the eddy current type speed reducer 1 and a plating step of forming a plating layer on the formed cylindrical part 11.
  • a rotor molding step of molding the rotor 10 using the cylindrical portion 11 on which the plating layer is formed, and a step of assembling the eddy current type speed reducer 1 using the molded rotor 10 are provided.
  • each step will be described.
  • the cylindrical portion 11 of the rotor 10 of the eddy current type speed reducer 1 is formed by a well-known method.
  • ingots are manufactured by the ingot method using molten steel.
  • bloom or billet may be produced by a continuous casting method using molten steel.
  • the manufactured billets are subjected to well-known hot forging, and further quenching and tempering treatments are carried out.
  • the cooling fins 11F are formed by machining the outer peripheral surface of the intermediate product after tempering. Machining only needs to be done by a well-known method. By the above steps, the cylindrical portion 11 is formed.
  • a plating layer is formed on the formed cylindrical portion 11. An example of a method for forming each plating layer will be described.
  • the first layer 110 is formed on the inner peripheral surface 100 of the cylindrical portion 11.
  • the first layer 110 is formed by a wet electroless plating treatment or an electroplating treatment.
  • the plating solution contains nickel ions and alloying element ions.
  • the plating solution contains, for example, nickel sulfate: 15 to 80 g / L and sodium borohydride: 0.2 to 2.0 g / L.
  • a commercially available Ni-B plating solution can be used as the plating solution.
  • the Ni-B alloy plating may be formed by electroless plating. In that case, the conditions for electroless plating are, for example, temperature: 60 to 100 ° C. and pH: 12 to 14. The conditions for electroless plating can be set as appropriate.
  • the plating solution contains, for example, nickel sulfate: 15 to 150 g / L and sodium phosphite: 5 to 130 g / L.
  • a commercially available Ni-P plating solution can be used as the plating solution.
  • the Ni-P alloy plating may be formed by electroless plating. In that case, the conditions for electroless plating are, for example, temperature: 30 to 100 ° C. and pH: 4 to 11. The conditions for electroless plating can be set as appropriate.
  • the second layer 120 is formed on the first layer 110.
  • the second layer 120 can be formed by a wet electroplating process.
  • the plating solution contains nickel ions.
  • a wood bath can be used as the plating solution.
  • nickel chloride 150-320 g / L is contained.
  • the conditions for electroplating are, for example, current density: 1 to 15 A / dm 2 , temperature: 10 to 40 ° C., and pH: 1 to 2. Other conditions for electroplating can be set as appropriate.
  • the third layer 130 is formed on the second layer 120.
  • the third layer 130 can be formed by a wet electroplating treatment.
  • As the plating solution a commercially available cyan-based copper plating bath, pyrophosphate-based copper plating bath, sulfuric acid-based copper plating bath, chloride-based copper plating bath, or the like can be used.
  • the plating bath further contains alloying elements.
  • the plating solution contains cuprous cyanide: 15 to 100 g / L.
  • the conditions for electroplating are, for example, current density: 1 to 8 A / dm 2 , temperature: 40 to 70 ° C., and pH: 8 to 13.
  • the sulfuric acid-based copper plating bath for example, copper sulfate: 40 to 300 g / L is contained.
  • the conditions for electroplating are, for example, a current density of 0.5 to 15 A / dm 2 , a temperature of 15 to 60 ° C., and a pH of less than 1. Other conditions for electroplating can be set as appropriate.
  • the fourth layer 140 is formed on the third layer 130.
  • the fourth layer 140 can be formed by a wet electroless plating treatment or an electrolytic plating treatment.
  • the plating solution contains nickel ions and ions of alloying elements. The conditions of the plating process can be set as appropriate.
  • the fourth layer 140 can be manufactured by the same method as that of the first layer 110.
  • the fifth layer 150 is formed on the fourth layer 140.
  • the fifth layer 150 can be formed by a wet electroplating treatment.
  • the plating solution contains nickel ions.
  • a commercially available watt bath, wood bath, chloride-based nickel plating bath, sulfamic acid-based nickel plating bath, or the like can be used.
  • nickel sulfate: 150 to 350 g / L and nickel chloride: 30 to 70 g / L are contained.
  • the conditions for electroplating are, for example, current density: 1 to 12 A / dm 2 , temperature: 35 to 80 ° C., and pH: 3 to 5.
  • nickel chloride 150-320 g / L is contained in the wood bath.
  • the conditions for electroplating are, for example, current density: 1 to 15 A / dm 2 , temperature: 10 to 40 ° C., and pH: 1 to 2.
  • nickel sulfamate 300 to 600 g / L is contained in the sulfamic acid-based nickel plating bath.
  • the conditions for electroplating are, for example, current density: 1 to 30 A / dm 2 , temperature: 35 to 70 ° C., and pH: 3 to 5.
  • the conditions for electroplating can be set as appropriate.
  • each plating layer is formed on the inner peripheral surface 100 of the cylindrical portion 11 to manufacture the cylindrical portion 11.
  • the manufactured cylindrical portion 11 and the prepared arm portion 12 and wheel portion 13 are connected by welding to manufacture the rotor 10.
  • Welding can be done by a well-known method.
  • the rotor 10 is manufactured by the above steps. Further, the manufactured rotor 10 and the prepared stator 20 are used to assemble the eddy current speed reducer 1.
  • the eddy current type speed reducer 1 of the present disclosure can be manufactured by the above manufacturing method.
  • the manufacturing method of the eddy current type speed reducer 1 of the present disclosure is not limited to the above manufacturing method.
  • the manufacturing method of the eddy current type speed reducer 1 of the present disclosure may be a manufacturing method other than the above manufacturing method as long as the eddy current type speed reducing device 1 having the above configuration can be manufactured.
  • the above manufacturing method is a suitable example for manufacturing the eddy current type speed reducer 1 of the present disclosure.
  • the type (mass%) column indicates the type of alloy plating formed and the content of alloying elements.
  • "Ni-3.0% P” means that the first layer of test number 1 is an alloy plating layer containing 3.0% by mass of phosphorus and the balance is nickel and impurities. It shows that it was.
  • the first layer was formed under the conditions shown in Table 1 using a plating bath containing nickel and each alloying element.
  • the temperature of the plating bath was 90 ° C.
  • the second layer was formed using a wood bath in which hydrochloric acid was added to nickel chloride.
  • the temperature of the plating bath was 30 ° C.
  • the plating thickness was adjusted by setting the current value to 7 to 8 A / dm 2 and changing the processing time between 3 and 25 minutes.
  • the third layer was formed by electroplating using a cyanide copper plating bath or a copper sulfate plating bath.
  • the temperature of the cyan-based copper plating bath was 50 ° C.
  • the temperature of the copper sulfate plating bath was 40 ° C.
  • the fourth layer was formed under the conditions shown in Table 1 using a plating bath containing nickel and each alloying element.
  • the fifth layer was formed by electroplating using a watt bath.
  • the temperature of the plating solution was 50 ° C.
  • the thickness of each plating layer was measured using a film thickness meter after each plating layer was formed.
  • the cylindrical portions of the rotors of test numbers 1 to 9 and test numbers 11 to 13 had an appropriate plating layer on the inner peripheral surface. Specifically, a second layer made of nickel was provided between the first layer made of Ni-P alloy or Ni-B alloy and the third layer made of copper or copper alloy. Therefore, in the plating layers of Test Nos. 1 to 9 and Test Nos. 11 to 13 after the repeated braking test, peeling did not occur between the second layer and the third layer. That is, the eddy current speed reducers of Test Nos. 1 to 9 and Test Nos. 11 to 13 showed excellent durability when exposed to a heat cycle of 700 ° C.
  • Test numbers 1 to 9 which were plating layers selected from the group consisting of a Ni-B alloy containing Ni and impurities as the balance, are the second layer and the third layer in the plating layer after the repeated braking test. In the meantime, the peeling due to the void did not occur, and the void itself did not occur.
  • Test No. 11 in which the P content of the first layer was 0.5% by mass and Test No. 13 in which the P content of the first layer was 0.2% by mass repeated braking was performed.
  • voids were generated between the second layer and the third layer. That is, compared to the eddy current speed reducers of test numbers 11 and 13, the eddy current speed reducers of test numbers 1 to 9 have even better durability when exposed to a thermal cycle of 700 ° C. Showed sex.
  • test numbers 1 to 9 in which the thickness of the second layer was 0.1 to 5.0 ⁇ m are between the second layer and the third layer in the plating layer after the repeated braking test.
  • the peeling due to the void did not occur, and the void itself did not occur. That is, the eddy current speed reducers of test numbers 1 to 9 showed even better durability when exposed to a heat cycle of 700 ° C., as compared with the eddy current speed reducer of test number 12. ..
  • the eddy current type speed reducer of test number 10 did not have a second layer made of nickel between the first layer and the third layer. Therefore, in the plating layer after the repeated braking test, both voids and peeling due to voids occurred between the second layer and the third layer. That is, the eddy current speed reducer of test number 10 had low durability when exposed to a heat cycle of 700 ° C.
  • the eddy current type speed reducer of test number 14 was a Ni—Fe alloy in which the composition of the first layer contained 10% by mass of Fe and the balance was Ni and impurities. Therefore, in the plating layer after the repeated braking test, both voids and peeling due to voids occurred between the second layer and the third layer. That is, the eddy current speed reducer of test number 14 had low durability when exposed to a heat cycle of 700 ° C.

