WO2020244488A1 - 显示基板、显示面板及其制备方法和显示装置 - Google Patents

显示基板、显示面板及其制备方法和显示装置 Download PDF

Info

Publication number
WO2020244488A1
WO2020244488A1 PCT/CN2020/093832 CN2020093832W WO2020244488A1 WO 2020244488 A1 WO2020244488 A1 WO 2020244488A1 CN 2020093832 W CN2020093832 W CN 2020093832W WO 2020244488 A1 WO2020244488 A1 WO 2020244488A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
groove
electrode
substrate
area
Prior art date
Application number
PCT/CN2020/093832
Other languages
English (en)
French (fr)
Inventor
张星
全威
林奕呈
徐攀
王玲
王国英
韩影
高展
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/279,771 priority Critical patent/US20210343973A1/en
Publication of WO2020244488A1 publication Critical patent/WO2020244488A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • H10K59/1315Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present disclosure relates to the field of display, in particular to a display substrate, a display panel, a preparation method thereof, and a display device.
  • Top-emitting organic light-emitting diodes include a cathode and an anode, and an organic functional layer located between the cathode and the anode.
  • metals with a low work function such as materials such as aluminum, magnesium, and silver, are usually used and formed by evaporation or sputtering processes.
  • conductive materials with high light transmittance such as indium zinc oxide (IZO) are often used.
  • the present disclosure provides a display substrate.
  • the display substrate includes a base substrate including a display area and a driving area provided on at least one side of the display area; a first electrode layer located in the display area The signal output part is located in the drive area, the first electrode layer is electrically connected to the signal output part, the first electrode layer includes a plurality of electrode regions with the same area; and a plurality of auxiliary electrodes, which are connected to the The plurality of electrode regions have a one-to-one correspondence and are configured in parallel with the first electrode layer, wherein the resistance of each auxiliary electrode is inversely related to the minimum distance from the corresponding electrode region to the signal output part.
  • the auxiliary electrode includes at least one conductive part, the resistance of the conductive part is inversely related to the minimum distance from the corresponding electrode area to the signal output part, and the first electrode layer is connected in parallel The plurality of conductive parts are evenly distributed.
  • a pixel defining layer is further provided in the display area, and the pixel defining layer is located between the base substrate and the first electrode layer;
  • a first groove is provided on the side of the pixel defining layer away from the base substrate;
  • the conductive portion is located in the first groove and located on a side of the first electrode layer away from the base substrate.
  • the conductive part includes a plurality of nano metal particles disposed in the first groove.
  • the number of nano metal particles of the conductive part is positively correlated with the minimum distance from the conductive part to the signal output part.
  • An embodiment of the present disclosure also provides a display panel including the above-mentioned display substrate.
  • the display panel further includes a box-matching substrate disposed opposite to the display substrate;
  • a spacer corresponding to the position of the first groove is provided on the side of the box-matching substrate facing the base substrate;
  • a second groove is provided on the side of the spacer facing the base substrate.
  • the orthographic projection of the second groove on the base substrate is located within the orthographic projection of the corresponding first groove on the base substrate.
  • the volume of the second groove is positively correlated with the number of nano metal particles of the corresponding conductive part.
  • An embodiment of the present disclosure also provides a display device including the above-mentioned display panel.
  • An embodiment of the present disclosure also provides a manufacturing method of a display panel, the manufacturing method including:
  • the base substrate including a display area and a driving area provided on at least one side of the display area;
  • first electrode layer Forming a first electrode layer in the display area, the first electrode layer is electrically connected to the signal output part; the area where the first electrode layer is located is divided into a plurality of electrode areas with the same area;
  • a plurality of auxiliary electrodes corresponding to each of the electrode regions are formed one-to-one; the auxiliary electrodes are connected in parallel with the first electrode layer, and the resistance of each auxiliary electrode is the smallest from the corresponding electrode region to the signal output part. Distance is inversely related.
  • the method before the step of forming the first electrode layer in the display area, the method further includes:
  • a pixel defining layer is formed in the display area, the pixel defining layer is located between the base substrate and the cathode layer; a first groove is formed on the side of the pixel defining layer away from the base substrate ;
  • the preparation method further includes:
  • spacers are formed in positions corresponding to the first grooves one by one, and the side of the spacer facing the base substrate is formed with Second groove
  • the step of forming a plurality of auxiliary electrodes corresponding to each electrode area one-to-one further includes:
  • the auxiliary electrode includes at least one conductive part located in the first groove.
  • the volume of the second groove is inversely related to the resistance of the corresponding conductive part, and the plurality of conductive parts connected in parallel with the first electrode layer are evenly distributed;
  • the step of forming an intermediate conductive part in each of the second grooves includes:
  • the ink includes nano metal particles, and the quantity of the nano metal particles in the second groove is positively correlated with the volume of the second groove;
  • the ink is dried to form the intermediate conductive part in each of the second grooves.
  • FIG. 1 is a schematic diagram of a display substrate provided by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of a longitudinal section of a display substrate provided by an embodiment of the disclosure.
  • FIG. 3 is a schematic diagram of a conductive part cloth provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of a display substrate including a first groove provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of a display panel provided by an embodiment of the disclosure.
  • FIG. 6 is the second schematic diagram of the display panel provided by the embodiment of the disclosure.
  • FIG. 7 is a flowchart of a manufacturing method of a display panel provided by an embodiment of the disclosure.
  • FIG. 8 is a flow chart of preparing a matching box substrate provided by an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of a process of preparing a conductive part provided by an embodiment of the disclosure.
  • the cathodes of OLED devices are prepared using high light transmittance materials such as indium zinc oxide (IZO), and the prepared electrodes have relatively high impedance, resulting in voltage attenuation on the cathode, which seriously affects the uniformity of the screen display brightness .
  • IZO indium zinc oxide
  • FIG. 1 is a schematic diagram of a display substrate provided by this embodiment
  • FIG. 2 is a schematic diagram of a longitudinal section of the display substrate provided by this embodiment, as shown in FIGS. 1 and 2
  • the display substrate includes:
  • the base substrate 10 includes a display area 11 and a driving area 12 provided on at least one side of the display area 11.
  • the display area 11 is provided with a first electrode layer 20
  • the driving area 12 is provided with a signal output part 121
  • the first electrode layer 20 is connected to the signal output part 121.
  • the driving area 12 may also be provided with a driving circuit, such as a GOA circuit.
  • the above-mentioned display substrate may be a single-ended driving display substrate or a double-ended driving display substrate.
  • the single-ended driving display substrate is to provide the driving area 12 only on one side of the display area 11.
  • the first electrode layer 20 and the signal of the driving area 12 The output portion 121 is connected;
  • the double-ended drive display substrate means that the display area 11 is provided with driving areas 12 on opposite sides, and the opposite sides of the first electrode layer 20 are connected to the two driving areas 12 respectively.
