WO2020246159A1 - 乱数発生装置 - Google Patents

乱数発生装置 Download PDF

Info

Publication number
WO2020246159A1
WO2020246159A1 PCT/JP2020/017128 JP2020017128W WO2020246159A1 WO 2020246159 A1 WO2020246159 A1 WO 2020246159A1 JP 2020017128 W JP2020017128 W JP 2020017128W WO 2020246159 A1 WO2020246159 A1 WO 2020246159A1
Authority
WO
WIPO (PCT)
Prior art keywords
random number
light
number generator
main surface
receiving element
Prior art date
Application number
PCT/JP2020/017128
Other languages
English (en)
French (fr)
Inventor
昇平 川中
渡辺 博文
要 花田
力 山崎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020217034985A priority Critical patent/KR20210138107A/ko
Priority to JP2021524703A priority patent/JPWO2020246159A1/ja
Publication of WO2020246159A1 publication Critical patent/WO2020246159A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/58Random or pseudo-random number generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto

Definitions

  • the present invention relates to a random number generator using quantum shot noise.
  • Patent Document 1 discloses a random number generator using quantum shot noise.
  • the random number generator described in Patent Document 1 includes a housing, a light emitting body, and a light receiving element.
  • the light emitter and the light receiving element are arranged in a closed space formed by the housing.
  • the light emitted from the light emitting body is reflected on the inner wall surface of the housing forming the enclosed space and received by the light receiving element.
  • the random number generator described in Patent Document 1 determines a random number from this amount of light received.
  • an object of the present invention is to provide a random number generator capable of suppressing an undesired variation in the amount of light received in the light receiving surface of the light receiving element.
  • the random number generator of the present invention generates a random number based on the amount of light received by the light receiving element.
  • the random number generator includes a support having one main surface, a cover member, a light emitting element, a light receiving element, and a multiple reflection suppressing member.
  • the cover member is arranged on the main surface side of the support and has a light diffusing surface facing the main surface.
  • the light emitting element and the light receiving element are arranged on the main surface side.
  • the multiple reflection suppression member is arranged or formed between the light emitting element and the light receiving element.
  • the light emitted from the light emitting element and radiated to the main surface of the support is less likely to be guided to the light diffusion surface by the multiple reflection suppression member.
  • the light received by the light receiving element is suppressed by the multiple reflections through the main surface and the light diffusion surface of the support.
  • FIG. 1A is a side sectional view showing the configuration of the random number generator according to the first embodiment
  • FIG. 1B is a plan view showing the configuration of the random number generator
  • C) is a side view showing the configuration of this random number generator.
  • FIG. 2 is a schematic functional block diagram of the random number generator according to the first embodiment of the present invention.
  • FIG. 3A is a diagram showing an example of the light path of the comparative configuration (conventional configuration)
  • FIG. 3B is a diagram showing an example of the light path of the random number generator of the present application.
  • FIG. 4 is a side sectional view showing the configuration of the random number generator according to the second embodiment.
  • FIG. 5 is a side sectional view showing the configuration of the random number generator according to the third embodiment.
  • FIG. 6 is a side sectional view showing the configuration of the random number generator according to the fourth embodiment.
  • FIG. 7 is a side sectional view showing the configuration of the random number generator according to the fifth embodiment.
  • FIG. 8 is a side sectional view showing the configuration of the random number generator according to the sixth embodiment.
  • FIG. 9 is a side sectional view showing the configuration of the random number generator according to the seventh embodiment.
  • FIG. 10 is a plan view showing the configuration of the random number generator according to the eighth embodiment.
  • FIG. 11 is a plan view showing the configuration of the random number generator according to the ninth embodiment.
  • FIG. 12 is a side sectional view showing the configuration of the random number generator according to the tenth embodiment.
  • FIG. 13 is a side sectional view showing the configuration of the random number generator according to the eleventh embodiment.
  • FIG. 14 is a side sectional view showing the configuration of the random number generator according to the twelfth embodiment.
  • FIG. 15 is a side sectional view showing the configuration of the random number
  • FIG. 1A is a side sectional view showing the configuration of the random number generator according to the first embodiment
  • FIG. 1B is a plan view showing the configuration of the random number generator
  • FIG. 1 (B) is a side view showing the configuration of this random number generator.
  • 1 (B) and 1 (C) are views in which the cover member is omitted.
  • 1 (C) is a view seen in the X direction of FIGS. 1 (A) and 1 (B), and is a thickness direction (Z direction) as compared with FIGS. 1 (A) and 1 (B). The dimensions of are exaggerated.
  • FIG. 2 is a schematic functional block diagram of the random number generator according to the first embodiment of the present invention.
  • the random number generator 10 includes a light receiving element 31, a random number setting unit 32, and a light emitting element 40. Further, the random number generator 10 includes a member having a diffusion surface. The light emitting element 40 emits light mainly toward the diffusion surface. The light from the light emitting element 40 is diffused and reflected by the diffusing surface, and is received by the light receiving element 31.
  • the light receiving element 31 outputs a signal corresponding to the amount of received light to the random number setting unit 32.
  • the light received by the light receiving element 31 has a quantum variation (shot noise).
  • the random number setting unit 32 sets a random number by using the amount of received light including quantum shot noise in this way.
  • the amount of received light In order to set the random number stably, the amount of received light must be stable with quantum shot noise included. That is, the amount of received light is required not to vary undesirably. Further, if the light receiving amount of the light receiving element 31 is saturated, quantum shot noise cannot be acquired. In particular, when the distance between the light emitting element 40 and the light receiving element 31 is short (for example, 500 ⁇ m or less), such a problem is likely to occur.
  • the random number is set stably.
  • the light receiving amount is less than the above specific value due to variations in the light receiving amount depending on the position in the light receiving surface, the difference between the shot noise and the light receiving amount becomes small. This makes it difficult to extract shot noise, and random numbers cannot be set stably. That is, if the amount of received light does not vary undesirably above a specific value, the random number is set stably.
  • the random number generator 10 has the following structure.
  • FIGS. 1 (A), 1 (B), and 1 (C) As shown in FIGS. 1 (A), 1 (B), and 1 (C), a substrate 20, a semiconductor substrate 30, a light receiving element 31, a light emitting element 40, a cover member 50, and a light absorbing film 60 are provided.
  • the substrate 20 has a flat plate shape.
  • the substrate 20 has a main surface 201 and a main surface 202 facing each other.
  • the substrate 20 is mainly made of an insulating resin and includes a predetermined conductor pattern constituting the random number generator 10.
  • the semiconductor substrate 30 has a flat plate shape.
  • the semiconductor substrate 30 has a main surface 301.
  • the semiconductor substrate 30 is arranged on the main surface 201 of the substrate 20. At this time, the semiconductor substrate 30 is arranged so that the surface opposite to the main surface 301 faces and abuts the main surface 201 of the substrate 20.
  • the laminate of the substrate 20 and the semiconductor substrate 30 corresponds to the "support" of the present invention. Further, the above-mentioned random number setting unit 32 is realized by, for example, a circuit formed on the semiconductor substrate 30.
  • Various electronic circuits including a light receiving element 31 are formed on the semiconductor substrate 30.
  • the semiconductor substrate 30 is electrically connected to the substrate 20 by wire bonding or the like.
  • the light receiving element 31 is arranged on the main surface 301 of the semiconductor substrate 30.
  • the light receiving element 31 is an area image sensor, and is composed of, for example, a group of photodiodes arranged two-dimensionally.
  • the light receiving surface of the light receiving element 31 is orthogonal to the main surface 301 and faces outward from the main surface 301 to the semiconductor substrate 30.
  • the light emitting element 40 is made of, for example, an LED (light emitting diode).
  • the light emitting element 40 is arranged on the main surface 301 of the semiconductor substrate 30.
  • the light emitting surface of the light emitting element 40 is arranged on the side opposite to the main surface 301 side of the semiconductor substrate 30 in the light emitting element 40.
  • the light emitting element 40 is electrically connected to the substrate 20 by wire bonding or the like.
  • the light emitting element 40 and the light receiving element 31 are arranged at intervals along the X direction on the semiconductor substrate 30. This interval is, for example, 500 ⁇ m or less.
  • the cover member 50 includes a top plate 501 and a side plate 502.
  • the side plates 502 are arranged in a circumferential shape along the four side surfaces of the top plate 501.
  • the side plate 502 extends in a direction orthogonal to the main plane of the top plate 501.
  • the main plane on the side plate 502 side of the top plate 501 is processed to diffuse light. That is, the main plane of the top plate 501 on the side plate 502 side is the light diffusion surface 510.
  • the cover member 50 is arranged so as to cover the main surface 201 side of the substrate 20.
  • the side plate 502 of the cover member 50 is in contact with the main surface 201 of the substrate 20.
  • the side plate 502 of the cover member 50 is bent along the main surface 201 of the substrate 20 at a portion in contact with the main surface 201 of the substrate 20.
  • the light diffusing surface 510 faces the main surface 301 of the semiconductor substrate 30, the light receiving surface of the light receiving element 31, and the light emitting surface of the light emitting element 40.
  • a closed space 100 surrounded by the substrate 20 and the cover member 50 is formed on the main surface 201 side of the substrate 20.
  • the height (length in the Z direction) of the closed space 100 is, for example, 1.0 mm or less, about 0.5 mm, or the like.
  • the light absorption film 60 has a flat film shape.
  • the light absorbing film 60 is made of a material that absorbs light.
  • the light absorption film 60 is realized by, for example, a black resin or the like.
  • the light absorption film 60 corresponds to the "multiple reflection suppression member" of the present invention.
  • the light absorption film 60 is arranged on the main surface 301 of the semiconductor substrate 30.