Abstract

700℃の熱サイクルに曝された場合であっても、優れた耐久性を有する渦電流式減速装置を提供する。本開示の渦電流式減速装置は、円筒体と円筒体の外周面上に配置される複数の磁石とを備えるステータと、円筒体を収容する円筒部を備えるロータとを備え、ロータの円筒部の内周面上に、内周面側から順に、Pを含有し残部がNi及び不純物からなるNi合金であるNi-P合金、又は、Bを含有し残部がNi及び不純物からなるNi合金であるNi-B合金からなる第一層と、ニッケルからなる第二層と、銅又は銅合金からなる第三層と、ニッケル合金からなる第四層と、ニッケルからなる第五層とを備える。

Description

渦電流式減速装置
 本開示は、渦電流式減速装置に関する。
 バスやトラック等の大型自動車は、フットブレーキや排気ブレーキ等の制動装置を備える。大型自動車はさらに、渦電流式減速装置を備える場合がある。渦電流式減速装置は、リターダとも呼ばれる。たとえば、急勾配の長い下り坂等を走行する場合であって、エンジンブレーキや排気ブレーキを併用しても大型自動車の走行速度を減速しにくい場合、渦電流式減速装置を作動させることにより、制動力をさらに高め、大型自動車の走行速度を有効に減速させることができる。近年、深刻化する環境問題を背景として、燃費の向上、および車両の電動化による排気量の低減が推進されており、それに伴い排気ブレーキの制動力が低下している。さらに、従来よりも積載量の大きなトラックやトレーラーへの渦電流式減速装置の搭載が進められている。そのため、より高い制動力を有する渦電流式減速装置が求められている。
 渦電流式減速装置は、電磁石を用いたタイプと、永久磁石を用いたタイプとが存在する。永久磁石を用いた渦電流式減速装置は、ロータと、ロータに収納されるステータとを備える。ロータは、円筒部(ドラム)と、プロペラシャフトにロータを固定するための円環状のホイール部と、円筒部とホイール部とをつなぐ複数のアーム部とを備える。ステータは、円筒体と、極性の異なる2種類の複数の永久磁石と、複数のポールピースとを備える。極性の異なる複数の永久磁石は、円筒体の外周面上に、円周方向に交互に配列される。ポールピースは、ロータの円筒部の内周面と、永久磁石との間に配置される。ステータのうち、複数の永久磁石が取り付けられた円筒体は、複数のポールピースとは別個独立して、円筒体の軸まわりを回転可能である。
 制動時、つまり、渦電流式減速装置を作動させる場合、ステータの永久磁石の磁束がポールピースを介してロータに到達して、永久磁石とロータの円筒部との間に磁気回路が形成される。このとき、ロータの円筒部に渦電流が発生する。渦電流の発生に伴い、ローレンツ力が発生する。このローレンツ力が制動トルクとなり、大型自動車に制動力を付与する。一方、非制動時、つまり、渦電流式減速装置の動作を停止する場合、ポールピースに対する永久磁石の相対位置をずらして、永久磁石の磁束をロータに到達しないようにする。この場合、永久磁石とロータの円筒部との間に磁気回路が形成されない。そのため、ロータの円筒部に渦電流が発生せず、制動力も発生しない。以上の動作により、渦電流式減速装置は、制動動作及び非制動動作を実行する。
 渦電流式減速装置の制動力は、制動時のロータの円筒部に発生する渦電流量に依存する。そのため、制動時にロータの円筒部に発生する渦電流量は大きい方が好ましい。制動時に発生する渦電流量を増加させるためには、ロータの円筒部の電気抵抗が低い方が好ましい。
 ロータの円筒部の内周面には、電気抵抗を下げるためにめっき皮膜が形成されることがある。これにより、渦電流式減速装置の制動力がより高まる。
 一方、渦電流式減速装置の制動時において、渦電流とともに発生するジュール発熱により、ロータは加熱される。渦電流式減速装置の制動時には、ロータは600℃を超える高温にさらされる。他方、渦電流式減速装置の非制動時には、ロータは円筒部の外周面に形成されている複数の冷却フィンにより急速に冷却(空冷)される。つまり、ロータには、制動及び非制動の繰り返しにより、熱サイクルが負荷される。ロータの円筒部の内周面に形成されるめっき皮膜には、上述の熱サイクルに耐える十分な耐久性が要求される。
 上述のとおり、近年ではより高い制動力を有する渦電流式減速装置が求められている。制動力の増大に伴い、渦電流式減速装置の制動中のロータの円筒部の内周面温度はより高温になることがある。そのため、ロータの円筒部の内周面上に設けられているめっき皮膜には、さらなる熱的耐久性の向上が望まれている。
 特開平11-308851号公報(特許文献1)、特開2005-020823号公報(特許文献2)及び特開2002-171744号公報(特許文献3)は、ロータが熱サイクルに曝された際の耐久性を向上する技術を提案する。
 特許文献1に開示された渦電流式減速装置は、ロータと、該ロータの回転面に対向させ、固定して設けた磁石とを備え、該磁石の磁束によりロータに渦電流を発生させる方式の渦電流式減速装置である。この渦電流式減速装置は、磁石の側を向いた回転面に、ニッケル系合金からなる第1層、銅または銅合金からなる第2層、ニッケル系合金からなる第3層、およびニッケルからなる第4層を順次設けたことを特徴とする。これにより、ロータの温度が650℃程度にもなる過酷な使用条件下で、表面保護層の亀裂を防止し、かつ銅または銅合金層の強磁性体円筒部からの剥離を抑制する耐久性に優れた渦電流式減速装置が得られる、と特許文献1に記載されている。
 特許文献2に開示された構造体は、構造体表面側から、ニッケル合金からなる第1層と、構造体を主に構成する部材の導電率よりも高い導電率を有する銅、銅合金、アルミニウムまたはアルミニウム合金のうち少なくとも一種を含む高導電率層を構成する第2層と、ニッケル合金からなる第3層と、ニッケル単体からなる第4層とを備える。この構造体は、第1層および第3層がリン、タングステン、ボロン、鉄、またはコバルトから選ばれる少なくとも一種かつ第1層および第3層が同一種の合金成分からなり、当該合金成分の質量%において、合金成分の第1層の含有量が第3層の含有量より少ない導電性皮膜を少なくとも一部に有することを特徴とする。これにより、高温また高負荷の熱サイクルに晒される環境においても、より高導電性の特性を維持することができ、従前より更に高温耐久性および耐熱サイクル性に優れた構造体が得られる、と特許文献2に記載されている。
 特許文献3に開示された渦電流式減速装置は、強磁性材料からなる回転体を有し回転軸に連結されたロータと、回転体の内壁面と所定間隔をもって対向する位置に設置された複数個の磁石とを備え、磁石の磁束によりロータに渦電流を発生させて減速する方式の渦電流式減速装置である。この渦電流式減速装置は、回転体の磁石と対向する面の表面粗さが十点平均粗さRzで10μm以下であり、その上に銅または銅合金からなる第一層、ニッケル合金からなる第二層、ニッケルからなる第三層が順次設けられていることを特徴とする。これにより、渦電流式減速装置を長期間使用した場合においても、ロータの回転体に設けた表面処理層が剥離、離脱することがない、耐久性に優れた渦電流式減速装置が得られる、と特許文献3に記載されている。
特開平11-308851号公報 特開2005-020823号公報 特開2002-171744号公報
 たとえば上述の特許文献1~特許文献3に開示された技術により、ロータが650℃の熱サイクルに曝された際の耐久性を向上でき、高温耐久性に優れた渦電流式減速装置が得られる。
 しかしながら、近年、渦電流式減速装置の使用環境はますます過酷化している。そのため、さらに高温の熱サイクルに曝された場合であっても、耐久性を有する渦電流式減速装置が求められている。
 本開示の目的は、700℃の熱サイクルに曝された場合であっても、優れた耐久性を有する渦電流式減速装置を提供することである。
 本開示の渦電流式減速装置は、
 円筒体と前記円筒体の外周面上に配置される複数の磁石とを備えるステータと、
 前記円筒体を収容する円筒部を備えるロータとを備え、
 前記ロータの前記円筒部の内周面上に、前記内周面側から順に、
