WO2020246349A1 - 感光性樹脂組成物及びその硬化膜 - Google Patents

感光性樹脂組成物及びその硬化膜 Download PDF

Info

Publication number
WO2020246349A1
WO2020246349A1 PCT/JP2020/021023 JP2020021023W WO2020246349A1 WO 2020246349 A1 WO2020246349 A1 WO 2020246349A1 JP 2020021023 W JP2020021023 W JP 2020021023W WO 2020246349 A1 WO2020246349 A1 WO 2020246349A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
photosensitive resin
composition according
polyimide
Prior art date
Application number
PCT/JP2020/021023
Other languages
English (en)
French (fr)
Inventor
由実 佐藤
達之 熊野
竜也 宇多村
大治 宮原
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN202080039858.2A priority Critical patent/CN113892058B/zh
Priority to US17/613,565 priority patent/US20220252979A1/en
Priority to KR1020217029743A priority patent/KR20220016450A/ko
Priority to EP20817747.7A priority patent/EP3978549A4/en
Priority to JP2021524798A priority patent/JPWO2020246349A1/ja
Publication of WO2020246349A1 publication Critical patent/WO2020246349A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
    • C08F283/045Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides on to unsaturated polycarbonamides, polyesteramides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/145Polyamides; Polyesteramides; Polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterized by the type of post-polymerisation functionalisation
    • C08G2650/16Photopolymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/36Pre-polymer

