WO2020244269A1 - 磁极模块及用于永磁电机的转子 - Google Patents

磁极模块及用于永磁电机的转子 Download PDF

Info

Publication number
WO2020244269A1
WO2020244269A1 PCT/CN2020/078575 CN2020078575W WO2020244269A1 WO 2020244269 A1 WO2020244269 A1 WO 2020244269A1 CN 2020078575 W CN2020078575 W CN 2020078575W WO 2020244269 A1 WO2020244269 A1 WO 2020244269A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
along
magnetic
pole module
substrate
Prior art date
Application number
PCT/CN2020/078575
Other languages
English (en)
French (fr)
Inventor
彭亮
李延慧
兰斌
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to EP20767709.7A priority Critical patent/EP3780354A4/en
Priority to AU2020239647A priority patent/AU2020239647B2/en
Priority to US17/042,704 priority patent/US11888369B2/en
Publication of WO2020244269A1 publication Critical patent/WO2020244269A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the application relates to the technical field of wind power generation, and in particular to a magnetic pole module and a rotor for a permanent magnet motor.
  • Cogging torque is an inherent phenomenon of permanent magnet motors. It is the reluctance torque generated by the interaction between the permanent magnets of the rotor and the cogging of the stator core when the windings of the permanent magnet motor are not energized. In the actual operation process, the cogging torque will not affect the average torque of the permanent magnet motor, but it will cause torque fluctuations, resulting in noise and vibration of the permanent magnet motor, and affecting the smoothness of the motor operation.
  • the oblique pole arrangement of the rotor is usually adopted.
  • the oblique pole arrangement of the rotor will also generate additional axial excitation, which will cause the motor The abnormal vibration.
  • the purpose of the present application is to provide a magnetic pole module and a rotor for a permanent magnet motor, which can effectively suppress axial excitation while reducing the cogging torque of the permanent magnet motor.
  • an embodiment of the present application also proposes a magnetic pole module, which is mounted on a rotor support of a permanent magnet motor, and includes: a base plate having a first surface and a second surface opposite to each other in the thickness direction of the base plate;
  • the substrate has a first center line extending in a first direction and a second center line extending in a second direction, the first direction and the second direction are intersected, and the first center line is parallel to the center axis of the permanent magnet motor; at least one
  • the magnetic steel components are fixed to the base plate, and each pair of magnetic steel components is symmetrically distributed on the first surface with respect to the second center line.
  • Each magnetic steel component includes the second center line and is arranged side by side along the first direction. Multiple magnets arranged at predetermined angles in two directions.
  • an embodiment of the present application also provides a rotor for a permanent magnet motor, which includes: a rotor support having a mounting surface; a plurality of fixing parts distributed on the mounting surface at intervals along the circumference of the rotor support, each A mounting rail is formed between two adjacent fixing members; a plurality of magnetic pole modules of any type as described above are installed on the mounting rail along the first direction.
  • the magnetic pole module and the rotor for the permanent magnet motor provided by the embodiments of the present application are arranged symmetrically with respect to the second center line of the base plate by a plurality of magnetic steels of the magnetic pole module, and the second center line is arranged side by side and along the first direction.
  • the second direction is sequentially staggered in the same direction, so that the rotor forms a double oblique pole arranged in the opposite direction along the axial direction of the motor, which can effectively suppress the axial excitation while reducing the cogging torque of the motor, which improves the permanent magnet motor Stability and reliability of operation.
  • FIG. 1 is a partial structural diagram of a permanent magnet motor according to an embodiment of the present application, taken along an axial direction perpendicular to the rotor;
  • FIG. 2 is a perspective structural diagram of a magnetic pole module provided by an embodiment of the present application.
  • FIG. 3 is a schematic top view of the structure of the magnetic pole module shown in FIG. 2;
  • FIG. 4 is a schematic perspective view of the structure of the substrate in the magnetic pole module shown in FIG. 2;
  • FIG. 5 is a schematic top view of the structure of the substrate shown in FIG. 4;
  • FIG. 6 is a schematic side view of the structure of the magnetic pole module shown in FIG. 2;
  • FIG. 7 is a schematic diagram of an assembly effect of the magnetic pole module and the rotor bracket shown in FIG. 6;
  • FIG. 8 is a schematic side view of another magnetic pole module provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the assembly effect of the magnetic pole module and the rotor bracket shown in FIG. 8;
  • FIG. 10 is a schematic top view of another whole-pole magnetic pole module provided by an embodiment of the present application.
  • FIG. 11 is a schematic top view of another whole-pole magnetic pole module provided by an embodiment of the present application.
  • FIG. 12 is a schematic top view of another whole pole magnetic pole module provided by an embodiment of the present application.
  • an embodiment of the present application provides a rotor for a permanent magnet motor.
  • the permanent magnet motor includes a stator and a rotor arranged coaxially.
  • the stator includes a stator core and stator windings
  • the rotor includes a rotor bracket 2, a plurality of fixing members 3 fixed on the mounting surface 2a of the rotor bracket 2, and a plurality of magnetic pole modules 1.
  • the permanent magnet motor can have an inner stator and an outer rotor structure, that is, the rotor is arranged along the outer circumference of the stator, and the mounting surface 2a of the rotor support 2 is the inner peripheral surface of the rotor support 2.
  • the permanent magnet motor can also be an inner rotor and an outer stator structure, namely The stator is arranged along the outer circumference of the rotor, and the mounting surface 2a of the rotor support 2 is the outer peripheral surface of the rotor support 2, so that the magnetic pole module 1 is arranged opposite to the stator core and the stator winding.
  • a plurality of fixing members 3 are distributed on the mounting surface 2 a at intervals along the circumferential direction of the rotor bracket 2, and a mounting rail 3 a is formed between every two adjacent fixing members 3.
  • the magnetic pole module 1 is installed on the mounting rail 3a along the first direction X, which is arranged parallel to the central axis D1 of the permanent magnet motor.
  • a plurality of magnetic pole modules 1 are arranged in a row on the mounting surface 2 a of the rotor support 2 along the circumference of the rotor support 2, and each of the magnetic pole modules 1 in the row is aligned with each other in the circumferential direction of the rotor support 2.
  • a plurality of magnetic pole modules 1 are arranged in one row or two or more rows on the mounting surface 2a of the rotor bracket 2 along the axial direction parallel to the central axis D1 of the motor rotor. Each magnetic pole module 1 in the row of magnetic pole modules 1 is in parallel Align with each other in the axial direction of the permanent magnet motor.
  • an embodiment of the present application provides a magnetic pole module 1, which is installed on a rotor support of a permanent magnet motor, and includes: a substrate 10 and at least a pair of magnetic steel components arranged on the substrate 10 20.
  • the substrate 10 has a first surface a and a second surface b opposite to each other in its thickness direction.
  • the first surface a is a flat surface
  • the second surface b is disposed close to the mounting surface 2a of the rotor support 2. It can be flat or opposite to The curved surface adapted to the mounting surface 2a.
  • the substrate 10 has a first centerline C1 extending along the first direction X and a second centerline C2 extending along the second direction Y.
  • the first direction X and the second direction Y are intersected, and the first centerline C1 is parallel to the permanent magnet.
  • the longitudinal section of the substrate 10 along the first direction X is rectangular
  • the first direction X is parallel to the axial direction of the permanent magnet motor
  • the second direction Y is parallel to the circumferential tangential direction of the permanent magnet motor.
  • At least one pair of magnetic steel components 20 is fixed on the base plate 10, and each pair of magnetic steel components 20 is symmetrically distributed on the first surface a with respect to the second center line C2.
  • Each magnetic steel component 20 includes the second center line C2 along the first surface a.
  • a plurality of magnetic steels 21 arranged side by side on one side in one direction X and arranged at a predetermined angle along the second direction Y.
  • At least one pair of magnetic steel assemblies 20 can be arranged to form a magnetic pole module 1, and a plurality of magnetic pole modules 1 form a row along the first direction X Whole pole magnetic pole module.
  • a plurality of pairs of magnetic steel assemblies 20 may be arranged to form a row of full-pole magnetic pole modules.
  • the plurality of magnets 21 of at least one pair of magnet assemblies 20 are arranged on the substrate 10 in the above-mentioned manner to form at least one "V" shape, so that the plurality of magnets 21 of each pair of magnet assemblies 20 are formed in an axial direction.
  • the double oblique poles are arranged to reduce cogging torque.
  • the multiple magnets 21 of each pair of magnet assemblies 20 will also generate additional and opposite axial excitations, which exactly cancel each other in the axial direction of the motor rotor. This eliminates the adverse effects of the additional axial excitation generated by the oblique pole arrangement of the rotor.
  • the magnetic pole module 1 provided by the embodiment of the present application has a plurality of magnets 21 symmetrically distributed with respect to the second center line C2 of the substrate 10, and the second center line C2 is arranged side by side along the first direction X and along the second direction Y Set at a predetermined angle, so that the rotor forms a double oblique pole arranged in the opposite direction along the axial direction of the motor, which can effectively suppress the axial excitation while reducing the cogging torque of the motor, which improves the smoothness and reliability of the motor operation Sex.
  • the plurality of magnets 21 of each magnet assembly 20 are staggered in the same direction along the second direction Y, and the line connecting the midpoint O of the cross section of each magnet 21 includes a line along the second center line C2.
  • the first line segment L1, the second line segment L2, and the third line segment L3 are sequentially distributed on one side of the first direction X.
  • the first line segment L1 is a line segment close to the edge side
  • the third line segment L3 is a line segment close to the second centerline C2
  • the second line segment L2 is the line segment between the first line segment L1 and the third line segment L3.