 Pを含有し残部がNi及び不純物からなるNi合金であるNi-P合金、又は、Bを含有し残部がNi及び不純物からなるNi合金であるNi-B合金からなる第一層と、
 ニッケルからなる第二層と、
 銅又は銅合金からなる第三層と、
 ニッケル合金からなる第四層と、
 ニッケルからなる第五層とを備える。
 本開示による渦電流式減速装置は、700℃の熱サイクルに曝された場合であっても、優れた耐久性を有する。
図1は、渦電流式減速装置の正面図である。 図2は、図1に示す渦電流式減速装置をプロペラシャフトに固定した場合の、渦電流式減速装置の、プロペラシャフトの軸方向の断面図である。 図3は、非制動時の渦電流式減速装置の軸方向に垂直な断面図(径方向の断面図)である。 図4は、制動時の渦電流式減速装置の軸方向に垂直な断面図(径方向の断面図)である。 図5は、ロータの円筒部の軸方向に垂直な断面の拡大図である。
 本発明者らは、700℃の熱サイクルに曝された場合の渦電流式減速装置の耐久性について調査及び検討を行った。
 ロータの円筒部の内周面に形成されるめっき皮膜は、電気抵抗が低いことが好ましい。銅を含むめっき層であれば、電気抵抗を下げることができ、渦電流式減速装置の制動力を高めることができる。以下、銅を含むめっき層を「銅層」とも呼ぶ。
 上述のとおり、ロータの内表面は600℃を超える熱サイクルに曝される。常温の範囲であれば、熱サイクルに曝されても、銅層の密着性が低下することは少ない。しかしながら、600℃を超える過酷な熱サイクルに曝された場合、銅層の密着性が低下する場合がある。銅層の密着性を高めることができれば、渦電流式減速装置の熱的耐久性が高まる。
 ところで、従前の研究により、二つの異なる種類の金属を密着させて加熱すると、金属原子がお互いの金属中に熱拡散して侵入し、二つの金属の境界面が移動する、カーゲンダル現象が知られている。カーゲンダル現象は、密着した二つの金属の拡散速度の違いによって発生する。密着した二つの金属の拡散速度の違いが大きいと、金属原子の拡散に起因してボイドが発生する。これを、カーゲンダルボイドという。銅層と他のめっき層との界面、又は、銅層とロータの円筒部との界面にカーゲンダルボイドが発生すれば、銅層の密着性が低下し、渦電流式減速装置の熱的耐久性が低下する。
 上述の特許文献2では、ロータの円筒部と銅層との間に、ニッケル合金からなるめっき層を形成することでカーゲンダルボイドを抑制することについて記載がある。特許文献2の段落[0015]には、ニッケル合金からなる第1層及び第3層について、拡散により生じるカーケンダルボイドの発生を無くす必要があり、拡散防止の効果を大きくするために合金成分を高濃度とすれば、カーゲンダルボイドの発生がなくなり、被膜の剥離が抑制できることが記載されている。
 また、特許文献3にも、ニッケル合金からなるめっき層を形成することでカーゲンダルボイドを抑制することについて記載がある。特許文献3では、銅層である第一層と、ニッケル層である第三層との間に、ニッケル合金からなる第二層を形成する。特許文献3の段落[0036]には、ニッケル合金からなる第二層について、第一層の銅又は銅合金と第三層のニッケルとの拡散によって生じる拡散ボイドの生成が抑制されると記載がある。また、特許文献3の段落[0037]には、合金元素としてタングステン、鉄、ボロン、コバルト、リンなどを含有するニッケル合金では、銅の拡散速度がニッケルに比べて小さく、銅原子をニッケル又は鉄格子中に進入させにくくすることについて記載がある。
 また、特許文献1の段落[0017]では、銅層と円筒部との緩衝材料としては、ニッケルを用いた場合、長時間使用すると、銅からニッケルへの拡散が起こるため、銅とニッケルの界面の銅側で空孔(カーケンダルボイド)が生じ、そこから銅を含むめっき層が剥離、脱落する可能性がある点について指摘されている。また、特許文献1の段落[0022]には、銅層と円筒部との間の緩衝材としてニッケル系合金層を形成することで、拡散防止と緩衝材の機能が満たされることについて記載がある。
 渦電流式減速装置の分野では、カーゲンダルボイドを抑制することによる耐久性の向上が重要な課題であった。そのため、従前の研究では、カーゲンダルボイドを抑制するために、ロータの円筒部と、銅層との間に、ニッケル合金からなるめっき層(以下、ニッケル合金層とも呼ぶ)が形成される。さらに、従前の研究では、ニッケルと比較して、ニッケル合金の方がカーゲンダルボイドを抑制する効果が高いことが示されている。
 上述の特許文献1~3では、ロータの円筒部の内周面上に、内周面側から順に、ニッケル合金層と銅層とを形成した渦電流式減速装置は、カーゲンダルボイドが抑制され、650℃の熱サイクルに曝された場合であっても熱的耐久性が高いことが示されている。
 しかしながら、本発明者らの検討によれば、ロータの円筒部の内周面上に、内周面側から順に、ニッケル合金層と、銅層とを形成した渦電流式減速装置であっても、より過酷な熱的環境、特に、700℃の熱サイクルに曝された場合、銅層の剥離が生じ得ることが分かった。本発明者らはこの原因を詳細に調査し、その結果、従来の知見とは異なる、以下の知見を得た。
 ニッケル合金層の上には、不働態被膜が形成されている。ニッケル合金層の上に銅層を形成した場合、この不働態被膜を介して銅層が形成される。700℃の熱サイクルに曝された場合、この不働態被膜により、ニッケル合金層と銅層との界面で剥離が生じる可能性がある。
 本発明者らは、ニッケル合金層上の不働態被膜に起因する、銅層の剥離を抑制する方法を検討した。その結果、以下の知見を得た。ニッケル合金層の上に、ニッケルからなるめっき層(以下、ニッケル層とも呼ぶ)を形成すれば、ニッケル合金層上の不働態被膜が除去される。さらに、ニッケル層上には不働態被膜が形成され難い。そのため、本発明者らは、ニッケル合金層と、銅層との間に、さらに、ニッケル層を形成すれば、不働態被膜に起因する銅層の剥離を抑制できると考えた。この場合、700℃の熱サイクルに曝された場合の銅層の密着性を高めることができ、渦電流式減速装置の熱的耐久性をさらに高めることができる。
 本発明者らはさらに、次の知見を得た。Ni-P合金又はNi-B合金からなるニッケル合金層上にニッケル層を形成すれば、700℃の環境下において、Ni-P合金又はNi-B合金からなるニッケル合金層からニッケル層に合金成分(P又はB)が拡散する。ニッケル層中に侵入及び拡散したP及びBは、ニッケル層と銅層との界面に到達し、これによりニッケル層中への銅の拡散速度が低下する。したがって、Ni-P合金又はNi-B合金からなるニッケル合金層と銅層との間に、さらに、ニッケル層を形成しても、カーゲンダルボイドが抑制される。
 この現象は、原子半径が比較的小さいリン(P)又はボロン(B)特有の現象である。P及びBは原子半径が比較的小さいため、結晶格子中に侵入しながらニッケル層中を拡散する(侵入型)。そのため、P及びBは、ニッケル層中の拡散速度が大きい。P及びBはニッケル層中の拡散速度が大きいため、ニッケル層と銅層との界面に速やかに到達し、ニッケル層中への銅の拡散を抑制できる。一方で、たとえば、鉄(Fe)、コバルト(Co)及びタングステン(W)等の原子半径が比較的大きい元素の場合、結晶格子を形成するNi元素と置換しながら拡散する(置換型)。そのため、たとえば、Fe、Co及びWは、ニッケル層中の拡散速度が小さい。Fe、Co及びWはニッケル層中の拡散速度が小さいため、ニッケル層と銅層との界面に速やかに到達できず、ニッケル層中への銅の拡散を抑制できない。
 以上より、銅層と接触するめっき層としては、ニッケル層よりもニッケル合金層が好ましいとする従前の研究結果とは異なり、本発明者らは、Ni-P合金又はNi-B合金からなるニッケル合金層と、銅層との間に、さらに、ニッケル層を形成することで、700℃の熱サイクルを受けた場合の銅層の密着性を高めることができることを知見した。
 以上の知見に基づく本開示の渦電流式減速装置は、次の構成を備える。
 [1]の渦電流式減速装置は、
 円筒体と前記円筒体の外周面上に配置される複数の磁石とを備えるステータと、
 前記円筒体を収容する円筒部を備えるロータとを備え、
 前記ロータの前記円筒部の内周面上に、前記内周面側から順に、