Definitions

  • the present invention relates to a photosensitive resin composition and a cured film thereof.
  • Polyimide-based resins with excellent heat resistance and insulating properties are widely used for surface protective films, interlayer insulating films, wiring protective insulating films for circuit boards, etc. of semiconductor elements of electronic devices.
  • Insulating materials such as semiconductor integrated circuits are required to have higher pattern developability than before from the viewpoint of high density and high integration in recent years, as well as improved high insulation and heat resistance, low temperature curability, and crack resistance.
  • Various physical properties such as sex and flexibility are also required. The larger the difference in solubility between the exposed portion and the unexposed portion, the better the developability, and it is important to widen the difference in solubility between the exposed portion and the unexposed portion in order to improve the developability. Further, in order to express desired physical properties, it is also necessary to appropriately select the raw material of the base polymer and design the polymer.
  • Patent Document 1 proposes a method of introducing a polymerizable group into the side chain of a polyimide precursor.
  • Patent Document 2 proposes a method of introducing a polymerizable group at the end of a polyimide precursor.
  • Patent Document 3 proposes a method of providing a polymerizable group on the side chain of polyimide.
  • Patent Documents 1 and 2 it is necessary to heat the polyimide precursor at a high temperature for a long time in order to obtain the polyimide, which is not suitable for the field where low temperature curing is required. Further, when the heating step of obtaining the polyimide from the polyimide precursor is included, the volume shrinkage of about 50% occurs, which causes a problem of causing warpage or cracks.
  • the method disclosed in Patent Document 3 it is necessary to introduce a functional group for providing a polymerizable group in the side chain of polyimide, so that the raw material options for polyimide synthesis are limited. Further, the method of providing the polymerizable group in the side chain has a problem that the curability is good because the polymerizable group can be introduced at a high density, but the curing shrinkage rate is large and cracks are likely to occur.
  • the present invention relates to the following photosensitive resin compositions and cured films thereof.
  • R is a tetravalent group having a cyclic structure, a non-cyclic structure, or a cyclic structure and a non-cyclic structure and having 4 to 10 carbon atoms.
  • A has at least one group selected from the group consisting of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and an organosiloxane group, and has a divalent group having 2 to 39 carbon atoms. Is the basis of.
  • n indicates the number of repeating units.
  • the end of the general formula (1) is either a group represented by the following formula (2) or the formula (3), or a hydrogen atom, and at least one of the ends is represented by the formula (2) or the formula (3).
  • X and X 2 are independently groups having 2 to 15 carbon atoms, and have at least one group selected from the group consisting of ester bonds and double bonds. You may.
  • Y and Y 2 are independently hydrogen atoms or methyl groups, respectively.
  • [2] The photosensitive resin composition according to the above [1], wherein the polyimide resin (A) has a weight average molecular weight of 5,000 or more.
  • [3] The photosensitive resin composition according to the above [1] or [2], wherein the polyimide resin (A) has a light transmittance of 50% or more at a wavelength of 200 to 400 nm.
  • the polyimide resin (A) is 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl, 1- (4-aminophenyl) -2,3-dihydro-1,3, 3-trimethyl-1H-inden-5-amine, 4,4'-oxybis [3- (trifluoromethyl) benzeneamine, or 1,3-bis [2- (4-aminophenyl) -2-propyl] benzene
  • the photosensitive resin composition according to any one of the above [1] to [6], which comprises at least one unit composed of.
  • the present invention it is possible to obtain a photosensitive resin composition which does not require a heating step, has high transparency and excellent solvent solubility, is excellent in developability, and has a degree of freedom in selecting a polyimide raw material. Since the resin composition has low curing shrinkage, it is possible to effectively suppress the occurrence of cracks and the like in the obtained cured film.
  • the present embodiment The embodiment for carrying out the present invention (hereinafter, simply referred to as "the present embodiment") will be described in detail.
  • the following embodiments are examples for explaining the present invention, and do not limit the contents of the present invention.
  • the present invention can be appropriately modified and implemented within the scope of the gist thereof.
  • the preferred provisions can be arbitrarily adopted, and it can be said that a combination of preferable ones is more preferable.
  • the description of "XX to YY" means "XX or more and YY or less”.
  • (meth) acrylate as used herein means both “acrylate” and “methacrylate”. The same applies to other similar terms (“(meth) acrylic acid”, “(meth) acryloyl group”, etc.).
  • the polyimide resin (A) of the present embodiment has a structure represented by the following general formula (1) and has a weight average molecular weight of 70,000 or less.
  • R is a tetravalent group having a cyclic structure, a non-cyclic structure, or a cyclic structure and a non-cyclic structure and having 4 to 10 carbon atoms.
  • A has at least one group selected from the group consisting of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and an organosiloxane group, and has a divalent group having 2 to 39 carbon atoms. Is the basis of.
  • n indicates the number of repeating units.
  • the end of the general formula (1) is either a group represented by the following formula (2) or the formula (3), or a hydrogen atom, and at least one of the ends is represented by the formula (2) or the formula (3). Is the basis for ]
  • X and X 2 are independently groups having 2 to 15 carbon atoms, and have at least one group selected from the group consisting of ester bonds and double bonds. You may. Y and Y 2 are independently hydrogen atoms or methyl groups, respectively.
  • R in the above formula (1) has at least a cyclic structure, and the cyclic structure is formed, for example, by removing four hydrogen atoms from cyclohexane, cyclopentane, cyclobutane, bicyclopentane and their stereoisomers.
  • a tetravalent group can be mentioned. More specifically, the tetravalent group includes a group represented by the following structural formula. [In the formula, * indicates a bond. ]
  • a tetravalent group formed by removing four hydrogen atoms from cyclohexane is more preferable.
  • a in the formula (1) has at least one group selected from the group consisting of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and an organosiloxane group, and has 2 to 2 carbon atoms. It is a divalent group of 39.
  • the backbone of A -O -, - SO 2 - , - CO -, - CH 2 -, - C (CH 3) 2 -, - selected from C 2 H 4 O-, and the group consisting of -S- At least one group may be intervened.
  • A is cyclohexane, dicyclohexylmethane, dimethylcyclohexane, isophorone, norbornane and alkyl substituents thereof, and halogen substituents; benzene, naphthalene, biphenyl, diphenylmethane, diphenyl ether, diphenyl sulfone, benzophenone and alkyls thereof.
  • Substituents and Halogen Substituents; Examples thereof include divalent groups formed by removing two hydrogen atoms from a compound such as organo (poly) siloxane.
  • A preferably has a cyclic structure, and preferably has an alicyclic hydrocarbon group and / or an aromatic ring.
  • A preferably has an aromatic ring as an aromatic hydrocarbon group. More specifically, a divalent group having 6 to 27 carbon atoms represented by the following structural formula is preferably mentioned. [In the formula, * indicates a bond. ]
  • the group corresponding to A exemplified above contains at least one selected from the group consisting of the structures shown below. [In the formula, * indicates a bond. ]
  • N indicating the number of repeating units of the structural unit represented by the formula (1) is preferably 5 to 250, more preferably 10 to 200, and further preferably 15 to 150.
  • n is 15 or more, a cured film having desired mechanical properties can be obtained.
  • n is 250 or less, sufficient solvent solubility can be ensured.
  • the polyimide resin (A) of the present embodiment has either a group represented by the general formula (2) or the general formula (3) or a hydrogen atom at the end, and at least one of the ends is the general formula (2). Alternatively, it is a group represented by the general formula (3).
  • the polyimide resin (A) may have a structure in which one end is represented by the general formula (2) or the general formula (3), or both ends are represented by the general formula (2) or the general formula (3). It may have a structure to be used.
  • the group represented by X or X 2 in the general formula (2) or the general formula (3) is a group having 2 to 15 carbon atoms, and is at least one selected from the group consisting of an ester bond and a double bond. It may have a group.
  • the group represented by Y or Y 2 is a hydrogen atom or a methyl group.
  • the structure represented by the general formula (2) or the general formula (3) corresponds to a structure obtained by reacting the terminal diamine of the polyimide resin (A) with a functional group-containing compound.
  • a functional group-containing compound include compounds having an isocyanate group or an epoxy group and a (meth) acrylic group.
  • the compound include 2-isocyanatoethyl methacrylate, 2-isocyanatoethyl acrylate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate, glycidyl methacrylate, glycidyl acrylate, and allyl glycidyl ether.
  • the structure represented by the general formula (2) or the general formula (3) may have a structure in which the compound reacts with the amine terminal.
  • the polyimide resin (A) needs to have a weight average molecular weight of 70,000 or less. If the weight average molecular weight exceeds 70,000, the solvent solubility of the resin composition is lowered, which is not suitable for forming a cured film.
  • the weight average molecular weight is preferably 60,000 or less, more preferably 50,000 or less, still more preferably 45,000 or less, even more preferably 40,000 or less, even more preferably 35,000 or less, even more preferably. It is 30,000 or less, particularly preferably less than 30,000. Since a cured film having desired mechanical properties can be obtained, the weight average molecular weight of the polyimide resin (A) is preferably 5,000 or more.
  • the weight average molecular weight of the polyimide resin (A) is more preferably 10,000 or more, still more preferably 13,000 or more, and even more preferably 15,000 or more.
  • the weight average molecular weight of the polyimide resin (A) is in the above range, a resin composition having a low residual film ratio in the unexposed portion and excellent developability can be obtained.
  • the polyimide resin (A) can be obtained by reacting the diamine component described in detail below with the tetracarboxylic acid component.
  • diamine component examples include diamines, diisocyanates and diaminodisilanes, and diamines are preferable.
  • the diamine content in the diamine component used as a raw material is preferably 50 mol% or more, and may be 100 mol%.
  • the diamine may be either an aliphatic diamine or an aromatic diamine, or a mixture thereof.
  • the "aromatic diamine” represents a diamine in which an amino group is directly bonded to an aromatic ring, and even if a part of its structure contains an aliphatic group, an alicyclic group, or another substituent.
  • the "aliphatic diamine” represents a diamine in which an amino group is directly bonded to an aliphatic group or an alicyclic group, and an aromatic group or other substituent may be contained as a part of the structure thereof.
  • any of the above aliphatic diamines can be used.
  • the aliphatic diamine include 4,4'-diaminodicyclohexylmethane, ethylenediamine, hexamethylenediamine, polyethylene glycol bis (3-aminopropyl) ether, polypropylene glycol bis (3-aminopropyl) ether, and 1,3-bis.
  • examples thereof include (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, m-xylylene diamine, p-xylylene diamine, isophorone diamine, norbornan diamine and siloxane diamines.
  • aromatic diamine examples include 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, m-phenylenediamine, p-phenylenediamine, diaminobenzophenone, 2,6.
  • the diamines are 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl, 4,4'-oxybis [3- (trifluoromethyl) benzeneamine], 1- (4-aminophenyl). It preferably contains at least -2,3-dihydro-1,3,3-trimethyl-1H-inden-5-amine or 1,3-bis [2- (4-aminophenyl) -2-propyl] benzene.
  • the photosensitive resin composition containing the polyimide resin (A) obtained by containing at least one of them as a diamine component has high light transmittance and high solvent solubility at a specific wavelength.
  • the polyimide resin (A) of the present embodiment includes the above 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl, 1- (4-aminophenyl) -2,3-dihydro-1,3.
  • ⁇ Tetracarboxylic acid component Any one can be used as the tetracarboxylic acid component.
  • the tetracarboxylic acid component include cyclohexanetetracarboxylic acid, cyclohexanetetracarboxylic acid esters, cyclohexanetetracarboxylic dianhydride, cyclobutanetetracarboxylic acid, cyclobutanetetracarboxylic acid esters, cyclobutanetetracarboxylic dianhydride, and cyclo.
  • Examples thereof include pentantetracarboxylic acid, cyclopentanetetracarboxylic acid esters, cyclopentanetetracarboxylic dianhydride, bicyclopentanetetracarboxylic dianhydride and the like.
  • cyclohexanetetracarboxylic dianhydride, cyclobutanetetracarboxylic dianhydride and cyclopentanetetracarboxylic dianhydride can be more preferably mentioned.
  • cyclohexanetetracarboxylic dianhydride is more preferable.
  • the various tetracarboxylic acid components described above contain positional isomers.
  • 1,2,4,5-cyclohexanetetracarboxylic acid 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,4,5-cyclohexane Tetracarboxylic acid methyl ester, 1,2,3,4-butanetetracarboxylic acid, 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-butanetetracarboxylic acid methyl ester, 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic acid methyl ester, 1,2,4 5-cyclopentanetetracarboxylic acid, 1,2,4,5-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclopentantetracarboxylic acid methyl ester, 3-car
  • 1,2,4,5-cyclohexanetetracarboxylic acid 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1 , 2,4,5-Cyclohexanetetracarboxylic dianmethyl ester is particularly preferable because it is easy to increase the molecular weight when producing a polyimide resin and it is advantageous in that a flexible film can be easily obtained.
  • the tetracarboxylic acid component may contain another tetracarboxylic acid or a derivative thereof as long as the finally obtained cured film, for example, the flexibility and thermocompression bonding property of the film is not impaired.
  • these other tetracarboxylic acids or derivatives thereof include pyromellitic acid, 3,3', 4,4'-biphenyltetracarboxylic acid, 2,3,3', 4'-biphenyltetracarboxylic acid, 2, 2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (2,3-dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1 , 3,3,3-hexafluoropropane, 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (3,4-dicarboxyphenyl) Phenyl) sulfone
  • the polyimide resin (A) contained in the photosensitive resin composition of the present embodiment can be obtained by the following steps (1) and (2): Step (1): The tetracarboxylic acid component and the diamine component are reacted to obtain a polyimide resin having an amino group at the terminal. Step (2): The polyimide resin obtained in the above step (1) having an amino group at the terminal is reacted with the above functional group-containing compound (a compound having an isocyanate group or an epoxy group and a (meth) acrylic group). Let me.
  • the above-mentioned tetracarboxylic acid and the diamine component are reacted to obtain a polyimide resin having an amino group at the terminal.
  • the organic solvent used for reacting the tetracarboxylic acid component and the diamine component is not particularly limited, but is an organic solvent containing at least one selected from the group consisting of, for example, cyclic ether, cyclic ketone, cyclic ester, amide and urea. Is preferable.
  • suitable solvents are not particularly limited, but are limited to ⁇ -butyrolactone, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, hexamethylphosphoramide, and cyclo.
  • aprotic polar organic solvents such as pentanone, cyclohexanone, 1,3-dioxolane, 1,4-dioxane, tetramethylurea and tetrahydrofuran can be mentioned.
  • ⁇ -butyrolactone, N, N-dimethylacetamide, N, N-dimethylformamide and N-methyl-2-pyrrolidone is more preferable.
  • An imidization catalyst can be used when the tetracarboxylic acid component and the diamine component are reacted in the step (1).
  • a tertiary amine compound is preferable, and specifically, trimethylamine, triethylamine (TEA), tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine.
  • TAA triethylamine
  • the reaction temperature in the step (1) is usually in the range of 160 to 200 ° C, preferably in the range of 170 to 190 ° C, and more preferably in the range of 180 to 190 ° C. If the temperature is 160 ° C. or higher, imidization and high molecular weight formation proceed sufficiently. When the temperature is 200 ° C. or lower, the viscosity of the solution can be maintained appropriately, and problems such as the resin being burnt on the wall surface of the reaction vessel can be avoided. In some cases, an azeotropic dehydrating agent such as toluene or xylene may be used.
  • the reaction pressure is usually normal pressure, but if necessary, the reaction can be carried out under pressure.
  • the holding time of the reaction temperature is preferably at least 1 hour or more, and more preferably 3 hours or more. If it is 1 hour or more, imidization and high molecular weight can be sufficiently advanced. There is no particular upper limit on the reaction time, but it is usually carried out in the range of 3 to 10 hours.