  • the first angle between the first line segment L1 and the first centerline C1 is ⁇ 1
  • the second angle between the second line segment L2 and the first centerline C1 is ⁇ 2
  • the third line segment L3 and the first centerline C1 The included angle is ⁇ 3.
  • the “cross section” of the magnetic steel refers to the surface shape of the magnetic steel on the surface formed by the first direction X and the second direction Y.
  • the cross section of the magnet 21 is a cross section cut along the tangential direction of the permanent magnet motor, and the midpoint O of the cross section of the magnet 21 is the line of the two diagonals of the cross section. Intersection.
  • the second included angle ⁇ 2 is the designed inclination angle of the inclined pole of the rotor to reduce the vibration and noise of the permanent magnet motor and improve the stability of the permanent magnet motor.
  • the second included angle ⁇ 2, the third included angle ⁇ 3, and the first included angle ⁇ 1 meet the following conditions: ⁇ 1 ⁇ 2, ⁇ 3 ⁇ 2, so as to avoid the two adjacent ones installed on the rotor support of the permanent magnet motor Two magnetic pole modules 1 interfere.
  • the first included angle ⁇ 1 may be greater than the third included angle ⁇ 3, and may also be less than or equal to the third included angle ⁇ 3, which is not repeated here.
  • the first included angle ⁇ 1, the second included angle ⁇ 2, and the third included angle ⁇ 3 are equal in magnitude to simplify the structural design of the magnetic pole module 1.
  • the value ranges of the first included angle ⁇ 1, the second included angle ⁇ 2, and the third included angle ⁇ 3 are all 1°-10°.
  • this embodiment is described by taking as an example that the first included angle ⁇ 1, the second included angle ⁇ 2, and the third included angle ⁇ 3 satisfy the following conditions: ⁇ 1 ⁇ 2, ⁇ 3 ⁇ 2.
  • the substrate 10 can be made of a soft magnetic material with good magnetic permeability, such as low carbon steel, silicon steel, electrical iron, etc.
  • the magnetic steel 21 can be made of hard magnetic material such as neodymium iron boron permanent magnet material, ferrite permanent magnet It is made of materials and the like, and the substrate 10 provides a magnetic path for at least one pair of magnetic steel components 20.
  • the magnetic steel 21 may be fixed on the first surface a of the substrate 10 by means of a high temperature resistant fixing glue such as epoxy resin glue or screw connection.
  • the magnet 21 has a parallelepiped structure, and the cross section of the magnet 21 is a parallelogram. It includes a pair of first sides 211 disposed oppositely and a pair of second sides 212 disposed oppositely.
  • the first side 211 is parallel to the first side 211.
  • One direction X is set, and the second side 212 is parallel to the second direction Y or is set at a predetermined angle to the second direction Y.
  • the magnet 21 has a parallelepiped structure, and its cross section is preferably a rectangle, and the midpoint O of the cross section of the magnet 21 is the symmetric center point of the cross section.
  • the substrate 10 further includes a first side wall c and a second side wall d arranged opposite to each other along the second direction Y, the first side wall c and the second side wall d are connected
  • the first surface a and the second surface b extend along the first direction X
  • the first side wall c is recessed inward along the second direction Y to form an intersecting first cut surface 11 and a first bottom wall 12
  • the second side wall d Inwardly recessed along the second direction Y to form an intersecting second tangent surface 13 and a second bottom wall 14.
  • the first surface a connects the first bottom wall 12 and the second bottom wall 14, and the first tangent surface 11 and the second tangent surface 13 are both Lower than the first surface a, optionally, the first cut surface 11 and the second cut surface 13 are located in the same plane to simplify the processing process of the substrate 10.
  • the projections of the first bottom wall 12 and the second bottom wall 14 on the first surface a are set parallel to the line connecting the symmetrically distributed first line segment L1, the second line segment L2, and the third line segment L3.
  • the first bottom wall 12 includes a first half bottom wall 121 and a second half bottom wall 122 symmetrically distributed with respect to the second center line C2
  • the second bottom wall 14 includes a first half bottom wall 121 and a second half bottom wall 122 symmetrically distributed with respect to the second center line C2.
  • the third half bottom wall 141 and the fourth half bottom wall 142 are symmetrically distributed with respect to the first bottom wall 12 and a second half bottom wall 122 symmetrically distributed with respect to the second center line C2.
  • One first side 211 of the cross section of the magnet 21 includes a first end 211a and a second end 211b, the other first side 211 includes a third end 211c and a fourth end 211d, and the first end 211a and the third end
  • the end points 211c are arranged diagonally, and the second end point 211b and the fourth end point 211d are arranged diagonally.
  • the line connecting the second end points 211b of the plurality of magnets 21 of any one of the pair of magnet assemblies 20 is aligned with the projection of the first half bottom wall 121 on the first surface a, and the plurality of magnets 21
  • the connection line of the fourth end 211d is aligned with the projection of the third half bottom wall 141 on the first surface a; the connection of the first end 211a of the plurality of magnets 21 of the other of the pair of magnet assemblies 20
  • the line is aligned with the projection of the second half bottom wall 122 on the first surface a, and the line of the third end 211c of the plurality of magnets 21 is aligned with the projection of the fourth half bottom wall 142 on the first surface a.
  • the plurality of magnets 21 of the pair of magnet assemblies 20 are arranged in a "V" shape.
  • both ends of the substrate 10 along the first direction X are recessed inwardly to form a third intersecting surface 17 and a third bottom wall 18, respectively, the third bottom wall 18 is connected to the first surface a, and the third tangent surface 17 is low.
  • the third cut surface 17 is located in the same plane as the first cut surface 11 and the second cut surface 13 to simplify the processing process of the substrate 10.
  • the magnetic pole module 1 further includes a protective layer (not shown in the figure).
  • the protective layer is protective glue
  • the protective glue is coated at least on the exposed surface of the magnetic steel component 20, the first cut surface 11, the first bottom wall 12, the second cut surface 13, the second bottom wall 14, The third section 17 and the third bottom wall 18.
  • the thickness of the protective glue should be as small as possible under the premise of meeting the anti-corrosion requirements, so as to avoid affecting the non-magnetic distance between the magnetic steel 21 and the mounting surface 2a of the rotor bracket 2.
  • the protective layer is a housing, and the housing has a containing cavity and an opening communicating with the containing cavity.
  • the first cut surface 11, the second cut surface 13 and the third cut surface 17 of the substrate 10 cover the opening, so that the substrate 10 and the housing cavity of the housing form a closed space, and the magnetic steel assembly 20 is contained in the closed space.
  • the housing may be made of metal material, such as a stainless steel housing, to improve the protection performance of the magnetic pole module 1.
  • a plurality of magnetic steels 21 are fixed on the first surface a of the substrate 10, and the first cut surface 11, the second cut surface 13 and the third cut surface 17 are all lower than the first surface a, and the protective glue or metal casing covers the magnetic
  • the steel component 20 is hermetically connected with the first cut surface 11, the first bottom wall 12, the second cut surface 13, the second bottom wall 14, the third cut surface 17 and the third bottom wall 18, which can reduce the magnetic flux leakage of the magnetic pole module 1. through.
  • the base plate 10 of the magnetic pole module 1 includes a first base plate 101 and a second base plate 102 that are separated with respect to the second center line C2 in FIG. 3, wherein the first base plate 101 carries a plurality of magnets 21 It is arranged symmetrically with the plurality of magnets 21 carried by the second substrate 102 to form a "V" shape.
  • the substrate 10 is divided into the first substrate 101 and the second substrate 102 along the second centerline centerline C2, or divided into more substrates, and combined to form a form of a monopolar magnetic pole. In this way, the processing accuracy of the substrate 10 can be improved, and the manufacturability of the substrate 10 can be improved.
  • the magnetic pole module 1 is installed on the mounting rail 3a formed between every two adjacent fixing members 3 through the base plate 10.
  • first side wall c and the second side wall d of the substrate 10 respectively protrude outward along the second direction Y to form a first connecting portion 15 that includes first connecting portions 15 opposite to each other along its thickness.
  • the pressure-bearing surface 15a and the second pressure-bearing surface 15b, the first pressure-bearing surface 15a and the second surface b are continuously distributed, the second pressure-bearing surface 15b is lower than the first cut surface 11 or the second cut surface 12, and the magnetic pole module 1 passes through the first
  • a connecting portion 15 is detachably connected to the rotor bracket 2.
  • the mounting surface 2a of the rotor bracket 2 is provided with a plurality of fixing members 3, and the fixing members 3 protrude from both sides in the width direction of the rotor (ie, the circumferential direction of the rotor) to form a pressure extending in the second direction Y.
  • the connecting portion 31 forms a mounting rail 3a for mounting the magnetic pole module 1 between every two adjacent fixing members 3.
  • the fixing member 3 is also provided with a connecting hole 33 passing through its own thickness (i.e., in the radial direction of the rotor). The fixing member 3 is fixed to the mounting surface 2a of the rotor bracket 2 by a fastener passing through the connecting hole 33.
  • the fixing member 3 can be made of a metal material, or can be made of a high-temperature resistant non-metal material. When made of a metal material, the fixing member 3 can also be fixed on the mounting surface 2a of the rotor bracket 2 by welding, which will not be repeated here.
  • the magnetic pole module 1 is inserted into the mounting rail 3a in the first direction X (that is, the axial direction of the rotor), and the substrate 10 is pressed along the first connecting portion 15 on both sides of the second direction Y and the fixing member 3
  • the connecting parts 31 overlap each other to fix the magnetic pole module 1 on the mounting surface 2 a of the rotor bracket 2.
  • the second surface b of the substrate 10 is provided with protrusions along the direction from the first surface a to the second surface b (that is, the radial direction of the rotor).
  • the second connecting portion 16, the magnetic pole module 1 is detachably connected to the fixing member 3 through the second connecting portion 16.