 Pを含有し残部がNi及び不純物からなるNi合金であるNi-P合金、又は、Bを含有し残部がNi及び不純物からなるNi合金であるNi-B合金からなる第一層と、
 ニッケルからなる第二層と、
 銅又は銅合金からなる第三層と、
 ニッケル合金からなる第四層と、
 ニッケルからなる第五層とを備える。
 本開示の渦電流式減速装置は、ロータの円筒部の内周面上において、Ni-P合金又はNi-B合金からなる第一層と銅層である第三層との間にニッケル層である第二層が形成されている。そのため、カーゲンダルボイドが抑制されるとともに、ニッケル合金層上の不働態被膜に起因する銅層の剥離が抑制され、700℃の熱サイクルに曝された場合の銅層の密着性が高まる。
 [2]の渦電流式減速装置は、
 [1]に記載の渦電流式減速装置であって、
 前記第一層が、2.0~20.0質量%のPを含有し残部がNi及び不純物からなる前記Ni-P合金、又は、1.0~20.0質量%のBを含有し残部がNi及び不純物からなる前記Ni-B合金からなる。
 この場合、カーゲンダルボイドをより安定的に抑制できる。
 [3]の渦電流式減速装置は、
 [1]又は[2]に記載の渦電流式減速装置であって、
 前記第二層の厚さが0.1~5.0μmである。
 第二層の厚さが、0.1~5.0μmであれば、第一層上の不働態被膜をより十分に除去でき、さらに、カーゲンダルボイドをより安定して抑制できる。
 以下、本開示の渦電流式減速装置について詳述する。
 [渦電流式減速装置の構成]
 図1は、渦電流式減速装置の正面図である。図1を参照して、渦電流式減速装置1は、ロータ10と、ステータ20とを備える。
 図2は、図1に示す渦電流式減速装置をプロペラシャフトに固定した場合の、渦電流式減速装置1の、プロペラシャフトの軸方向の断面図である。図2を参照して、本実施形態では、ロータ10がプロペラシャフト30に固定され、ステータ20が、図示しないトランスミッションに固定される。図1及び図2を参照して、ロータ10は、円筒部(ドラム)11と、アーム部12と、ホイール部13とを備える。円筒部11は、円筒状であり、ステータ20の外径よりも大きい内径を有する。ホイール部13は、円筒部11の内径よりも小さい外径を有する円環状の部材であり、中心部に貫通孔を有する。ホイール部13は、貫通孔にプロペラシャフト30を挿入し、プロペラシャフト30に固定される。アーム部12は、図1及び図2に示すとおり、円筒部11の端部と、ホイール部13とを繋いでいる。なお、円筒部11の外周面には、複数の冷却フィン11Fが形成されている。
 図3は、非制動時の渦電流式減速装置1の軸方向に垂直な断面図(径方向の断面図)である。図3を参照して、ステータ20は、円筒形の磁石保持リング21と、複数の永久磁石22及び23と、複数のポールピース24とを備える。永久磁石22及び永久磁石23は、磁石保持リング21の外周面上に、円周方向に交互に配列されている。ロータ10の円筒部11の内周面は、ステータ20の保持リング21の外周面上に配置された永久磁石22及び23と対向する。永久磁石22の表面のうち、ロータ10の円筒部11の内周面と対向する表面はN極である。永久磁石23の表面のうち、ロータ10の円筒部11の内周面と対向する表面はS極である。複数のポールピース24は、ステータ20の円周方向に配列されている。複数のポールピース24は、複数の永久磁石22及び23と、円筒部11の内周面との間に配列されている。
 [渦電流式減速装置1の制動及び非制動の動作について]
 図3を参照して、非制動時において、渦電流式減速装置1の径方向に見た場合、各永久磁石22又は23は、互いに隣り合う2つのポールピース24と重複している。この場合、磁束Bは図3に示すとおり、ステータ20内に流れ、具体的には、永久磁石22及び23と、ポールピース24と、磁石保持リング21との間を流れる。この場合、ロータ10と永久磁石22及び23との間には磁気回路が形成されておらず、ロータ10にローレンツ力が発生しない。そのため、制動力が発生しない。
 図4は、制動時の渦電流式減速装置1の軸方向に垂直な断面図(径方向の断面図)である。制動時において、ステータ20内の磁石保持リング21が回転して、図3と比較して、永久磁石22及び23の、ポールピース24に対する相対位置をずらす。具体的には、図4では、渦電流式減速装置1の径方向に見た場合、各永久磁石22又は23は、1つのポールピース24のみと重複しており、2つのポールピース24には重複していない状態となる。そのため、磁束Bは図4に示すとおり、磁石保持リング21、永久磁石22又は23、ポールピース24、及び、円筒部11との間を流れる。この場合、ロータ10と永久磁石22又は23との間には磁気回路が形成される。このとき、ロータ10の円筒部11に渦電流が発生する。渦電流の発生に伴い、ローレンツ力が発生する。このローレンツ力が制動トルクとなり、制動力が発生する。
 以上のとおり、渦電流式減速装置1は、ロータ10に発生する渦電流により、制動力を発生させる。したがって、ロータ10の円筒部11は渦電流の発生量が大きくなる方が好ましい。円筒部11の電気抵抗が小さいほど、渦電流の発生量が大きくなる。そのため、ロータ10の円筒部11は、電気抵抗が小さい方が好ましい。渦電流は、ロータ10の円筒部11の内周面近傍を流れる。そのため、本開示の渦電流式減速装置1では、ロータ10の円筒部11の内周面上にめっき層を形成して、ロータ10の円筒部11の内周面近傍の電気抵抗を小さくする。ロータ10にはさらに、制動及び非制動を繰り返すことにより、熱サイクルが負荷される。上述のとおり、700℃の熱サイクルに曝された場合であっても、渦電流式減速装置1は、優れた耐久性を有することが好ましい。したがって、ロータ10の円筒部11の内周面上に形成されるめっき層が、700℃の熱サイクルに曝された場合の優れた耐久性を有することが好ましい。以下、ロータ10について詳述する。
 図5は、ロータ10の円筒部11の軸方向に垂直な断面の拡大図である。図5を参照して、ロータ10の円筒部11は、内周面100上に、内周面100側から順に、第一層110と、第二層120と、第三層130と、第四層140と、第五層150とを備える。第一層110~第五層150はそれぞれ、めっき層である。以下、各めっき層について詳述する。
 [第一層について]
 第一層110は、ロータ10の円筒部11の内周面100上に形成されるめっき層である。第一層110はニッケル合金からなる。第一層110は、ロータ10の円筒部11と、高伝導率層である第三層130との熱膨張率の差によって生じる非弾性ひずみを緩和する。第一層110はさらに、第三層130に含まれる銅原子の円筒部11への拡散を抑制する。
 第一層110のNi合金は、Pを含有し、残部がNi及び不純物からなるNi合金であるNi-P合金、又は、Bを含有し、残部がNi及び不純物からなるNi合金であるNi-B合金のいずれかである。
 ニッケル合金がNiの他に合金元素としてリン(P)又はボロン(B)を含む場合、ニッケル合金中の銅の拡散速度は、ニッケル(純ニッケル)中の銅の拡散速度と比較して遅い。そのため、第三層130に含まれる銅原子が、第一層110に侵入しにくくなる。また、第一層110に含まれるP又はBは、700℃の環境下で第二層120に拡散する。これにより、第三層130に含まれる銅原子が、第二層120に侵入しにくくなる。
 ニッケル合金がNi-P合金である場合、ニッケル合金はリン(P)を含有し、残部はニッケル(Ni)及び不純物からなる。Ni-P合金中のPの含有量の好ましい下限は0.1質量%であり、さらに好ましくは0.5質量%である。Ni-P合金中のP含有量の好ましい上限は20.0質量%である。P含有量が20.0質量%以下であれば、第一層110の硬度を抑制し、靱性を高め、第一層110の剥離や割れを抑制できる。
 カーゲンダルボイドをさらに安定化させるためNi-P合金中のP含有量のさらに好ましい下限は2.0質量%であり、さらに好ましくは3.0質量%である。P含有量のさらに好ましい上限は、15.0質量%である。
