WO2020244020A1 - 一种炔醇的制备方法 - Google Patents

一种炔醇的制备方法 Download PDF

Info

Publication number
WO2020244020A1
WO2020244020A1 PCT/CN2019/095099 CN2019095099W WO2020244020A1 WO 2020244020 A1 WO2020244020 A1 WO 2020244020A1 CN 2019095099 W CN2019095099 W CN 2019095099W WO 2020244020 A1 WO2020244020 A1 WO 2020244020A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
acetylenic alcohol
polymerization inhibitor
alcohol according
preparing
Prior art date
Application number
PCT/CN2019/095099
Other languages
English (en)
French (fr)
Inventor
殷宪龙
赵德胜
黄高峰
严宏岳
贾文浩
赵小川
Original Assignee
浙江新和成股份有限公司
山东新和成维生素有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江新和成股份有限公司, 山东新和成维生素有限公司 filed Critical 浙江新和成股份有限公司
Publication of WO2020244020A1 publication Critical patent/WO2020244020A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • C07C29/38Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones
    • C07C29/40Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones with compounds containing carbon-to-metal bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/94Use of additives, e.g. for stabilisation

Definitions

  • the invention belongs to the technical field of preparing acetylenic alcohols by alkali catalysis, and specifically relates to a reaction kettle with alkali metal hydroxide as a catalyst and silica gel supporting 4-hydroxy-2,2,6,6-tetramethylpiperidine
  • the nitroxide radical is a method for the polymerization inhibitor to carry out the acetylation reaction to prepare the acetylenic alcohol.
  • Alkynol is an important intermediate for the synthesis of flavors and fragrances, pharmaceutical intermediates, and vitamin E, such as 3,7-dimethyl-3-octynol, dehydroneryl alcohol, 3,7,11,15-tetramethyl Due to the prominent position of alkynol in the chemical industry, many researchers have conducted a lot of research on its synthesis method.
  • CN1125015C adopts the cation exchange resin method to catalyze the synthesis of enynyl alcohol.
  • the method first pretreats and dilutes the reaction solution after acetylation with a weak acid cation exchange resin, and then uses a strong acid cation exchange resin reactor to convert the reaction solution.
  • the metathesis of the enynyl alcohol at position is enynyl alcohol.
  • the reaction temperature of this method is relatively high.
  • CN1558888A adopts anion exchange resin method to synthesize acetylenic unsaturated alcohol.
  • the method adopts anion exchange resin characterized by polystyrene matrix and quaternary amine group as catalyst, and reacts acetylene with ketone or aldehyde in the presence of ammonia to generate acetylenic alcohol .
  • the post-treatment process of this method is more complicated.
  • CN1675151A, CN1182731A, and CN104744211A provide a method for metal organic chloride and acetylene to perform metal exchange reaction, and then react with ketone or aldehyde to synthesize acetylenic alcohol.
  • the reaction process of this method is relatively complicated, and the reaction conditions are relatively harsh.
  • CN205774207U provides a novel reaction system in which acetylene, ammonia, catalyst and ketone react in a pipeline reactor to generate acetylenic alcohol.
  • CN1385408A, CN1675152A, and CN103080055A provide a reaction method for synthesizing acetylenic alcohol by reacting saturated ketone and acetylene under the catalysis of alkali metal hydroxide. The disadvantage of this method is that a polymer is formed during the reaction, which reduces the reaction yield.
  • CN102701911A reports a method for purification and stability enhancement of acetylenic alcohol compounds.
  • potassium tert-butoxide is added to tetrahydrofuran, and acetylene gas is introduced after cooling to synthesize potassium acetylene.