  • the first electrode layer 20 may be a continuous entire film layer disposed in the display area, and the area where the first electrode layer 20 is located is divided into a plurality of electrode regions 21 with the same area, and the plurality of electrode regions 21 may be sequentially arranged along the left and right directions in FIG. It can also be distributed in an array.
  • the display substrate further includes auxiliary electrodes 30 corresponding to each electrode area 21 one-to-one, and the resistance of the auxiliary electrode 30 is inversely related to the minimum distance from the corresponding electrode area 21 to the signal output part 121.
  • the minimum distance from the electrode area 21 to the signal output part 121 is: the distance from the electrode area 21 to the signal output part 121 in the driving area 12; when the number of driving areas 12 is two, The minimum distance from the electrode area 21 to the signal output portion 121 is the distance from the electrode area 21 to the signal output portion 121 in the closer driving area 12.
  • the first electrode layer 20 may be a cathode layer; in addition, the display substrate of the present disclosure is particularly suitable for a top-emitting structure.
  • the first electrode layer 20 uses indium zinc oxide (IZO ), indium tin oxide (ITO) and other transparent conductive materials.
  • an auxiliary electrode 30 is connected in parallel on the first electrode layer 20. The further away the auxiliary electrode 30 is from the driving area 12, the smaller its resistance, and the greater the correction amplitude of the auxiliary electrode 30 to the voltage attenuation, so that The voltage across the first electrode layer 20 remains consistent, which improves the display uniformity of the display area 11.
  • the area where the first electrode layer 20 is located is divided into three electrode areas, namely the electrode area 21 at position a, the electrode area 21 at position b, and the electrode area 21 at position c.
  • the areas 21 are equal, and the minimum distance between the electrode area 21 and the signal output portion 31 increases in order from left to right.
  • the voltage attenuation gradually increases. In order to ensure the display effect of the display area, it is necessary to make targeted corrections according to the magnitude of the voltage attenuation.
  • the electrode area 21, electrode area b, and electrode area c at position a are all provided with an auxiliary electrode b1 in parallel with the first electrode layer 20, and the resistance of the auxiliary electrode connected in parallel in the electrode area at position b is lower than that of the electrode at position a
  • the auxiliary electrode connected in parallel in the zone is greater than the resistance of the auxiliary electrode connected in parallel in the electrode zone at position c.
  • FIG. 3 is a schematic diagram of a conductive part layout provided by this embodiment.
  • the auxiliary electrode 30 includes at least one conductive part 31, and the resistance of the conductive part 31 is related to the corresponding electrode area 21.
  • the minimum distance to the signal output part 121 is inversely correlated, and the plurality of conductive parts 31 connected in parallel to the first electrode layer 20 are evenly distributed.
  • the resistance of the auxiliary electrode 30 is equivalent to the parallel resistance of the plurality of conductive parts 31.
  • the conductive portion 31 is made of easily conductive metal material, for example, magnesium (Mg), gold (Au), aluminum (Al), silver (Ag) or composed of at least two of magnesium, gold, aluminum, and silver Alloys, or nano metal particles including one or more of magnesium, gold, aluminum, and silver, are not limited here.
  • the position of the conductive portion 31 may be set on the side of the first electrode layer away from the base substrate, or may be set between the electrode layer and the base substrate.
  • FIG. 4 is a schematic diagram of a display substrate including a first groove provided by an embodiment of the present disclosure. As shown in FIG. 4, in a specific embodiment of the invention, a pixel defining layer 40 is further provided in the display area 11, The pixel defining layer 40 is located between the base substrate 40 and the first electrode layer 20.
  • the pixel defining layer 40 is provided with a first groove 41 on a side away from the base substrate 10.
  • the conductive portion 31 is located in the first groove 41 and located on the side of the first electrode layer 20 away from the base substrate 10.
  • the first electrode layer 20 can cover the sidewalls and the bottom surface of the first groove 41, so that it is disposed in the first groove 41.
  • the conductive portion 31 in 41 is in contact with the first electrode layer 20 to achieve parallel connection.
  • the conductive portion 31 in the embodiment of the present disclosure is the conductive portion 31 with a fixed form or the conductive portion 31 with a non-fixed form.
  • the first groove 41 is provided on the pixel defining layer 40, but in addition to the first groove 41 on the pixel defining layer 40, it may also be located on the first electrode layer 20.
  • a first groove 41 is provided on the layer structure between the base substrate 10 and the base substrate 10.
  • the resistivity, size, or cross-sectional size of the conductive portion 31 can be adjusted to make the resistance of the conductive portion 31 follow the electrode area 21 where the conductive portion 31 is located to the signal output portion 121 The minimum distance increases and decreases.
  • the conductive portion 31 includes a plurality of nano metal particles, and the nano metal particles may be nano gold balls or nano silver balls.
  • the material of the nano metal particles may also include one or more of magnesium, aluminum, and silver. kind.
  • the number of nano metal particles of the conductive portion 31 is positively correlated with the minimum distance from the conductive portion 31 to the signal output portion 31.
  • An embodiment of the present disclosure also provides a display panel, which includes the above-mentioned display substrate.
  • the auxiliary electrode 30 of the display substrate includes at least one conductive portion 31.
  • the resistance of the conductive portion 31 is inversely related to the minimum distance from the corresponding electrode area 21 to the signal output portion 121.
  • the first electrode The multiple conductive portions 31 connected in parallel by the layer 20 are evenly distributed.
  • FIG. 5 is a schematic diagram of a display panel provided by an embodiment of the disclosure. As shown in FIG. 5, the display panel further includes a box-matching substrate 50 disposed opposite to the display substrate.
  • a spacer 60 corresponding to the position of the first groove 41 is provided on the side of the box substrate 50 facing the base substrate 10.
  • a second groove 61 is provided on the side of the spacer 60 facing the base substrate 10.
  • the orthographic projection of the second groove 61 on the base substrate 10 is located within the orthographic projection of the first groove 41 on the base substrate 10. Therefore, after the base substrate 10 and the aligning substrate 50 are aligned, The spacer 60 may be in contact with the first electrode layer 20, and the second groove 61 is correspondingly communicated with the first groove 41. It should be noted that when the conductive portion 31 is provided, an intermediate conductive portion can be prepared in the second groove 61 first. After the base substrate 10 and the box substrate 50 are aligned, the intermediate conductive portion is located in the second groove 61 and the second groove 61. A groove 41 is formed in a space for containing the conductive part, thereby forming the conductive part 31, and the conductive part 31 is in contact with the first electrode layer 20 and is connected in parallel with the first electrode layer 20.
  • the conductive part 31 is made of nano metal particles, since the first groove 41 and the second groove 61 form a space for holding the conductive part, the nano metal particles can be prevented from leaking out and form a dark Bad point.
  • the number of nano metal particles of the conductive portion 31 is positively correlated with the minimum distance from the conductive portion 31 to the signal output portion 121.
  • the volume of the second groove 61 increases as the number of nano metal particles of the corresponding conductive portion 31 increases.
  • the volume of the second groove 61 determines the number of nano metal particles in the middle conductive portion, that is, the number of nano metal particles in the conductive portion 31 subsequently formed. Therefore, the second groove The larger the volume of 41, the larger the number of nano metal particles of the conductive part 31 formed.
  • the volume of the second groove 61 can be controlled by adjusting the groove depth of the second groove 61.
  • FIG. 6 is a schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • the spaces formed by the first groove 41 and the second groove 61 in position x, position y, and position z are all