  • the tetracarboxylic acid component “A mol” and the diamine component “B mol” are preferably reacted in the range of 0.80 ⁇ A / B ⁇ 0.99, preferably 0.85. It is more preferable to react in the range of ⁇ A / B ⁇ 0.95.
  • a polyimide resin can be obtained. If 0.80 ⁇ A / B, a polyimide resin having a molecular weight that exhibits sufficient flexibility can be obtained. As the A / B approaches 1.0, a high molecular weight polyimide resin can be obtained. Therefore, by appropriately adjusting the A / B, a polyimide resin having a desired molecular weight can be obtained.
  • the step (2) is a step of modifying the end of the polyimide resin obtained in the above step (1). Specifically, as described above, the polyimide is reacted with the functional group-containing compound (a compound having an isocyanate group or an epoxy group and a (meth) acrylic group) to have a (meth) acrylic group at the terminal. Obtain a polyimide resin.
  • the functional group-containing compound a compound having an isocyanate group or an epoxy group and a (meth) acrylic group
  • the functional group-containing compound that modifies the terminal of the polyimide resin is a compound having an isocyanate group or an epoxy group and a (meth) acrylic group, and specifically, 2-isocyanatoethyl methacrylate and 2-isocyanatoethyl. Examples thereof include acrylate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate, glycidyl methacrylate, and allyl glycidyl ether. These functional group-containing compounds may be used alone or in combination of two or more.
  • the functional group-containing compound is preferably used at a ratio of 0.1 to 30 mol times the solid content in the solution containing the polyimide resin having a (meth) acrylic group at the terminal.
  • the reaction temperature in the step (2) is preferably in the range of 30 to 100 ° C., and the reaction time is preferably 1 to 5 hours.
  • the reaction may be carried out as it is, or may be reacted in the presence of a catalyst if necessary.
  • the catalyst include amine compounds such as triethylamine and organophosphorus compounds such as triphenylphosphine, and these may be used alone or in combination of two or more.
  • a polymerization inhibitor may be used to suppress side reactions during the reaction. Examples of the polymerization inhibitor include hydroquinone, hydroquinone monomethyl ether, methylhydroquinone and the like, and these may be used alone or in combination of two or more.
  • the polyimide resin (A) contained in the photosensitive resin composition of the present embodiment has a light transmittance of preferably 50% or more, more preferably 55% or more, still more preferably 60% or more, further more preferably a light transmittance at a wavelength of 200 to 400 nm. It is preferably 70% or more.
  • the polyimide resin (A) contained in the photosensitive resin composition of the present embodiment has high light transmittance at the above wavelengths and has excellent solvent solubility. Therefore, the photopolymerization initiator that can be contained in the composition acts effectively, so that a cured film can be efficiently obtained.
  • the polyimide resin (A) having a specific structure and a specific terminal structure and having a specific molecular weight when a cured film is formed from the composition described later, the residual film ratio of the unexposed portion is low. It has excellent developability and can effectively suppress the occurrence of cracks and the like.
  • the photosensitive polyimide resin composition in the present embodiment contains the polyimide resin (A) having the structure of the general formula (1) and the terminal structure represented by the general formula (2).
  • the polyimide resin (A) for example, it is preferable to contain at least one selected from the group consisting of a photopolymerization initiator, a solvent, and a photopolymerizable compound. It is also preferable to further include a sensitizer.
  • a polyfunctional radically polymerizable monomer for example, a bifunctional or higher functional (meth) acrylic monomer
  • examples of the (meth) acrylic monomer include tricyclodecanedimethanol diacrylate, tricyclodecanedimethanol dimethacrylate, polypropylene glycol diacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetraacrylate, and pentaerythritol.
  • photopolymerizable compounds examples thereof include triacrylate, tris- (2-acryloxyethyl) isocyanurate, trimethylolpropane tetraacrylate, and dipentaerythritol hexaacrylate.
  • These photopolymerizable compounds may be used alone or in combination of two or more.
  • the flexibility and heat resistance of the polyimide resin composition can be controlled by the structure of the photopolymerizable compound to be mixed.
  • These photopolymerizable compounds are preferably mixed at a ratio of 5 to 500 parts by mass with respect to the solid content in the solution containing the polyimide resin having a (meth) acrylic group at the terminal.
  • the photopolymerization initiator is not particularly limited, and known ones can be used.
  • photopolymerization initiators may be used alone or in combination of two or more.
  • the photopolymerization initiator is preferably mixed at a ratio of 0.1 to 10 parts by mass with respect to the solid content in the solution containing the polyimide resin (A) having a (meth) acrylic group at the terminal.
  • the sensitizer is not particularly limited, and known ones can be used.
  • an amino group-containing sensitizer can be mentioned, and a compound having an amino group and a phenyl group in the same molecule can be preferably exemplified. More specifically, 4,4'-dimethylaminobenzophenone, 4,4'-diethylaminobenzophenone, 2-aminobenzophenone, 4-aminobenzophenone, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3 , 4-Diaminobenzophenone and other benzophenone compounds; 2- (p-dimethylaminophenyl) benzoxazole, 2- (p-diethylaminophenyl) benzoxazole, 2- (p-dimethylaminophenyl) benzo [4,5] benzo Oxazole, 2- (p-dimethylaminophenyl) benzo [6,7] benzoxazole, 2,5-bis
  • sensitizers may be used alone or in combination of two or more.
  • the sensitizer is preferably mixed at a ratio of 0.001 to 10 parts by mass with respect to the solid content in the solution containing the polyimide resin (A) having a (meth) acrylic group at the end.
  • the photosensitive resin composition of the present embodiment is not particularly limited, but can be prepared as follows.
  • a photosensitive polyimide composition is obtained by mixing at least one selected from the group consisting of a sex compound and a sensitizer.
  • the photosensitive resin composition of the present embodiment is particularly suitable for use in forming an insulating film.
  • a solution containing the polyimide resin (A) having the above structural characteristics is applied onto the substrate.
  • the method of coating on the substrate is not particularly limited, and specifically, the inkjet method, spin coating method, casting method, micro gravure method, gravure coating method, bar coating method, roll coating method, wire bar coating method, and dip. Examples thereof include a coating method, a spray coating method, a screen printing method, a flexographic printing method, and a die coating method.
  • the solid content concentration of the solution containing the polyimide resin (A) of the present embodiment When applied onto a base material, it is preferable to adjust the solid content concentration of the solution containing the polyimide resin (A) of the present embodiment so as to be in the range of 5 to 50% by mass.
  • an aprotic polar solvent is desirable from the viewpoint of solubility. Specifically, N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N-benzyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphortri.
  • Amides, N-acetyl- ⁇ -caprolactam, dimethylimidazolidonene, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, ⁇ -butyrolactone and the like can be mentioned as suitable examples.
  • These solvents may be used alone or in combination of two or more.
  • solvents such as toluene, xylene, diethyl ketone, methoxybenzene and cyclopentanone may be mixed as long as they do not adversely affect the solubility of the polymer.
  • Examples of the base material include glass, silicon wafers, metal foils, and plastic films.
  • silicon wafers and copper foils are particularly preferably used.
  • the photosensitive resin composition of the present embodiment coated on the base material is irradiated with light (usually ultraviolet rays are used) through a photomask having a predetermined pattern. After irradiation, the unexposed portion is dissolved and removed with a developing solution to obtain a desired relief pattern.
  • the ultraviolet irradiation amount is preferably 500 to 8,000 mJ / cm 2 .
  • the developing solution is not particularly limited as long as it dissolves the photosensitive resin composition according to the present embodiment. Specifically, N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N-benzyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphortri.
  • Preferable examples include amide, N-acetyl- ⁇ -caprolactam, dimethylimidazolidonene, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, ⁇ -butyrolactone and the like. These developers may be used alone or in combination of two or more.
  • the relief pattern formed by development is then washed with a rinse solution to remove the developing solvent.
  • a rinse solution Preferable examples of the rinsing solution include methanol, ethanol, isopropyl alcohol, and water, which are miscible with the developing solution.
  • the relief pattern obtained by the above treatment is heat-treated at a temperature selected from the range of 80 to 250 ° C., the solvent is dried, and the photosensitive resin composition of the present embodiment is cured to obtain a cured film. Can be done. According to the present embodiment, since a resin composition having excellent developability, that is, the exposed portion is sufficiently cured and the unexposed portion is sufficiently removed, the obtained relief pattern can be obtained with high resolution.
  • the cured film obtained by curing the photosensitive resin composition according to the present embodiment is an unexposed portion after being exposed under the condition of an exposure amount of 1,500 to 2,500 mJ / cm 2 at a wavelength of 365 nm.
  • the residual film ratio is preferably 45% or less, more preferably 40% or less, still more preferably 30% or less, still more preferably 10% or less.
  • the exposure light source is not particularly limited, but for example, a high-pressure mercury lamp can be used, and exposure is performed so that the exposure amount is 365 nm.
  • the “unexposed portion residual film ratio” indicates a value calculated from the following definitions. The details of the measurement method will be described in detail in Examples.
  • Unexposed area residual film ratio (%) [mass of unexposed area after development / mass of unexposed area before development] x 100
  • the cured film obtained by curing the photosensitive resin composition according to the present embodiment has an exposed portion residual film ratio of preferably 70% or more, more preferably 80% or more, still more preferably 85% or more.
  • the film thickness of the cured film obtained by the present embodiment is preferably 10 to 85 ⁇ m.
  • the film thickness is in the above range, it can be used as an excellent insulating film.
  • the thicker the film that is, the larger the amount of the photosensitive resin composition applied to the substrate), the more often problems occur in the solvent solubility of the polyimide resin.
  • the cured film of the present embodiment can be suitably used, for example, in an insulating film application where a high voltage is expected to be applied.
  • the cured film obtained from the photosensitive resin composition of the present embodiment containing the polyimide resin (A) having a specific structure and a specific terminal structure and having a specific molecular weight effectively suppresses the occurrence of cracks and the like. It can be used and has excellent physical properties.
  • the photosensitive resin composition and the cured film of the present embodiment can be used for various purposes.
  • it can be suitably used for a surface protective film of a semiconductor element of an electronic device, an interlayer insulating film, a wiring protective insulating film of a circuit board, particularly for the above-mentioned applications having high density and high integration.
  • Weight average molecular weight and number average molecular weight The weight average molecular weight (Mw) and the number average molecular weight (Mn) were determined by GPC analysis.
  • the equipment and analysis conditions used for the analysis are as follows.
  • a varnish containing a photosensitive resin composition containing a polyimide resin is prepared in Examples and Comparative Examples described below.
  • the varnishes obtained in each Example and Comparative Example were applied onto a silicon wafer with a spin coater, and then heated at 100 ° C. for 60 minutes to remove the solvent.
  • the mass of the varnish at this point (when the solvent was removed under the above conditions) was defined as the mass of the unexposed portion before development.
  • Unexposed area residual film ratio (%) [mass of unexposed area after development / mass of unexposed area before development] x 100
  • Residual film ratio (%) of the exposed part A varnish containing a photosensitive resin composition containing a polyimide resin is prepared in Examples and Comparative Examples described below.
  • the varnishes obtained in each Example and Comparative Example were applied onto a silicon wafer with a spin coater, and then heated at 100 ° C. for 60 minutes to remove the solvent.
  • the mass of the varnish at this point (when the solvent was removed under the above conditions) was defined as the mass of the exposed portion before development.
  • UV irradiation and immersion in ⁇ -butyrolactone as a developing solution for 5 minutes the mixture was washed with methanol as a rinsing solution, and the solvent was removed under air flow until there was no change in mass.
  • Exposed area residual film ratio (%) [mass of exposed area after development / mass of exposed area before development] x 100
  • Synthesis example 5 The amount of BiS-AP was 90.401 g (0.26 mol), the amount of TMDA was 29.959 g (0.11 mol), the amount of TEA was 18.72 g (0.19 mol), and the amount of polyimide was 0.083 g (0.74 mmol). 952 g of polyimide varnish was obtained in the same manner as in Synthesis Example 1 except that the amount of GBL was 249.0 g and the amount of DMAc was 512.3 g. As a result of measurement by GPC, the weight average molecular weight of the polyimide obtained in this synthesis example was 75,600.
  • Synthesis example 6 The amount of BiS-AP was 0.000 g (0.00 mol), the amount of TMDA was 103.720 g (0.39 mol), the amount of TEA was 1.871 g (0.018 mol), and the amount of polyimide was 0.0 g (0.00 mmol). 865 g of polyimide varnish was obtained in the same manner as in Synthesis Example 1 except that the amount of GBL was 228.3 g and the amount of DMAc was 464.1 g. As a result of measurement by GPC, the weight average molecular weight of the polyimide obtained in this synthesis example was 14,000.
  • Synthesis example 7 The amount of BiS-AP is 0.000 g (0.00 mol), the amount of TMDA is 0.00 g (0.00 mol), and the aromatic diamine is 4,4'-oxybis [3- (trifluoromethyl) benzeneamine] (hereinafter, , 6FODA) is added, the amount of TEA is 1.871 g (0.018 mol), the amount of TEDA is 0.0 g (0.00 mmol), the amount of benzene is 261.6 g, and the amount of DMAc is Polyimide varnish 1002 g was obtained in the same manner as in Synthesis Example 1 except that the amount was 539.7 g. As a result of measurement by GPC, the weight average molecular weight of the polyimide obtained in this synthesis example was 23,100.
  • Synthesis example 8 The amount of BiS-AP is 0.000 g (0.00 mol), the amount of TMDA is 31.13 g (0.12 mol), and 1,3-bis [2- (4-aminophenyl) -2-propyl] benzene as an aromatic diamine. (Hereinafter, BiS-AM) was added in an amount of 93.92 g (0.27 mol), the amount of TEA was 21.248 g (0.21 mol), the amount of TEDA was 0.094 g (0.83 mmol), and the amount of GBL was 254.6 g. And 975 g of polyimide varnish was obtained in the same manner as in Synthesis Example 1 except that the amount of DMAc was 525.4 g. As a result of measurement by GPC, the weight average molecular weight of the polyimide obtained in this synthesis example was 28,100.
  • Table 1 summarizes the average molecular weights of the polyimide resins obtained in Synthesis Examples 1 to 8 above.
  • Example 1 160 g of the polyimide varnish obtained in Synthesis Example 1, 4.95 g of 2-isocyanatoethyl acrylate (manufactured by Showa Denko KK, Karens AOI), and 0.05 g of paramethoxyphenol (hereinafter, MEHQ) were added, and 5 at 50 ° C. Reacted for time. Then, the reaction solution was dropped into water to precipitate polyimide, and the mixture was dried at 70 ° C. overnight to obtain a polyimide resin (A).
  • 2-isocyanatoethyl acrylate manufactured by Showa Denko KK, Karens AOI
  • MEHQ paramethoxyphenol
  • this polyimide resin (A) is dissolved in 10 g of GBL, 0.75 g of trimethylolpropane triacrylate (TMP-TA), 0.045 g of 1-hydroxycyclohexylphenylketone (manufactured by BASF, IRGACURE184), and bis (2,4). 0.105 g of 6-trimethylbenzoyl) phenylphosphine oxide (IRGACURE819, manufactured by BASF) was added and stirred until dissolved to obtain a photosensitive resin composition (photosensitive resin varnish). This photosensitive resin composition was applied onto a silicon wafer and dried at 100 ° C. for 60 minutes.
  • TMP-TA trimethylolpropane triacrylate
  • IRGACURE819 1-hydroxycyclohexylphenylketone
  • Examples 2-9 and Comparative Example 1 A photosensitive resin composition was prepared in the same manner as in Example 1 above, except that the formulations shown in the table below were used, and their characteristics were evaluated. The results are shown in Table 2.
  • the cured film containing the photosensitive resin composition according to the present embodiment has excellent developability as compared with Comparative Example 1. It was also confirmed that the cured film containing the photosensitive resin composition according to the present embodiment did not cause cracks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Materials For Photolithography (AREA)