  • ketone was added dropwise to the reaction liquid, and the reaction liquid was poured into water to hydrolyze to obtain acetylenic alcohol.
  • the crude acetylenic alcohol is treated with sodium bisulfite to obtain the refined acetylenic alcohol, and a polymerization inhibitor is added to the refined acetylenic alcohol.
  • the advantage of this method is to solve the problems of low product purity, unqualified appearance and low added value.
  • the disadvantage is that high-quality acetylenic alcohol contains polymerization inhibitor, which affects product quality.
  • CN104211863B reports a preparation method and application of a nitroxide radical polymer brush polymerization inhibitor.
  • the application is to use nitroxide radical polymer brush as the main polymerization inhibitor, and the small molecule polymerization inhibitor as the auxiliary polymerization inhibitor to form a composite polymerization inhibitor system to prepare epoxy soybean oil acrylate.
  • the composite polymerization inhibitor system can not only play a highly effective polymerization inhibitory effect in the preparation of epoxy soybean oil acrylate, but also easily recover the main polymerization inhibitor so that it can be recycled. A small amount of polymerization inhibitor stays in the body to prevent product storage When self-gathering occurs.
  • the advantage of this method is that a polymerization inhibitor is added during the reaction process to prevent the occurrence of polymerization reaction and improve the conversion rate of raw materials.
  • the disadvantage is that a small amount of polymerization inhibitor remains in the product, which affects the product quality. There are unsaturated bonds in the acetylation reaction, and polymerization reaction is prone to occur, but there is no report of adding a polymerization inhibitor during the acetylation reaction.
  • the technical problem to be solved by the present invention is to provide a preparation method of acetylenic alcohol, which avoids the occurrence of polymerization side reactions during the acetylation reaction and improves the conversion rate of raw materials and the product yield.
  • a preparation method of acetylenic alcohol including:
  • R 1 and R 2 are independently selected from C 1 ⁇ C 10 alkyl groups or R 1 and R 2 together with the carbon atoms to which they are attached form a C 3 ⁇ C 6 cycloalkyl group;
  • the polymerization inhibitor is solid-supported 2,2,6,6-tetramethylpiperidine oxide, and the catalyst used is alkali metal hydroxide.
  • the method adopts the solid-supported 2,2,6,6-tetramethylpiperidine oxide as the solid phase, which can effectively avoid the occurrence of polymerization side reactions, improve the conversion rate of raw materials and product yield, and can effectively achieve
  • the two-phase separation of the polymerization inhibitor and the reaction liquid does not need to consider the influence of the introduction of the polymerization inhibitor on the product quality.
  • the polymerization inhibitor can be recycled in the reactor, which is beneficial to environmental protection and cost reduction.
  • the carrier for immobilized 2,2,6,6-tetramethylpiperidine oxide is one or a combination of one or more of silica gel, molecular sieve, cyclodextrin and organic polymer (for example Silica gel and organic high molecular polymers can be used as carriers alone, or organic high molecular polymers can be combined with silica gel to form a new carrier);
  • the way of immobilization is physical adsorption or chemical bonding.
  • the polymerization inhibitor is silica gel supported 4-hydroxy-2,2,6,6-tetramethylpiperidine nitroxide radical, ⁇ -cyclodextrin supported tetramethylpiperidine nitroxide, poly Glycidyl methacrylate supports 4-hydroxy-2,2,6,6-tetramethylpiperidine nitroxide or PGMA/SiO 2 -TEMPO; as the most preferred, the polymerization inhibitor is PGMA/SiO 2 -TEMPO.