  • the second connecting portion 16 may be provided along both sides of the substrate 10 in the circumferential direction, and the fixing member 3 has a shape that fits with the second connecting portion 16 with each other.
  • one of the second connecting portions 16 is provided with a first groove 161 recessed inward along the circumferential direction of the substrate 10, and the other second connecting portion 16 is provided with an inward recessed groove along the circumferential direction of the substrate 10.
  • the second groove 162, the first groove 161 and the second groove 162 are arranged symmetrically; the fixing member 3 is provided with a plug-in portion 32, and the plug-in portion 32, the first groove 161 and the second groove 162 can be embedded into each other.
  • first groove 161 and the second groove 162 may respectively form a symmetrical half dovetail groove, and the insertion portion 32 of the fixing member 3 is connected to the first groove 161 of the two adjacent magnetic pole modules 1 It is matched with the dovetail groove formed by the second groove 162.
  • first groove 161 and the second groove 162 may also form a symmetrical half T-shaped groove, respectively, and the insertion portion 32 of the fixing member 3 is connected to the first groove of two adjacent magnetic pole modules 1
  • the groove 161 and the T-shaped groove formed by the second groove 162 are matched.
  • first groove 161 and the second groove 162 may also be grooves of other forms, as long as they are matched with the insertion portion 32 of the fixing member 3, and will not be described again.
  • the detachable connection between the second connecting portion 16 of the substrate 10 and the fixing member 3 is not limited to the above-mentioned embodiment.
  • one of the second connecting portions 16 may also be convex outward along the circumferential direction of the substrate 10.
  • the first plug-in portion and the other second connecting portion 16 are second plug-in portions protruding outward along the circumferential direction of the substrate 10.
  • the fixing member 3 is provided with the first plug-in portion and the second plug-in portion corresponding to the The groove part of the connecting part is not repeated here.
  • the embodiment of the present application also provides another magnetic pole module 1, which is similar in structure to the magnetic pole module 1 shown in FIGS. 2-9, except that the multiple magnetic poles of each magnetic steel assembly 20
  • the edges of the steel 21 are arranged obliquely along the second direction Y, and the edge connection of the plurality of magnetic steels 21 includes a first line segment L1, a second line segment L2, and a The third line segment L3.
  • the first line segment L1 is a line segment close to the edges on both sides
  • the third line segment L3 is a line segment close to the second centerline C2
  • the second line segment L2 is a line segment between the first line segment L1 and the third line segment L3.
  • the first angle between the first line segment L1 and the first centerline C1 is ⁇ 1
  • the second angle between the second line segment L2 and the first centerline C1 is ⁇ 2
  • the included angle is ⁇ 3.
  • the values of the first included angle ⁇ 1, the second included angle ⁇ 2, and the third included angle ⁇ 3 depend on the specific processing and the magnetic pole moment, and may be the same or different.
  • the second included angle ⁇ 2, the third included angle ⁇ 3, and the first included angle ⁇ 1 meet the following conditions: ⁇ 1 ⁇ 2, ⁇ 3 ⁇ 2, so as to avoid the two adjacent ones installed on the rotor support of the permanent magnet motor Two magnetic pole modules 1 interfere.
  • the first included angle ⁇ 1 may be greater than the third included angle ⁇ 3, and may also be less than or equal to the third included angle ⁇ 3, which is not repeated here.
  • the cross section of the magnet 21 is parallelogram and/or trapezoid.
  • each magnetic steel assembly 20 includes five magnetic steels 21 arranged on the base plate 10, wherein the cross-sections of the magnetic steel 21 located in the middle and one end of the base plate 10 are all right-angled trapezoids. , And the planes on which the right-angled sides of the two are located are opposite to each other, and the cross sections of the remaining three magnets 21 are all parallelograms.
  • a pair of magnetic steel components 20 are symmetrically arranged on the substrate 10 with respect to the second center line C2, forming a "V" shape.
  • the plurality of magnets 21 of each pair of magnet assembly 20 form double oblique poles arranged in opposite directions in the axial direction to reduce cogging torque.
  • the multiple magnets 21 of each pair of magnet assemblies 20 will also generate additional and opposite axial excitations, which exactly cancel each other in the axial direction of the motor rotor. This eliminates the adverse effects of the additional axial excitation generated by the oblique pole arrangement of the rotor.
  • the embodiment of the present application also provides another magnetic pole module 1, which is similar in structure to the magnetic pole module 1 shown in FIG. 10, except that the multiple magnets 21 of each magnetic steel assembly 20
  • the edge connection includes a first line segment L1, a second line segment L2, and a third line segment L3 sequentially distributed along one side of the first direction X from the second center line C2.
  • the first line segment L1 and the first center line C1 The included angle is ⁇ 1, the second included angle between the second line segment L2 and the first centerline C1 is ⁇ 2, the third included angle between the third line segment L3 and the first centerline C1 is ⁇ 3, and the first included angle ⁇ 1,
  • the second included angle ⁇ 2 and the third included angle ⁇ 3 are equal in magnitude.
  • the cross section of the magnet 21 is a parallelogram.
  • each magnet assembly 20 includes 7 magnets 21 arranged on the substrate 10.
  • the cross section of each magnet 21 is a parallelogram, and the edges of the magnets 21 are connected
  • the angle with the first center line C1 is both ⁇ 2.
  • a pair of magnetic steel components 20 are symmetrically arranged on the substrate 10 with respect to the second center line C2, forming a "V" shape.
  • the plurality of magnets 21 of each pair of magnet assembly 20 form double oblique poles arranged in opposite directions in the axial direction to reduce cogging torque.
  • the multiple magnets 21 of each pair of magnet assemblies 20 will also generate additional and opposite axial excitations, which exactly cancel each other in the axial direction of the motor rotor. This eliminates the adverse effects of the additional axial excitation generated by the oblique pole arrangement of the rotor.
  • each magnetic pole module 1 includes a substrate 10 and a fixed
  • the magnetic steel assembly 20 on the substrate 10 includes a plurality of magnetic steels 21 arranged side by side along the first direction X and arranged at a first predetermined angle and/or a second predetermined angle along the second direction Y, wherein, The first predetermined angle and the second predetermined angle are equal in magnitude and opposite in direction.
  • a part of the plurality of magnetic steels 21 of the base plate 10 of the magnetic pole module 1 are arranged side by side in the first direction X and arranged in the second direction Y.
  • the plurality of magnetic steels 21 of the base plate 10 of the other part of the magnetic pole module 1 are arranged side by side along the first direction X and arranged at a second predetermined angle along the second direction Y; in addition, there is a part of the base plate of the magnetic pole module 1
  • the multiple magnets 21 of 10 are arranged side by side along the first direction X and are arranged at a first predetermined angle and a second predetermined angle along the second direction Y, so that the multiple magnets of the multiple magnetic pole modules 1 in a row of the entire pole magnetic pole module
  • the steel 21 is formed in at least one "V" shape along the first direction X.
  • the multiple substrates 10 in this embodiment can be spliced along the first direction X into a complete substrate 10 in the magnetic pole module 1 shown in FIGS. 2 to 11.
  • the size of the substrate 10 carrying the multiple magnetic steels 21 along the first direction X is relatively large, and the structure of the substrate 10 is relatively complicated. It is difficult to ensure the processing accuracy of the substrate 10, and it is difficult to manufacture.
  • arranging the larger-sized substrate 10 in sections along the first direction X into at least two smaller-sized substrates 10 can improve the processing accuracy of the substrate 10 and further improve the manufacturability of the substrate 10.
  • one of the magnetic pole modules 1 includes a first substrate 101 and a magnetic steel assembly 20 fixed on the first substrate 101.
  • the magnetic steel assembly 20 includes the magnetic steel components arranged side by side along the first direction X and A plurality of magnetic steels 21 arranged at a first predetermined angle along the second direction Y.
  • the other magnetic pole module 1 includes a second substrate 102 and a magnetic steel assembly 20 fixed on the second substrate 102.
  • the magnetic steel assembly 20 includes a plurality of magnets arranged side by side along the first direction X and arranged at a second predetermined angle along the second direction Y. A magnet 21.
  • the plurality of magnets 21 of the two magnetic pole modules 1 can be formed in a "V" shape along the first direction X, and the first substrate 101 and the second substrate 102 can be spliced along the first direction X as shown in FIGS. 2 to 11
  • a column of full-pole magnetic pole modules is divided into more magnetic pole modules 1 along the first direction X, for example into three magnetic pole modules 1, in addition to the aforementioned magnetic pole modules including the first substrate 101 and the first In addition to the magnetic pole module of the second base plate 102, it also includes a magnetic pole module located between the two.
  • the magnetic steel assembly 20 on the third base plate of the magnetic pole module includes the magnetic steel assembly 20 arranged side by side along the first direction X and first along the second direction Y.
  • a plurality of magnets 21 arranged at a predetermined angle and a second predetermined angle, that is, the plurality of magnets 21 are arranged in a smaller "V" shape on the third substrate.
  • the plurality of magnetic steels 21 of the plurality of magnetic pole modules 1 form double oblique poles arranged in the opposite direction in the axial direction to reduce the cogging torque.
  • the multiple magnets 21 of each pair of magnet assemblies 20 will also generate additional and opposite axial excitations, which exactly cancel each other in the axial direction of the motor rotor. This eliminates the adverse effects of the additional axial excitation generated by the oblique pole arrangement of the rotor.
  • magnetic pole module and the motor according to the above-described exemplary embodiments can be applied to various equipment requiring a motor, such as but not limited to a wind power generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种磁极模块(1)及用于永磁电机的转子,该磁极模块安装于永磁电机的转子支架(2)上,其包括:基板(10),沿自身厚度方向具有相背设置的第一表面(a)和第二表面(b),基板具有沿第一方向(X)延伸的第一中心线(C1)和沿第二方向(Y)延伸的第二中心线(C2),第一方向与第二方向相交设置,第一中心线平行于永磁电机的中心轴线(D1)设置;至少一对磁钢组件(20),固定于基板,每对磁钢组件相对于第二中心线对称分布于第一表面上,每个磁钢组件包括由第二中心线沿第一方向一侧并排布置且沿第二方向呈预定角度设置的多个磁钢(21)。该磁极模块在降低电机的齿槽转矩的同时还可以有效抑制轴向激励,提高了永磁电机运行的平稳性和可靠性。