  • the details of the shape relationship and the positional relationship of the light receiving element 31, the light emitting element 40, and the light absorbing film 60 will be described later.
  • the electronic component 70 is, for example, a capacitor and is arranged on the main surface 301 of the semiconductor substrate 30.
  • the electronic component 70 may be a component different from the semiconductor substrate 30, or may be a component formed on the semiconductor substrate 30.
  • the electronic component 70 is electrically connected to the substrate 20 by wire bonding or the like.
  • the electronic component 70 is arranged on the side opposite to the light emitting element 40 side with the light receiving element 31 as a reference.
  • the light absorption film 60 is arranged between the light receiving element 31 and the light emitting element 40 on the main surface 301 of the semiconductor substrate 30.
  • the light absorbing film 60 is arranged between the light receiving element 31 and the light emitting element 40 in the X direction.
  • the light absorbing film 60 overlaps the light receiving element 31 and the light emitting element 40.
  • the width W60 of the light absorbing film 60 (for example, the length along the Y direction in FIGS. 1B and 1C) is the width W31 of the light receiving element 31 (for example, FIGS. 1B and 1C).
  • the length along the Y direction in C) and the width W40 of the light emitting element 40 (for example, the length along the Y direction in FIGS. 1B and 1C) are larger. That is, there is a relationship of W60> W31, W40.
  • the end face 31E1 and the end face 31E2 of the light receiving element 31, the end face 40E1 and the end face 40E2 of the light emitting element 40 are arranged between the end face 60E1 and the end face 60E2 of the light absorption film 60.
  • the random number generator 10 can suppress the reflection of light on the main surface 301 of the semiconductor substrate 30. As a result, the random number generator 10 can exert the following effects.
  • FIG. 3 (A) is a diagram showing an example of the light path of the comparative configuration (conventional configuration), and FIG. 3 (B) is a diagram showing an example of the light path of the random number generator of the present application.
  • the random number generator 10P having the comparative configuration does not include the light absorption film 60.
  • the random number generator 10P having a comparative configuration the light emitted from the light emitting element 40 is reflected and diffused by the light diffusing surface 510. A part of the reflected and diffused light is received by the light receiving element 31.
  • the other part of the reflected and diffused light propagates toward the main surface 301 of the main surface 301 of the semiconductor substrate 30 between the light emitting element 40 and the light receiving element 31. Then, this light is reflected by the main surface 301.
  • the light reflected by the main surface 301 is reflected and diffused by the light diffusing surface 510, and is received by the light receiving element 31. That is, the light receiving element 31 receives the light multiple reflected by the light diffusing surface 510 and the main surface 301 of the semiconductor substrate 30. For this reason, the light receiving element 31 is saturated, and the light receiving amount is not uniform among the plurality of photodiodes, resulting in undesired variation in the light receiving amount.
  • the random number generator 10 includes a light absorbing film 60.
  • the light emitted from the light emitting element 40 is reflected and diffused by the light diffusing surface 510. A part of the reflected and diffused light is received by the light receiving element 31.
  • the other part of the reflected and diffused light propagates toward the main surface 301 of the main surface 301 of the semiconductor substrate 30 between the light emitting element 40 and the light receiving element 31. Then, this light is incident on the light absorption film 60.
  • the light incident on the light absorbing film 60 is absorbed by the light absorbing film 60 and hardly reflected on the light diffusing surface 510 side. Therefore, multiple reflections by the light diffusing surface 510 are suppressed.
  • the light receiving element 31 can substantially receive only the light emitted from the light emitting element 40 and once reflected by the light diffusing surface 510. As a result, saturation of the light receiving element 31 is suppressed and prevented. In addition, undesired variation in the amount of light received is suppressed, and a stable amount of light received including quantum shot noise is continuously secured. Therefore, the random number generator 10 can stably generate random numbers.
  • the random number generator 10 can stably generate random numbers.
  • the random number generator 10 can stably generate random numbers.
  • the electronic component 70 is not arranged between the light receiving element 31 and the light emitting element 40. Therefore, even if the electronic component 70 has a property of reflecting light, multiple reflections by the electronic component 70 can be suppressed by using the above configuration, and the random number generator 10 can realize a stable light receiving amount.
  • the light absorption film 60 may overlap at least a part of the light receiving element 31 and the light emitting element 40 when viewed in the X direction, but overlaps the entire light receiving element 31 and the light emitting element 40. It is preferable to have.
  • the light absorption film 60 is realized by a black resin or the like.
  • the light absorbing film 60 may be made of a material that absorbs light rather than a material that constitutes the main surface of the support on which the light absorbing film 60 is arranged.
  • the width W60 of the light absorbing film 60 may be the same as the width W31 of the light receiving element 31 and the width W40 of the light emitting element 40, or the width W60 may be shorter than the width W31 and the width W40.
  • the width W60 is preferably the same as the width W31 and the width W40, and the width W60 is more preferably larger than the width W31 and the width W40.
  • FIG. 4 is a side sectional view showing the configuration of the random number generator according to the second embodiment.
  • the random number generator 10A according to the second embodiment includes a diffused reflection generation region 600 in place of the light absorption film 60 with respect to the random number generator 10 according to the first embodiment. Is different.
  • the other configuration of the random number generator 10A is the same as that of the random number generator 10, and the description of the same parts will be omitted.
  • the diffused reflection generation region 600 is arranged between the light receiving element 31 and the light emitting element 40.
  • the diffused reflection generation region 600 is formed by reducing the flatness of the main surface 301 of the semiconductor substrate 30. In other words, the diffused reflection generation region 600 is realized by forming irregularities on the main surface 301 of the semiconductor substrate 30.
  • the random number generator 10A can suppress the light reception of the light receiving element 31 due to multiple reflections.
  • the random number generator 10A can reduce the number of components as compared with the random number generator 10.
  • FIG. 5 is a side sectional view showing the configuration of the random number generator according to the third embodiment.
  • the random number generator 10B according to the third embodiment omits the light absorption film 60 and arranges the electronic component 70 with respect to the random number generator 10 according to the first embodiment. It differs in that it has changed.
  • the other configuration of the random number generator 10B is the same as that of the random number generator 10, and the description of the same parts will be omitted.
  • a plurality of electronic components 70 are arranged between the light receiving element 31 and the light emitting element 40. It is preferable that the surface of the plurality of electronic components 70 does not reflect light more than the main surface of the support on which the plurality of electronic components 70 are arranged (the main surface 301 of the semiconductor substrate 30 in the example of FIG. 5).
  • the random number generator 10B can suppress the light reception of the light receiving element 31 due to multiple reflections.
  • the number of electronic components 70 arranged between the light receiving element 31 and the light emitting element 40 is not limited to two, and may be one or three or more. Further, the shapes of the plurality of electronic components 70 do not have to be the same. Further, the surface of the plurality of electronic components 70 may be made of a material that does not easily reflect light, or the surface may be coated with a material that does not easily reflect light.
  • FIG. 6 is a side sectional view showing the configuration of the random number generator according to the fourth embodiment.
  • the random number generator 10C according to the fourth embodiment arranges the shielding member 61 with respect to the random number generator 10 according to the first embodiment, omitting the light absorption film 60. It differs in that.
  • Other configurations of the random number generator 10C are the same as those of the random number generator 10, and the description of the same parts will be omitted.
  • the random number generator 10C includes a shielding member 61.
  • the shielding member 61 is arranged between the light receiving element 31 and the light emitting element 40.
  • the shielding member 61 is arranged so as to block the path through which the light reflected by the light diffusing surface 510 propagates to the main surface 301 of the semiconductor substrate 30 in the region between the light receiving element 31 and the light emitting element 40.
  • the shielding member 61 is arranged in the vicinity of the light emitting element 40, is higher than the light emitting element 40, and has a shape capable of providing a predetermined interval with respect to the light diffusing surface 510.
  • the above-mentioned light absorption film is arranged on the upper surface of the shielding member 61 (the surface facing the light diffusion surface 510).
  • the upper surface of the shielding member 61 is, for example, a diffused reflection generating surface as described above.
  • the random number generator 10C can suppress the light reception of the light receiving element 31 due to multiple reflections.
  • FIG. 7 is a side sectional view showing the configuration of the random number generator according to the fifth embodiment.
  • the random number generator 10D according to the fifth embodiment is provided with a plurality of light emitting elements 40 and light absorbing films 60 arranged with respect to the random number generator 10 according to the first embodiment. different.
  • Other configurations of the random number generator 10D are the same as those of the random number generator 10, and the description of the same parts will be omitted.
  • one of the plurality of light emitting elements 40 is arranged near one end of the semiconductor substrate 30 in the X direction.
  • the other of the plurality of light emitting elements 40 is arranged near the other end of the semiconductor substrate 30 in the X direction.
  • the light receiving element 31 is arranged between the first light emitting element 40 and the second light emitting element 40.
  • the distance between the light receiving element 31 and the first light emitting element 40 and the distance between the light receiving element 31 and the second light emitting element 40 are substantially the same.
  • One of the plurality of light absorbing films 60 is arranged between the first light emitting element 40 and the light receiving element 31.
  • the other of the plurality of light absorbing films 60 is arranged between the second light emitting element 40 and the light receiving element 31.