  • PGMA/SiO 2 -TEMPO can be obtained by existing preparation methods.
  • PGMA/SiO 2 -TEMPO can be obtained by existing preparation methods.
  • the method “Preparation of Silica Gel Supported TEMPO Catalyst and Its Catalytic Performance During the Reaction of Molecular Oxygen Oxidation of Cinnamyl Alcohol” (Modern Engineering, Vol. 36, No. Issue 8, pages 55-61).
  • the addition amount of the polymerization inhibitor is 1 ⁇ to 5 ⁇ of the mass of the saturated ketone, preferably 2 ⁇ .
  • the alkali metal hydroxide is KOH, and the addition amount of the alkali metal hydroxide is 1 ⁇ to 5 ⁇ of the mass of the saturated ketone.
  • the alkali metal hydroxide is added in the form of an aqueous solution, and the mass percentage concentration of the aqueous solution is 30-50%.
  • R 1 and R 2 are independently selected from methyl, ethyl, propyl, butyl, pentyl, hexyl or heptyl, etc., or R 1 and R 2 together with the carbon atom to which they are attached form cyclopentyl Group or cyclohexyl.
  • the alkynol is preferably ⁇ -alkynol, and the structural formula is as follows:
  • R is a C 2 to C 8 alkyl group.
  • R is selected from ethyl, propyl, butyl, pentyl, hexyl, heptyl, etc., or R 1 and R 2 together with the carbon atom to which they are attached form a cyclopentyl or cyclohexyl group.
  • the specific steps of the present invention are: mixing a certain proportion of saturated ketone, acetylene, liquid ammonia and polymerization inhibitor, under certain temperature and pressure conditions, reacting through the reactor, and after the reaction, the material is solid-liquid through the filter After separation, the solid phase is returned to the reactor, and the liquid phase is flashed and washed to obtain the alkynyl alcohol.
  • the order of adding the reaction materials is as follows: first add the polymerization inhibitor, and then add saturated ketone, catalyst, liquid ammonia and acetylene in sequence.
  • the reaction temperature is 15-25°C, preferably 16-22°C;
  • the reaction pressure is 10-15 bar, preferably 10-12 bar.
  • the preparation method of the present invention effectively avoids the occurrence of polymerization side reactions in the acetylation reaction, and improves the conversion rate of raw materials and the product yield.
  • the polymerization inhibitor used in the method is a solid phase, which can effectively realize the two-phase separation of the polymerization inhibitor and the reaction liquid, without considering the influence of the introduction of the polymerization inhibitor on the product quality.
  • the polymerization inhibitor can be recycled in the reactor, which is beneficial to environmental protection and cost reduction; in addition, it is unexpected that by adding PGMA/SiO 2 -TEMPO during the acetylation reaction process, the reaction time can be effectively shortened.
  • the conversion rate and selectivity in the embodiment of the present invention are measured by gas chromatography.
  • the detection method used is: gas chromatography SE-30 coated capillary column, column oven temperature 160°C, vaporization chamber temperature 280°C, detection chamber temperature 280°C, carrier gas (N 2 , content 99.999%) 20mL/min, fuel gas (H 2 , content 99.999%) 30mL/min, supporting gas (compressed air, purified) 300mL/min, makeup gas (N 2 ) 20mL/min, split ratio 100:1, hydrogen flame ionization detector FID.
  • reaction mixture was washed twice with 250 mL of deionized water, twice with 250 mL of 8% (mass fraction) sulfuric acid aqueous solution, and then with 250 mL of deionized water twice to obtain a light yellow transparent liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种炔醇的制备方法,包括:在阻聚剂和催化剂的作用下,饱和酮和乙炔在液氨中发生炔化反应,反应完全后经过后处理得到所述的炔醇。该制备方法避免了炔化反应过程中聚合副反应的发生,提高了原料的转化率和炔醇收率。