Description

磁极模块及用于永磁电机的转子
相关申请的交叉引用
本申请要求享有于2019年06月06日提交的名称为“整极磁极模块及用于永磁电机的转子”的中国专利申请201910489956.5的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及风力发电技术领域,特别是涉及一种磁极模块及用于永磁电机的转子。
背景技术
齿槽转矩是永磁电机的一种固有现象,是永磁电机绕组不通电时转子的永磁体与定子铁芯的齿槽相互作用下产生的磁阻转矩。在实际运行过程中,齿槽转矩不会影响永磁电机的平均转矩,但会造成转矩波动,导致永磁电机产生噪声、振动等,影响电机运行的平稳性。
为了降低齿槽转矩,通常采用转子斜极布置的方式,但转子斜极布置除了会产生带动电机转动的切向激励以外,还会产生额外的轴向激励,这种轴向激励会导致电机的异常振动。
发明内容
本申请的目的是提供一种磁极模块及用于永磁电机的转子,该磁极模块在降低永磁电机的齿槽转矩的同时还可以有效抑制轴向激励。
一方面,本申请实施例还提出了一种磁极模块,该磁极模块安装于永磁电机的转子支架上,其包括:基板,沿自身厚度方向具有相背设置的第一表面和第二表面,基板具有沿第一方向延伸的第一中心线和沿第二方向延伸的第二中心线,第一方向与第二方向相交设置,第一中心线平行于永 磁电机的中心轴线设置;至少一对磁钢组件,固定于基板,每对磁钢组件相对于第二中心线对称分布于第一表面上,每个磁钢组件包括由第二中心线沿第一方向一侧并排布置且沿第二方向呈预定角度设置的多个磁钢。
另一方面,本申请实施例还提供了一种用于永磁电机的转子,其包括:转子支架,具有安装表面;多个固定件,沿转子支架的周向间隔分布于安装表面上,每相邻两个固定件之间形成安装轨道;多个如前所述的任一种磁极模块,磁极模块沿第一方向安装于安装轨道。
本申请实施例提供的磁极模块及用于永磁电机的转子,通过将磁极模块的多个磁钢相对于基板的第二中心线对称分布,且由第二中心线沿第一方向并排且沿第二方向依次同向错开设置,从而使转子形成沿电机的轴向方向反向布置的双斜极,在降低电机的齿槽转矩的同时还可以有效抑制轴向激励,提高了永磁电机运行的平稳性和可靠性。
附图说明
从下面结合附图对本申请的具体实施方式的描述中可以更好地理解本申请,其中,通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,相同或相似的附图标记表示相同或相似的特征。
图1是本申请实施例提供的一种永磁电机沿垂直于转子的轴向方向截取的转子的局部结构示意图;
图2是本申请实施例提供的一种磁极模块的透视结构示意图;
图3是图2所示的磁极模块的俯视结构示意图;
图4是图2所示的磁极模块中的基板的透视结构示意图;
图5是图4所示的基板的俯视结构示意图;
图6是图2所示的磁极模块的侧视结构示意图;
图7是图6所示的磁极模块与转子支架的一种组装效果示意图;
图8是本申请实施例提供的另一种磁极模块的侧视结构示意图;
图9是图8所示的磁极模块与转子支架的组装效果示意图;
图10是本申请实施例提供的另一种整极磁极模块的俯视结构示意图;
图11是本申请实施例提供的另一种整极磁极模块的俯视结构示意图;
图12是本申请实施例提供的另一种整极磁极模块的俯视结构示意图。
附图标记说明:
1-磁极模块;2-转子支架;2a-安装表面;3-固定件;3a-安装轨道;32-插接部;33-连接孔;31-压接部;171第一凹槽;172-第二凹槽;
10-基板;101-第一基板;102-第二基板;a-第一表面;b-第二表面;c-第一侧壁;d-第二侧壁;L1-第一线段;L2-第二线段;L3-第三线段;11-第一切面;12-第一底壁;121-第一半底壁;122-第二半底壁;13-第二切面;14-第二底壁;141-第三半底壁;142-第四半底壁;15-第一连接部;15a-第一承压面;15b-第二承压面;16-第二连接部;161-第一凹槽;162-第二凹槽;17-第三切面;18-第三底壁;
X-第一方向;Y-第二方向;C1-第一中心线;C2-第二中心线;θ1-第一夹角;θ2-第二夹角;θ3-第三夹角;D1-转子的中心轴线;
20-磁钢组件;21-磁钢;211-第一边;211a-第一端点;211b-第二端点;211c-第三端点;211d-第四端点;212-第二边;O-磁钢21的对称中心点。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。下面的详细描述中公开了许多具体细节,以便全面理解本申请。但是,对于本领域技术人员来说,很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。本申请决不限于下面所提出的任何具体配置和算法,而是在不脱离本申请的精神的前提下覆盖了元素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本申请造成不必要的模糊。
为了更好地理解本申请,下面结合图1至图12对本申请实施例提供的磁极模块、转子及电机进行详细描述。
参阅图1,本申请实施例提供了一种用于永磁电机的转子,该永磁电机包括同轴设置的定子和转子。其中,定子包括定子铁芯及定子绕组,转 子包括转子支架2、固定于转子支架2的安装表面2a上的多个固定件3以及多个磁极模块1。
永磁电机可以是内定子、外转子结构,即转子沿定子的外周设置,转子支架2的安装表面2a是转子支架2的内周面;永磁电机也可以是内转子、外定子结构,即定子沿转子的外周设置,转子支架2的安装表面2a是转子支架2的外周面,以使磁极模块1与定子铁芯及定子绕组相对设置。
多个固定件3沿转子支架2的周向间隔分布于安装表面2a上,每相邻的两个固定件3之间形成安装轨道3a。
磁极模块1沿第一方向X安装于安装轨道3a,第一方向X平行于永磁电机的中心轴线D1设置。
多个磁极模块1沿着转子支架2的周向成列地设置在转子支架2的安装表面2a上,成列的磁极模块1中每个磁极模块1在转子支架2的周向彼此对齐。多个磁极模块1沿着平行于电机转子的中心轴线D1的轴向方向成一排或者两排以上设置在转子支架2的安装表面2a上,成排的磁极模块1中每个磁极模块1在平行于永磁电机的轴向上彼此对齐。
下面结合附图详细描述本申请实施例提供的一种磁极模块1的具体结构。为了便于描述,以下将以电机为内定子、外转子的结构作为示例进行说明。
请一并参阅图2和图3,本申请实施例提供了一种磁极模块1,安装于永磁电机的转子支架上,其包括:基板10和设置于基板10上的至少一对磁钢组件20。
基板10沿自身厚度方向具有相背设置的第一表面a和第二表面b,第一表面a为平面,第二表面b靠近转子支架2的安装表面2a设置,可以为平面,也可以为与安装表面2a适配的弧形面。基板10具有沿第一方向X延伸的第一中心线C1和沿第二方向Y延伸的第二中心线C2,第一方向X与第二方向Y相交设置,第一中心线C1平行于永磁电机的中心轴线D1。可选地,基板10沿第一方向X的纵向剖切面为矩形,第一方向X平行于永磁电机的轴向,第二方向Y平行于永磁电机的周向的切向方向。
至少一对磁钢组件20固定于基板10上,每对磁钢组件20相对于第二 中心线C2对称分布于第一表面a上,每个磁钢组件20包括由第二中心线C2沿第一方向X一侧并排布置且沿第二方向Y呈预定角度设置的多个磁钢21。
可选地,在基板10上沿第一方向X,即沿电机的中心轴线D1方向,可以设置至少一对磁钢组件20而形成磁极模块1,多个磁极模块1沿第一方向X形成一列整极磁极模块。可选地,在基板10上沿第一方向X,可以设置多对磁钢组件20而形成一列整极磁极模块。
至少一对磁钢组件20的多个磁钢21以上述方式排布于基板10上,形成至少一个“V”字型,使得每对磁钢组件20的多个磁钢21形成沿轴向反向布置的双斜极,以降低齿槽转矩。同时,每对磁钢组件20的多个磁钢21除了会产生带动电机转动的切向激励以外,还会产生额外的且方向相反的轴向激励,恰好沿电机转子的轴向方向相互抵消,从而消除了转子斜极布置产生的额外轴向激励带来的不良影响。