  • the conductive portion 31 is provided, and the conductive portion 31 is nano metal particles; the minimum distance between the position x and the signal output portion 121 is smaller than the minimum distance between the position y and the signal output portion 121, and the minimum distance between the position z and the signal output portion 121 is smaller than the position y
  • the minimum distance from the signal output part 121 is greater than the minimum distance between the position x and the signal output part 121.
  • the voltage attenuation amplitude at the position x is smaller than the voltage attenuation amplitude at the position z is smaller than the voltage at the position y
  • the groove depth of the second groove 61 at position x is smaller than the groove depth of the second groove 61 at position y
  • the groove depth of the second groove 61 at position z is smaller than that of the second groove 61 at position y.
  • the groove depth of the groove 61 is greater than the groove depth of the second groove 61 at position x.
  • the volume of the second groove 61 also gradually increases, and the number of nano metal particles of the conductive portion 31 formed gradually increases, so that the resistance of the conductive portion 31 is gradually reduced.
  • the box-matching substrate may be a color filter substrate, specifically, it includes a base, a color filter layer and a black matrix arranged on the base, and the spacer is arranged at a position corresponding to the black matrix.
  • the embodiment of the present disclosure also provides a display device, which includes the above-mentioned display panel.
  • the display device can be any product or component with display function such as electronic paper, mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame, navigator, etc.
  • the display device may be an OLED display panel.
  • FIG. 7 is a flowchart of the method for manufacturing the display panel provided by the embodiment of the present disclosure. As shown in FIG. 7, the manufacturing method includes the following steps:
  • a base substrate is provided.
  • the base substrate includes a display area and a driving area provided on at least one side of the display area.
  • the base substrate may be a transparent substrate, which may be made of a light-guiding and insulating material with a certain hardness, such as glass, quartz, or transparent resin.
  • a first electrode layer is formed in the display area, and the first electrode layer is connected to the signal output part; the area where the first electrode layer is located includes multiple electrode areas with the same area.
  • the signal output portion is formed in the driving area and the first electrode layer is formed in the display area through a film forming process (such as deposition, coating, sputtering, or evaporation), and the first electrode layer is gradually moved away from the first electrode layer.
  • a film forming process such as deposition, coating, sputtering, or evaporation
  • electrode regions of equal size are defined in the area where the first electrode layer is located, where the first electrode layer is made of a transparent conductive material, such as indium tin oxide or indium zinc oxide.
  • auxiliary electrode corresponding to each electrode area one-to-one; the auxiliary electrode is connected in parallel with the first electrode layer, and the resistance of the auxiliary electrode is inversely related to the minimum distance from the corresponding electrode area to the signal output part. That is, the resistance of the auxiliary electrode decreases as the minimum distance between the electrode area corresponding to the auxiliary electrode and the signal output part increases.
  • the auxiliary electrode when the auxiliary electrode includes a plurality of conductive parts having a fixed shape, the auxiliary electrode can be formed by a film forming process (such as deposition, coating, sputtering, or evaporation); of course, other processes can also be used.
  • a film forming process such as deposition, coating, sputtering, or evaporation
  • an auxiliary electrode is connected in parallel on the first electrode layer. The further away the auxiliary electrode is from the driving area, the smaller its resistance, and the greater the correction amplitude of the auxiliary electrode to the voltage attenuation, so that each electrode on the cathode layer The voltage at the position remains the same, which improves the uniformity of the display area.
  • the first electrode layer before preparing the first electrode layer, it includes forming a pixel defining layer in the display area, the pixel defining layer is located between the base substrate and the cathode layer; and the pixel defining layer is away from the substrate A first groove is formed on one side of the substrate.
  • the pixel defining material layer is formed on the base substrate, and the thickness can be determined according to actual conditions, preferably between 1.5 ⁇ m and 2 ⁇ m. Afterwards, the pixel defining material layer is patterned to obtain a pixel defining layer with a plurality of first grooves.
  • the preparation method provided by the embodiments of the present disclosure further includes forming other layer structures such as a TFT layer and a light-emitting function layer on a base substrate, and pairing the base substrate with various functional structures and the box substrate. box.
  • auxiliary electrode in this embodiment can also be formed in the following manner as shown in FIGS. 8 and 9.
  • FIG. 8 is a flow chart of preparing a box substrate provided by an embodiment of the disclosure. As shown in FIG. 8, the method for preparing a display panel further includes the following steps:
  • a black matrix is prepared on the substrate of the matching box, and the color film material is coated on the substrate of the matching box by slit coating. After pre-baking, exposure, development, post-baking, and patterning, the thickness is 2.0 microns.
  • Color film layer Afterwards, spin coating is used to coat the flat layer material on the color film layer and the black matrix. After pre-baking, exposure, development, post-baking, and patterning, a flat layer with a thickness of 2.0 microns is formed.
  • a spacer material layer is formed on the side of the flat layer close to the base substrate, and the spacer material layer is patterned to obtain spacers with a plurality of second grooves.
  • the volume of the second groove increases as the minimum distance between the electrode area corresponding to the second groove and the signal output part increases, and the position of the second groove on the flat layer is the same as that of the first groove on the base substrate.
  • the spacer material layer may be a photosensitive material layer; when patterning it, a halftone mask is used for exposure and then development is performed to obtain spacers with multiple second grooves.
  • FIG. 9 is a schematic diagram of a process of preparing a conductive part provided by an embodiment of the present disclosure.
  • the step of forming an auxiliary electrode corresponding to each electrode area one-to-one includes:
  • An intermediate conductive part 32 is formed in each second groove 61.
  • the volume of the second groove 61 is positively correlated with the volume of the corresponding conductive portion 31, and the plurality of conductive portions 31 connected in parallel to the first electrode layer 20 are evenly distributed.
  • the step of forming the intermediate conductive portion 32 in each second groove 61 includes:
  • Ink 33 is injected into the second groove 61, and the ink 33 includes nano metal particles.
  • the ink is dried to form an intermediate conductive part 32 in each second groove 61.
  • the ink when ink is injected into each second groove 61, the ink can be filled into the second groove 61. Since the greater the minimum distance from the signal output part, the larger the volume of the second groove 61 will be. After each second groove 61 is filled with ink and dried, the resistance of the middle conductive part 32 that is farther from the signal output part can be made smaller, so that the middle conductive part 32 falls into the first groove to form a conductive part Thereafter, the resistance of the conductive portion 31 can be inversely related to the minimum distance from the conductive portion 31 to the signal output portion.
  • the conductive part 31 is made of nano metal particles, since the first groove 41 and the second groove 61 form a space for holding the conductive part, the nano metal particles can be prevented from leaking out and form a dark Bad point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种显示基板,显示基板包括:衬底基板,所述衬底基板包括显示区和设置在所述显示区至少一侧的驱动区;第一电极层,位于所述显示区;信号输出部,位于所述驱动区,所述第一电极层与所述信号输出部电连接,所述第一电极层包括面积相同的多个电极区;以及多个辅助电极,其与所述多个电极区一一对应并且配置为与所述第一电极层并联,其中,各辅助电极的电阻与对应的所述电极区到所述信号输出部的最小距离反相关。本公开还提供了一种显示面板、显示面板的制备方法和显示装置。本公开通过在第一电极层上并联辅助电极,该辅助电极离驱动电路越远,其电阻越小,辅助电极对电压衰减的修正幅度越大,从而使阴极层上各处的电压保持一致,提升了显示区显示的均匀性。