Description

一种炔醇的制备方法 技术领域
本发明属于碱催化制备炔醇的技术领域,具体涉及一种在反应釜内,以碱金属氢氧化物为催化剂,以硅胶负载4-羟基-2,2,6,6-四甲基哌啶氮氧自由基为阻聚剂进行炔化反应制备炔醇的方法。
背景技术
炔醇是合成香精香料、医药中间体、维生素E的重要中间体,如3,7-二甲基-3-辛炔醇、去氢橙花叔醇、3,7,11,15-四甲基-1-十六碳炔-3-醇等等,由于炔醇在化工领域的突出地位,使得很多学者对其合成方法进行了大量研究。
CN1125015C采用阳离子交换树脂法催化合成烯炔醇,该方法先用弱酸性阳离子交换树脂对炔化后的反应液进行预处理并进行稀释,然后采用强酸性阳离子交换树脂反应器将反应液中未转位的烯炔醇转位为烯炔醇。但是该方法的反应温度较高。CN1558888A采用阴离子交换树脂法合成炔属不饱和醇,该方法采用聚苯乙烯基体和季胺基团为特征的阴离子交换树脂为催化剂,在氨气存在下使乙炔与酮或者醛进行反应生成炔醇。该方法的后处理工艺较为复杂。CN1675151A、CN1182731A、CN104744211A提供了一种金属有机氯化物与乙炔进行金属交换反应,然后与酮或醛反应合成炔醇的方法。该方法的反应工序较为复杂,反应条件较为苛刻。CN205774207U提供了一种乙炔、氨、催化剂、酮在管道式反应器内反应,生成炔醇的新型反应系统。CN1385408A、CN1675152A、CN103080055A提供了一种在碱金属氢氧化物催化下,饱和酮和乙炔反应合成炔醇的反应方法。该方法的缺点为在反应过程中会形成聚合物,降低反应收率。
CN102701911A报导了一种炔醇类化合物的提纯和增强稳定性的方法。该方法为在四氢呋喃中加入叔丁醇钾,冷却后通入乙炔气,合成乙炔钾。然后向反应液中滴加酮,并将反应液倒入水中水解得到炔醇。粗品炔醇用亚硫酸氢钠进行处理得到精品炔醇并向精品炔醇中加入阻聚剂。该方 法的优点为解决了产品纯度低、外观不合格、附加值低的问题。缺点为精品炔醇中含有阻聚剂,影响产品质量。
CN104211863B报导了一种氮氧自由基聚合物刷阻聚剂的制备方法及其应用。该应用为以氮氧自由基聚合物刷为主阻聚剂,小分子阻聚剂为助阻聚剂,组成复合阻聚体系来制备环氧大豆油丙烯酸酯。该复合阻聚体系既能在环氧大豆油丙烯酸酯的制备中发挥高效的阻聚作用,又易回收主阻聚剂,使其能够循环使用,少量助阻聚剂留在体内可以防止产品储存时发生自聚。该方法的优点是在反应过程中添加阻聚剂,阻止聚合反应的发生,提高了原料的转化率。缺点为少量助阻聚剂留在产品中,影响产品质量。在炔化反应中有不饱和键的存在,易发生聚合反应,但是未见有在炔化反应过程中添加阻聚剂的报导。
发明内容
本发明所要解决的技术问题是提供一种炔醇的制备方法,该制备方法避免了炔化反应过程中聚合副反应的发生,提高了原料的转化率和产品收率。
本发明的技术方案如下:
一种炔醇的制备方法,包括:
在阻聚剂和催化剂的作用下,饱和酮和乙炔在液氨中发生炔化反应,反应完全后经过后处理得到所述的炔醇;
所述的饱和酮的结构如式(II)所示:
Figure PCTCN2019095099-appb-000001
所述的炔醇的结构如式(I)所示:
Figure PCTCN2019095099-appb-000002
R 1和R 2独立地选自C 1~C 10烷基或者R 1和R 2与它们所连接的碳原子一起形成C 3~C 6环烷基;
所述的阻聚剂为固载化2,2,6,6-四甲基哌啶氧化物,所采用的催化剂为碱金属氢氧化物。
该方法采用的固载化2,2,6,6-四甲基哌啶氧化物为固相,可以有效避 免聚合副反应的发生,提高了原料的转化率和产品收率,同时能有效实现阻聚剂与反应液的两相分离,无需考虑阻聚剂的引入对产品质量的影响。而且阻聚剂可以在反应釜中循环利用,利于环保和降低成本。
其中,所述的固载化2,2,6,6-四甲基哌啶氧化物的载体为硅胶、分子筛、环糊精和有机高分子聚合物中的一种或者多种的组合(例如硅胶和有机高分子聚合物可单独作为载体,也可以将有机高分子聚合物结合到硅胶上形成新的载体);
固载方式为物理吸附或者化学键合。
作为优选,所述的阻聚剂为硅胶负载4-羟基-2,2,6,6-四甲基哌啶氮氧自由基、β-环糊精负载四甲基哌啶氮氧化物、聚甲基丙烯酸缩水甘油酯负载4-羟基-2,2,6,6-四甲基哌啶氮氧自由基或PGMA/SiO 2-TEMPO;作为最优选,所述的阻聚剂为PGMA/SiO 2-TEMPO。
其中,PGMA/SiO 2-TEMPO可以通过现有制备方法获得,例如,可参考“硅胶负载TEMPO催化剂的制备及其分子氧氧化肉桂醇反应过程中催化性能”的方法(现代化工,第36卷第8期,第55~61页)。