本申请实施例提供的磁极模块1,通过将多个磁钢21相对于基板10的第二中心线C2对称分布,且由第二中心线C2沿第一方向X并排布置且沿第二方向Y呈预定角度设置,从而使转子形成沿电机的轴向方向反向布置的双斜极,在降低电机的齿槽转矩的同时还可以有效抑制轴向激励,提高了电机运行的平稳性和可靠性。
再次参阅图3,每个磁钢组件20的多个磁钢21沿第二方向Y依次同向错开设置,每个磁钢21的横截面中点O的连线包括由第二中心线C2沿第一方向X一侧依次分布的第一线段L1、第二线段L2和第三线段L3,第一线段L1为靠近边缘侧的线段,第三线段L3为靠近第二中心线C2的线段,第二线段L2为第一线段L1和第三线段L3之间的线段。第一线段L1与第一中心线C1的第一夹角为θ1,第二线段L2与第一中心线C1的第二夹角为θ2,第三线段L3与第一中心线C1的第三夹角为θ3。本申请中,磁钢的“横截面”指磁钢在第一方向X和第二方向Y形成的面上的面形状。
需要说明的是,本实施例中,磁钢21的横截面为沿永磁电机的切向剖开的截面,磁钢21的横截面中点O即为该横截面的两条对角线的交点。第二夹角θ2为设计的转子斜极的倾斜角,以降低永磁电机的振动和噪声,提 高永磁电机的平稳性。
为了不影响电机的正常转动,可选地,斜极的倾斜角度即第二夹角θ2的取值范围为:θ2=1°~10°。
可选地,第二夹角θ2与第三夹角θ3、第一夹角θ1满足如下条件:θ1<θ2,θ3<θ2,从而可以避免安装于永磁电机的转子支架上的相邻的两个磁极模块1产生干涉。其中,第一夹角为θ1可以大于第三夹角θ3,也可以小于或者等于第三夹角θ3,不再赘述。
可选地,第一夹角θ1、所述第二夹角θ2和所述第三夹角θ3的大小相等,以简化磁极模块1的结构设计。另外,为了不影响电机的正常转动,可选地,第一夹角θ1、所述第二夹角θ2和所述第三夹角θ3的取值范围均为1°~10°。
为了便于描述,本实施例以第一夹角θ1、第二夹角θ2和第三夹角θ3满足如下条件为例进行说明:θ1<θ2,θ3<θ2。
基板10可以由导磁良好的软磁类材料经机械加工而成,例如低碳钢、硅钢、电工铁等,磁钢21可以由硬磁材料如钕铁硼永磁材料、铁氧体永磁材料等制作而成,基板10为至少一对磁钢组件20提供了磁通路。另外,磁钢21可以通过耐高温的固定胶例如环氧树脂胶或螺钉连接等方式固定在基板10的第一表面a上。
进一步地,磁钢21为平行六面体结构,磁钢21的横截面为平行四边形,其包括相对设置的一对第一边211和相对设置的一对第二边212,第一边211平行于第一方向X设置,第二边212平行于第二方向Y或者与第二方向Y成预定角度设置。
可选地,磁钢21为正平行六面体结构,其横截面优选为矩形,则磁钢21的横截面中点O即为该横截面的对称中心点。
请一并参阅图3、图4和图5,基板10还包括沿第二方向Y相背设置的第一侧壁c和第二侧壁d,第一侧壁c和第二侧壁d连接第一表面a和第二表面b且沿第一方向X延伸,第一侧壁c沿第二方向Y向内凹陷形成相交的第一切面11和第一底壁12,第二侧壁d沿第二方向Y向内凹陷形成相交的第二切面13和第二底壁14,第一表面a连接第一底壁12与第二底 壁14,第一切面11和第二切面13均低于第一表面a,可选地,第一切面11和第二切面13位于同一平面内,以简化基板10的加工工艺。
可选地,第一底壁12和第二底壁14在第一表面a上的投影设置为平行于对称分布的第一线段L1、第二线段L2和第三线段L3的连线。
具体来说,第一底壁12包括相对于第二中心线C2对称分布的第一半底壁121和第二半底壁122,第二底壁14包括相对于第二中心线C2对称分布的第三半底壁141和第四半底壁142。
磁钢21的横截面的一条第一边211包括第一端点211a和第二端点211b,另一条第一边211包括第三端点211c和第四端点211d,且第一端点211a和第三端点211c呈对角设置,第二端点211b和第四端点211d呈对角设置。
一对磁钢组件20中的任一者的多个磁钢21的第二端点211b的连线与第一半底壁121在第一表面a上的投影对齐设置,且多个磁钢21的第四端点211d的连线与第三半底壁141在第一表面a上的投影对齐设置;一对磁钢组件20中的另一者的多个磁钢21的第一端点211a的连线与第二半底壁122在第一表面a上的投影对齐设置,且多个磁钢21的第三端点211c的连线与第四半底壁142在第一表面a上的投影对齐设置。由此,一对磁钢组件20的多个磁钢21呈一个“V”字型排布。
进一步地,基板10沿第一方向X的两端向内凹陷分别形成有相交的第三切面17和第三底壁18,第三底壁18与第一表面a连接,且第三切面17低于第一表面a。可选地,第三切面17与第一切面11和第二切面13位于同一平面内,以简化基板10的加工工艺。
为了防止外界环境中的湿气、腐蚀介质等渗入到磁极模块1中而与磁钢21接触,磁极模块1还包括防护层(图中未示出)。
在一些实施例中,该防护层为防护胶,防护胶至少涂覆于磁钢组件20的外露表面、第一切面11、第一底壁12、第二切面13、第二底壁14、第三切面17和第三底壁18。其中,防护胶的厚度应在满足防腐要求的前提下尽量小,避免影响磁钢21到转子支架2的安装表面2a之间的非导磁距离。
在一些实施例中,该防护层为外壳,外壳具有容纳腔和与容纳腔连通 的开口,基板10的第一切面11、第二切面13和第三切面17盖合于开口,以使基板10与外壳的容纳腔形成密闭空间,磁钢组件20容纳于密闭空间。外壳可以为金属材料制作的,例如不锈钢外壳,以提高磁极模块1的防护性能。
由此,多个磁钢21固定于基板10的第一表面a上,而第一切面11、第二切面13和第三切面17均低于第一表面a,防护胶或者金属外壳覆盖磁钢组件20,并与第一切面11、第一底壁12、第二切面13、第二底壁14、第三切面17和第三底壁18密封连接,可以降低磁极模块1的漏磁通。
在一些实施例中,磁极模块1的基板10包括相对于图3中的第二中心线中心线C2分开的第一基板101和第二基板102,其中第一基板101承载的多个磁钢21和第二基板102承载的多个磁钢21对称设置,形成“V”字型。
由于磁极模块1的磁钢21的数量较多,使得承载多个磁钢21的基板10沿第一方向X的尺寸较大,并且基板10的结构较复杂。由此,本实施例中,将基板10沿第二中心线中心线C2分开为第一基板101和第二基板102,或者分成更多块基板,组合形成一个整极磁极的形式。这样可以提高基板10的加工精度,进而提高基板10的可制造性。
请一并参阅图6和图7,磁极模块1通过基板10安装于每相邻的两个固定件3之间形成的安装轨道3a。
具体来说,基板10的第一侧壁c和第二侧壁d分别沿第二方向Y向外凸出形成有第一连接部15,第一连接部15包括沿自身厚度相对设置的第一承压面15a和第二承压面15b,第一承压面15a与第二表面b连续分布,第二承压面15b低于第一切面11或者第二切面12,磁极模块1通过第一连接部15与转子支架2可拆卸连接。
具体地,转子支架2的安装表面2a上设置有多个固定件3,固定件3沿自身宽度方向(即转子的周向方向)上的两侧凸出形成有沿第二方向Y延伸的压接部31,每相邻的两个固定件3之间形成安装磁极模块1的安装轨道3a。固定件3上还设置有贯穿自身厚度(即转子的径向方向)的连接 孔33,固定件3通过穿过连接孔33的紧固件固定于转子支架2的安装表面2a上。固定件3可以采用金属材料制作,也可以采用耐高温的非金属材料制作。当采用金属材料制作时,固定件3也可以通过焊接的方式固定于转子支架2的安装表面2a上,不再赘述。
磁极模块1沿第一方向X(即转子的轴向方向)插入的方式放置于安装轨道3a中,并且基板10沿第二方向Y两侧的第一连接部15与固定件3两侧的压接部31相互搭接,以将磁极模块1固定于转子支架2的安装表面2a上。
请一并参阅图8和图9,在一些实施例中,基板10的第二表面b上设置有沿第一表面a至第二表面b的方向(即转子的径向方向)凸出形成的第二连接部16,磁极模块1通过第二连接部16与固定件3可拆卸连接。
具体来说,第二连接部16可以沿基板10的周向两侧设置,固定件3具有与第二连接部16彼此嵌合的形状。
可选地,其中一个第二连接部16沿基板10的周向方向设置有向内凹陷的第一凹槽161,另一个第二连接部16沿基板10的周向方向设置有向内凹陷的第二凹槽162,第一凹槽161与第二凹槽162对称设置;固定件3设置有插接部32,插接部32与第一凹槽161和第二凹槽162均能够彼此嵌合。