  • the random number generator 10D can further suppress the difference in the amount of light received between the plurality of photodiodes of the light receiving element 31. Further, the random number generator 10D is provided with the first and second light absorption films 60 to suppress the propagation of light due to multiple reflections between the first light emitting element 40 and the light receiving element 31, and is the first. It is possible to suppress the propagation of light due to multiple reflections between the light emitting element 40 and the light receiving element 31 of 2.
  • the light emitting elements 40 are arranged on both sides in the X direction with respect to the light receiving element 31.
  • the light emitting elements 40 may be arranged on both sides of the light receiving element 31 in the Y direction (direction orthogonal to the X direction).
  • the light absorbing film 60 is arranged between each light emitting element 40 and the light receiving element 31. Further, in this case, the light absorbing film 60 may be arranged over the entire circumference so as to surround the light receiving element 31 in a plan view (viewed in the Z direction).
  • FIG. 8 is a side sectional view showing the configuration of the random number generator according to the sixth embodiment.
  • the random number generator 10E according to the sixth embodiment is different from the random number generator 10D according to the fifth embodiment in that the light absorption film 60 is replaced with the diffused reflection generation region 600. ..
  • Other configurations of the random number generator 10E are the same as those of the random number generator 10D, and the description of the same parts will be omitted.
  • the random number generator 10E can exert the same effect as the random number generator 10D.
  • FIG. 9 is a side sectional view showing the configuration of the random number generator according to the seventh embodiment.
  • the random number generator 10F according to the seventh embodiment is different from the random number generator 10D according to the fifth embodiment in that the light absorption film 60 is replaced with the shielding member 61.
  • Other configurations of the random number generator 10F are the same as those of the random number generator 10D, and the description of the same parts will be omitted.
  • the shielding member 61 has the same structure as the shielding member 61 shown in the fourth embodiment described above. Specifically, for example, the light absorption film as described above is arranged on the upper surface of the shielding member 61 (the surface facing the light diffusion surface 510). Alternatively, the upper surface of the shielding member 61 is, for example, a diffused reflection generating surface as described above.
  • the random number generator 10F can exert the same effect as the random number generator 10D.
  • FIG. 10 is a plan view showing the configuration of the random number generator according to the eighth embodiment.
  • the cover member 50 is omitted.
  • the random number generator 10G according to the eighth embodiment has a positional relationship between the light receiving element 31 and the light emitting element 40 with respect to the random number generator 10 according to the first embodiment, and light. It differs in the shape of the absorbing film 60.
  • Other configurations of the random number generator 10G are the same as those of the random number generator 10, and the description of the same parts will be omitted.
  • the light receiving element 31 and the light emitting element 40 are different in the position in the X direction and the position in the Y direction on the main surface 301 of the semiconductor substrate 30.
  • the light absorbing film 60G overlaps the region 340 between the light receiving element 31 and the light emitting element 40.
  • the position of one end in the X direction of the light absorbing film 60G is substantially the same as the position of the end of the light receiving element 31 in the X direction, and the position of the other end of the light absorbing film 60G in the X direction. Is substantially the same as the position of the end portion of the light emitting element 40 in the X direction.
  • the position of one end of the light absorbing film 60G in the Y direction is substantially the same as the position of the end of the light receiving element 31 in the Y direction, and the position of the other end of the light absorbing film 60G in the Y direction is the position of the light emitting element. It is substantially the same as the position of the end portion of 40 in the Y direction.
  • the random number generator 10G receives light from the light receiving element 31 by multiple reflection even if the light receiving element 31 and the light emitting element 40 are not arranged parallel to the X direction or the Y direction of the semiconductor substrate 30. Can be suppressed. Further, with this configuration, the random number generator 10G can suppress multiple reflections more reliably than the random number generator 10H described later.
  • FIG. 11 is a plan view showing the configuration of the random number generator according to the ninth embodiment.
  • the cover member 50 is omitted.
  • the random number generator 10H according to the ninth embodiment differs from the random number generator 10G according to the eighth embodiment in the shape of the light absorption film 60H.
  • Other configurations of the random number generator 10H are the same as those of the random number generator 10G, and the description of the same parts will be omitted.
  • the light absorption film 60H is rectangular.
  • the light absorption film 60H overlaps the region 340 between the light receiving element 31 and the light emitting element 40.
  • the random number generator 10H can obtain the same effect as the random number generator 10G. Further, the random number generator 10H can make the shape of the light absorption film 60H smaller than that of the random number generator 10G.
  • FIG. 12 is a side sectional view showing the configuration of the random number generator according to the tenth embodiment.
  • the random number generator 10I according to the tenth embodiment is different from the random number generator 10A according to the second embodiment in the shape of the diffused reflection generation region 600I.
  • Other configurations of the random number generator 10I are the same as those of the random number generator 10A, and the description of the same parts will be omitted.
  • the diffused reflection generation region 600I has an uneven shape within a range that does not protrude from the main surface 301 of the semiconductor substrate 30.
  • the random number generator 10I can obtain the same effect as the random number generator 10A.
  • the unevenness of the diffused reflection generation region may have a portion protruding outward from the main surface 301 of the semiconductor substrate 30 and a portion recessed inside the semiconductor substrate 30.
  • FIG. 13 is a side sectional view showing the configuration of the random number generator according to the eleventh embodiment.
  • the random number generator 10J As shown in FIG. 13, the random number generator 10J according to the eleventh embodiment combines the configuration of the random number generator 10 according to the first embodiment and the configuration of the random number generator 10A according to the second embodiment. It is a random number. That is, the random number generator 10J includes both the light absorption film 60 and the diffused reflection generation region 600. Other configurations of the random number generator 10J are the same as those of the random number generator 10 and the random number generator 10A, and the description of the same parts will be omitted.
  • the random number generator 10J includes a light absorbing film 60 and a diffused reflection generation region 600 between the light receiving element 31 and the light emitting element 40.
  • the light absorption film 60, the diffused reflection generation region 600, and the light absorption film 60 are arranged in this order between the light receiving element 31 and the light emitting element 40.
  • the number and arrangement of the light absorption film 60 and the diffused reflection generation region 600 to be arranged are not limited to the example of FIG. 13, and can be set as appropriate.
  • the random number generator 10J can obtain the same effects as those of the random number generator 10 and the random number generator 10A.
  • the random number generator 10J a mode in which the light absorption film 60 and the diffused reflection generation region 600 are combined is shown.
  • a combination of the light absorbing film 60 and the shielding member 61, a combination of the diffused reflection generation region 600 and the shielding member 61, a combination of the light absorbing film 60, the diffused reflection generating region 600, and the shielding member 61 may be used.
  • the upper surface of the shielding member 61 is provided with a light reflection film or is a diffused reflection generation region. With this configuration, the random number generator can obtain the above-mentioned effects.
  • FIG. 14 is a side sectional view showing the configuration of the random number generator according to the twelfth embodiment.
  • the random number generator 10K according to the twelfth embodiment is different from the random number generator 10 according to the first embodiment in the shape of the light absorption film 60K.
  • the other configuration of the random number generator 10K is the same as that of the random number generator 10, and the description of the same parts will be omitted.
  • the random number generator 10K includes a light absorption film 60K.
  • the light absorbing film 60K has a shape that extends not only to the region between the light receiving element 31 and the light emitting element 40 but also to the back surface of the light emitting element 40 and overlaps the back surface. In other words, the light emitting element 40 is fixed to the main surface 301 of the semiconductor substrate 30 via the light absorption film 60K.
  • the random number generator 10K can obtain the same effect as the random number generator 10.
  • the random number generator 10K also uses the light absorption film 60K as an adhesive material (underfill material) for mounting the light emitting element 40.
  • the adhesive material for mounting the light emitting element 40 and the light absorbing film 60K do not have to be formed separately. Therefore, the random number generator 10K is manufactured with a simpler configuration and process.
  • FIG. 15 is a side sectional view showing the configuration of the random number generator according to the thirteenth embodiment.
  • the random number generator 10L according to the thirteenth embodiment differs from the random number generator 10 according to the first embodiment in the arrangement mode of the light emitting element 40.
  • the other configuration of the random number generator 10L is the same as that of the random number generator 10, and the description of the same parts will be omitted.
  • the light emitting element 40 is mounted on the main surface 201 of the substrate 20.
  • the random number generator 10L can obtain the same effect as the random number generator 10.
  • Random number generator 10P Random number generator with comparative configuration 20: Substrate 30: Semiconductor substrate 31: Light receiving element 32: Random number setting unit 40: Light emitting element 50: Cover member 60, 60G, 60H, 60K: Light absorbing film 61: Shielding member 70: Electronic component 100: Closed space 201, 202: Main surface of substrate 20 301: Main surface of semiconductor substrate 30 Surface 340: Region 501: Top plate 502: Side plate 510: Light diffusion surface 600, 600 I: Diffuse reflection generation region