其中,所述阻聚剂的添加量为饱和酮质量的1‰~5‰,优选2‰。
作为优选,所述的碱金属氢氧化物为KOH,所述的碱金属氢氧化物的添加量为饱和酮质量的1‰~5‰。
反应时,所述的碱金属氢氧化物以水溶液的形式加入,水溶液的质量百分比浓度为30~50%。
作为优选,R 1和R 2独立地选自甲基、乙基、丙基、丁基、戊基、己基或庚基等,或者R 1和R 2与它们所连接的碳原子一起形成环戊基或者环己基。
本发明中,所述的炔醇优选为α炔醇,结构式如下:
Figure PCTCN2019095099-appb-000003
其中,R为C 2~C 8烷基。
作为优选,R选自乙基、丙基、丁基、戊基、己基或庚基等,或者R 1和R 2与它们所连接的碳原子一起形成环戊基或者环己基。
本发明的具体步骤为:将一定比例的饱和酮、乙炔、液氨和阻聚剂进行混合,在一定的温度和压力条件下,通过反应釜进行反应,反应结束后物料通过过滤器进行固液分离,固相回套至反应釜中,液相进行闪蒸、洗涤得到炔醇。
作为优选,反应物料的添加顺序如下:先加入阻聚剂,然后依次加入饱和酮、催化剂、液氨和乙炔。
所述炔化反应操作具体工艺参数如CN1385408A、CN1675152A、CN103080055A等专利所述,为业内所公知。
作为优选,反应温度为15-25℃,优选为16~22℃;
反应压力为10~15bar,优选为10~12bar。
同现有技术相比,本发明的制备方法有效避免了炔化反应中聚合副反应的发生,提高了原料的转化率和产品收率。该方法采用的阻聚剂为固相,可以有效实现阻聚剂与反应液的两相分离,无需考虑阻聚剂的引入对产品质量的影响。而且阻聚剂可以在反应釜中循环利用,利于环保和降低成本;此外,令人意想不到的是通过在炔化反应过程中加入PGMA/SiO 2-TEMPO,可以有效地缩短反应时间。
具体实施方式
以下结合实施例对本发明进行详细说明,但本专利的内容不限于这些实施例。
本发明实施例中的转化率和选择性通过气相色谱测得,所采用的检测方法:气相色谱法SE-30涂布毛细管柱,柱箱温度160℃,气化室温度280℃,检测室温度280℃,载气(N 2,含量99.999%)20mL/min,燃气(H 2,含量99.999%)30mL/min,助燃气(压缩空气,经过净化)300mL/min,尾吹气(N 2)20mL/min,分流比100:1,氢火焰离子化检测器FID。
实施例1
在氮气保护下,往5L高压釜中加入1.6g PGMA/SiO 2-TEMPO,然后加入798.5g甲基庚酮和3.1g的KOH(45wt%溶液),之后将2.15kg液氨通入反应釜中。将混合物冷却到15℃。随后往高压釜中通入166.8g的乙炔,控制反应釜的压力为12bar。反应3.3小时后,通过过滤器进行固液分离,然后往液相中加入25g90%(质量分数)的乙酸水溶液,释放压力, 其中大部分氨被蒸发,加热至40℃,除去剩余的氨。随后,用250mL去离子水洗涤反应混合物2次,用250mL8%(质量分数)硫酸水溶液洗涤2次,然后再用250mL去离子水洗涤2次,得到无色透明液体。
固相套用7次,平均转化率为99.3%,洗涤前的平均产率为98%,洗涤后的平均产率为97.3%,选择性为98.7%。
固相套用7次,采用气相色谱法测得聚合副反应产生的杂质平均含量为0.3%,结果见表1。
表1固相套用7次的转化率和选择性
Figure PCTCN2019095099-appb-000004
对照例1
在氮气保护下,往5L高压釜中加入798.5g甲基庚酮和3.1g的KOH(45wt%溶液),之后将2.15kg液氨通入反应釜中。将混合物冷却到15℃。随后往高压釜中通入166.8g的乙炔,控制反应釜的压力为12bar。反应3.3小时后,通过过滤器进行固液分离,然后往液相中加入25g90%(质量分数)的乙酸水溶液,释放压力,其中大部分氨被蒸发,加热至40℃,除去剩余的氨。随后,用250mL去离子水洗涤反应混合物2次,用250mL8%(质量分数)硫酸水溶液洗涤2次,然后再用250mL去离子水洗涤2次,得到淡黄色透明液体。
实验结果显示,转化率为97.3%,洗涤前的产率为94.1%,洗涤后的产率为93.3%,选择性为96.7%,聚合副反应产生的杂质含量为1.6%。
实施例2~5
按照表2的操作条件进行实验,未列出的条件与实施例1相同,产率和选择性见表2。
对照例2~5
按照表2的操作条件进行实验,未列出的条件与对照例1相同,产率和选择性见表2。
表2实施例2~5和对照例2~5的反应条件和反应结果
Figure PCTCN2019095099-appb-000005
由表2的结果可知,加入本发明的固载化催化剂,提高了反应的转化率和选择性。