 ニッケル合金がNi-B合金である場合、ニッケル合金はボロン(B)を含有し、残部はニッケル(Ni)及び不純物からなる。Ni-B合金中のBの含有量の好ましい下限は0.1質量%であり、さらに好ましくは0.2質量%である。Ni-B合金中のB含有量の好ましい上限は20.0質量%である。B含有量が20.0質量%以下であれば、第一層110の硬度を抑制し、靱性を高め、第一層110の剥離や割れを抑制できる。
 カーゲンダルボイドをさらに安定化させるためNi-B合金中のB含有量のさらに好ましい下限は1.0質量%であり、さらに好ましくは2.0質量%であり、さらに好ましくは5.0質量%である。Bの含有量のさらに好ましい上限は、18.0質量%であり、さらに好ましくは15.0質量%である。
 第一層110の厚さは、好ましくは2~20μmである。第一層110の厚さの下限が2μm以上であれば、円筒部11と第二層120との熱膨張率の差によって生じる非弾性ひずみをより安定して緩和できる。第一層110の厚さが20μm以下であれば、第一層110中に生じ得る欠陥や割れをより安定して抑制できる。第一層110の厚さの下限はより好ましくは5μm、さらに好ましくは8μmである。第一層110の厚さの上限はより好ましくは15μm、さらに好ましくは12μmである。
 [第二層について]
 第二層120は、第一層110上に積層されるめっき層である。第二層120はニッケルからなる。第二層120を形成することにより、第一層110の表面上に生成した不働態被膜を除去し、第一層110と第二層120との密着性を高めることができる。また、第二層120の表面上には不働態被膜がほとんど生成しない。さらに、700℃の環境下で、第一層110に含まれるP又はBが、第二層120に拡散する。これにより、第三層130に含まれる銅原子が、第二層120に侵入しにくくなる。これにより、700℃の熱サイクルに曝された場合の、第二層120と、第三層130との密着性を高めることができる。なお、ニッケルからなるとは、不純物を含む場合を含む。つまり、第二層120は、ニッケル及び不純物からなるめっき層であってもよい。
 好ましくは、第二層120の厚さは0.1~5.0μmである。第二層120の厚さが0.1μm以上であれば、第一層110上の不働態被膜をより十分に除去できる。第二層120の厚さが5.0μm以下であれば、第一層110からPやB等の合金元素が拡散しやすくなり、第二層120中の銅の拡散速度が低下しやすくなる。そのため、第二層120の厚さが5.0μm以下であれば、長時間使用した場合であっても、第二層120中のニッケルと、第三層130中の銅との相互拡散によるカーゲンダルボイドをより安定して抑制できる。第二層120の厚さの下限はより好ましくは0.2μm、さらに好ましくは0.3μmである。第二層120の厚さの上限はより好ましくは4.5μm、さらに好ましくは4.0μmである。
 [第三層について]
 第三層130は、第二層120上に積層されるめっき層である。第三層130は、銅又は銅合金からなる。銅、又は、銅合金は、いずれも電気抵抗が小さく、高伝導率を有する。電気抵抗が小さい第三層130を形成することにより、渦電流式減速装置1の制動時に発生する渦電流量が高まる。その結果、渦電流式減速装置1の制動力が高まる。
 第三層130は、銅又は銅合金であれば特に限定されない。銅合金は、銅を80質量%以上含む合金であれば特に限定されない。しかしながら、高伝導率層としての作用、効果、及びコストを考慮すれば、好ましくは、第三層130は銅からなるめっき層である。なお、銅又は銅合金からなるとは、不純物を含む場合を含む。つまり、第三層130は銅及び不純物からなるめっき層であってもよいし、銅合金及び不純物からなるめっき層であってもよい。
 第三層130の厚さは、好ましくは90~300μmである。第三層130の厚さが90μm以上であれば、高伝導率を安定的に確保できる。第三層130の厚さが300μmより厚くても、導電性能は飽和する。第三層130の厚さの下限はより好ましくは100μm、さらに好ましくは120μmである。第三層130の厚さの上限はより好ましくは280μm、さらに好ましくは250μmである。
 [第四層について]
 第四層140は、第三層130上に積層されるめっき層である。第四層140はニッケル合金からなる。第四層140は、第三層130と、第五層150との間に配置される。第四層140は、第三層130からの銅原子の熱拡散及び第五層150からのニッケル原子の熱拡散を抑制する。
 第四層140はニッケル合金からなる。ニッケル合金は、ニッケルを50質量%以上含む合金であれば特に限定されない。ニッケル合金はたとえば、Ni-W合金、Ni-Fe合金、Ni-B合金、Ni-Co合金、Ni-P合金及びNi-P-B合金からなる群から選択される。なお、ニッケル合金からなるとは、不純物を含む場合を含む。つまり第四層140はニッケル合金及び不純物からなるめっき層であってもよい。また、ニッケル合金は、複数の合金元素を含んでもよい。つまり、ニッケル合金は、タングステン(W)、鉄(Fe)、ボロン(B)、コバルト(Co)及びリン(P)からなる群から選択される少なくとも1種を含有し、残部はニッケル及び不純物からなるめっき層であってもよい。
 ニッケル合金が合金元素としてタングステン(W)、鉄(Fe)、ボロン(B)、コバルト(Co)又はリン(P)を含む場合、これらの合金元素を含むニッケル合金中の銅の拡散速度は、ニッケル中の銅の拡散速度と比較して遅い。そのため、第三層130に含まれる銅原子が、第四層140に侵入しにくくなる。
 ニッケル合金がNi-W合金の場合、ニッケル合金はタングステン(W)を含有し、残部はニッケル(Ni)及び不純物からなる。好ましくは、Wの含有量は1~50質量%未満である。Wの含有量が1質量%以上であれば、銅の拡散抑制効果を高めることができる。一方、Wの含有量が50質量%未満であれば、第四層140の硬度を抑制し、剥離や割れを抑制できる。Wの含有量の下限は、より好ましくは10質量%である。Wの含有量の上限は、より好ましくは40質量%である。
 ニッケル合金がNi-Fe合金の場合、ニッケル合金は鉄(Fe)を含有し、残部はニッケル(Ni)及び不純物からなる。好ましくは、Feの含有量は1~15質量%である。Feの含有量が1質量%以上であれば、銅の拡散抑制効果を高めることができる。一方、Feの含有量が15質量%以下であれば、熱膨張率が過剰に小さくなるのを抑制できる。その結果、熱サイクルを受けた場合の第四層140の密着性を高めることができる。Feの含有量の下限は、より好ましくは3質量%である。Feの含有量の上限は、より好ましくは12質量%である。
 ニッケル合金がNi-B合金の場合、ニッケル合金はボロン(B)を含有し、残部はニッケル(Ni)及び不純物からなる。好ましくは、Bの含有量は1~20質量%である。Bの含有量が1質量%以上であれば、銅の拡散抑制効果を高めることができ、カーゲンダルボイドをさらに安定して抑制できる。一方、Bの含有量が20質量%以下であれば、第四層140の硬度を抑制し、靱性を高め、第四層140の剥離や割れを抑制できる。Bの含有量の下限は、より好ましくは2質量%であり、さらに好ましくは5質量%である。Bの含有量の上限は、より好ましくは18質量%であり、さらに好ましくは15質量%である。
 ニッケル合金がNi-Co合金の場合、ニッケル合金はコバルト(Co)を含有し、残部はニッケル(Ni)及び不純物からなる。好ましくは、Coの含有量は1~50質量%未満である。Coの含有量が1質量%以上であれば、銅の拡散抑制効果を高めることができる。一方、Coの含有量が50質量%未満であれば、第四層140の硬度を抑制し、第四層140の剥離や割れを抑制できる。Coの含有量の下限は、より好ましくは10質量%である。Coの含有量の上限は、より好ましくは40質量%である。
 ニッケル合金がNi-P合金の場合、ニッケル合金はリン(P)を含有し、残部はニッケル(Ni)及び不純物からなる。好ましくは、Pの含有量は1~20質量%である。Pの含有量が1質量%以上であれば、銅の拡散抑制効果を高めることがでる。一方、Pの含有量が20質量%以下であれば、第四層140の硬度を抑制し、剥離や割れを抑制できる。Pの含有量の下限は、より好ましくは2質量%である。Pの含有量の上限は、より好ましくは14質量%である。