Description

显示基板、显示面板及其制备方法和显示装置
相关申请的交叉引用
本申请要求于2019年6月3日在中国知识产权局提交的申请号为201910477115.2的中国专利申请的优先权,该中国专利申请的全部内容通过引用合并于此。
技术领域
本公开涉及显示领域,具体涉及一种显示基板、显示面板及其制备方法和显示装置。
背景技术
顶发射有机电致发光二极管(OLED,Organic Light-Emitting Diodes)包括阴极和阳极,以及位于阴极和阳极之间的有机功能层。
在制备OLED器件的阳极时,通常使用功函数较低的金属,如铝、镁和银等材料,并通过蒸镀或者溅射工艺形成。制备OLED器件的阴极时,常采用高透光率的导电材料,例如氧化铟锌(IZO)等。
发明内容
本公开提供一种显示基板,所述显示基板包括:衬底基板,所述衬底基板包括显示区和设置在所述显示区至少一侧的驱动区;第一电极层,位于所述显示区;信号输出部,位于所述驱动区,所述第一电极层与所述信号输出部电连接,所述第一电极层包括面积相同的多个电极区;以及多个辅助电极,其与所述多个电极区一一对应并且配置为与所述第一电极层并联,其中,各辅助电极的电阻与对应的所述电极区到所述信号输出部的最小距离反相关。
在一些实施方式中,所述辅助电极包括至少一个导电部,所述导电部的电阻与相应的所述电极区到所述信号输出部的最小距离反相关,所述第一电极层所并联的多个所述导电部均匀分布。
在一些实施方式中,所述显示区中还设置有像素界定层,所述 像素界定层位于所述衬底基板与所述第一电极层之间;
所述像素界定层背离所述衬底基板一侧设置有第一凹槽;
所述导电部位于所述第一凹槽中,且位于所述第一电极层背离所述衬底基板的一侧。
在一些实施方式中,所述导电部包括设置在所述第一凹槽中的多个纳米金属颗粒。
在一些实施方式中,所述导电部的纳米金属颗粒的数量与所述导电部到所述信号输出部的最小距离正相关。
本公开的一个实施例还提供了一种显示面板,所述显示面板包括上述的显示基板。
在一些实施方式中,所述显示面板还包括与所述显示基板相对设置的对盒基板;
所述对盒基板上面向所述衬底基板一侧设置有与所述第一凹槽位置对应的隔垫物;
所述隔垫物面向所述衬底基板的一侧设置有第二凹槽。
在一些实施方式中,第二凹槽在衬底基板上的正投影位于对应的第一凹槽在衬底基板上的正投影内。
在一些实施方式中,所述第二凹槽的容积与相应导电部的纳米金属颗粒的数量正相关。
本公开的一个实施例还提供了一种显示装置,所述显示装置包括上述的显示面板。
本公开的一个实施例还提供了一种显示面板的制备方法,该制备方法包括:
提供衬底基板,所述衬底基板包括显示区和设置在所述显示区至少一侧的驱动区;
在所述驱动区形成信号输出部;
在所述显示区形成第一电极层,所述第一电极层与所述信号输出部电连接;所述第一电极层所在区域被划分为面积相同的多个电极区;
形成与每个所述电极区一一对应的多个辅助电极;所述辅助电 极与所述第一电极层并联,各辅助电极的电阻与对应的所述电极区到所述信号输出部的最小距离反相关。
在一些实施方式中,所述在所述显示区形成第一电极层的步骤之前还包括:
在所述显示区中形成像素界定层,所述像素界定层位于所述衬底基板与所述阴极层之间;在所述像素界定层背离所述衬底基板一侧形成有第一凹槽;
所述制备方法还包括:
提供用于与所述衬底基板相对设置的对盒基板;
在所述对盒基板用于面向所述衬底基板的一侧形成位置与所述第一凹槽一一对应的隔垫物,所述隔垫物面向所述衬底基板的一侧形成有第二凹槽;
所述形成与每个电极区一一对应的多个辅助电极的步骤还包括:
在每个所述第二凹槽中形成中间导电部;
将所述对盒基板与所述衬底基板对盒,以使所述第二凹槽中的所述中间导电部落入所述第一凹槽中,形成导电部;
其中,所述辅助电极包括至少一个位于所述第一凹槽中的所述导电部。
在一些实施方式中,所述第二凹槽的容积与对应的所述导电部的电阻反相关,所述第一电极层所并联的多个所述导电部均匀分布;
所述在每个所述第二凹槽中形成中间导电部的步骤包括:
在所述第二凹槽中注入墨水,所述墨水中包括纳米金属颗粒,并使得所述第二凹槽中的纳米金属颗粒的数量与所述第二凹槽的容积正相关;
对所述墨水进行干燥,以在每个所述第二凹槽中形成所述中间导电部。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本 公开的限制。在附图中:
图1为本公开实施例提供的一种显示基板的示意图;
图2为本公开实施例提供的显示基板纵截面的示意图;
图3为本公开实施例提供的一种导电部分布的示意图;
图4为本公开实施例提供的包括第一凹槽的显示基板的示意图;
图5为本公开实施例提供的显示面板的示意图之一;
图6为本公开实施例提供的显示面板的示意图之二;
图7为本公开实施例提供的显示面板的制备方法的流程图;
图8为本公开实施例提供的制备对盒基板的流程图;
图9为本公开实施例提供的制备导电部过程的示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在相关技术中,利用氧化铟锌(IZO)等高透光率材料制备OLED器件的阴极,所制备的电极的阻抗相对较高,导致在阴极上出现电压衰减,严重影响屏幕显示亮度的均匀性。
本公开的一个实施例提供了一种显示基板,图1为本实施例提供的一种显示基板的示意图,图2为本实施例提供的显示基板纵截面的示意图,如图1以及图2所示,显示基板包括:
衬底基板10,衬底基板10包括显示区11和设置在显示区11至少一侧的驱动区12。显示区11设置有第一电极层20,驱动区12设置有信号输出部121,第一电极层20与信号输出部121相连。驱动区12还可以设置有驱动电路,例如GOA电路等。
上述显示基板可以为单端驱动显示基板或双端驱动显示基板,单端驱动显示基板即只在显示区11一侧设置驱动区12,第一电极层20的一侧与该驱动区12的信号输出部121相连;双端驱动显示基板指显示区11相对两侧均设置有驱动区12,第一电极层20的相对两侧与两个驱动区12分别相连。