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

乱数発生装置(10)は、受光素子(31)による受光量によって乱数を発生する。乱数発生装置(10)は、基板(20)、半導体基板(30)、受光素子(31)、発光素子(40)、カバー部材(50)、および、光吸収膜(60)を備える。カバー部材(50)は、半導体基板(30)の主面(301)側に配置され、主面(301)に対向する光拡散面(510)を有する。受光素子(31)および発光素子(40)は、主面(301)に配置される。光吸収膜(60)は、受光素子(31)と発光素子(40)との間に配置される。

Description

乱数発生装置
 本発明は、量子ショットノイズを利用した乱数発生装置に関する。
に関する。
 特許文献1には、量子ショットノイズを利用した乱数発生装置が開示されている。特許文献1に記載の乱数発生装置は、筐体、発光体、および、受光素子を備える。発光体および受光素子は、筐体によって形成された密閉空間内に配置されている。
 発光体から発した光は、密閉空間を形成する筐体の内壁面に反射して、受光素子で受光される。
 特許文献1に記載の乱数発生装置は、この受光量から乱数を決定する。
国際公開2018/155738号
 しかしながら、特許文献1に記載の乱数発生装置では、受光素子における受光量の不所望なバラツキが発生してしまう。
 したがって、本発明の目的は、受光素子の受光面内における受光量の不所望なバラツキを抑制できる乱数発生装置を提供することにある。
 この発明の乱数発生装置は、受光素子による受光量によって乱数を発生する。乱数発生装置は、一主面を有する支持体、カバー部材、発光素子、受光素子、および、多重反射抑制部材を備える。カバー部材は、支持体の主面側に配置され、主面に対向する光拡散面を有する。発光素子および受光素子は、主面側に配置される。多重反射抑制部材は、発光素子と受光素子との間に配置または形成される。
 この構成では、発光素子から発して支持体の主面に照射される光は、多重反射抑制部材によって、光拡散面に導かれ難くなる。これにより、支持体の主面および光拡散面を介する多重反射によって、受光素子に受光される光は、抑制される。
 この発明によれば、受光素子の受光面内における受光量の不所望なバラツキを抑制できる
図1(A)は、第1の実施形態に係る乱数発生装置の構成を示す側面断面図であり、図1(B)は、この乱数発生装置の構成を示す平面図であり、図1(C)は、この乱数発生装置の構成を示す側面図である。 図2は、本発明の第1の実施形態に係る乱数発生装置の概略的な機能ブロック図である。 図3(A)は、比較構成(従来構成)の光の経路の一例を示す図であり、図3(B)は、本願の乱数発生装置の光の経路の一例を示す図である。 図4は、第2の実施形態に係る乱数発生装置の構成を示す側面断面図である。 図5は、第3の実施形態に係る乱数発生装置の構成を示す側面断面図である。 図6は、第4の実施形態に係る乱数発生装置の構成を示す側面断面図である。 図7は、第5の実施形態に係る乱数発生装置の構成を示す側面断面図である。 図8は、第6の実施形態に係る乱数発生装置の構成を示す側面断面図である。 図9は、第7の実施形態に係る乱数発生装置の構成を示す側面断面図である。 図10は、第8の実施形態に係る乱数発生装置の構成を示す平面図である。 図11は、第9の実施形態に係る乱数発生装置の構成を示す平面図である。 図12は、第10の実施形態に係る乱数発生装置の構成を示す側面断面図である。 図13は、第11の実施形態に係る乱数発生装置の構成を示す側面断面図である。 図14は、第12の実施形態に係る乱数発生装置の構成を示す側面断面図である。 図15は、第13の実施形態に係る乱数発生装置の構成を示す側面断面図である。
 [第1実施形態]
 第1の実施形態に係る乱数発生装置について、図を参照して説明する。図1(A)は、第1の実施形態に係る乱数発生装置の構成を示す側面断面図であり、図1(B)は、この乱数発生装置の構成を示す平面図であり、図1(C)は、この乱数発生装置の構成を示す側面図である。図1(B)、図1(C)は、カバー部材を省略した図である。図1(C)は、図1(A)および図1(B)のX方向に視た図であり、図1(A)および図1(B)と比較して、厚み方向(Z方向)の寸法を誇張して記載している。図2は、本発明の第1の実施形態に係る乱数発生装置の概略的な機能ブロック図である。
 (乱数発生装置10の機能ブロックの構成)
 本願の乱数発生装置の構造を理解し易くするために、まず、乱数発生装置の機能ブロックについて説明する。
 図2に示すように、乱数発生装置10は、受光素子31、乱数設定部32、発光素子40を備える。また、乱数発生装置10は、拡散面を有する部材を備える。発光素子40は、主として拡散面に向けて発光する。発光素子40からの光は、拡散面によって、拡散、反射して、受光素子31で受光される。
 受光素子31は、受光量に応じた信号を、乱数設定部32に出力する。受光素子31で受光される光は、量子的にはバラツキ(ショットノイズ)を有する。乱数設定部32は、このように量子ショットノイズを含む光の受光量を用いて、乱数を設定する。
 乱数を安定して設定するには、受光量は、量子ショットノイズを含んだ状態で安定であることが必要となる。すなわち、受光量は、不所望にばらつかないことが要求される。また、受光素子31の受光量が飽和してしまうと、量子ショットノイズを取得できない。特に、発光素子40と受光素子31との距離が近くなる(例えば、500μm以下)と、このような問題は発生しやすい。
 逆に言えば、受光量が、飽和せず、特定値以上であれば、乱数は、安定して設定される。一方、受光面内の位置による受光量のばらつき等によって、受光量が上記特定値未満となる箇所があると、ショットノイズと受光量との差が小さくなってしまう。これにより、ショットノイズを抽出することが困難になり、乱数は、安定して設定できない。すなわち、受光量が特定値以上で不所望にばらつかなければ、乱数は、安定して設定される。
 上記問題を解決するため、乱数発生装置10は、次に示す構造を備える。
 (乱数発生装置10の構造)
 図1(A)、図1(B)、図1(C)に示すように、基板20、半導体基板30、受光素子31、発光素子40、カバー部材50、光吸収膜60を備える。
 基板20は、平板状である。基板20は、互いに対向する主面201と主面202とを有する。基板20は、主として絶縁性の樹脂からなり、乱数発生装置10を構成する所定の導体パターンを備える。
 半導体基板30は、平板状である。半導体基板30は、主面301を有する。半導体基板30は、基板20の主面201に配置されている。この際、半導体基板30は、主面301と反対側の面が基板20の主面201に対向、当接するように、配置されている。これら、基板20と半導体基板30との積層体が、本発明の「支持体」に対応する。また、上述の乱数設定部32は、例えば、半導体基板30に形成された回路によって実現される。
 半導体基板30には、受光素子31を含む各種の電子回路が形成されている。半導体基板30は、基板20に対して、ワイヤボンディング等によって電気的に接続される。
 受光素子31は、半導体基板30の主面301に配置されている。受光素子31は、エリアイメージセンサであり、例えば、二次元配列されたフォトダイオード群によって構成される。受光素子31の受光面は、主面301に直交し、主面301から半導体基板30の外方に向いている。