Claims (10)

  1. 一种炔醇的制备方法,其特征在于,包括:
    在阻聚剂和催化剂的作用下,饱和酮和乙炔在液氨中发生炔化反应,反应完全后经过后处理得到所述的炔醇;
    所述的饱和酮的结构如式(II)所示:
    Figure PCTCN2019095099-appb-100001
    所述的炔醇的结构如式(I)所示:
    Figure PCTCN2019095099-appb-100002
    R 1和R 2独立地选自C 1~C 10烷基或者R 1和R 2与它们所连接的碳原子一起形成C 3~C 6环烷基;
    所述的阻聚剂为固载化2,2,6,6-四甲基哌啶氧化物,所采用的催化剂为碱金属氢氧化物。
  2. 根据权利要求1所述的炔醇的制备方法,其特征在于,所述的固载化2,2,6,6-四甲基哌啶氧化物的载体为硅胶、分子筛、环糊精和有机高分子聚合物中的一种或者多种的组合;
    固载方式为物理吸附或者化学键合。
  3. 根据权利要求1所述的炔醇的制备方法,其特征在于,所述的阻聚剂为硅胶负载4-羟基-2,2,6,6-四甲基哌啶氮氧自由基、β-环糊精负载四甲基哌啶氮氧化物、聚甲基丙烯酸缩水甘油酯负载4-羟基-2,2,6,6-四甲基哌啶氮氧自由基或PGMA/SiO 2-TEMPO。
  4. 根据权利要求1所述的炔醇的制备方法,其特征在于,所述的碱金属氢氧化物为KOH。
  5. 根据权利要求1所述的炔醇的制备方法,其特征在于,所述阻聚剂的添加量为饱和酮质量的1‰~5‰,优选2‰;
    所述碱金属氢氧化物的添加量为饱和酮质量的1‰~5‰。
  6. 根据权利要求1~5任一项所述的炔醇的制备方法,其特征在于,所述的炔醇为α炔醇,结构式如下:
    Figure PCTCN2019095099-appb-100003
    其中,R为C 2~C 8烷基。
  7. 根据权利要求1所述的炔醇的制备方法,其特征在于,所述的炔化反应在氮气保护下进行;
    反应物料的添加顺序如下:先加入阻聚剂,然后依次加入饱和酮、催化剂、液氨和乙炔。
  8. 根据权利要求1所述的炔醇的制备方法,其特征在于,反应温度为15-25℃,优选为16~22℃;
    反应压力为10~15bar,优选为10~12bar。
  9. 根据权利要求1所述的炔醇的制备方法,其特征在于,所述的后处理包括:
    反应液过滤进行固液分离,得到的液相进行闪蒸、洗涤得到所述炔醇。
  10. 根据权利要求9所述的炔醇的制备方法,其特征在于,固液分离得到的固相为阻聚剂,进行回收套用。
PCT/CN2019/095099 2019-06-05 2019-07-08 一种炔醇的制备方法 WO2020244020A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910486280.4A CN110143849B (zh) 2019-06-05 2019-06-05 一种炔醇的制备方法
CN201910486280.4 2019-06-05

Publications (1)

Publication Number Publication Date
WO2020244020A1 true WO2020244020A1 (zh) 2020-12-10

Family

ID=67590463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095099 WO2020244020A1 (zh) 2019-06-05 2019-07-08 一种炔醇的制备方法

Country Status (2)