第一电极层20可以为设置在显示区中的连续整层膜层,其所在区域被划分为面积相同的多个电极区21,多个电极区21可以沿图1中的左右方向依次排列,也可以呈阵列分布。显示基板还包括与各电极区21一一对应的辅助电极30,辅助电极30的电阻与相应的电极区21到信号输出部121的最小距离反相关。
其中,当驱动区12数量为一个时,电极区21到信号输出部121的最小距离为:电极区21到该驱动区12中信号输出部121的距离;当驱动区12数量为两个时,电极区21到信号输出部121的最小距离为:电极区21到较近的驱动区12中信号输出部121的距离。
需要说明的是,在本公开实施例中,第一电极层20可以为阴极层;另外,本公开的显示基板尤其适用于顶发光结构,此时,第一电极层20采用氧化铟锌(IZO)、氧化铟锡(ITO)等透明导电材料形成。
随着电极区21与驱动区12的距离增加,第一电极层20上电压衰减也逐渐增大,严重影响屏幕显示亮度的均匀性。当第一电极层20采用透明导电材料时,亮度不均匀的问题更加严重。采用本实施例的显示基板,在第一电极层20上并联辅助电极30,该辅助电极30离驱动区12越远,其电阻越小,辅助电极30对电压衰减的修正幅度越大,从而使第一电极层20上各处的电压保持一致,提升了显示区11显示的均匀性。
例如,如图1所示,将第一电极层20所在区域划分为3个电极区,分别为位置a的电极区21、位置b的电极区21以及位置c的电极区21,三个电极区21面积相等,且电极区21与信号输出部31的最小距离从左向右依次增大。随着电极区21与驱动区30的距离增加,电压衰减也逐渐增大,为保证显示区域的显示效果,需要根据电压衰减的幅度,进行针对性的修正,因此,如图2所示,在位置a的电极区21、电极区b和电极区c上均设置与第一电极层20并联辅助电极b1,并且,位置b处的电极区中所并联的辅助电极的电阻小于位置a处的电极区中所并联辅助电极,且大于位置c处的电极区中所并联的辅助电极的电阻。
在一具体实施例中,图3为本实施例提供的一种导电部分布的示意图,如图3所示,辅助电极30包括至少一个导电部31,导电部31的电阻与相应的电极区21到信号输出部121的最小距离反相关,第一电极层20所并联的多个导电部31均匀分布。
需要说明的是,当辅助电极30包括多个导电部31时,辅助电极30的电阻相当于多个导电部31的并联电阻。
具体地,导电部31为易导电金属材质,例如,镁(Mg)、金(Au)、铝(Al)、银(Ag)或者为由镁、金、铝、银中的至少两种组成的合金,再或者是包括镁、金、铝、银中的一种或多种的纳米金属颗粒等,在此不作限制。导电部31的位置可以设置在第一电极层背离衬底基板一侧,也可以设置在电极层与衬底基板之间。
图4为本公开的一个实施例提供的包括第一凹槽的显示基板的示意图,如图4所示,在一具体发明实施例中,所述显示区11中还设置有像素界定层40,像素界定层40位于衬底基板40与第一电极层20之间。
像素界定层40背离衬底基板10一侧设置有第一凹槽41。
导电部31位于第一凹槽41中,且位于第一电极层20背离衬底基板10的一侧。
具体地,由于像素界定层40位于第一电极层20靠近衬底基板10一侧,因此,第一电极层20可以覆盖第一凹槽41的侧壁以及底面,从而使设置在第一凹槽41中的导电部31与第一电极层20接触实现并联。并且,由于导电部31被设置在第一凹槽41中,因此,在本公开实施例中的导电部31为具有固定形态的导电部31或者非固定形态的导电部31。
需要说明的是,本公开实施例中,在像素界定层40上设置第一凹槽41,但除在像素界定层40上设置第一凹槽41外,也可以在其他位于第一电极层20与衬底基板10之间的层结构上设置第一凹槽41。
其中,导电部31为固定形态导电部31时,可以通过调整导电部31的电阻率、尺寸或截面大小,来使得导电部31的电阻随导电部 31所处的电极区21到信号输出部121的最小距离的增大而减小。
在一些实施方式中,导电部31包括多个纳米金属颗粒,纳米金属颗粒可以为纳米金球或者纳米银球,当然,纳米金属颗粒的材料也可以包括镁、铝、银中的一种或多种。
在一些实施方式中,导电部31的纳米金属颗粒的数量与导电部31到所述信号输出部31的最小距离正相关。纳米金属颗粒的数量越多,则导电部31的电阻越小。本公开实施例还提供一种显示面板,显示面板包括上述的显示基板。
如上文所述,在一具体实施例中,显示基板的辅助电极30包括至少一个导电部31,导电部31的电阻与相应的电极区21到信号输出部121的最小距离反相关,第一电极层20所并联的多个导电部31均匀分布。
图5为本公开实施例提供的显示面板的示意图,如图5所示,显示面板还包括与显示基板相对设置的对盒基板50。
对盒基板50面向衬底基板10的一侧设置有与第一凹槽41位置对应的隔垫物60。
隔垫物60面向衬底基板10的一侧设置有第二凹槽61。
具体地,第二凹槽61在衬底基板10上的正投影位于第一凹槽41在衬底基板10上的正投影内,因此,在衬底基板10和对盒基板50对盒后,隔垫物60可以与第一电极层20接触,第二凹槽61与第一凹槽41对应连通。需要说明的是,设置导电部31时,可以首先在第二凹槽61中制备中间导电部,在衬底基板10和对盒基板50对盒后,中间导电部位于第二凹槽61与第一凹槽41形成的用于盛放导电部的空间中,从而形成导电部31,导电部31与第一电极层20接触,实现与第一电极层20并联。
综上所述,当导电部31为纳米金属颗粒时,由于第一凹槽41和第二凹槽61形成了一用于盛放导电部的空间,从而可以避免纳米金属颗粒外泄,形成暗点不良。
如上文所述,在一具体实施例中,导电部31的纳米金属颗粒的数量与导电部31到所述信号输出部121的最小距离正相关。
具体地,第二凹槽61的容积随相应导电部31的纳米金属颗粒的数量的增大而增大。
需要说明的是,设置导电部31时,先在第二凹槽61中制备中间导电部,之后,通过对盒等工序,中间导电部落入第一凹槽41中,并与第一电极层20接触,形成导电部31,因此,第二凹槽61容积的大小决定中间导电部纳米金属颗粒数量的多少,也即后续形成的导电部31的纳米金属颗粒数量的多少,所以,第二凹槽41的容积越大,形成的导电部31的纳米金属颗粒的数量越多。其中,第二凹槽61的容积可以是通过调整第二凹槽61的挖槽深度来控制。
举例而言,图6为本公开实施例提供的显示面板的示意图,如图6所示,位置x、位置y以及位置z中的第一凹槽41与第二凹槽61形成的空间中均设置有导电部31,该导电部31为纳米金属颗粒;位置x与信号输出部121的最小距离小于位置y与信号输出部121的最小距离,位置z与信号输出部121的最小距离小于位置y与信号输出部121的最小距离,但大于位置x与信号输出部121的最小距离,因此,对于电压衰减的幅度而言,位置x的电压衰减幅度小于位置z的电压衰减幅度小于位置y的电压衰减幅度,所以,设置位置x的第二凹槽61的挖槽深度小于位置y的第二凹槽61的挖槽深度,位置z的第二凹槽61的挖槽深度小于位置y的第二凹槽61的挖槽深度,但大于位置x的第二凹槽61的挖槽深度。随着第二凹槽61的挖槽深度逐渐递增,第二凹槽61的容积也逐渐递增,形成的导电部31的纳米金属颗粒数量也逐渐递增,从而实现导电部31的电阻逐渐降低。
其中,对盒基板可以为彩膜基板,具体地,包括基底以及设置在基底上的彩膜层和黑矩阵,隔垫物设置在对应于黑矩阵的位置。
本公开实施例还提供一种显示装置,显示装置包括上述的显示面板。
该显示装置可以为电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。示例地,该显示装置可以为OLED显示面板。
本公开实施例还提供一种显示面板的制备方法,图7为本公开实施例提供的显示面板的制备方法的流程图,如图7所示,制备方法包括以下步骤:
S710、提供衬底基板,衬底基板包括显示区和设置在显示区至少一侧的驱动区。
具体地,衬底基板可以为透明基板,其可以采用玻璃、石英、透明树脂等具有一定硬度的导光且绝缘材料制成。
S720、在驱动区形成信号输出部。
S730、在显示区形成第一电极层,第一电极层与信号输出部相连;第一电极层所在区域包括面积相同的多个电极区。
具体地,通过成膜工艺(例如沉积、涂敷、溅射或者蒸镀)在驱动区形成信号输出部以及在显示区中形成第一电极层,并在第一电极层上,沿着逐渐远离信号输出部的方向,在第一电极层所在区域划分出面积大小相等的电极区,其中,第一电极层为透明导电材料,例如氧化铟锡或氧化铟锌等。
S740、形成与每个电极区一一对应的辅助电极;辅助电极与所述第一电极层并联,辅助电极的电阻与相应的电极区到信号输出部的最小距离反相关。即,辅助电极的电阻随辅助电极所对应的电极区与信号输出部的最小距离的增大而减小。
示例性地,当辅助电极包括多个具有固定形态的导电部时,可以通过成膜工艺(例如沉积、涂敷、溅射或者蒸镀)形成辅助电极;当然,也可以采用其他工艺。
随着电极区与驱动区的距离增加,电压衰减也逐渐增大,严重影响屏幕显示亮度的均匀性。当第一电极层采用透明导电材料时,亮度不均匀的问题更加严重。采用本公开实施例的显示基板,在第一电极层上并联辅助电极,该辅助电极离驱动区越远,其电阻越小,辅助电极对电压衰减的修正幅度越大,从而使阴极层上各处的电压保持一致,提升了显示区显示的均匀性。
如上文所述,在一具体实施例中,在制备第一电极层之前包括,在显示区中形成像素界定层,像素界定层位衬底基板与阴极层之间; 在像素界定层背离衬底基板一侧形成第一凹槽。
具体地,在衬底基板上形成像素界定材料层,厚度可以根据实际情况确定,最好在1.5μm~2μm之间。之后,对像素界定材料层进行构图,得到具有多个第一凹槽的像素界定层。
需要说明的是,本公开实施例提供的制备方法,还包括在衬底基板上形成TFT层和发光功能层等其他层结构、以及将形成有各种功能结构的衬底基板与对盒基板对盒。
另外,本实施例中的辅助电极还可以通过以下如图8和图9所示的方式形成。
图8为本公开实施例提供的制备对盒基板的流程图,如图8所示,显示面板的制备方法还包括以下步骤:
S810、提供用于与衬底基板对向设置的对盒基板。
具体地,在对盒基板上制备黑矩阵,使用狭缝涂布的方式在对盒基板上涂覆彩膜材料,通过前烘、曝光、显影、后烘,图形化后,形成厚度为2.0微米彩膜层;之后,使用旋涂的方式在彩膜层上和黑矩阵上涂覆平坦层材料,通过前烘、曝光、显影、后烘,图形化后,形成厚度为2.0微米的平坦层。
S820、在对盒基板上面向衬底基板的一侧形成与第一凹槽位置对应的隔垫物,隔垫物面向衬底基板的一侧形成有第二凹槽。
具体地,在平坦层靠近衬底基板一侧形成隔垫物材料层,对隔垫物材料层进行构图,得到具有多个第二凹槽的隔垫物。其中,第二凹槽的容积随第二凹槽所对应的电极区离信号输出部的最小距离增大而增大,第二凹槽在平坦层上的位置与第一凹槽在衬底基板上的位置相对应,以便在对盒安装时,形成一用于盛放导电部的空间。其中,隔垫物材料层可以为光敏材料层;对其进行构图时,采用半色调掩膜板(Halftone mask)进行曝光,之后进行显影,从而得到具有多个第二凹槽的隔垫物。
在一具体实施例中,图9为本公开实施例提供的制备导电部过程的示意图,如图9所示,形成与每个电极区一一对应的辅助电极的步骤包括:
在每个第二凹槽61中形成中间导电部32。
将对盒基板50与衬底基板10对盒,以使第二凹槽61中的中间导电部32落入第一凹槽41中,形成导电部31,其中,辅助电极包括多个位于第一凹槽41中的导电部31。
如上文所述,在一具体实施例中,第二凹槽61的容积与相应的导电部31的体积正相关,第一电极层20所并联的多个导电部31均匀分布。
在每个第二凹槽61中形成中间导电部32的步骤包括:
在第二凹槽61中注入墨水33,墨水33中包括纳米金属颗粒。
对墨水进行干燥,以在每个第二凹槽61中形成中间导电部32。
其中,在每个第二凹槽61中注入墨水时,可以使墨水注满第二凹槽61,由于离信号输出部的最小距离越大,第二凹槽的61容积越大,因此,将每个第二凹槽61中注满墨水后并干燥后,可以使得离信号输出部越远的中间导电部32的电阻越小,从而使得中间导电部32落至第一凹槽中形成导电部后,导电部31的电阻能够与导电部31到信号输出部的最小距离反相关。
综上所述,当导电部31为纳米金属颗粒时,由于第一凹槽41和第二凹槽61形成了一用于盛放导电部的空间,从而可以避免纳米金属颗粒外泄,形成暗点不良。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (13)

  1. 一种显示基板,包括:
    衬底基板,所述衬底基板包括显示区和设置在所述显示区至少一侧的驱动区;
    第一电极层,位于所述显示区;
    信号输出部,位于所述驱动区,所述第一电极层与所述信号输出部电连接,所述第一电极层包括面积相同的多个电极区;以及
    多个辅助电极,其与所述多个电极区一一对应并且配置为与所述第一电极层并联,其中,各辅助电极的电阻与对应的所述电极区到所述信号输出部的最小距离反相关。
  2. 根据权利要求1所述的显示基板,其中,所述辅助电极包括至少一个导电部,所述导电部的电阻与相应的所述电极区到所述信号输出部的最小距离反相关,所述第一电极层所并联的多个所述导电部均匀分布。
  3. 根据权利要求2所述的显示基板,其中,所述显示区中还设置有像素界定层,所述像素界定层位于所述衬底基板与所述第一电极层之间;
    所述像素界定层背离所述衬底基板一侧设置有第一凹槽;
    所述导电部位于所述第一凹槽中,且位于所述第一电极层背离所述衬底基板的一侧。
  4. 根据权利要求3所述的显示基板,其中,所述导电部包括设置在所述第一凹槽中的多个纳米金属颗粒。
  5. 根据权利要求4所述的显示基板,其中,所述导电部的纳米金属颗粒的数量与所述导电部到所述信号输出部的最小距离正相关。
  6. 一种显示面板,包括权利要求1-5中任一项所述的显示基板。
  7. 根据权利要求6所述的显示面板,其中,所述显示基板为权利要求3所述的显示基板;
    所述显示面板还包括与所述显示基板相对设置的对盒基板;
    所述对盒基板上面向所述衬底基板一侧设置有与所述第一凹槽位置对应的隔垫物;
    所述隔垫物面向所述衬底基板的一侧设置有第二凹槽。
  8. 根据权利要求7所述的显示面板,其中,第二凹槽在衬底基板上的正投影位于对应的第一凹槽在衬底基板上的正投影内。
  9. 根据权利要求7所述的显示面板,其中,所述显示基板为权利要求5所述的显示基板;
    所述第二凹槽的容积与相应导电部的纳米金属颗粒的数量正相关。
  10. 一种显示装置,其中,所述显示装置包括权利要求6-9中任一项所述的显示面板。
  11. 一种显示面板的制备方法,包括:
    提供衬底基板,所述衬底基板包括显示区和设置在所述显示区至少一侧的驱动区;
    在所述驱动区形成信号输出部;
    在所述显示区形成第一电极层,所述第一电极层与所述信号输出部电连接;所述第一电极层所在区域被划分为面积相同的多个电极区;
    形成与每个所述电极区一一对应的多个辅助电极;所述辅助电极与所述第一电极层并联,各辅助电极的电阻与对应的所述电极区到所述信号输出部的最小距离反相关。
  12. 根据权利要求11所述的制备方法,其中,所述在所述显示区形成第一电极层的步骤之前还包括:
    在所述显示区中形成像素界定层,所述像素界定层位于所述衬底基板与所述阴极层之间;在所述像素界定层背离所述衬底基板一侧形成有第一凹槽;
    所述制备方法还包括:
    提供用于与所述衬底基板相对设置的对盒基板;
    在所述对盒基板用于面向所述衬底基板的一侧形成位置与所述第一凹槽一一对应的隔垫物,所述隔垫物面向所述衬底基板的一侧形成有第二凹槽;
    所述形成与每个电极区一一对应的多个辅助电极的步骤还包括:
    在每个所述第二凹槽中形成中间导电部;
    将所述对盒基板与所述衬底基板对盒,以使所述第二凹槽中的所述中间导电部落入所述第一凹槽中,形成导电部;
    其中,所述辅助电极包括至少一个位于所述第一凹槽中的所述导电部。
  13. 根据权利要求12所述的显示面板的制备方法,其中,所述第二凹槽的容积与对应的所述导电部的电阻反相关,所述第一电极层所并联的多个所述导电部均匀分布;
    所述在每个所述第二凹槽中形成中间导电部的步骤包括:
    在所述第二凹槽中注入墨水,所述墨水中包括纳米金属颗粒,并使得所述第二凹槽中的纳米金属颗粒的数量与所述第二凹槽的容积正相关;
    对所述墨水进行干燥,以在每个所述第二凹槽中形成所述中间导电部。
PCT/CN2020/093832 2019-06-03 2020-06-02 显示基板、显示面板及其制备方法和显示装置 WO2020244488A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/279,771 US20210343973A1 (en) 2019-06-03 2020-06-02 Display substrate, display panel, manufacturing method of display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910477115.2 2019-06-03
CN201910477115.2A CN110212114B (zh) 2019-06-03 2019-06-03 显示基板、显示面板及其制备方法和显示装置

Publications (1)

Publication Number Publication Date
WO2020244488A1 true WO2020244488A1 (zh) 2020-12-10

Family

ID=67790338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093832 WO2020244488A1 (zh) 2019-06-03 2020-06-02 显示基板、显示面板及其制备方法和显示装置

Country Status (3)

Country Link
US (1) US20210343973A1 (zh)
CN (1) CN110212114B (zh)
WO (1) WO2020244488A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212114B (zh) * 2019-06-03 2021-01-29 京东方科技集团股份有限公司 显示基板、显示面板及其制备方法和显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101452947A (zh) * 2007-12-07 2009-06-10 精工爱普生株式会社 发光装置、电子设备以及成膜方法
CN103380660A (zh) * 2011-02-22 2013-10-30 松下电器产业株式会社 有机电致发光元件
CN104091818A (zh) * 2014-06-23 2014-10-08 上海天马有机发光显示技术有限公司 一种有机发光显示面板、装置及其制造方法
KR20160027538A (ko) * 2014-09-01 2016-03-10 엘지디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
CN107004695A (zh) * 2014-12-15 2017-08-01 乐金显示有限公司 有机发光装置
CN107331690A (zh) * 2017-08-18 2017-11-07 深圳市华星光电半导体显示技术有限公司 有机电致发光显示基板及有机电致发光显示装置
CN109817671A (zh) * 2019-01-28 2019-05-28 深圳市华星光电半导体显示技术有限公司 一种显示面板
CN110212114A (zh) * 2019-06-03 2019-09-06 京东方科技集团股份有限公司 显示基板、显示面板及其制备方法和显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722422B2 (en) * 2007-05-21 2010-05-25 Global Oled Technology Llc Device and method for improved power distribution for a transparent electrode
JP6231281B2 (ja) * 2013-01-23 2017-11-15 株式会社ジャパンディスプレイ 表示装置
KR102458597B1 (ko) * 2015-06-30 2022-10-25 엘지디스플레이 주식회사 유기발광다이오드 표시장치 및 그 제조방법
CN108933154B (zh) * 2017-05-26 2021-04-27 京东方科技集团股份有限公司 有机发光二极管显示基板的制备方法、显示基板及显示装置
KR102432663B1 (ko) * 2017-11-30 2022-08-12 엘지디스플레이 주식회사 전계 발광 표시장치
US11309355B2 (en) * 2019-04-26 2022-04-19 Innolux Corporation Display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101452947A (zh) * 2007-12-07 2009-06-10 精工爱普生株式会社 发光装置、电子设备以及成膜方法
CN103380660A (zh) * 2011-02-22 2013-10-30 松下电器产业株式会社 有机电致发光元件
CN104091818A (zh) * 2014-06-23 2014-10-08 上海天马有机发光显示技术有限公司 一种有机发光显示面板、装置及其制造方法
KR20160027538A (ko) * 2014-09-01 2016-03-10 엘지디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
CN107004695A (zh) * 2014-12-15 2017-08-01 乐金显示有限公司 有机发光装置
CN107331690A (zh) * 2017-08-18 2017-11-07 深圳市华星光电半导体显示技术有限公司 有机电致发光显示基板及有机电致发光显示装置
CN109817671A (zh) * 2019-01-28 2019-05-28 深圳市华星光电半导体显示技术有限公司 一种显示面板
CN110212114A (zh) * 2019-06-03 2019-09-06 京东方科技集团股份有限公司 显示基板、显示面板及其制备方法和显示装置

Also Published As

Publication number Publication date
CN110212114A (zh) 2019-09-06
US20210343973A1 (en) 2021-11-04
CN110212114B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
US9825256B2 (en) Display panel having a top surface of the conductive layer coplanar with a top surface of the pixel define layer
CN107706226B (zh) 对向基板、其制作方法、有机发光显示面板及显示装置
US10636850B2 (en) Electroluminescent device and method for manufacturing the same and display device
US10886481B2 (en) Display substrate with angle-adjusting portion, manufacturing method thereof, and display device
US11101443B2 (en) Organic electroluminescence display panel, manufacturing method therefor, and display device
US9722005B2 (en) Light-emitting device, array substrate, display device and manufacturing method of light-emitting device
US9453948B2 (en) Color filter substrate, manufacturing method thereof and display device
CN109148527B (zh) 一种显示面板及显示装置
US20200043996A1 (en) Display substrate and display apparatus
CN110890406B (zh) 一种有机发光显示背板、其制作方法及显示装置
US20220158117A1 (en) Display panel and display apparatus
CN109786434B (zh) 阵列基板、其制备方法、显示面板、装置和像素驱动电路
US20150090983A1 (en) Display unit and electronic apparatus
WO2021093687A1 (zh) 显示基板及其制备方法、显示装置
WO2021233070A1 (zh) 显示基板及其制作方法、显示面板及显示装置
WO2021259036A1 (zh) 显示基板及其制备方法、显示面板、显示装置
US20210294445A1 (en) Touch display module and touch display screen
WO2020206901A1 (en) Transparent display substrate, transparent display apparatus and method of fabricating transparent display substrate
WO2018166157A1 (zh) 阵列基板、阵列基板的制造方法以及显示装置
WO2020015355A1 (zh) 像素单元及其制造方法、显示控制方法、显示面板
CN111863908A (zh) 显示基板及其制作方法、显示装置
WO2020244488A1 (zh) 显示基板、显示面板及其制备方法和显示装置
CN108400153B (zh) 一种oled基板及其制备方法、显示装置
CN112993182B (zh) 显示面板及显示装置
CN109755281B (zh) Oled显示面板及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20817876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20817876

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/07/2022

122 Ep: pct application non-entry in european phase

Ref document number: 20817876

Country of ref document: EP

Kind code of ref document: A1