 発光素子40は、例えば、LED(発光ダイオード)からなる。発光素子40は、半導体基板30の主面301に配置されている。発光素子40の発光面は、発光素子40における半導体基板30の主面301側と反対側に配置される。発光素子40は、基板20に対して、ワイヤボンディング等によって電気的に接続される。
 発光素子40と受光素子31とは、半導体基板30上のX方向に沿って間隔をおいて配置されている。この間隔は、例えば、500μm以下である。
 カバー部材50は、天板501と側板502とを備える。側板502は、天板501の四側面に沿って周状に配置されている。側板502は、天板501の主平面に直交する方向に延びる。天板501における側板502側の主平面は、光を拡散する加工等が施されている。すなわち、天板501における側板502側の主平面は、光拡散面510である。
 カバー部材50は、基板20の主面201側を覆うように配置されている。そして、カバー部材50の側板502は、基板20の主面201に当接している。カバー部材50の側板502は、基板20の主面201に当接している部分において基板20の主面201に沿うように折り曲げられている。この構造によって、光拡散面510は、半導体基板30の主面301、受光素子31の受光面、および、発光素子40の発光面に対向する。また、乱数発生装置10は、基板20の主面201側に、基板20とカバー部材50とによって囲まれる閉空間100が形成される。閉空間100の高さ(Z方向の長さ)は、一例として、1.0mm以下等であり、約0.5mm等である。
 光吸収膜60は、平膜状である。光吸収膜60は、光を吸収する材料からなる。光吸収膜60は、例えば、黒色の樹脂等によって実現される。光吸収膜60が、本発明の「多重反射抑制部材」に対応する。
 光吸収膜60は、半導体基板30の主面301に配置されている。なお、受光素子31、発光素子40、および、光吸収膜60の形状の関係および位置の関係の詳細は、後述して説明する。
 電子部品70は、例えば、キャパシタであり、半導体基板30の主面301に配置されている。電子部品70は、半導体基板30と別の部品であっても、半導体基板30に形成された部品であってもよい。電子部品70は、基板20に対して、ワイヤボンディング等によって電気的に接続される。電子部品70は、受光素子31を基準として、発光素子40側と逆側に配置されている。
 (受光素子31、発光素子40および光吸収膜60の形状の関係と位置の関係)
 光吸収膜60は、半導体基板30の主面301において、受光素子31と発光素子40との間に配置されている。例えば、図1(A)、図1(B)であれば、光吸収膜60は、X方向における受光素子31と発光素子40との間に配置されている。
 また、X方向に視て、光吸収膜60は、受光素子31および発光素子40に重なっている。
 光吸収膜60の幅W60(例えば、図1(B)、図1(C)におけるY方向に沿った長さ)は、受光素子31の幅W31(例えば、図1(B)、図1(C)におけるY方向に沿った長さ)、および、発光素子40の幅W40(例えば、図1(B)、図1(C)におけるY方向に沿った長さ)よりも大きい。すなわち、W60>W31,W40の関係にある。
 具体的には、Y方向において、受光素子31の端面31E1および端面31E2、発光素子40の端面40E1および端面40E2は、光吸収膜60の端面60E1と端面60E2との間に配置されている。
 このような構成によって、乱数発生装置10は、半導体基板30の主面301における光の反射を抑制できる。これにより、乱数発生装置10は、次に示す作用効果を奏することができる。
 図3(A)は、比較構成(従来構成)の光の経路の一例を示す図であり、図3(B)は、本願の乱数発生装置の光の経路の一例を示す図である。
 (従来構成(比較構成))
 図3(A)に示すように、比較構成の乱数発生装置10Pは、光吸収膜60を備えていない。比較構成の乱数発生装置10Pでは、発光素子40から発した光は、光拡散面510で反射および拡散する。反射および拡散した光の一部は、受光素子31で受光される。
 また、反射及び拡散した光の他の一部は、発光素子40と受光素子31との間の半導体基板30の主面301の主面に向かって伝搬する。そして、この光は、主面301で反射する。主面301で反射した光は、光拡散面510で反射、拡散し、受光素子31で受光される。すなわち、受光素子31は、光拡散面510および半導体基板30の主面301で多重反射した光を受光してしまう。このため、受光素子31が飽和したり、複数のフォトダイオード間で受光量が均一にならない等の受光量の不所望なバラツキが生じたりしてしまう。
 (本願構成)
 しかしながら、図3(B)に示すように、乱数発生装置10は、光吸収膜60を備える。
 本願の乱数発生装置10では、発光素子40から発した光は、光拡散面510で反射および拡散する。反射および拡散した光の一部は、受光素子31で受光される。
 また、反射及び拡散した光の他の一部は、発光素子40と受光素子31との間の半導体基板30の主面301の主面に向かって伝搬する。そして、この光は、光吸収膜60に入射する。光吸収膜60に入射した光は、光吸収膜60で吸収され、光拡散面510側に殆ど反射しない。したがって、光拡散面510による多重反射は抑制される。
 これにより、乱数発生装置10では、受光素子31は、実質的に、発光素子40から発して光拡散面510で一度反射された光のみを受光できる。この結果、受光素子31の飽和は、抑制、防止される。また、受光量の不所望なバラツキは抑制され、量子ショットノイズを含む安定した受光量が継続的に確保される。よって、乱数発生装置10は、乱数を、安定して発生できる。
 特に、受光素子31と発光素子40との距離が短いと、多重反射の影響を受け易いが、乱数発生装置10の構成を用いることによって、これを抑制できる。すなわち、形状を小型にしても、乱数発生装置10は、乱数を、安定して発生できる。
 また、半導体基板30の主面301のカバー部材50の光拡散面510との距離が短いと、多重反射の影響を受け易いが、乱数発生装置10の構成を用いることによって、これを抑制できる。すなわち、形状を薄型にしても、乱数発生装置10は、乱数を、安定して発生できる。
 また、上述の構成では、電子部品70が受光素子31と発光素子40との間に配置されていない。したがって、電子部品70が光を反射する性質のものであっても、上述の構成を用いることによって、電子部品70による多重反射を抑制でき、乱数発生装置10は、安定した受光量を実現できる。
 なお、上述の説明では、光吸収膜60は、X方向に視て、受光素子31および発光素子40の少なくとも一部に重なっていればよいが、受光素子31および発光素子40の全体に重なっていることが好ましい。
 また、上述の説明では、光吸収膜60は黒色の樹脂等によって実現されるとした。しかしながら、光吸収膜60は、光吸収膜60が配置される支持体の主面を構成する材料よりも光を吸収する材料によって構成されていればよい。
 また、光吸収膜60の幅W60は、受光素子31の幅W31および発光素子40の幅W40と同じ、もしくは、幅W60は、幅W31および幅W40よりも短くてもよい。しかしながら、幅W60は、幅W31および幅W40と同じであることが好ましく、幅W60は、幅W31および幅W40よりも大きいことがより好ましい。
 [第2実施形態]
 第2の実施形態に係る乱数発生装置について、図を参照して説明する。図4は、第2の実施形態に係る乱数発生装置の構成を示す側面断面図である。