在一些实施例中,第一凹槽161和第二凹槽162可以分别形成对称的半个燕尾槽,固定件3的插接部32与相邻的两个磁极模块1的第一凹槽161和第二凹槽162形成的燕尾槽相适配。
在一些实施例中,第一凹槽161和第二凹槽162还可以分别形成对称的半个T型槽,固定件3的插接部32与相邻的两个磁极模块1的第一凹槽161和第二凹槽162形成的T型槽相适配。
可以理解的是,第一凹槽161、第二凹槽162还可以为其它形式的凹槽,只要与固定件3的插接部32相适配即可,不再赘述。
可以理解的是,基板10的第二连接部16与固定件3的可拆卸连接方式不限于上述实施方式,例如,其中一个第二连接部16还可以为沿基板10的周向方向向外凸出的第一插接部,另一个第二连接部16为沿基板10的 周向方向向外凸出的第二插接部,固定件3对应设置有与第一插接部和第二插接部配合的凹槽部,不再赘述。
参阅图10,本申请实施例还提供了另一种磁极模块1,其与图2至图9所示的磁极模块1的结构类似,不同之处在于,每个磁钢组件20的多个磁钢21的边缘沿第二方向Y倾斜设置,且多个磁钢21的边缘连线包括由第二中心线C2沿第一方向X一侧依次分布的第一线段L1、第二线段L2和第三线段L3。第一线段L1为靠近两侧边缘的线段,第三线段L3为靠近第二中心线C2的线段,第二线段L2为第一线段L1与第三线段L3之间的线段。第一线段L1与第一中心线C1的第一夹角为θ1,第二线段L2与第一中心线C1的第二夹角为θ2,第三线段L3与第一中心线C1的第三夹角为θ3。第一夹角θ1、第二夹角θ2与第三夹角θ3的值视具体加工和磁极力矩而定,可以相同,也可以不相同。
可选地,第二夹角θ2与第三夹角θ3、第一夹角θ1满足如下条件:θ1<θ2,θ3<θ2,从而可以避免安装于永磁电机的转子支架上的相邻的两个磁极模块1产生干涉。其中,第一夹角为θ1可以大于第三夹角θ3,也可以小于或者等于第三夹角θ3,不再赘述。
为了最优降低电机的齿槽转矩,可选地,斜极的倾斜角度即第二夹角θ2的取值范围为:θ2=1°~10°。
可选地,磁钢21的横截面为平行四边形和/或梯形。
具体来说,每个磁钢组件20的多个磁钢21的边缘沿第二方向Y倾斜设置,一部分磁钢21的横截面为平行四边形;另一部分磁钢21的横截面为梯形。如图2和10所示的实施方式中,每个磁钢组件20包括设置于基板10上的5个磁钢21,其中,位于基板10中间及一端的磁钢21的横截面均为直角梯形,且二者的直角边所在的平面相对设置,其余的3个磁钢21的横截面均为平行四边形。
由此,一对磁钢组件20相对于第二中心线C2对称布置于基板10上,形成“V”字型。每对磁钢组件20的多个磁钢21形成沿轴向反向布置的双斜极,以降低齿槽转矩。同时,每对磁钢组件20的多个磁钢21除了会产生带动电机转动的切向激励以外,还会产生额外的且方向相反的轴向激 励,恰好沿电机转子的轴向方向相互抵消,从而消除了转子斜极布置产生的额外轴向激励带来的不良影响。
参阅图11,本申请实施例还提供了另一种磁极模块1,其与图10所示的磁极模块1的结构类似,不同之处在于,每个磁钢组件20的多个磁钢21的边缘连线包括由第二中心线C2沿第一方向X一侧依次分布的第一线段L1、第二线段L2和第三线段L3,第一线段L1与第一中心线C1的第一夹角为θ1,第二线段L2与第一中心线C1的第二夹角为θ2,第三线段L3与第一中心线C1的第三夹角为θ3,且第一夹角θ1、所述第二夹角θ2和所述第三夹角θ3的大小相等。
为了最优降低电机的齿槽转矩,可选地,斜极的倾斜角度即第二夹角θ2的取值范围为:θ2=1°~10°。
可选地,磁钢21的横截面为平行四边形。
具体来说,每个磁钢组件20的多个磁钢21的横截面均为平行四边形。如图2和11所示,每个磁钢组件20包括设置于基板10上的7个磁钢21,每个磁钢21的横截面均为平行四边形,且多个磁钢21的边缘连线与第一中心线C1的夹角均为θ2。
由此,一对磁钢组件20相对于第二中心线C2对称布置于基板10上,形成“V”字型。每对磁钢组件20的多个磁钢21形成沿轴向反向布置的双斜极,以降低齿槽转矩。同时,每对磁钢组件20的多个磁钢21除了会产生带动电机转动的切向激励以外,还会产生额外的且方向相反的轴向激励,恰好沿电机转子的轴向方向相互抵消,从而消除了转子斜极布置产生的额外轴向激励带来的不良影响。
参阅图12,本申请实施例还提供了另一种磁极模块1,其与图2至图11所示的磁极模块1的结构类似,不同之处在于,每个磁极模块1包括基板10和固定于基板10上的磁钢组件20,磁钢组件20包括沿第一方向X并排布置且沿第二方向Y呈第一预定角度和/或第二预定角度设置的多个磁钢21,其中,第一预定角度与第二预定角度大小相等、方向相反。
由此,本实施例中,形成一列整极磁极模块的多个磁极模块1中,其中一部分磁极模块1的基板10的多个磁钢21沿第一方向X并排布置且沿 第二方向Y呈第一预定角度设置;另一部分磁极模块1的基板10的多个磁钢21沿第一方向X并排布置且沿第二方向Y呈第二预定角度设置;另外,还有一部分磁极模块1的基板10的多个磁钢21沿第一方向X并排布置且沿第二方向Y呈第一预定角度设置和第二预定角度设置,使得一列整极磁极模块中的多个磁极模块1的多个磁钢21沿第一方向X形成为至少一个“V”字型。换句话说,本实施例中的多个基板10沿第一方向X可以拼接为图2至图11所示的磁极模块1中的一个完整的基板10。
由于图2至图11所示的磁极模块1的磁钢21的数量较多,使得承载多个磁钢21的基板10沿第一方向X的尺寸较大,并且基板10的结构较复杂,很难保证基板10的加工精度,制作比较困难。而将尺寸较大的基板10沿第一方向X分段设置为至少两个较小尺寸的基板10,可以提高基板10的加工精度,进而提高基板10的可制造性。
下面以两个磁极模块1沿第一方向X可以拼接为一列整极磁极模块为例进行说明。
如图12所示,两个磁极模块1中,其中一个磁极模块1包括第一基板101和固定于第一基板101上的磁钢组件20,磁钢组件20包括沿第一方向X并排布置且沿第二方向Y呈第一预定角度设置的多个磁钢21。另一个磁极模块1包括第二基板102和固定于第二基板102上的磁钢组件20,磁钢组件20包括沿第一方向X并排布置且沿第二方向Y呈第二预定角度设置的多个磁钢21。两个磁极模块1的多个磁钢21沿第一方向X可以形成为一个“V”字型,第一基板101和第二基板102可以沿第一方向X拼接为图2至图11所示的磁极模块1中的基板10。
可以理解的是,如果将一列整极磁极模块沿第一方向X分为更多个磁极模块1,例如分为3个磁极模块1,则除了前述的包括第一基板101的磁极模块和包括第二基板102的磁极模块外,还包括位于二者之间的一个磁极模块,该磁极模块的第三基板上的磁钢组件20包括沿第一方向X并排布置且沿第二方向Y呈第一预定角度和第二预定角度设置的多个磁钢21,即多个磁钢21呈较小的“V”字型布置于第三基板上。由此,一列完整的整极磁极模块的基板10可以沿第一方向X分段为较小尺寸的第一基板101、 第二基板102和第三基板,易于加工制作。
由此,一列整极磁极模块中,多个磁极模块1的多个磁钢21形成沿轴向反向布置的双斜极,以降低齿槽转矩。同时,每对磁钢组件20的多个磁钢21除了会产生带动电机转动的切向激励以外,还会产生额外的且方向相反的轴向激励,恰好沿电机转子的轴向方向相互抵消,从而消除了转子斜极布置产生的额外轴向激励带来的不良影响。
需要说明的是,虽然以上为了方便描述,以电机为外转子结构作为示例进行了描述,但应理解的是,根据本申请的示例性实施例的转子同样适用于电机为内转子结构。
此外,根据以上所述的示例性实施例的磁极模块和电机可被应用到各种需要设置电机的设备中,例如但不限于风力发电机组。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并不排除其他装置或步骤;物品没有使用数量词修饰时旨在包括一个/种或多个/种物品,并可以与“一个/种或多个/种物品”互换使用”;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (15)