 ニッケル合金がタングステン(W)、鉄(Fe)、ボロン(B)、コバルト(Co)及びリン(P)からなる群から選択される2種以上を含有し、残部がニッケル及び不純物からなる合金の場合、合金元素(W,Fe、B、Co及びP)の合計含有量は1~50質量%未満であり、かつ、Wの含有量が50質量%未満、Feの含有量が15質量%以下、Bの含有量が20質量%以下、Coの含有量が50質量%未満及びPの含有量が20質量%以下である。合金元素(W,Fe、B、Co及びP)の合計含有量の上限は、より好ましくは40質量%である。
 第四層140の厚さは、好ましくは5~20μmである。第四層140の厚さが5μm以上であれば、第三層130からの銅原子の熱拡散及び第五層150からのニッケル原子の熱拡散をより安定して抑制できる。第四層140の厚さが20μm以下であれば、第三層130と第四層140との熱膨張率の差によって生じるひずみに起因する割れをより安定して抑制できる。第四層140の厚さの下限はより好ましくは8μm、さらに好ましくは10μmである。第四層140の厚さの上限はより好ましくは15μm、さらに好ましくは12μmである。
 [第五層について]
 第五層150は、第四層140上に積層されるめっき層である。第五層150はニッケルからなる。ニッケルは600~700℃の温度範囲で耐酸化性に優れている。ニッケルはさらに、軟質で延性に富んでいる。そのため、第五層150がニッケルからなる層であれば、熱サイクルや熱衝撃を受けた場合にもめっき層全体においてクラックの発生を抑制できる。その結果、高導電率層である第三層130の酸化防止に作用する。なお、ニッケルからなるとは、不純物を含む場合を含む。つまり、第五層150は、ニッケル及び不純物からなるめっき層であってもよい。
 第五層150の厚さは、好ましくは20~150μmである。第五層150の厚さが20μm以上であれば、第五層150の下のめっき層の露出をより安定して抑制できる。第五層150の厚さが100μmを超えても、得られる効果は変わらなくなる。第五層150の厚さの下限はより好ましくは30μm、さらに好ましくは40μmである。第五層150の厚さの上限はより好ましくは140μm、さらに好ましくは130μmである。
 [その他のめっき層]
 本開示の渦電流式減速装置1は、ロータ10の円筒部11の内周面上にさらに他のめっき層を備えてもよい。たとえば、第四層140と第五層150との間にさらに、ニッケルストライクめっきを実施しても良い。これにより、第四層140と、第五層150との密着性をさらに高めることができる。
 [各めっき層の組成の測定法]
 各めっき層の組成は、たとえば、WDX(Wavelength Dispersive X-ray;波長分散型X線)やSEM(走査型電子顕微鏡)及びEDX(Energy-Dispersive X-ray;エネルギー分散X線)を用いて測定する。具体的には、ロータ10の円筒部11の軸方向に垂直な断面を有し、めっき層を含む試験片を切り出し、樹脂に埋め込んで研磨する。各めっき層の円筒部11の軸方向に垂直な断面に対して、SEMを用いて観察を行い、各めっき層を特定する。さらに、特定した各めっき層の断面に対してWDXやEDXを用いて、元素組成を分析する。第二層120及び第五層150であれば、ニッケルを特定する。第三層130であれば、銅を特定する。第一層110及び第四層140であれば、検出された元素全体(Ni及び合金元素)を100質量%として、合金元素(たとえばW、Fe、B、Co又はP)の割合(質量%)を算出する。
 [各めっき層の厚さの測定方法]
 各めっき層の厚さは次の方法で測定する。具体的には、ロータ10の円筒部11の軸方向に垂直な断面を有し、めっき層を含む試験片を切り出し、樹脂に埋め込んで研磨する。各めっき層の円筒部11の軸方向に垂直な断面に対して、光学顕微鏡を用いて観察を行い、各めっき層を特定する。特定された各めっき層の厚さを測定する。めっき層の厚さは、各めっき層において、円筒部11の径方向の最短距離とする。また、各めっき層の厚さは膜厚計で測定することもできる。具体的には、超音波式、電磁式、渦電流式などの膜厚計を、各めっき層を形成した後にロータ10の内周面100(各めっき層の表面)に押し当て、各めっき層の厚さを測定する。
 [製造方法]
 本開示の渦電流式減速装置1の製造方法の一例を説明する。以降に説明する製造方法は、本開示の渦電流式減速装置1を製造するための一例である。したがって、上述の構成を有する渦電流式減速装置1は、以降に説明する製造方法以外の他の製造方法により製造されてもよい。
 本開示の渦電流式減速装置1の製造方法は、渦電流式減速装置1のロータ10の円筒部11を成形する円筒部成形工程と、成形された円筒部11にめっき層を形成するめっき工程と、めっき層が形成された円筒部11を用いてロータ10を成形するロータ成形工程と、成形されたロータ10を用いて渦電流式減速装置1を組み立てる工程とを備える。以下、各工程について説明する。
 [円筒部成形工程]
 円筒部成形工程では、周知の方法により渦電流式減速装置1のロータ10の円筒部11を成形する。たとえば、溶鋼を用いて造塊法によりインゴットを製造する。また、溶鋼を用いて連続鋳造法によりブルーム又はビレットを製造してもよい。製造されたビレットに対して、周知の熱間鍛造を行い、さらに、焼入れ及び焼戻し処理を実施する。焼戻し後の中間品の外周面を機械加工することにより、冷却フィン11Fを形成する。機械加工は周知の方法で実施すれば足りる。以上の工程により、円筒部11が成形される。
 [めっき工程]
 成形された円筒部11にめっき層を形成する。各めっき層の形成方法の一例を説明する。
 [第一層について]
 円筒部11の内周面100上に第一層110を形成する。第一層110は湿式の無電解めっき処理又は電気めっき処理により形成される。めっき液は、ニッケルイオンと合金元素のイオンとを含む。
 第一層110としてNi-B合金めっきを形成する場合、めっき液はたとえば、硫酸ニッケル:15~80g/L、水酸化ホウ素ナトリウム:0.2~2.0g/Lを含有する。めっき液は市販のNi-Bめっき液を使用できる。Ni-B合金めっきは、無電解めっき処理により形成してもよい。その場合、無電解めっきの条件はたとえば、温度:60~100℃、pH:12~14である。無電解めっきの条件は、適宜設定できる。
 第一層110としてNi-P合金めっきを形成する場合、めっき液はたとえば、硫酸ニッケル:15~150g/L、ホスフィン酸ナトリウム:5~130g/L、を含有する。めっき液は市販のNi-Pめっき液を使用できる。Ni-P合金めっきは、無電解めっき処理により形成してもよい。その場合、無電解めっきの条件はたとえば、温度:30~100℃、pH:4~11である。無電解めっきの条件は、適宜設定できる。
 [第二層について]
 第一層110上に第二層120を形成する。第二層120は、湿式の電気めっき処理により形成できる。めっき液はニッケルイオンを含む。めっき液はたとえば、ウッド浴を使用できる。ウッド浴では、塩化ニッケル:150~320g/Lを含有する。電気めっきの条件はたとえば、電流密度:1~15A/dm、温度:10~40℃、pH:1~2である。電気めっきのその他の条件は、適宜設定できる。
 [第三層について]
 第二層120上に第三層130を形成する。第三層130は、湿式の電気めっき処理により形成できる。めっき液は市販のシアン系銅めっき浴、ピロリン酸系銅めっき浴、硫酸系銅めっき浴及び塩化物系銅めっき浴等が使用できる。銅合金の第二層120を形成する場合は、めっき浴はさらに合金元素を含む。めっき液はたとえば,シアン系銅めっき浴では、シアン化第一銅:15~100g/Lを含有する。電気めっきの条件はたとえば、電流密度:1~8A/dm、温度:40~70℃、pH:8~13である。硫酸系銅めっき浴ではたとえば、硫酸銅:40~300g/Lを含有する。電気めっきの条件はたとえば、電流密度:0.5~15A/dm、温度:15~60℃、pH:1未満である。電気めっきのその他の条件は、適宜設定できる。
 [第四層について]
 第三層130上に第四層140を形成する。第四層140は、湿式の無電解めっき処理又は電解めっき処理によって形成できる。めっき液は、ニッケルイオンと合金元素のイオンとを含有する。めっき処理の条件は適宜設定できる。第四層140は、第一層110と同様の方法により製造できる。
 [第五層について]
 第四層140上に第五層150を形成する。第五層150は、湿式の電解めっき処理によって形成できる。めっき液は、ニッケルイオンを含有する。めっき液は市販のワット浴、ウッド浴、塩化物系ニッケルめっき浴及びスルファミン酸系ニッケルめっき浴等が使用できる。たとえば、ワット浴では、硫酸ニッケル:150~350g/L、塩化ニッケル:30~70g/Lを含有する。電気めっきの条件はたとえば、電流密度:1~12A/dm、温度:35~80℃、pH:3~5である。ウッド浴では、塩化ニッケル:150~320g/Lを含有する。電気めっきの条件はたとえば、電流密度:1~15A/dm、温度:10~40℃、pH:1~2である。スルファミン酸系ニッケルめっき浴では、スルファミン酸ニッケル:300~600g/Lを含有する。電気めっきの条件はたとえば、電流密度:1~30A/dm、温度:35~70℃、pH:3~5である。電気めっきの条件は、適宜設定できる。
 以上の条件で円筒部11の内周面100上に各めっき層を形成し、円筒部11を製造する。続いて、製造された円筒部11と、準備されたアーム部12及びホイール部13とを溶接により繋いで、ロータ10を製造する。溶接は周知の方法で実施すれば足りる。以上の工程により、ロータ10が製造される。さらに、製造されたロータ10と、準備されたステータ20とを用いて、渦電流式減速装置1を組み立てる。
 以上の製造方法により、本開示の渦電流式減速装置1を製造できる。なお、本開示の渦電流式減速装置1の製造方法は、上記製造方法に限定されない。本開示の渦電流式減速装置1の製造方法は、上述の構成を有する渦電流式減速装置1が製造できれば、上記製造方法以外の他の製造方法でもよい。ただし、上記製造方法は、本開示の渦電流式減速装置1の製造に好適な例である。
 本開示の渦電流式減速装置の熱サイクルに対する耐久性を確認するため、以下の試験を実施した。試験体として、内周面上に表1に示すめっき層を形成したロータの円筒部を準備した。形成された各めっき層の組成及び厚さを上述の方法により測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の第一層及び第四層において、種類(mass%)の欄には、形成した合金めっきの種類及び合金元素の含有量を示す。たとえば、試験番号1の第一層について「Ni-3.0%P」とは、試験番号1の第一層が、3.0質量%のリンを含み残部はニッケル及び不純物からなる合金めっき層であったことを示す。
 第一層は、ニッケル及び各合金元素を含むめっき浴を使用し、表1に示す条件で形成した。めっき浴の温度は90℃であった。第二層は、塩化ニッケルに塩酸を加えたウッド浴を用いて形成した。めっき浴の温度は30℃であった。電流値を7~8A/dmとし、処理時間を3~25分の間で変化させることでめっき厚さを調整した。第三層はシアン系銅めっき浴又は硫酸銅めっき浴を用いて電気めっき処理によって形成した。シアン系銅めっき浴の温度は50℃、硫酸銅めっき浴の温度は40℃であった。第四層は、ニッケル及び各合金元素を含むめっき浴を使用し、表1に示す条件で形成した。第五層はワット浴を使用して、電気めっき処理により形成した。めっき液の温度は50℃とした。各めっき層の厚さは、各めっき層を形成した後に膜厚計を用いて測定した。
 [繰り返し制動試験]
 製造したロータの円筒部を用いて、渦電流式減速装置を製造した。製造された渦電流式減速装置を回転試験機に取り付け、熱サイクルを受けた場合の耐久性を調査した。具体的には、渦電流式減速装置に対して繰り返し制動試験を実施した。繰り返し制動試験では、ロータの回転速度を2000rpmで一定とし、制動オンと制動オフとを繰り返して、ロータに繰り返し温度変動を与えた。制動オン及び制動オフの時間については、ロータの内表面の最高温度が約700℃、最低温度が約100℃となるように調整した。制動オン及び制動オフを10000サイクル繰り返した。試験後のロータの円筒部の軸方向に垂直な断面に対して、光学顕微鏡を用いてのミクロ観察を行い、めっき層のクラックの発生状況を調査した。表1中、二重丸(◎)は、第二層と第三層との間に、ボイド及び剥離の両方が発生していなかったことを示す。白丸印(○)は、第二層と第三層との間に、ボイドが発生しているもののボイドに起因する剥離が発生していなかったことを示す。バツ印(×)は、第二層と第三層との間においてボイド及びボイドに起因する剥離の両方が発生していたことを示す。
 [評価結果]
 表1を参照して、試験番号1~試験番号9、及び、試験番号11~試験番号13のロータの円筒部は、内周面上に適切なめっき層を有した。具体的には、Ni-P合金又はNi-B合金からなる第一層と銅又は銅合金からなる第三層との間に、ニッケルからなる第二層を有した。そのため、試験番号1~試験番号9、及び、試験番号11~試験番号13における、繰り返し制動試験後のめっき層は、第二層と第三層との間に、剥離が生じていなかった。つまり、試験番号1~試験番号9、及び、試験番号11~試験番号13の渦電流式減速装置は、700℃の熱サイクルに曝された場合の優れた耐久性を示した。
 また、第一層のP含有量が2.0~20.0質量%のPを含有し残部がNi及び不純物からなるNi-P合金、及び、1.0~20.0質量%のBを含有し残部がNi及び不純物からなるNi-B合金からなる群から選択されるめっき層であった試験番号1~試験番号9は、繰り返し制動試験後のめっき層において、第二層と第三層との間に、ボイドに起因する剥離が生じておらず、さらに、ボイド自体発生していなかった。これに対して、第一層のP含有量が0.5質量%であった試験番号11、及び、第一層のP含有量が0.2質量%であった試験番号13では、繰り返し制動試験後のめっき層において、第二層と第三層との間にボイドが発生した。つまり、試験番号11及び試験番号13の渦電流式減速装置と比較して、試験番号1~試験番号9の渦電流式減速装置は、700℃の熱サイクルに曝された場合のさらに優れた耐久性を示した。
 また、第二層の厚さが6.0μmであった試験番号12では、繰り返し制動試験後のめっき層において、第二層と第三層との間にボイドが発生した。これに対して、第二層の厚さが0.1~5.0μmであった試験番号1~試験番号9は、繰り返し制動試験後のめっき層において、第二層と第三層との間に、ボイドに起因する剥離が生じておらず、さらに、ボイド自体発生していなかった。つまり、試験番号12の渦電流式減速装置と比較して、試験番号1~試験番号9の渦電流式減速装置は、700℃の熱サイクルに曝された場合のさらに優れた耐久性を示した。
 一方、試験番号10の渦電流式減速装置は、第一層と第三層との間に、ニッケルからなる第二層を有さなかった。そのため、繰り返し制動試験後のめっき層において、第二層と第三層との間にボイド及びボイドに起因する剥離の両方が発生していた。つまり、試験番号10の渦電流式減速装置は、700℃の熱サイクルに曝された場合の耐久性が低かった。
 試験番号14の渦電流式減速装置は、第一層の組成が、10質量%のFeを含有し残部はNi及び不純物からなるNi-Fe合金であった。そのため、繰り返し制動試験後のめっき層において、第二層と第三層との間にボイド及びボイドに起因する剥離の両方が発生していた。つまり、試験番号14の渦電流式減速装置は、700℃の熱サイクルに曝された場合の耐久性が低かった。
 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
1    渦電流式減速装置
10   ロータ
11   円筒部
12   アーム部
13   ホイール部
20   ステータ
100  ロータの円筒部の内周面
110  第一層
120  第二層
130  第三層
140  第四層
150  第五層
 

Claims (3)

  1.  渦電流式減速装置であって、
     円筒体と前記円筒体の外周面上に配置される複数の磁石とを備えるステータと、
     前記円筒体を収容する円筒部を備えるロータとを備え、
     前記ロータの前記円筒部の内周面上に、前記内周面側から順に、
     Pを含有し残部がNi及び不純物からなるNi合金であるNi-P合金、又は、Bを含有し残部がNi及び不純物からなるNi合金であるNi-B合金からなる第一層と、
     ニッケルからなる第二層と、
     銅又は銅合金からなる第三層と、
     ニッケル合金からなる第四層と、
     ニッケルからなる第五層とを備える、渦電流式減速装置。
  2.  請求項1に記載の渦電流式減速装置であって、
     前記第一層が、2.0~20.0質量%のPを含有し残部がNi及び不純物からなる前記Ni-P合金、又は、1.0~20.0質量%のBを含有し残部がNi及び不純物からなる前記Ni-B合金からなる、渦電流式減速装置。
  3.  請求項1又は請求項2に記載の渦電流式減速装置であって、
     前記第二層の厚さが0.1~5.0μmである、渦電流式減速装置。
     
PCT/JP2020/021722 2019-06-06 2020-06-02 渦電流式減速装置 WO2020246454A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20818066.1A EP3982523B1 (en) 2019-06-06 2020-06-02 Eddy current-type reduction gear
US17/596,215 US11764661B2 (en) 2019-06-06 2020-06-02 Eddy current deceleration device
KR1020227000188A KR102629948B1 (ko) 2019-06-06 2020-06-02 와전류식 감속 장치
CN202080040980.1A CN113906653B (zh) 2019-06-06 2020-06-02 涡流式减速装置
JP2021524848A JP7211505B2 (ja) 2019-06-06 2020-06-02 渦電流式減速装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019106484 2019-06-06
JP2019-106484 2019-06-06

Publications (1)

Publication Number Publication Date
WO2020246454A1 true WO2020246454A1 (ja) 2020-12-10

Family

ID=73653163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021722 WO2020246454A1 (ja) 2019-06-06 2020-06-02 渦電流式減速装置

Country Status (6)

Country Link
US (1) US11764661B2 (ja)
EP (1) EP3982523B1 (ja)
JP (1) JP7211505B2 (ja)
KR (1) KR102629948B1 (ja)
CN (1) CN113906653B (ja)
WO (1) WO2020246454A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008635A1 (en) * 1987-04-30 1988-11-03 Tokyo-Buhin Kogyo Co., Ltd. Eddy current brake
JPH11308851A (ja) 1998-04-20 1999-11-05 Sumitomo Metal Ind Ltd 渦電流式減速装置
JP2002171744A (ja) 2000-11-30 2002-06-14 Sumitomo Metal Ind Ltd 渦電流式減速装置
JP2005020823A (ja) 2003-06-24 2005-01-20 Sumitomo Metal Ind Ltd 導電性皮膜を設けた構造体並びにそれを用いた渦電流減速装置および基板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3692939B2 (ja) * 2001-01-19 2005-09-07 住友金属工業株式会社 渦電流式減速装置のロータ及びその製造方法
KR100726241B1 (ko) * 2005-05-02 2007-06-11 삼성전기주식회사 금-구리 층을 포함하는 도전성 기판, 모터, 진동모터 및전기 접점용 금속 단자
KR20160051677A (ko) * 2013-09-05 2016-05-11 스키카르 인크. 동기 전기 기계
CN104753283A (zh) * 2013-12-27 2015-07-01 高志宏 筒式磁动机
CN107251387B (zh) * 2015-02-24 2020-06-16 日本制铁株式会社 涡流式发热装置
EP3425204B1 (de) * 2017-07-04 2021-04-14 Levitronix GmbH Magnetisch lagerbarer rotor sowie rotationsmaschine mit einem solchen rotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008635A1 (en) * 1987-04-30 1988-11-03 Tokyo-Buhin Kogyo Co., Ltd. Eddy current brake
JPH11308851A (ja) 1998-04-20 1999-11-05 Sumitomo Metal Ind Ltd 渦電流式減速装置
JP2002171744A (ja) 2000-11-30 2002-06-14 Sumitomo Metal Ind Ltd 渦電流式減速装置
JP2005020823A (ja) 2003-06-24 2005-01-20 Sumitomo Metal Ind Ltd 導電性皮膜を設けた構造体並びにそれを用いた渦電流減速装置および基板

Also Published As

Publication number Publication date
US20220320988A1 (en) 2022-10-06
EP3982523A4 (en) 2022-08-17
CN113906653B (zh) 2024-01-02
EP3982523B1 (en) 2023-08-02
KR102629948B1 (ko) 2024-01-29
KR20220017476A (ko) 2022-02-11
EP3982523A1 (en) 2022-04-13
JP7211505B2 (ja) 2023-01-24
US11764661B2 (en) 2023-09-19
CN113906653A (zh) 2022-01-07
JPWO2020246454A1 (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
TW590942B (en) Brake device, and method for manufacturing the same
JP5292279B2 (ja) すべり軸受
JP7097824B2 (ja) 銅-ニッケル-スズ合金、その製造方法、ならびにその使用法
TWI649436B (zh) 易削性銅合金鑄件及易削性銅合金鑄件的製造方法(一)
JP7097826B2 (ja) 銅-ニッケル-スズ合金、その製造方法、ならびにその使用法
KR20130102492A (ko) 감합형 접속 단자용 Sn 피복층 부착 구리 합금판 및 감합형 접속 단자
EP2669396A1 (en) High electric resistance aluminum alloy
BRPI0911337B1 (pt) Rolamento de deslizamento
WO2020246454A1 (ja) 渦電流式減速装置
WO2015118924A1 (ja) 摺動機構
JP2006158012A (ja) 自動車用ipm型モータに使用される永久磁石の製造方法
JP2010177585A (ja) 希土類永久磁石
JP2019511632A (ja) スズ含有銅合金、その製造方法、ならびにその使用法
EP3521465B1 (en) Slide member and method for manufacturing same
JP7311758B2 (ja) 渦電流式減速装置
JP2010242854A (ja) すべり軸受
US20200181738A9 (en) Copper alloy containing tin, method for producing same, and use of same
JP3731468B2 (ja) 渦電流式減速装置
JP5737498B2 (ja) Ta及びAlが添加されたNi3(Si,Ti)系金属間化合物合金で形成された耐熱軸受及びその製造方法
JP3473298B2 (ja) 渦電流式減速装置用ローター
JP3754353B2 (ja) 複合めっき被膜付き摺動部材
JP3470592B2 (ja) 渦電流式減速装置
JP5424315B2 (ja) Ni基2重複相金属間化合物合金で形成された高温用軸受及びその製造方法
JP4046024B2 (ja) 導電性皮膜を設けた構造体並びにそれを用いた渦電流減速装置および基板
JP3692939B2 (ja) 渦電流式減速装置のロータ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524848

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227000188

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020818066

Country of ref document: EP