 図4に示すように、第2の実施形態に係る乱数発生装置10Aは、第1の実施形態に係る乱数発生装置10に対して、光吸収膜60に代えて、乱反射発生領域600を備える点で異なる。乱数発生装置10Aの他の構成は、乱数発生装置10と同様であり、同様の箇所の説明は省略する。
 乱反射発生領域600は、受光素子31と発光素子40との間に配置されている。乱反射発生領域600は、半導体基板30の主面301の平坦度を低下させることによって形成されている。言い換えれば、乱反射発生領域600は、半導体基板30の主面301に凹凸を形成することによって実現される。
 このような構成では、乱反射発生領域600に到達した光は、光拡散面510の方向に反射し難くなる。したがって、乱数発生装置10Aは、多重反射による受光素子31の受光を抑制できる。
 また、この構成によって、乱数発生装置10Aは、乱数発生装置10と比較して、構成要素を少なくできる。
 [第3実施形態]
 第3の実施形態に係る乱数発生装置について、図を参照して説明する。図5は、第3の実施形態に係る乱数発生装置の構成を示す側面断面図である。
 図5に示すように、第3の実施形態に係る乱数発生装置10Bは、第1の実施形態に係る乱数発生装置10に対して、光吸収膜60を省略して、電子部品70の配置を変えた点で異なる。乱数発生装置10Bの他の構成は、乱数発生装置10と同様であり、同様の箇所の説明は省略する。
 図5に示すように、複数の電子部品70は、受光素子31と発光素子40との間に配置されている。複数の電子部品70の表面は、複数の電子部品70が配置される支持体の主面(図5の例では半導体基板30の主面301)よりも光を反射しないものが好ましい。
 このような構成によって、半導体基板30の主面301に向かう光は、複数の電子部品70で反射または吸収される。したがって、上述の比較構成のような多重反射の経路は、発生し難い。これにより、乱数発生装置10Bは、多重反射による受光素子31の受光を抑制できる。
 なお、受光素子31と発光素子40との間に配置する電子部品70の個数は、2個に限るものではなく、1個であってもよく、3個以上であってもよい。また、複数の電子部品70の形状は同じでなくてもよい。また、複数の電子部品70の表面は、光を反射しにくい材質からなっているものでもよく、あるいは光を反射しにくい材質により表面をコートしていてもよい。
 [第4実施形態]
 第4の実施形態に係る乱数発生装置について、図を参照して説明する。図6は、第4の実施形態に係る乱数発生装置の構成を示す側面断面図である。
 図6に示すように、第4の実施形態に係る乱数発生装置10Cは、第1の実施形態に係る乱数発生装置10に対して、光吸収膜60を省略して、遮蔽部材61を配置した点で異なる。乱数発生装置10Cの他の構成は、乱数発生装置10と同様であり、同様の箇所の説明は省略する。
 図6に示すように、乱数発生装置10Cは、遮蔽部材61を備える。遮蔽部材61は、受光素子31と発光素子40との間に配置されている。遮蔽部材61は、受光素子31と発光素子40との間の領域において、光拡散面510で反射した光が半導体基板30の主面301に伝搬する経路を遮るように配置されている。例えば、遮蔽部材61は、発光素子40の近傍に配置され、発光素子40よりも高く、光拡散面510に対して所定の間隔を開けられる形状である。
 遮蔽部材61の上面(光拡散面510に対向する面)には、例えば、上述のような光吸収膜が配置されている。もしくは、遮蔽部材61の上面は、例えば、上述のような乱反射発生面となっている。
 このような構成によって、半導体基板30の主面301に向かう光は、遮られ、主面301で反射して光拡散面510に戻る光は、抑制される。また、遮蔽部材61の上面に入射した光は、光吸収膜であれば吸収され、乱反射発生面であれば乱反射する。したがって、上述の比較構成のような多重反射の経路は、発生し難い。これにより、乱数発生装置10Cは、多重反射による受光素子31の受光を抑制できる。
 [第5実施形態]
 第5の実施形態に係る乱数発生装置について、図を参照して説明する。図7は、第5の実施形態に係る乱数発生装置の構成を示す側面断面図である。
 図7に示すように、第5の実施形態に係る乱数発生装置10Dは、第1の実施形態に係る乱数発生装置10に対して、発光素子40および光吸収膜60が複数配置される点で異なる。乱数発生装置10Dの他の構成は、乱数発生装置10と同様であり、同様の箇所の説明は省略する。
 図7に示すように、複数の発光素子40の一方(第1の発光素子40)は、半導体基板30のX方向における一方端付近に配置されている。複数の発光素子40の他方(第2の発光素子40)は、半導体基板30のX方向における他方端付近に配置されている。
 受光素子31は、第1の発光素子40と第2の発光素子40の間に配置されている。受光素子31と第1の発光素子40との距離と、受光素子31と第2の発光素子40との距離は、略同じである。
 複数の光吸収膜60の一方(第1の光吸収膜60)は、第1の発光素子40と受光素子31との間に配置されている。複数の光吸収膜60の他方(第2の光吸収膜60)は、第2の発光素子40と受光素子31との間に配置されている。
 このように、複数の発光素子40で挟むように受光素子31を配置することで、乱数発生装置10Dは、受光素子31の複数のフォトダイオード間で受光量の差を更に抑制できる。さらに、乱数発生装置10Dは、第1および第2の光吸収膜60を備えることによって、第1の発光素子40と受光素子31との間の多重反射による光の伝搬を抑制し、且つ、第2の発光素子40と受光素子31との間の多重反射による光の伝搬を抑制できる。
 なお、本実施形態では、受光素子31に対して、X方向の両側に発光素子40を配置する態様を示した。しかしながら、さらに、受光素子31に対して、Y方向(X方向に対して直交する方向)の両側にも、発光素子40を配置してもよい。この場合も、光吸収膜60は、各発光素子40と受光素子31との間に配置される。また、この場合、光吸収膜60は、平面視において(Z方向に視て)、受光素子31を囲むように、全周に亘って配置されていてもよい。
 [第6実施形態]
 第6の実施形態に係る乱数発生装置について、図を参照して説明する。図8は、第6の実施形態に係る乱数発生装置の構成を示す側面断面図である。
 図8に示すように、第6の実施形態に係る乱数発生装置10Eは、第5の実施形態に係る乱数発生装置10Dに対して、光吸収膜60を乱反射発生領域600に置き換えた点で異なる。乱数発生装置10Eの他の構成は、乱数発生装置10Dと同様であり、同様の箇所の説明は省略する。
 このような構成であっても、乱数発生装置10Eは、乱数発生装置10Dと同様の作用効果を奏することができる。
 [第7実施形態]
 第7の実施形態に係る乱数発生装置について、図を参照して説明する。図9は、第7の実施形態に係る乱数発生装置の構成を示す側面断面図である。
 図9に示すように、第7の実施形態に係る乱数発生装置10Fは、第5の実施形態に係る乱数発生装置10Dに対して、光吸収膜60を遮蔽部材61に置き換えた点で異なる。乱数発生装置10Fの他の構成は、乱数発生装置10Dと同様であり、同様の箇所の説明は省略する。遮蔽部材61は、上述の第4の実施形態に示した遮蔽部材61と同様の構造を備える。具体的には、遮蔽部材61の上面(光拡散面510に対向する面)には、例えば、上述のような光吸収膜が配置されている。もしくは、遮蔽部材61の上面は、例えば、上述のような乱反射発生面となっている。
 このような構成であっても、乱数発生装置10Fは、乱数発生装置10Dと同様の作用効果を奏することができる。
 [第8実施形態]
 第8の実施形態に係る乱数発生装置について、図を参照して説明する。図10は、第8の実施形態に係る乱数発生装置の構成を示す平面図である。図10では、カバー部材50を省略している。
 図10に示すように、第8の実施形態に係る乱数発生装置10Gは、第1の実施形態に係る乱数発生装置10に対して、受光素子31と発光素子40との位置関係、および、光吸収膜60の形状において異なる。乱数発生装置10Gの他の構成は、乱数発生装置10と同様であり、同様の箇所の説明は省略する。
 図10に示すように、受光素子31と発光素子40とは、半導体基板30の主面301において、X方向における位置およびY方向における位置が異なる。光吸収膜60Gは、受光素子31と発光素子40との間の領域340に重なっている。また、この構成では、光吸収膜60GのおけるX方向の一方端の位置は、受光素子31のX方向の端部の位置と略同じであり、光吸収膜60GにおけるX方向の他方端の位置は、発光素子40のX方向の端部の位置と略同じである。また、光吸収膜60GのおけるY方向の一方端の位置は、受光素子31のY方向の端部の位置と略同じであり、光吸収膜60GにおけるY方向の他方端の位置は、発光素子40のY方向の端部の位置と略同じである。
 このような構成によって、乱数発生装置10Gは、受光素子31と発光素子40とが半導体基板30のX方向またはY方向に対して平行に並んでいなくても、多重反射による受光素子31の受光を抑制できる。また、この構成によって、乱数発生装置10Gは、後述の乱数発生装置10Hよりも確実に多重反射を抑制できる。
 [第9実施形態]
 第9の実施形態に係る乱数発生装置について、図を参照して説明する。図11は、第9の実施形態に係る乱数発生装置の構成を示す平面図である。図11では、カバー部材50を省略している。
 図11に示すように、第9の実施形態に係る乱数発生装置10Hは、第8の実施形態に係る乱数発生装置10Gに対して、光吸収膜60Hの形状において異なる。乱数発生装置10Hの他の構成は、乱数発生装置10Gと同様であり、同様の箇所の説明は省略する。
 図11に示すように、光吸収膜60Hは、矩形である。光吸収膜60Hは、受光素子31と発光素子40との間の領域340に重なっている。
 このような構成であっても、乱数発生装置10Hは、乱数発生装置10Gと同様の作用効果を得ることができる。また、乱数発生装置10Hは、乱数発生装置10Gと比較して、光吸収膜60Hの形状を小さくできる。
 [第10実施形態]
 第10の実施形態に係る乱数発生装置について、図を参照して説明する。図12は、第10の実施形態に係る乱数発生装置の構成を示す側面断面図である。
 図12に示すように、第10の実施形態に係る乱数発生装置10Iは、第2の実施形態に係る乱数発生装置10Aに対して、乱反射発生領域600Iの形状において異なる。乱数発生装置10Iの他の構成は、乱数発生装置10Aと同様であり、同様の箇所の説明は省略する。
 乱反射発生領域600Iは、半導体基板30の主面301から突出しない範囲で、凹凸形状を有する。
 このような構成であっても、乱数発生装置10Iは、乱数発生装置10Aと同様の作用効果を得ることができる。
 なお、乱反射発生領域の凹凸は、半導体基板30の主面301から外方に突出する部分と、半導体基板30の内側に凹む部分とを有していてもよい。
 [第11実施形態]
 第11の実施形態に係る乱数発生装置について、図を参照して説明する。図13は、第11の実施形態に係る乱数発生装置の構成を示す側面断面図である。
 図13に示すように、第11の実施形態に係る乱数発生装置10Jは、第1の実施形態に係る乱数発生装置10の構成と第2の実施形態に係る乱数発生装置10Aの構成とを組み合わせたものである。すなわち、乱数発生装置10Jは、光吸収膜60と乱反射発生領域600の両方を備えている。乱数発生装置10Jの他の構成は、乱数発生装置10および乱数発生装置10Aと同様であり、同様の箇所の説明は省略する。
 乱数発生装置10Jは、受光素子31と発光素子40との間に、光吸収膜60と乱反射発生領域600とを備える。なお、図13の例であれば、受光素子31と発光素子40との間に、光吸収膜60、乱反射発生領域600、光吸収膜60が、この順に配置されている。配置される光吸収膜60と乱反射発生領域600の個数および並びは、図13の例に限るものではなく、適宜設定できる。
 このような構成であっても、乱数発生装置10Jは、乱数発生装置10および乱数発生装置10Aと同様の作用効果を得ることができる。
 なお、乱数発生装置10Jでは、光吸収膜60と乱反射発生領域600とを組み合わせる態様を示した。しかしながら、光吸収膜60と遮蔽部材61との組合せ、乱反射発生領域600と遮蔽部材61との組合せ、光吸収膜60、乱反射発生領域600、および、遮蔽部材61の組合せを用いてもよい。この際、上述のように、例えば、遮蔽部材61の上面は、光反射膜を備えていたり、乱反射発生領域になっている。この構成によって、乱数発生装置は、上述の作用効果を得ることができる。
 [第12実施形態]
 第12の実施形態に係る乱数発生装置について、図を参照して説明する。図14は、第12の実施形態に係る乱数発生装置の構成を示す側面断面図である。
 図14に示すように、第12の実施形態に係る乱数発生装置10Kは、第1の実施形態に係る乱数発生装置10に対して、光吸収膜60Kの形状において異なる。乱数発生装置10Kの他の構成は、乱数発生装置10と同様であり、同様の箇所の説明は省略する。
 乱数発生装置10Kは、光吸収膜60Kを備える。光吸収膜60Kは、受光素子31と発光素子40との間の領域だけでなく、発光素子40の裏面まで広がり、裏面に重なる形状である。言い換えれば、発光素子40は、光吸収膜60Kを介して、半導体基板30の主面301に固定されている。
 このような構成であっても、乱数発生装置10Kは、乱数発生装置10と同様の作用効果を得ることができる。
 さらに、乱数発生装置10Kは、光吸収膜60Kを、発光素子40の実装用の接着材(アンダーフィル材)としても利用している。これにより、発光素子40の実装用の接着材と、光吸収膜60Kとは、別々に形成しなくてもよい。したがって、乱数発生装置10Kは、より簡素な構成および工程で製造される。
 [第13実施形態]
 第13の実施形態に係る乱数発生装置について、図を参照して説明する。図15は、第13の実施形態に係る乱数発生装置の構成を示す側面断面図である。
 図15に示すように、第13の実施形態に係る乱数発生装置10Lは、第1の実施形態に係る乱数発生装置10に対して、発光素子40の配置態様において異なる。乱数発生装置10Lの他の構成は、乱数発生装置10と同様であり、同様の箇所の説明は省略する。
 乱数発生装置10Lでは、発光素子40は、基板20の主面201に実装されている。
 このような構成であっても、乱数発生装置10Lは、乱数発生装置10と同様の作用効果を得ることができる。
 なお、上述の各実施形態の構成は、適宜組合せが可能であり、それぞれの組合せに応じた作用効果を得られる。
10、10A、10B、10C、10D、10E、10F、10G、10H、10I、10J、10K、10L:乱数発生装置
10P:比較構成の乱数発生装置
20:基板
30:半導体基板
31:受光素子
32:乱数設定部
40:発光素子
50:カバー部材
60、60G、60H、60K:光吸収膜
61:遮蔽部材
70:電子部品
100:閉空間
201、202:基板20の主面
301:半導体基板30の主面
340:領域
501:天板
502:側板
510:光拡散面
600、600I:乱反射発生領域

Claims (7)

  1.  一主面を有する支持体と、
     前記支持体の前記主面側に配置され、前記主面に対向する光拡散面を有するカバー部材と、
     前記主面側に配置された発光素子と、
     前記主面側に配置された受光素子と、
     前記発光素子と前記受光素子との間に配置または形成された多重反射抑制部材と、
     を備える、前記受光素子による受光量によって乱数を発生する乱数発生装置。
  2.  前記多重反射抑制部材は、
     前記主面に配置された光吸収膜を含む、
     請求項1に記載の乱数発生装置。
  3.  前記多重反射抑制部材は、
     前記主面に形成された乱反射発生領域を含む、
     請求項1または請求項2に記載の乱数発生装置。
  4.  前記乱反射発生領域は、
     前記主面に形成された凹凸形状である、
     請求項3に記載の乱数発生装置。
  5.  前記多重反射抑制部材は、
     前記主面に配置され、前記発光素子から前記主面への光の直射を遮蔽する遮蔽部材を含む、
     請求項2乃至請求項4のいずれかに記載の乱数発生装置。
  6.  前記支持体は、
     樹脂基板と、
     前記樹脂基板上に配置され、前記受光素子が形成された半導体基板と、を備え、
     前記多重反射抑制部材は、
     前記半導体基板に配置または形成されている、
     請求項1乃至請求項5のいずれかに記載の乱数発生装置。
  7.  前記発光素子は、複数であり、
     前記多重反射抑制部材は、前記発光素子と前記受光素子の組毎に配置されている、
     請求項1乃至請求項6のいずれかに記載の乱数発生装置。
PCT/JP2020/017128 2019-06-04 2020-04-21 乱数発生装置 WO2020246159A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217034985A KR20210138107A (ko) 2019-06-04 2020-04-21 난수 발생 장치
JP2021524703A JPWO2020246159A1 (ja) 2019-06-04 2020-04-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-104391 2019-06-04
JP2019104391 2019-06-04

Publications (1)

Publication Number Publication Date
WO2020246159A1 true WO2020246159A1 (ja) 2020-12-10

Family

ID=73652760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017128 WO2020246159A1 (ja) 2019-06-04 2020-04-21 乱数発生装置

Country Status (3)

Country Link
JP (1) JPWO2020246159A1 (ja)
KR (1) KR20210138107A (ja)
WO (1) WO2020246159A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230034089A (ko) * 2021-09-02 2023-03-09 (주)비트리 패키지 모듈, 그 제조 방법 및 그 동작 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647502B2 (ja) * 1983-09-02 1989-02-09 Kyushu Nippon Electric
JP2016225378A (ja) * 2015-05-28 2016-12-28 京セラ株式会社 受発光素子モジュールおよびセンサ装置
WO2018155738A1 (ko) * 2017-02-24 2018-08-30 에스케이텔레콤 주식회사 복수의 광원을 활용하는 양자 노이즈 기반 난수생성장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019162998A1 (ja) * 2018-02-20 2019-08-29 三菱電機株式会社 アブソリュートエンコーダ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647502B2 (ja) * 1983-09-02 1989-02-09 Kyushu Nippon Electric
JP2016225378A (ja) * 2015-05-28 2016-12-28 京セラ株式会社 受発光素子モジュールおよびセンサ装置
WO2018155738A1 (ko) * 2017-02-24 2018-08-30 에스케이텔레콤 주식회사 복수의 광원을 활용하는 양자 노이즈 기반 난수생성장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230034089A (ko) * 2021-09-02 2023-03-09 (주)비트리 패키지 모듈, 그 제조 방법 및 그 동작 방법
KR102613808B1 (ko) * 2021-09-02 2023-12-15 (주)비트리 패키지 모듈, 그 제조 방법 및 그 동작 방법

Also Published As

Publication number Publication date
KR20210138107A (ko) 2021-11-18
JPWO2020246159A1 (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
TWI457660B (zh) 可減少漏光之背光模組及顯示裝置
JP5902823B2 (ja) 発光素子パッケージ及びそれを備えるバックライトユニット
JP5794135B2 (ja) 光モジュール
CN114844967B (zh) 一种终端
WO2011117934A1 (ja) 発光装置及びそれを用いたバックライトモジュール
CN107728380B (zh) 背光模组及显示装置
WO2020246159A1 (ja) 乱数発生装置
US20140212086A1 (en) Optical module
WO2021024634A1 (ja) レーダ装置
JP2019129153A (ja) 光源モジュール及びその面光源アセンブリ
US7618148B2 (en) Projector apparatus having grounding components for protection against electromagnetic interference
JP5324935B2 (ja) 固体撮像装置
KR101894041B1 (ko) 발광소자 및 이를 포함하는 발광모듈
KR20140036545A (ko) 발광소자 패키지 및 이를 포함하는 백라이트 유닛
KR102553499B1 (ko) 디스플레이 장치
CN112739183B (zh) 电磁干扰薄板衰减器
JP2010114114A (ja) 反射型フォトインタラプタ
JP2006135403A (ja) 画像読み取り装置
JP2002368481A (ja) 電子機器
JP4995867B2 (ja) 発光素子及び光結合モジュール
WO2021131599A1 (ja) 電子制御装置
JP7119772B2 (ja) 光センサ
US20160124240A1 (en) Surface mount device type laser module
JP7257288B2 (ja) 光センサ用パッケージ、多数個取り配線基板、光センサ装置および電子モジュール
TW201441689A (zh) 光通訊裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20817736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217034985

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021524703

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20817736

Country of ref document: EP

Kind code of ref document: A1