  1. 一种磁极模块,安装于永磁电机的转子支架上,其中,所述磁极模块包括:
    基板,沿自身厚度方向具有相背设置的第一表面和第二表面,所述基板具有沿第一方向延伸的第一中心线和沿第二方向延伸的第二中心线,所述第一方向与所述第二方向相交设置,所述第一中心线平行于所述永磁电机的中心轴线设置;
    至少一对磁钢组件,固定于所述基板,每对磁钢组件相对于所述第二中心线对称分布于所述第一表面上,每个所述磁钢组件包括由所述第二中心线沿所述第一方向一侧并排布置且沿所述第二方向呈预定角度设置的多个磁钢。
  2. 根据权利要求1所述的磁极模块,其中,每个所述磁钢组件的多个所述磁钢沿所述第二方向依次同向错开设置,每个所述磁钢的横截面中点的连线包括由所述第二中心线沿所述第一方向一侧依次分布的第一线段、第二线段和第三线段,所述第一线段与所述第一中心线的第一夹角为θ1,所述第二线段与所述第一中心线的第二夹角为θ2,所述第三线段与所述第一中心线的第三夹角为θ3。
  3. 根据权利要求1所述的磁极模块,其中,每个所述磁钢组件的多个所述磁钢的边缘沿所述第二方向倾斜设置,且多个所述磁钢的边缘连线包括由所述第二中心线沿所述第一方向一侧依次分布的第一线段、第二线段和第三线段,所述第一线段与所述第一中心线的第一夹角为θ1,所述第二线段与所述第一中心线的第二夹角为θ2,所述第三线段与所述第一中心线的第三夹角为θ3。
  4. 根据权利要求2或3所述的磁极模块,其中,所述第二夹角θ2与所述第三夹角θ3、所述第一夹角θ1满足如下条件:θ1<θ2,θ3<θ2。
  5. 根据权利要求2或3所述的磁极模块,其中,所述第一夹角θ1、所 述第二夹角θ2和所述第三夹角θ3的大小相等。
  6. 根据权利要求2或3所述的磁极模块,其中,所述第二夹角θ2的取值范围为:θ2=1°~10°。
  7. 根据权利要求2所述的磁极模块,其中,所述磁钢的横截面为矩形,其包括相对设置的一对第一边和相对设置的一对第二边,所述第一边平行于所述第一方向设置,所述第二边平行于所述第二方向或者与所述第二方向呈所述预定角度设置。
  8. 根据权利要求3所述的磁极模块,其中,所述磁钢的横截面为平行四边形和/或梯形。
  9. 根据权利要求7或8所述的磁极模块,其中,所述基板还包括沿所述第二方向相背设置的第一侧壁和第二侧壁,所述第一侧壁和所述第二侧壁连接所述第一表面和所述第二表面且沿所述第一方向延伸,所述第一侧壁沿所述第二方向向内凹陷形成相交的第一切面和第一底壁,所述第二侧壁沿所述第二方向向内凹陷形成相交的第二切面和第二底壁,所述第一表面连接所述第一底壁与所述第二底壁,所述第一切面和所述第二切面均低于所述第一表面。
  10. 根据权利要求9所述的磁极模块,其中,所述第一底壁和所述第二底壁在所述第一表面上的投影设置为平行于对称分布的所述第一线段、所述第二线段和所述第三线段的连线。
  11. 根据权利要求9所述的磁极模块,其中,所述基板沿所述第一方向的两端分别向内凹陷形成有相交的第三切面和第三底壁,所述第三底壁与所述第一表面连接,且所述第三切面低于所述第一表面。
  12. 根据权利要求11所述的磁极模块,其中,所述磁极模块还包括防护胶,所述防护胶至少涂覆于所述磁钢组件的外露表面、所述第一切面、所述第一底壁、所述第二切面、所述第二底壁、所述第三切面和所述第三底壁;
    或者,所述磁极模块还包括外壳,所述外壳具有容纳腔和与所述容纳腔连通的开口,所述基板的所述第一切面、所述第二切面和所述第三切面盖合于所述开口,以使所述基板与所述外壳的所述容纳腔形成密闭空间,所述磁钢组件容纳于所述密闭空间。
  13. 根据权利要求9所述的磁极模块,其中,所述基板的所述第一侧壁和所述第二侧壁分别沿所述第二方向向外凸出形成有第一连接部,所述第一连接部包括沿自身厚度相对设置的第一承压面和第二承压面,所述第一承压面与所述第二表面连续分布,所述第二承压面低于所述第一切面或者所述第二切面;
    或者,所述基板的所述第二表面上设置有沿所述第一表面至所述第二表面的方向凸出形成的第二连接部;
    所述磁极模块通过所述第一连接部或者所述第二连接部与所述转子支架可拆卸连接。
  14. 一种磁极模块,安装于永磁电机的转子支架上,其中,所述磁极模块包括:
    基板,沿自身厚度方向具有相背设置的第一表面和第二表面,所述基板具有沿第一方向延伸的第一中心线,所述第一中心线平行于所述永磁电机的中心轴线设置;
    磁钢组件,固定于所述基板,所述磁钢组件包括沿所述第一方向并排布置且沿所述第二方向呈第一预定角度和/或第二预定角度设置的多个磁钢,其中,所述第一方向与所述第二方向相交设置,所述第一预定角度与所述第二预定角度大小相等、方向相反。
  15. 一种用于永磁电机的转子,包括:
    转子支架,具有安装表面;
    多个固定件,沿所述转子支架的周向间隔分布于所述安装表面上,每相邻两个所述固定件之间形成安装轨道;
    多个如权利要求1至14任一项所述的磁极模块,所述磁极模块沿所述第一方向安装于所述安装轨道。
PCT/CN2020/078575 2019-06-06 2020-03-10 磁极模块及用于永磁电机的转子 WO2020244269A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20767709.7A EP3780354A4 (en) 2019-06-06 2020-03-10 MAGNETIC POLES AND ROTOR MODULE USED FOR A PERMANENT MAGNET MOTOR
AU2020239647A AU2020239647B2 (en) 2019-06-06 2020-03-10 Magnetic pole module and rotor for permanent magnet generator
US17/042,704 US11888369B2 (en) 2019-06-06 2020-03-10 Magnetic pole module and rotor for permanent magnet generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910489956.5 2019-06-06
CN201910489956.5A CN112054614B (zh) 2019-06-06 2019-06-06 整极磁极模块及用于永磁电机的转子