Country Link
CN (1) CN110143849B (zh)
WO (1) WO2020244020A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110467519B (zh) * 2019-09-16 2022-08-05 万华化学集团股份有限公司 一种乙炔化方法
CN115716777A (zh) * 2022-12-06 2023-02-28 辽宁佳加隆新材料有限公司 一种1-乙炔基环己醇的合成方法
CN116351405A (zh) * 2023-04-18 2023-06-30 大连中汇达科学仪器有限公司 一种以UiO-66作为吸附剂的气相毛细管柱及其制作方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1675152A (zh) * 2002-08-16 2005-09-28 帝斯曼知识产权资产管理有限公司 炔化方法
CN1765862A (zh) * 2004-10-29 2006-05-03 中国石油化工股份有限公司 由酮和乙炔合成炔醇的方法
CN102701911A (zh) * 2011-03-28 2012-10-03 河北百灵威超精细材料有限公司 一种炔醇类化合物的提纯和增强稳定性的方法
CN104211863A (zh) * 2014-08-27 2014-12-17 河北科技大学 一种氮氧自由基聚合物刷阻聚剂的制备方法及其应用
CN107032956A (zh) * 2017-05-05 2017-08-11 荆楚理工学院 一种丙炔醇的合成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10123066A1 (de) * 2001-05-11 2002-11-14 Basf Ag Verfahren zur Herstellung von höheren alpha,beta-ungesättigten Alkoholen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1675152A (zh) * 2002-08-16 2005-09-28 帝斯曼知识产权资产管理有限公司 炔化方法
CN1765862A (zh) * 2004-10-29 2006-05-03 中国石油化工股份有限公司 由酮和乙炔合成炔醇的方法
CN102701911A (zh) * 2011-03-28 2012-10-03 河北百灵威超精细材料有限公司 一种炔醇类化合物的提纯和增强稳定性的方法
CN104211863A (zh) * 2014-08-27 2014-12-17 河北科技大学 一种氮氧自由基聚合物刷阻聚剂的制备方法及其应用
CN107032956A (zh) * 2017-05-05 2017-08-11 荆楚理工学院 一种丙炔醇的合成方法

Also Published As

Publication number Publication date
CN110143849A (zh) 2019-08-20
CN110143849B (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
WO2020244020A1 (zh) 一种炔醇的制备方法
CN105622400B (zh) 一种丙烯酸酯的合成方法
CN114981235A (zh) 大麻素衍生物、前体和用途
CN106478437A (zh) 一种γ‑氨基戊酸酯衍生物的制备方法
CN114181191A (zh) 一种环状硫酸酯的合成方法
CN104557845B (zh) 一种鲁比前列酮化合物的制备方法
WO2024045292A1 (zh) 一种采用固载镍与有机碱组合催化工业化生产氘代医药中间体的方法
CN113443952B (zh) 水供氢铱催化炔烃半还原选择性合成顺、反式烯烃的方法
CN114605332B (zh) 一种特硝唑的制备工艺
CN107540520B (zh) 一种由频那醇制备均苯四甲酸或偏苯三甲酸的方法
Hu et al. Selective Ring-Opening Reaction of Epoxides with Sodium Borohydride in the Presence of Cyclodextrins in Aqueous Media.
CN114014768A (zh) 一种无钡盐杂质的氨甲环酸及其制备方法和制剂组合物
CN109251125B (zh) 一种环己烷氧化制环己醇的方法
CN115536527B (zh) 一种(甲基)丙烯酸异丁酯的制备方法
CN115181047B (zh) 手性3 -(二甲氨基)吡咯烷的制备方法
CN104341294B (zh) 一种由γ-戊内酯制备4-甲氧基戊酸甲酯的方法
CN104263801A (zh) 一种r-2-四氢萘胺的制备方法
CN111377850A (zh) 一种手性n-取代-3,3-二氟-4-羟基哌啶衍生物及其制备方法
CN115108965B (zh) 一种抗新冠药物帕罗韦德关键中间体的制备方法
CN108435224B (zh) 铪碳催化剂的制备及其在苯并咪唑平行合成中的应用
CN114797988B (zh) 一种复合催化剂的合成及制备β-异佛尔酮的方法
CN109336740B (zh) 一种4,4,4-三氟-1-丁醇的制备方法
CN112898130B (zh) 一种高选择性合成9-芴甲醇的方法
CN113117753B (zh) 一种疏水性催化剂及其制备方法、β-紫罗兰酮的制备方法
CN108752260B (zh) 一种米格列奈钙中间体的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931949

Country of ref document: EP

Kind code of ref document: A1