Abstract

ポリイミド樹脂(A)が特定の構造を有し、重量平均分子量が70,000以下である、感光性樹脂組成物を提供する。

Description

感光性樹脂組成物及びその硬化膜
 本発明は、感光性樹脂組成物及びその硬化膜に関する。
 電子機器の半導体素子の表面保護膜、層間絶縁膜、回路基板の配線保護絶縁膜等には、耐熱性や絶縁性に優れたポリイミド系樹脂が広く使用されている。半導体集積回路等の絶縁材料には、近年の高密度化、高集積化の観点から、従来以上のパターン現像性が求められるとともに、高絶縁性、耐熱性の向上や、低温硬化性、耐クラック性、柔軟性といった様々な物性も求められる。現像性は露光部と未露光部の溶解性の差が大きいほど良好であり、現像性を向上させるには露光部と未露光部の溶解性の差を広げることが重要である。また、所望の物性を発現させるためには、ベースポリマーの原料を適切に選択し、ポリマー設計を行うことも必要である。
 ポリイミドは溶剤溶解性が低いため、感光性ポリイミドを得るための手法として、ポリイミド前駆体に重合性基を導入する方法が提案されている。特許文献1では、ポリイミド前駆体の側鎖に重合性基を導入する方法が提案されている。特許文献2ではポリイミド前駆体の末端に重合性基を導入する方法が提案されている。
 一方、溶剤可溶性のポリイミドに重合性基を導入する方法が提案されている。重合性基を高密度で導入することが可能であるため、側鎖に重合性基を有するポリイミドが提案されている。特許文献3では、ポリイミドの側鎖に重合性基を設ける方法が提案されている。
特開2013-76845号公報 国際公開第2018/003725号 特開2000-147761号公報
 特許文献1及び2に開示される方法では、ポリイミドを得るためにポリイミド前駆体を高温で長時間加熱する必要があり、低温硬化が求められる分野には適さない。また、ポリイミド前駆体からポリイミドを得る加熱工程も含めると約50%の体積収縮が起こるため、反りやクラックの原因となるという課題がある。
 特許文献3に開示される方法では、ポリイミドの側鎖に重合性基を設けるための官能基を導入する必要があるため、ポリイミド合成の原料選択肢が限られる。また、側鎖に重合性基を設ける方法は、重合性基を高密度に導入できるため硬化性が良好である一方で、硬化収縮率が大きく、クラックが発生しやすいという課題がある。
 本発明は、上記事情に鑑み、加熱工程が不要であり、現像性に優れ、ポリイミド原料選択に自由度を有し、硬化収縮性の低い、感光性樹脂組成物を提供することを目的とする。
 本発明者らは鋭意検討した結果、特定構造と特定末端構造とを有し、且つ特定の重量平均分子量を有するポリイミド樹脂を含む感光性樹脂組成物が上記課題を解決することを見出した。
 本発明は、以下の感光性樹脂組成物及びその硬化膜に関する。
[1]下記一般式(1)で示される構造を有し、重量平均分子量が70,000以下であるポリイミド樹脂(A)を含む、感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
[一般式(1)中、Rは、環状構造、非環状構造、又は環状構造と非環状構造とを有する炭素数4~10の4価の基である。Aは、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、及びオルガノシロキサン基からなる群から選択される少なくとも1種の基を有し、炭素数2~39の2価の基である。Aの主鎖には-O-、-SO2-、-CO-、-CH2-、-C(CH32-、-C24O-、及び-S-からなる群から選択される少なくとも1種の基が介在していてもよい。nは繰り返し単位数を示す。一般式(1)の末端は、下記式(2)若しくは式(3)で示される基、又は水素原子のいずれかであって、末端の少なくとも一方は式(2)若しくは式(3)で示される基である。]
Figure JPOXMLDOC01-appb-C000005
[一般式(2)及び(3)中、X及びX2はそれぞれ独立に、炭素数2~15の基であり、エステル結合及び二重結合からなる群から選択される少なくとも1つの基を有してもよい。Y及びY2はそれぞれ独立に、水素原子またはメチル基である。]
[2]前記ポリイミド樹脂(A)の重量平均分子量が5,000以上である、上記[1]に記載の感光性樹脂組成物。
[3]前記ポリイミド樹脂(A)の波長200~400nmにおける光線透過率が50%以上である、上記[1]又は[2]に記載の感光性樹脂組成物。
[4]波長365nmにおける露光量1,500~2,500mJ/cm2の条件下で露光した後の未露光部の残膜率が40%以下である、上記[1]~[3]のいずれか1つに記載の感光性樹脂組成物。
[5]前記一般式(1)中のAが芳香族炭化水素基として芳香環を含む、上記[1]~[4]の少なくとも1つに記載の感光性樹脂組成物。
[6]前記一般式(1)のAが、以下に示される構造からなる群から選択される少なくとも1種以上を含む、上記[1]~[5]にいずれか1つに記載の感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
[式中、*は結合手を示す。]
[7]前記ポリイミド樹脂(A)が、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、4,4’-オキシビス[3-(トリフルオロメチル)ベンゼンアミン、又は1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼンから構成される単位の少なくとも1種を含む、上記[1]~[6]のいずれか1つに記載の感光性樹脂組成物。
[8]光重合開始剤、溶剤、及び光重合性化合物からなる群から選択される少なくとも1種をさらに含む、上記[1]~[7]のいずれか1つに記載の感光性樹脂組成物。
[9]前記光重合性化合物が、多官能ラジカル重合性モノマーである、上記[8]に記載の感光性樹脂組成物。
[10]増感剤をさらに含む、上記[1]~[9]のいずれかに1つに記載の感光性樹脂組成物。
[11]絶縁膜形成用である、上記[1]~[10]のいずれか1つに記載の感光性樹脂組成物。
[12]上記[1]~[11]のいずれか1つに記載の感光性樹脂組成物を硬化してなる、硬化膜。
[13]膜厚が10~85μmである、上記[12]に記載の硬化膜。
 本発明によれば、加熱工程が不要であり、透明性が高く溶剤溶解性に優れるため現像性に優れ、ポリイミド原料選択に自由度を有する、感光性樹脂組成物を得ることができる。当該樹脂組成物は硬化収縮性が低いため、得られる硬化膜のクラック等の発生を効果的に抑制することができる。
 本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明の内容を限定しない。本発明は、その要旨の範囲内で適宜に変形して実施できる。本明細書において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましいといえる。本明細書において、「XX~YY」の記載は、「XX以上YY以下」を意味する。
 本明細書における「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を意味する。他の類似用語(「(メタ)アクリル酸」、「(メタ)アクリロイル基」等)についても同様である。
[ポリイミド樹脂(A)]
 本実施形態のポリイミド樹脂(A)は、下記一般式(1)で示される構造を有し、かつ重量平均分子量が70,000以下である。
Figure JPOXMLDOC01-appb-C000007
[一般式(1)中、Rは、環状構造、非環状構造、又は環状構造と非環状構造とを有する炭素数4~10の4価の基である。Aは、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、及びオルガノシロキサン基からなる群から選択される少なくとも1種の基を有し、炭素数2~39の2価の基である。Aの主鎖には-O-、-SO2-、-CO-、-CH2-、-C(CH32-、-C24O-、及び-S-からなる群から選択される少なくとも1種の基が介在していてもよい。nは繰り返し単位数を示す。一般式(1)の末端は、下記式(2)若しくは式(3)で示される基、又は水素原子のいずれかであって、末端の少なくとも一方は式(2)若しくは式(3)で示される基である。]
Figure JPOXMLDOC01-appb-C000008
[一般式(2)及び(3)中、X及びX2はそれぞれ独立に、炭素数2~15の基であり、エステル結合及び二重結合からなる群から選択される少なくとも1つの基を有してもよい。Y及びY2はそれぞれ独立に、水素原子またはメチル基である。]
 上記式(1)中のRが少なくとも環状構造を有することが好ましく、該環状構造として例えば、シクロヘキサン、シクロペンタン、シクロブタン、ビシクロペンタン及びこれらの立体異性体から4個の水素原子を除いて形成される4価の基が挙げられる。該4価の基としては、より具体的には、下記構造式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000009
[式中、*は結合手を示す。]
 上記の中でも、シクロヘキサンから4個の水素原子を除いて形成される4価の基がより好ましい。
 式(1)におけるAは、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、及びオルガノシロキサン基からなる群から選択される少なくとも1種の基を有する、炭素数2~39の2価の基である。Aの主鎖には-O-、-SO2-、-CO-、-CH2-、-C(CH32-、-C24O-、及び-S-からなる群から選択される少なくとも1種の基が介在していてもよい。
 Aは、より具体的には、シクロヘキサン、ジシクロヘキシルメタン、ジメチルシクロヘキサン、イソホロン、ノルボルナン及びこれらのアルキル置換体、並びにハロゲン置換体;ベンゼン、ナフタレン、ビフェニル、ジフェニルメタン、ジフェニルエーテル、ジフェニルスルホン、ベンゾフェノン及びこれらのアルキル置換体並びにハロゲン置換体;オルガノ(ポリ)シロキサンなどの化合物から2個の水素原子を除いて形成される2価の基が挙げられる。Aは環状構造を有することが好ましく、脂環式炭化水素基及び/又は芳香環を有することが好ましい。Aは芳香族炭化水素基として芳香環を有することが好ましい。より具体的には、下記構造式で表される炭素数6~27の2価の基が好ましくは挙げられる。
Figure JPOXMLDOC01-appb-C000010

[式中、*は結合手を示す。]
 上で例示したAに相当する基として、以下に示される構造からなる群から選択される少なくとも1種以上を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000011
[式中、*は結合手を示す。]
 式(1)で表される構造単位の繰り返し単位数を示すnは、好ましくは5~250、より好ましくは10~200、さらに好ましくは15~150である。nが15以上であれば、所望の機械物性を有する硬化膜とすることができる。nが250以下であれば、十分な溶剤溶解性を確保することができる。
 本実施形態のポリイミド樹脂(A)は、上記一般式(2)若しくは一般式(3)で示される基、または水素原子のいずれかを末端に有し、末端の少なくとも一方は一般式(2)若しくは一般式(3)で示される基である。ポリイミド樹脂(A)は一方の末端が一般式(2)又は一般式(3)で示される構造を有していてもよいし、両末端が一般式(2)又は一般式(3)で示される構造を有していてもよい。
 一般式(2)又は一般式(3)中のX又はX2で表される基は、炭素数2~15の基であり、エステル結合及び二重結合からなる群から選択される少なくとも1つの基を有してもよい。Y又はY2で示される基は、水素原子又はメチル基である。
 上記一般式(2)又は一般式(3)で表される構造は、より具体的には、ポリイミド樹脂(A)の末端ジアミンを、官能基含有化合物と反応させて得られる構造に該当する。かかる官能基含有化合物としては、イソシアネート基又はエポキシ基と、(メタ)アクリル基とを有する化合物が挙げられる。該化合物としては、2-イソシアナトエチルメタクリレート、2-イソシアナトエチルアクリレート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート、グリシジルメタクリレート、グリシジルアクリレート、アリルグリシジルエーテル等が挙げられる。一般式(2)又は一般式(3)で表される構造は、当該化合物とアミン末端とが反応した構造を有し得る。
 ポリイミド樹脂(A)は、重量平均分子量が70,000以下であることを要する。重量平均分子量が70,000を超えると、樹脂組成物の溶剤溶解性が低下するため、硬化膜形成に適さない。重量平均分子量は、好ましくは60,000以下、より好ましくは50,000以下、さらに好ましくは45,000以下、よりさらに好ましくは40,000以下、よりさらに好ましくは35,000以下、よりさらに好ましくは30,000以下、特に好ましくは30,000未満である。所望の機械物性を有する硬化膜を得ることができるため、ポリイミド樹脂(A)の重量平均分子量が5,000以上であることが好ましい。ポリイミド樹脂(A)の重量平均分子量は、より好ましくは10,000以上、さらに好ましくは13,000以上、よりさらに好ましくは15,000以上である。ポリイミド樹脂(A)の重量平均分子量が上記範囲にあることにより、未露光部の残膜率が低く、優れた現像性を有する樹脂組成物を得ることができる。
 ポリイミド樹脂(A)は、以下詳述するジアミン成分と、テトラカルボン酸成分とを反応させることにより得ることができる。
<ジアミン成分>
 ジアミン成分としては、ジアミン、ジイソシアネート及びジアミノジシラン類等を挙げることができ、ジアミンであることが好ましい。原料として用いるジアミン成分中のジアミン含量は、好ましくは50モル%以上であり、100モル%であってもよい。
 上記ジアミンは、脂肪族ジアミン及び芳香族ジアミンのいずれでもよく、これらの混合物でもよい。本発明において「芳香族ジアミン」とは、アミノ基が芳香族環に直接結合しているジアミンを表し、その構造の一部に脂肪族基、脂環基、その他の置換基を含んでいてもよい。「脂肪族ジアミン」とは、アミノ基が脂肪族基または脂環基に直接結合しているジアミンを表し、その構造の一部に芳香族基、その他の置換基を含んでいてもよい。
 一般に、脂肪族ジアミンをポリイミド樹脂の原料として使用すると、中間生成物であるポリアミド酸と脂肪族ジアミンが強固な錯体を形成するために、高分子量ポリイミドが得られにくい。そのため、錯体の溶解性が比較的高い溶剤、例えばクレゾール等を用いるなどの工夫が必要になる。シクロへキサンテトラカルボン酸、シクロブタンテトラカルボン酸またはこれらの誘導体をテトラカルボン酸成分として用いると、ポリアミド酸と脂肪族ジアミンの結合が比較的弱い錯体が形成されるので、ポリイミドを容易に高分子量化できる。ジアミンとして、フッ素置換基を有するものを原料として選択すると、得られるポリイミド樹脂の透明性に優れるため好ましい。
 上記脂肪族ジアミンとしては任意のものを使用することができる。脂肪族ジアミンとしては、例えば、4,4’-ジアミノジシクロヘキシルメタン、エチレンジアミン、ヘキサメチレンジアミン、ポリエチレングリコールビス(3-アミノプロピル)エーテル、ポリプロピレングリコールビス(3-アミノプロピル)エーテル、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、m-キシリレンジアミン、p-キシリレンジアミン、イソホロンジアミン、ノルボルナンジアミン及びシロキサンジアミン類などが挙げられる。
 上記芳香族ジアミンとしては、例えば、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、m-フェニレンジアミン、p-フェニレンジアミン、ジアミノベンゾフェノン、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、4,4’-オキシビス[3-(トリフルオロメチル)ベンゼンアミン]、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン及び1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼンなどが挙げられる。
 上記ジアミンが、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、4,4’-オキシビス[3-(トリフルオロメチル)ベンゼンアミン]、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン又は1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼンを少なくとも含むことが好ましい。いずれかをジアミン成分として少なくとも含むことにより、得られるポリイミド樹脂(A)を含む感光性樹脂組成物は、特定波長における高い光線透過率及び高い溶剤溶解性を有する。そのため、露光部の硬化性に優れ、かつ未露光部の残膜率が低く、優れた現像性を有する。ジアミン成分として上記いずれかを含めばよく、他のジアミンと組み合わせて用いても優れた効果は維持される。本実施形態のポリイミド樹脂(A)は、上記4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、4,4’-オキシビス[3-(トリフルオロメチル)ベンゼンアミン]又は1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼンから構成される単位の少なくとも1種を含むことが好ましい。
<テトラカルボン酸成分>
 テトラカルボン酸成分として任意のものを使用することができる。テトラカルボン酸成分としては、例えば、シクロヘキサンテトラカルボン酸、シクロヘキサンテトラカルボン酸エステル類、シクロヘキサンテトラカルボン酸二無水物、シクロブタンテトラカルボン酸、シクロブタンテトラカルボン酸エステル類、シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸、シクロペンタンテトラカルボン酸エステル類、シクロペンタンテトラカルボン酸二無水物、ビシクロペンタンテトラカルボン酸二無水物などが挙げられる。中でも、シクロヘキサンテトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物及びシクロペンタンテトラカルボン酸二無水物をより好ましくは挙げることができる。上記の中でも、シクロヘキサンテトラカルボン酸二無水物がさらに好ましい。上記した各種テトラカルボン酸成分は位置異性体を含む。
 上記テトラカルボン酸成分のより好ましい具体例として、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸メチルエステル、1,2,3,4-ブタンテトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸メチルエステル、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸メチルエステル、1,2,4,5-シクロペンタンテトラカルボン酸、1,2,4,5-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロペンタンテトラカルボン酸メチルエステル、3-カルボキシメチル-1,2,4-シクロペンタントリカルボン酸、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸メチルエステル、ジシクロヘキシルテトラカルボン酸、ジシクロヘキシルテトラカルボン酸二無水物及びジシクロヘキシルテトラカルボン酸メチルエステル等が挙げられる。
 これらの中でも、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸メチルエステルは、ポリイミド樹脂を製造する際に高分子量化が容易で、フレキシブルなフィルムが得られ易い面で有利であるため、特に好ましい。
 テトラカルボン酸成分は、最終的に得られる硬化膜、例えばフィルムのフレキシビリティ、熱圧着性を損なわない範囲で、他のテトラカルボン酸またはその誘導体を含んでいてもよい。これら他のテトラカルボン酸又はその誘導体としては、例えば、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、2,2-ビス(2,3-ジカルボキシフェニル)プロパン、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、ビス(2,3-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、4,4-(p-フェニレンジオキシ)ジフタル酸、4,4-(m-フェニレンジオキシ)ジフタル酸、エチレンテトラカルボン酸、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)メタン及びこれらの誘導体から選ばれる少なくとも1種を挙げることができる。
<ポリイミド樹脂の調製方法>
 本実施形態の感光性樹脂組成物に含まれるポリイミド樹脂(A)は、以下の工程(1)及び(2)により得ることができる:
 工程(1):テトラカルボン酸成分とジアミン成分を反応させ、末端にアミノ基を有するポリイミド樹脂を得る。
 工程(2):上記工程(1)で得られた末端にアミノ基を有するポリイミド樹脂と、上記官能基含有化合物(イソシアネート基又はエポキシ基と、(メタ)アクリル基とを有する化合物)とを反応させる。
<工程(1)>
 上記したテトラカルボン酸とジアミン成分とを反応させて、末端にアミノ基を有するポリイミド樹脂を得る。
 テトラカルボン酸成分とジアミン成分とを反応させる際に使用する有機溶媒は特に限定されないが、例えば環状エーテル、環状ケトン、環状エステル、アミド及びウレアからなる群から選択される少なくとも1種を含む有機溶媒が好ましい。好適な溶媒の具体例としては、特に限定されないが、γ-ブチロラクトン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、ヘキサメチルホスホルアミド、シクロペンタノン、シクロヘキサノン、1,3-ジオキソラン、1,4-ジオキサン、テトラメチルウレア及びテトラヒドロフラン等の非プロトン性の極性有機溶媒からなる群から選択される少なくとも1種を挙げることができる。これらの中でも、γ-ブチロラクトン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド及びN-メチル-2-ピロリドンからなる群から選択される1種以上であることがより好ましい。
 工程(1)においてテトラカルボン酸成分とジアミン成分を反応させる際に、イミド化触媒を使用することができる。イミド化触媒としては、3級アミン化合物が好ましく、具体的にはトリメチルアミン、トリエチルアミン(TEA)、トリプロピルアミン、トリブチルアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、イミダゾール、ピリジン、キノリン及びイソキノリンからなる群から選択される少なくとも1種を用いることができる。
 工程(1)における反応温度は、通常160~200℃の範囲であり、好ましくは170~190℃の範囲、より好ましくは180~190℃の範囲である。160℃以上であれば、イミド化および高分子量化が十分に進行する。200℃以下であれば、溶液粘度を適切に保つことができ、反応容器の壁面に樹脂が焦げ付くなどの不具合を回避することができる。場合によってはトルエン、キシレンなどの共沸脱水剤を用いてもよい。反応圧力は通常、常圧であるが、必要に応じて加圧下でも反応を行うことができる。反応温度の保持時間としては、少なくとも1時間以上が好ましく、より好ましくは3時間以上である。1時間以上であれば、イミド化および高分子量化を十分に進めることができる。反応時間について上限は特にないが、通常3~10時間の範囲で行う。
 工程(1)においては、テトラカルボン酸成分「Aモル」とジアミン成分「Bモル」とを、好ましくは0.80≦A/B≦0.99の範囲で反応させることが好ましく、0.85≦A/B≦0.95の範囲で反応させることがより好ましい。A/B≦0.99とすることで、ポリイミドの末端をジアミン過剰にすることが可能であり、末端にアミノ基を有するポリイミド樹脂を得ることができ、かつ十分な溶剤溶解性を有する分子量のポリイミド樹脂が得られる。0.80≦A/Bであれば、十分な柔軟性を発現する分子量のポリイミド樹脂を得ることができる。
 A/Bが1.0に近づくほど高分子量のポリイミド樹脂が得られるため、A/Bを適宜調整することで、目的の分子量のポリイミド樹脂を得ることができる。
<工程(2)>
 工程(2)は、上記工程(1)で得られたポリイミド樹脂の末端を変性する工程である。具体的には、上述した通り、ポリイミドと、上記官能基含有化合物(イソシアネート基又はエポキシ基と、(メタ)アクリル基とを有する化合物)とを反応させて、末端に(メタ)アクリル基を有するポリイミド樹脂を得る。
 ポリイミド樹脂の末端を変性する、官能基含有化合物は、イソシアネート基又はエポキシ基と、(メタ)アクリル基とを有する化合物であり、具体的には、2-イソシアナトエチルメタクリレート、2-イソシアナトエチルアクリレート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート、グリシジルメタクリレート、及びアリルグリシジルエーテル等が挙げられる。これらの官能基含有化合物は、単独で用いても、2種類以上を組み合わせて用いてもよい。官能基含有化合物は、末端に(メタ)アクリル基を有するポリイミド樹脂を含む溶液中の固形分に対して、0.1~30モル倍の割合で使用することが好ましい。
 工程(2)における反応温度は、30~100℃の範囲が好ましく、反応時間は1~5時間であることが好ましい。
 ポリイミド樹脂のアミノ基末端と、官能基含有化合物のイソシアネート基又はエポキシ基とを反応させる際には、そのまま反応させてもよいし、必要に応じて触媒の存在下で反応させてもよい。該触媒としては、トリエチルアミンなどのアミン化合物、トリフェニルホスフィンなど有機リン系化合物などが挙げられ、これらを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。反応時の副反応を抑制させるために重合禁止剤を使用してもよい。重合禁止剤としては、ハイドロキノン、ハイドロキノンモノメチルエーテル、及びメチルハイドロキノン等が挙げられ、これらを単独で用いても良いし、2種類以上を組み合わせて用いてもよい。
 本実施形態の感光性樹脂組成物に含まれるポリイミド樹脂(A)は、波長200~400nmの光線透過率が好ましくは50%以上、より好ましくは55%以上、さらに好ましくは60%以上、さらにより好ましくは70%以上である。
 本実施形態の感光性樹脂組成物に含まれるポリイミド樹脂(A)は、上記波長で高い光線透過率を有すると共に、優れた溶剤溶解性を有する。そのため、該組成物に含まれ得る光重合開始剤が効果的に作用するため、硬化膜を効率よく得ることができる。加えて、特定構造と特定末端構造を有し、特定の分子量を有するポリイミド樹脂(A)を用いることにより、後述する組成物から硬化膜を形成した際に、未露光部の残膜率が低く、優れた現像性を有すると共に、クラック等の発生を効果的に抑制することができる。
[感光性ポリイミド樹脂組成物]
 本実施形態における感光性ポリイミド樹脂組成物は、上記一般式(1)の構造及び一般式(2)で表される末端構造を有するポリイミド樹脂(A)を含む。該ポリイミド樹脂(A)の他に、例えば、光重合開始剤、溶剤、及び光重合性化合物からなる群から選択される少なくとも1種を含むことが好ましい。増感剤をさらに含むことも好ましい。
 溶剤としては、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N-ベンジル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミド、N-アセチル-ε-カプロラクタム、ジメチルイミダゾリジノン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル及びγ-ブチロラクトン等を挙げることができる。これら溶剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 適切な溶剤を用いることで、本実施形態の感光性樹脂組成物を溶液(ワニス)状態で使用することができ、成膜する際に便利である。
 光重合性化合物としては、多官能ラジカル重合性モノマー、例えば2官能以上の(メタ)アクリルモノマーを用いることができる。
 (メタ)アクリルモノマーとしては、例えば、トリシクロデカンジメタノールジアクリレート、トリシクロデカンジメタノールジメタクリレート、ポリプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリアクリレート、トリス-(2-アクリロキシエチル)イソシアヌレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサアクリレートなどが挙げられる。これら光重合性化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 混合する光重合性化合物の構造により、ポリイミド樹脂組成物の柔軟性や耐熱性を制御することができる。これら光重合性化合物は、末端に(メタ)アクリル基を有するポリイミド樹脂を含む溶液中の固形分に対して、5~500質量部の割合で混合するのが好ましい。
 光重合開始剤は特に限定されず公知のものを使用することができる。例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチループロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド及びビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド等を挙げることができる。
 これら光重合開始剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 光重合開始剤は、末端に(メタ)アクリル基を有するポリイミド樹脂(A)を含む溶液中の固形分に対して、0.1~10質量部の割合で混合するのが好ましい。
 増感剤は特に限定されず、公知のものを使用できる。例えば、アミノ基含有増感剤を挙げることができ、アミノ基及びフェニル基を同一分子内に有する化合物を好ましくは例示できる。より具体的には、4,4’-ジメチルアミノベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、2-アミノベンゾフェノン、4-アミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4-ジアミノベンゾフェノン等のベンゾフェノン系化合物;2-(p-ジメチルアミノフェニル)ベンゾオキサゾール、2-(p-ジエチルアミノフェニル)ベンゾオキサゾール、2-(p-ジメチルアミノフェニル)ベンゾ[4,5]ベンゾオキサゾール、2-(p-ジメチルアミノフェニル)ベンゾ[6,7]ベンゾオキサゾール、2,5-ビス(p-ジエチルアミノフェニル)-1,3,4-オキサジアゾール、2-(p-ジメチルアミノフェニル)ベンゾチアゾール、2-(p-ジエチルアミノフェニル)ベンゾチアゾール、2-(p-ジメチルアミノフェニル)ベンズイミダゾール、2-(p-ジエチルアミノフェニル)ベンズイミダゾール、2,5-ビス(p-ジエチルアミノフェニル)-1,3,4-チアジアゾール、(p-ジメチルアミノフェニル)ピリジン、(p-ジエチルアミノフェニル)ピリジン、(p-ジメチルアミノフェニル)キノリン、(p-ジエチルアミノフェニル)キノリン、(p-ジメチルアミノフェニル)ピリミジン、(p-ジエチルアミノフェニル)ピリミジン等のp-ジアルキルアミノフェニル基含有化合物等を挙げることができる。
 これら増感剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 増感剤は、末端に(メタ)アクリル基を有するポリイミド樹脂(A)を含む溶液中の固形分に対して、0.001~10質量部の割合で混合するのが好ましい。
 本実施形態の感光性樹脂組成物は特に限定されないが、以下の通り調製することができる。
 一般式(1)で示される構造を有し、一般的(2)又は(3)で示される末端構造を有するポリイミド樹脂(A)に、必要に応じて、溶剤、光重合開始剤、光重合性化合物及び増感剤からなる群から選択される少なくとも1種を混合して感光性ポリイミド組成物を得る。
 本実施形態の感光性樹脂組成物は、特に絶縁膜形成に用いることが好適である。
[硬化膜]
 本実施形態における硬化膜を得る場合には、上記構造特徴を有するポリイミド樹脂(A)を含む溶液を基材上に塗布する。
 基材上に塗布する方法は特に限定されず、具体的には、インクジェット法、スピンコート法、キャスティング法、マイクログラビア法、グラビアコート法、バーコート法、ロールコート法、ワイヤバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、ダイコート法等を挙げることができる。
 基材上に塗布する際、本実施形態のポリイミド樹脂(A)を含む溶液の固形分濃度を、5~50質量%の範囲になるように調整することが好ましい。塗布の際に用いる溶媒としては、溶解性の観点から非プロトン性極性溶媒が望ましい。具体的には、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N-ベンジル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミド、N-アセチル-ε-カプロラクタム、ジメチルイミダゾリジノン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、γ-ブチロラクトン等を好適な例として挙げることができる。これら溶媒は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。塗布性をより改善するために、トルエン、キシレン、ジエチルケトン、メトキシベンゼン、シクロペンタノン等の溶媒をポリマーの溶解性に悪影響を及ぼさない範囲で混合してもよい。
 上記基材としては、ガラス、シリコンウェハー、金属箔、プラスチックフィルムが挙げられる。上記金属箔の中でも特にシリコンウェハー、銅箔が好適に使用される。
 上記基材上に塗布された本実施形態の感光性樹脂組成物に、所定のパターンのフォトマスクを介して、光(通常は紫外線を用いる)を照射する。照射後、現像液により未露光部を溶解除去して、所望のレリーフパターンを得る。
 紫外線照射量は、積算照射量が500~8,000mJ/cm2であることが好ましい。
 本実施形態の感光性樹脂組成物を用いた樹脂パターン形成方法では、現像液として、有機溶剤を用いることが好ましい。現像液は本実施形態に係る感光性樹脂組成物を溶解させるものであれば特に限定されない。具体的には、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N-ベンジル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミド、N-アセチル-ε-カプロラクタム、ジメチルイミダゾリジノン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、γ-ブチロラクトンなどが好適な例として挙げられる。
 これら現像液は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 現像によって形成したレリーフパターンを次いでリンス液により洗浄して、現像溶剤を除去する。リンス液には、現像液との混和性のよいメタノール、エタノール、イソプロピルアルコールや、水等が好適な例として挙げられる。
 上述する処理によって得られたレリーフパターンを、80~250℃の範囲から選ばれる温度で加熱処理し、溶剤を乾燥し、本実施形態の感光性樹脂組成物を硬化してなる硬化膜を得ることができる。本実施形態によれば、優れた現像性、すなわち露光部は十分に硬化し、未露光部は十分に除去される樹脂組成物を用いるため、得られるレリーフパターンを高解像度で得ることができる。
 本実施形態に係る感光性樹脂組成物を硬化してなる硬化膜は、具体的には、波長365nmにおける露光量1,500~2,500mJ/cm2の条件下で露光した後の未露光部残膜率が好ましくは45%以下、より好ましくは40%以下、さらに好ましくは30%以下、よりさらに好ましくは10%以下である。上記露光光源は特に限定されないが、例えば高圧水銀灯を用いることができ、365nmにおいて上記露光量となるように露光する。
 本明細書において「未露光部残膜率」とは、以下の定義から算出される値を示す。測定方法の詳細は、実施例にて詳述する。
未露光部残膜率(%)=[未露光部の現像後の質量/未露光部の現像前の質量]×100
 本実施形態に係る感光性樹脂組成物を硬化してなる硬化膜は、露光部残膜率が好ましくは70%以上、より好ましくは80%以上、さらに好ましくは85%以上である。
 本明細書において「露光部残膜率」とは、以下の定義から算出される値である。測定方法の詳細は、実施例にて詳述する。
露光部残膜率(%)=[露光部の現像後の質量/露光部の現像前の質量]×100
 本実施形態により得られる硬化膜の膜厚は、10~85μmであることが好ましい。膜厚が上記範囲にあると、優れた絶縁性膜として用いることができる。膜厚が厚くなる(すなわち、基材に塗布する感光性樹脂組成物量が増える)ほど、特にポリイミド樹脂の溶剤溶解性に問題を生じることが多い。しかしながら、本発明によれば、特定構造と特定末端構造とを有し、特定の分子量範囲を有するポリイミド樹脂を用いることにより、かかる場面においても、優れた溶解溶剤性と透明性とを両立させることができる。
 従って、本実施形態の硬化膜は、例えば、高い電圧の印加が想定される絶縁性膜用途において好適に用いることができる。特定構造及び特定末端構造を有し、かつ特定の分子量を有するポリイミド樹脂(A)を含む、本実施形態の感光性樹脂組成物から得られる硬化膜は、クラック等の発生を効果的に抑制することができ、物性に優れる。
[用途]
 本実施形態の感光性樹脂組成物及び硬化膜は、種々の用途に使用することができる。例えば、電子機器の半導体素子の表面保護膜、層間絶縁膜、回路基板の配線保護絶縁膜、特に高密度化、高集積化された上記用途に好適に用いることができる。
 以下、実施例及び比較例により本発明を更に詳しく説明するが、本発明はこれらの実施例により何ら限定されない。
 本実施例及び比較例で採用した評価方法は以下の通りである。
(1)重量平均分子量及び数平均分子量
 GPC分析により、重量平均分子量(Mw)及び数平均分子量(Mn)を求めた。分析に用いた装置および分析条件は下記の通りである。
装置:Viscotek TDAmax(Malvern Panalytical Ltd.社製)
カラム:A6000M×2(Malvern Panalytical Ltd.社製)
溶離液:20mM臭化リチウム添加ジメチルホルムアミド
流速:1.0ml/min
カラム温度:40℃
検出器:RI(屈折率検出器)、RALS(光散乱検出器)、LALS(光散乱検出器)
(2)未露光部の残膜率(%)
 以下に記載する実施例及び比較例にて、ポリイミド樹脂を含む感光性樹脂組成物を含むワニスを調製する。スピンコーターでシリコンウェハー上に、各実施例及び比較例でそれぞれ得られたワニスを塗布した後、100℃で60分間加熱し、溶媒を除去した。この時点(上記条件で溶媒を除去した時点)のワニスの質量を、未露光部の現像前質量とした。現像液のγ-ブチロラクトンに5分間浸漬させた後、リンス液としてメタノールを用いて洗浄し、空気流通下にて、質量変化がなくなるまで溶媒を除去した。該溶媒除去後にシリコンウェハー上に残った膜の質量を未露光部の現像後質量とし、下記の式により未露光部残膜率を求めた。
未露光部残膜率(%)=[未露光部の現像後の質量/未露光部の現像前の質量]×100
(3)露光部の残膜率(%)
 以下に記載する実施例及び比較例にて、ポリイミド樹脂を含む感光性樹脂組成物を含むワニスを調製する。スピンコーターでシリコンウェハー上に、各実施例及び比較例でそれぞれ得られたワニスを塗布した後、100℃で60分間加熱し溶媒を除去した。この時点(上記条件で溶媒を除去した時点)のワニスの質量を露光部の現像前質量とした。UV照射を行い、現像液のγ-ブチロラクトンに5分間浸漬させた後、リンス液としてメタノールを用いて洗浄し、空気流通下にて質量変化がなくなるまで溶媒を除去した。該溶媒除去後にシリコンウェハー上に残った膜の質量を露光部の現像後質量とし、下記の式により残膜率を求めた。
露光部残膜率(%)=[露光部の現像後の質量/露光部の現像前の質量]×100
 上記(2)及び(3)の現像時に使用した装置および条件は下記のとおりとした。
紫外線照射装置:ECS-1511U(アイグラフィックス株式会社製)
光源:高圧水銀灯
照度:670~700mW/cm2
積算光量:2,400mJ/cm2
現像液:γ-ブチロラクトン
現像時間:5分間
リンス液:メタノール
シリコンウェハー:4インチシリコンウェハー(株式会社アドバンテック製)
合成例1
 窒素導入管、撹拌装置、温度計、冷却器を備えた500mlの5つ口フラスコに、窒素導入下、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン(以下、BiS-AP)を97.279g(0.28mol)、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン(以下、TMDA)を32.141g(0.12mol)、トリエチルアミン(以下、TEA)を18.754g(0.19mol)、トリエチレンジアミン(以下、TEDA)を0.083g(0.74mmol)、γ-ブチロラクトン(以下、GBL)を259.7g投入し、撹拌しながら70℃まで加熱した。ここに、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(以下、HPMDA)82.943g(0.37mol)を加え、180℃で5時間反応させた。N,N-ジメチルアセトアミド(以下、DMAc)536.8gで希釈し、固形分濃度20質量%のポリイミドワニス995gを得た。GPCでの測定の結果、本合成例で得られたポリイミドの重量平均分子量は15,800であった。
合成例2
 BiS-AP量を93.921g(0.27mol)、TMDA量を31.126g(0.12mol)、TEA量を18.72g(0.19mol)、TEDA量を0.083g(0.74mmol)、GBL量を254.8g、及びDMAc量を524.3gとした以外は、合成例1と同様にしてポリイミドワニス973gを得た。GPCでの測定の結果、本合成例で得られたポリイミドの重量平均分子量は27,000であった。
合成例3
 BiS-AP量を92.462g(0.27mol)、TMDA量を30.642g(0.12mol)、TEA量を18.72g(0.19mol)、TEDA量を0.083g(0.74mmol)、GBL量を252.4g、及びDMAc量を519.3gとした以外は、合成例1と同様にしてポリイミドワニス964gを得た。GPCでの測定の結果、本合成例で得られたポリイミドの重量平均分子量は33,200であった。
合成例4
 BiS-AP量を91.513g(0.27mol)、TMDA量を30.327g(0.11mol)、TEA量を18.72g(0.19mol)、TEDA量を0.083g(0.74mmol)、GBL量を250.9g、及びDMAc量を516.1gとした以外は、合成例1と同様にしてポリイミドワニス959gを得た。GPCでの測定の結果、本合成例で得られたポリイミドの重量平均分子量は42,800であった
合成例5
 BiS-AP量を90.401g(0.26mol)、TMDA量を29.959g(0.11mol)、TEA量を18.72g(0.19mol)、TEDA量を0.083g(0.74mmol)、GBL量を249.0g、及びDMAc量を512.3gとした以外は、合成例1と同様にしてポリイミドワニス952gを得た。GPCでの測定の結果、本合成例で得られたポリイミドの重量平均分子量は75,600であった。
合成例6
 BiS-AP量を0.00g(0.00mol)、TMDA量を103.720g(0.39mol)、TEA量を1.871g(0.018mol)、TEDA量を0.0g(0.00mmol)、GBL量を228.3g、及びDMAc量を464.1gとした以外は、合成例1と同様にしてポリイミドワニス865gを得た。GPCでの測定の結果、本合成例で得られたポリイミドの重量平均分子量は14,000であった。
合成例7
 BiS-AP量を0.00g(0.00mol)、TMDA量を0.00g(0.00mol)とし、芳香族ジアミンとして4,4’-オキシビス[3-(トリフルオロメチル)ベンゼンアミン](以下、6FODA)を130.950g(0.39mol)加えること、TEA量を1.871g(0.018mol)、TEDA量を0.0g(0.00mmol)、GBL量を261.6g、及びDMAc量を539.7gとした以外は、合成例1と同様にしてポリイミドワニス1002gを得た。GPCでの測定の結果、本合成例で得られたポリイミドの重量平均分子量は23,100であった。
合成例8
 BiS-AP量を0.00g(0.00mol)、TMDA量を31.13g(0.12mol)、芳香族ジアミンとして1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン(以下、BiS-AM)を93.92g(0.27mol)加えること、TEA量を21.248g(0.21mol)、TEDA量を0.094g(0.83mmol)、GBL量を254.6g、及びDMAc量を525.4gとした以外は、合成例1と同様にしてポリイミドワニス975gを得た。GPCでの測定の結果、本合成例で得られたポリイミドの重量平均分子量は28,100であった。
 上記合成例1~8で得られたポリイミド樹脂の平均分子量を表1にまとめる。
Figure JPOXMLDOC01-appb-T000012
実施例1
 合成例1で得られたポリイミドワニス160g、2-イソシアナトエチルアクリレート(昭和電工(株)製,カレンズAOI)4.95g、パラメトキシフェノール(以下、MEHQ)0.05gを入れ、50℃で5時間反応させた。その後、反応液を水中に滴下してポリイミドを析出させ、70℃で一晩乾燥させ、ポリイミド樹脂(A)を得た。このポリイミド樹脂(A)3gをGBL10gに溶解させ、トリメチロールプロパントリアクリレート(TMP-TA)0.75g、1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製,IRGACURE184)0.045g、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド(BASF社製,IRGACURE819)0.105gを加え、溶解するまで撹拌し、感光性樹脂組成物(感光性樹脂ワニス)を得た。この感光性樹脂組成物をシリコンウェハー上に塗布し、100℃で60分間乾燥させた。続いてGBLに5分間浸漬させ、メタノールでリンスし、空気流通下で質量変化がなくなるまで溶媒を除去し、未露光部残膜率を算出した。このときの未露光部残膜率は0%であった。また、感光性樹脂組成物をシリコンウェハー上に塗布し、100℃で60分間乾燥させた後、アイグラフィックス株式会社製 アイミニグランテージ(ECS-1511U)を使用し、光源には高圧水銀灯を用い、露光波長365nmにおける露光量1,500~2,500mJ/cm2の条件下で露光して硬化膜を形成させ、続いてGBLに5分間浸漬させ、メタノールでリンスし、空気流通下で質量変化がなくなるまで溶媒を除去し、露光部残膜率を算出した。このときの露光部残膜率は100%であった。結果を表2に示す。
実施例2~9及び比較例1
 下記表に示す配合としたこと以外は、上記実施例1と同様に感光性樹脂組成物を調製し、その特性を評価した。結果を表2に合わせて示す。
Figure JPOXMLDOC01-appb-T000013
 比較例1と比べて、本実施形態に係る感光性樹脂組成物を含む硬化膜は優れた現像性を有することが分かる。本実施形態に係る感光性樹脂組成物を含む硬化膜はクラックを生じないことも確認した。

Claims (13)

  1.  下記一般式(1)で示される構造を有し、重量平均分子量が70,000以下であるポリイミド樹脂(A)を含む、感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、Rは、環状構造、非環状構造、又は環状構造と非環状構造とを有する炭素数4~10の4価の基である。Aは、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、及びオルガノシロキサン基からなる群から選択される少なくとも1種の基を有し、炭素数2~39の2価の基である。Aの主鎖には-O-、-SO2-、-CO-、-CH2-、-C(CH32-、-C24O-、及び-S-からなる群から選択される少なくとも1種の基が介在していてもよい。nは繰り返し単位数を示す。一般式(1)の末端は、下記式(2)若しくは式(3)で示される基、又は水素原子のいずれかであって、末端の少なくとも一方は式(2)若しくは式(3)で示される基である。]
    Figure JPOXMLDOC01-appb-C000002
    [一般式(2)及び(3)中、X及びX2はそれぞれ独立に、炭素数2~15の基であり、エステル結合及び二重結合からなる群から選択される少なくとも1つの基を有してもよい。Y及びY2はそれぞれ独立に、水素原子またはメチル基である。]
  2.  前記ポリイミド樹脂(A)の重量平均分子量が5,000以上である、請求項1に記載の感光性樹脂組成物。
  3.  前記ポリイミド樹脂(A)の波長200~400nmにおける光線透過率が50%以上である、請求項1又は2に記載の感光性樹脂組成物。
  4.  波長365nmにおける露光量1,500~2,500mJ/cm2の条件下で露光した後の未露光部の残膜率が40%以下である、請求項1~3のいずれか一項に記載の感光性樹脂組成物。
  5.  前記一般式(1)中のAが芳香族炭化水素基として芳香環を含む、請求項1~4のいずれか一項に記載の感光性樹脂組成物。
  6.  前記一般式(1)のAが、以下に示される構造からなる群から選択される少なくとも1種以上を含む、請求項1~5のいずれか一項に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    [式中、*は結合手を示す。]
  7.  前記ポリイミド樹脂(A)が、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、4,4’-オキシビス[3-(トリフルオロメチル)ベンゼンアミン]、又は1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼンから構成される単位の少なくとも1種を含む、請求項1~6のいずれか一項に記載の感光性樹脂組成物。
  8.  光重合開始剤、溶剤、及び光重合性化合物からなる群から選択される少なくとも1種をさらに含む、請求項1~7のいずれか一項に記載の感光性樹脂組成物。
  9.  前記光重合性化合物が、多官能ラジカル重合性モノマーである、請求項8に記載の感光性樹脂組成物。
  10.  増感剤をさらに含む、請求項1~9のいずれかに一項に記載の感光性樹脂組成物。
  11.  絶縁膜形成用である、請求項1~10のいずれか一項に記載の感光性樹脂組成物。
  12.  請求項1~11のいずれか一項に記載の感光性樹脂組成物を硬化してなる、硬化膜。
  13.  膜厚が10~85μmである、請求項12に記載の硬化膜。
PCT/JP2020/021023 2019-06-03 2020-05-27 感光性樹脂組成物及びその硬化膜 WO2020246349A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080039858.2A CN113892058B (zh) 2019-06-03 2020-05-27 感光性树脂组合物和其固化膜
US17/613,565 US20220252979A1 (en) 2019-06-03 2020-05-27 Photosensitive resin composition and cured film thereof
KR1020217029743A KR20220016450A (ko) 2019-06-03 2020-05-27 감광성 수지 조성물 및 그의 경화막
EP20817747.7A EP3978549A4 (en) 2019-06-03 2020-05-27 PHOTOSENSITIVE RESIN COMPOSITION AND CURED FILM BASED THEREOF
JP2021524798A JPWO2020246349A1 (ja) 2019-06-03 2020-05-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-103475 2019-06-03
JP2019103475 2019-06-03

Publications (1)

Publication Number Publication Date
WO2020246349A1 true WO2020246349A1 (ja) 2020-12-10

Family

ID=73652940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021023 WO2020246349A1 (ja) 2019-06-03 2020-05-27 感光性樹脂組成物及びその硬化膜

Country Status (7)

Country Link
US (1) US20220252979A1 (ja)
EP (1) EP3978549A4 (ja)
JP (1) JPWO2020246349A1 (ja)
KR (1) KR20220016450A (ja)
CN (1) CN113892058B (ja)
TW (1) TW202104370A (ja)
WO (1) WO2020246349A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230113556A (ko) * 2020-12-02 2023-07-31 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 감광성 폴리이미드 수지 조성물, 수지막 및 전자장치
EP4257623A4 (en) * 2020-12-02 2024-05-15 Mitsubishi Gas Chemical Co PHOTOSENSITIVE POLYIMIDE RESIN COMPOSITION, RESIN FILM AND ELECTRONIC DEVICE

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147761A (ja) 1998-11-11 2000-05-26 Hitachi Ltd 感光性ポリイミド組成物、およびそれを用いたパターン形成方法
JP2011180571A (ja) * 2010-03-01 2011-09-15 Eternal Chemical Co Ltd 感光性樹脂組成物およびその用途
JP2013076845A (ja) 2011-09-30 2013-04-25 Nippon Zeon Co Ltd 感光性樹脂組成物
WO2017022465A1 (ja) * 2015-07-31 2017-02-09 富士フイルム株式会社 平版印刷版原版及び製版方法
JP2017513959A (ja) * 2014-01-31 2017-06-01 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド 新規ポリイミド組成物
WO2018003725A1 (ja) 2016-06-29 2018-01-04 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
JP2018517168A (ja) * 2015-04-21 2018-06-28 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド 感光性ポリイミド組成物
WO2018181311A1 (ja) * 2017-03-29 2018-10-04 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びにその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070604A (ja) * 2008-09-17 2010-04-02 Hitachi Chem Co Ltd 反応性二重結合を有する溶剤可溶性イミド化合物、この化合物を含む樹脂組成物及びこれらを用いた電子材料
JP6051653B2 (ja) * 2012-07-24 2016-12-27 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミド樹脂硬化物およびポリイミドフィルム
JP6663380B2 (ja) * 2017-03-22 2020-03-11 信越化学工業株式会社 ポリイミド前駆体の重合体、ポジ型感光性樹脂組成物、ネガ型感光性樹脂組成物、パターン形成方法、硬化被膜形成方法、層間絶縁膜、表面保護膜、及び電子部品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147761A (ja) 1998-11-11 2000-05-26 Hitachi Ltd 感光性ポリイミド組成物、およびそれを用いたパターン形成方法
JP2011180571A (ja) * 2010-03-01 2011-09-15 Eternal Chemical Co Ltd 感光性樹脂組成物およびその用途
JP2013076845A (ja) 2011-09-30 2013-04-25 Nippon Zeon Co Ltd 感光性樹脂組成物
JP2017513959A (ja) * 2014-01-31 2017-06-01 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド 新規ポリイミド組成物
JP2018517168A (ja) * 2015-04-21 2018-06-28 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド 感光性ポリイミド組成物
WO2017022465A1 (ja) * 2015-07-31 2017-02-09 富士フイルム株式会社 平版印刷版原版及び製版方法
WO2018003725A1 (ja) 2016-06-29 2018-01-04 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
WO2018181311A1 (ja) * 2017-03-29 2018-10-04 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びにその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3978549A4

Also Published As

Publication number Publication date
TW202104370A (zh) 2021-02-01
EP3978549A1 (en) 2022-04-06
CN113892058A (zh) 2022-01-04
US20220252979A1 (en) 2022-08-11
JPWO2020246349A1 (ja) 2020-12-10
CN113892058B (zh) 2024-05-14
EP3978549A4 (en) 2022-07-20
KR20220016450A (ko) 2022-02-09

Similar Documents

Publication Publication Date Title
TWI758415B (zh) 感光性樹脂組成物、含雜環聚合物前體、硬化膜、積層體、硬化膜的製造方法及半導體裝置
TW201351047A (zh) 負型感光性樹脂組合物、硬化浮凸圖案之製造方法及半導體裝置
WO2021020344A1 (ja) 感光性樹脂組成物、感光性シート、硬化膜、硬化膜の製造方法、層間絶縁膜および電子部品
TWI802640B (zh) 感光性樹脂組成物、樹脂、硬化膜、積層體、硬化膜之製造方法、半導體元件
WO2020246349A1 (ja) 感光性樹脂組成物及びその硬化膜
KR101888620B1 (ko) 다관능성 광가교 단량체를 포함하는 폴리아믹산 수지 조성물 및 이로부터 제조되는 감광성 폴리이미드 수지 조성물
TW201533157A (zh) 樹脂組成物、硬化膜及其製造方法、圖案硬化膜及其製造方法、以及電子零件
TW202010735A (zh) 感光性樹脂組成物、硬化膜、積層體、硬化膜的製造方法及半導體元件
TWI819121B (zh) 硬化膜的製造方法、硬化膜、積層體的製造方法及半導體元件的製造方法
JPWO2019189327A1 (ja) 感光性樹脂組成物、硬化膜、積層体およびこれらの応用
JP7078744B2 (ja) 樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
WO2021140845A1 (ja) ポリイミド樹脂、感光性樹脂組成物、樹脂膜及び電子装置
EP4257622A1 (en) Photosensitive polyimide resin composition, resin film, and electronic device
WO2022118620A1 (ja) 感光性ポリイミド樹脂組成物、樹脂膜及び電子装置
KR20230114746A (ko) 패턴부착 기판의 제조방법
TWI839243B (zh) 樹脂組合物、聚醯亞胺之製造方法、硬化浮凸圖案之製造方法、及半導體裝置
JP6875526B2 (ja) 熱硬化性樹脂組成物、およびその硬化膜、積層体、半導体デバイス、ならびにそれらの製造方法
WO2023228568A1 (ja) 感光性樹脂組成物、並びにこれを用いたポリイミド硬化膜の製造方法及びポリイミド硬化膜
JP2023086715A (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、および半導体装置
TW202116874A (zh) 負型硬化性組成物、硬化膜、積層體、硬化膜的製造方法及半導體器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20817747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524798

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020817747

Country of ref document: EP

Effective date: 20220103