Publications (1)

Publication Number Publication Date
WO2020244269A1 true WO2020244269A1 (zh) 2020-12-10

Family

ID=73609804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078575 WO2020244269A1 (zh) 2019-06-06 2020-03-10 磁极模块及用于永磁电机的转子

Country Status (5)

Country Link
US (1) US11888369B2 (zh)
EP (1) EP3780354A4 (zh)
CN (1) CN112054614B (zh)
AU (1) AU2020239647B2 (zh)
WO (1) WO2020244269A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400805A (zh) * 2022-01-24 2022-04-26 浙江大学 一种永磁同步电机的转子结构
CN114899996A (zh) * 2022-07-11 2022-08-12 浙江大学 一种削弱齿槽转矩的永磁同步电机磁极结构设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10210718A (ja) * 1997-01-21 1998-08-07 Fuji Electric Co Ltd 永久磁石形回転機における界磁磁極の構成方法
JP2001251838A (ja) * 2000-03-06 2001-09-14 Genesis:Kk ベーシックファクターを用いた回転機
CN101924407A (zh) * 2009-04-30 2010-12-22 通用汽车环球科技运作公司 用于永磁转子的斜置样式
CN105226859A (zh) * 2015-11-03 2016-01-06 中科盛创(青岛)电气股份有限公司 一种永磁电机v形斜极的转子结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2348612A1 (en) * 2010-01-20 2011-07-27 Siemens Aktiengesellschaft Magnetic component part for a rotor assembly
US20130169099A1 (en) * 2011-12-31 2013-07-04 Danotek Motion Technologies, Inc. Magnet assembly for permanent magnet machine
DE102012205191A1 (de) 2012-03-30 2013-10-02 Bayerische Motoren Werke Aktiengesellschaft Vibrationsverhinderung bei Synchronmaschinen
EP2685607B1 (de) * 2012-07-09 2015-04-01 Siemens Aktiengesellschaft Fixierung von Permanentmagneten an einem Rotor
CN103312067B (zh) * 2013-05-23 2016-04-20 新誉集团有限公司 一种外转子永磁发电机磁极结构及装配方法
CN105048677A (zh) 2015-08-31 2015-11-11 永济新时速电机电器有限责任公司 一种磁钢组件式结构的直驱永磁转子
CN108696017B (zh) * 2018-07-04 2019-10-15 北京金风科创风电设备有限公司 载体板、整极模块、压条、转子、转子的制造方法及电机
CN108777521B (zh) 2018-07-27 2019-09-06 北京金风科创风电设备有限公司 磁极模块、电机转子及制造该电机转子的方法
FI20185758A1 (en) * 2018-09-12 2020-03-13 The Switch Drive Systems Oy Permanent magnet modules for an electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10210718A (ja) * 1997-01-21 1998-08-07 Fuji Electric Co Ltd 永久磁石形回転機における界磁磁極の構成方法
JP2001251838A (ja) * 2000-03-06 2001-09-14 Genesis:Kk ベーシックファクターを用いた回転機
CN101924407A (zh) * 2009-04-30 2010-12-22 通用汽车环球科技运作公司 用于永磁转子的斜置样式
CN105226859A (zh) * 2015-11-03 2016-01-06 中科盛创(青岛)电气股份有限公司 一种永磁电机v形斜极的转子结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780354A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400805A (zh) * 2022-01-24 2022-04-26 浙江大学 一种永磁同步电机的转子结构
CN114400805B (zh) * 2022-01-24 2023-11-14 浙江大学 一种永磁同步电机的转子结构
CN114899996A (zh) * 2022-07-11 2022-08-12 浙江大学 一种削弱齿槽转矩的永磁同步电机磁极结构设计方法

Also Published As

Publication number Publication date
CN112054614B (zh) 2022-12-27
CN112054614A (zh) 2020-12-08
US11888369B2 (en) 2024-01-30
AU2020239647A1 (en) 2020-12-24
AU2020239647B2 (en) 2021-09-30
EP3780354A4 (en) 2021-06-09
US20230112562A1 (en) 2023-04-13
EP3780354A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
US6812614B2 (en) Rotor for a synchronous motor defined by a hyperbolic function
US6794784B2 (en) Permanent magnet reluctance motor with embedded permanent magnet holes
JP3708855B2 (ja) 永久磁石内蔵型同期モータ
EP1233503A2 (en) Brushless DC motor and method of manufacturing brushless DC motor
WO2020244269A1 (zh) 磁极模块及用于永磁电机的转子
US20110062814A1 (en) Permanent magnet embedded rotating electrical machine
JP2004254496A (ja) モータ用ロータアセンブリ、モータ用ステータアセンブリ、永久磁石型モータ、およびモータ
US8937417B2 (en) Rotating electric machine and wind power generation system
JP5609689B2 (ja) 回転電機
US9634530B2 (en) Interior permanent magnet motor with shifted rotor laminations
US20080030093A1 (en) Permanent magnetic synchronous electrical motor
CN111884456B (zh) 转子组件和轴向磁场电机
JP4854867B2 (ja) 電動機
WO2012008012A1 (ja) 永久磁石型回転電機
KR20210083179A (ko) 전동기의 프레임 구조 및 전동기의 프레임 및 전기자의 제조 방법
JP3424774B2 (ja) 永久磁石形回転子
JPH06245419A (ja) 電動機又は発電機のヨーク
US20210242733A1 (en) Motor assembly and motor rotor
EP4009494B1 (en) Rotor assembly and consequent-pole motor
US11245293B2 (en) Motor stator with dovetail or rectangular mount structure and stator teeth airgap width ratio
JPH10174323A (ja) 内磁形モータのロータ
KR102045024B1 (ko) 회전자 스큐 구조의 릴럭턴스 모터
WO2018159349A1 (ja) モータ、動力装置、及びブルドーザ
KR102590333B1 (ko) 코깅토크 저감을 위한 회전자 스큐 구조 및 방법
EP4113797A1 (en) Rotary motor and rotor assembly thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020767709

Country of ref document: EP

Effective date: 20200915

ENP Entry into the national phase

Ref document number: 2020239647

Country of ref document: AU

Date of ref document: 20200310

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE