WO2020241818A1 - 等方導電性粘着シート - Google Patents

等方導電性粘着シート Download PDF

Info

Publication number
WO2020241818A1
WO2020241818A1 PCT/JP2020/021288 JP2020021288W WO2020241818A1 WO 2020241818 A1 WO2020241818 A1 WO 2020241818A1 JP 2020021288 W JP2020021288 W JP 2020021288W WO 2020241818 A1 WO2020241818 A1 WO 2020241818A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive sheet
pressure
conductive
sensitive adhesive
acrylic resin
Prior art date
Application number
PCT/JP2020/021288
Other languages
English (en)
French (fr)
Inventor
山本祥久
渡辺正博
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to CN202080038270.5A priority Critical patent/CN113825815B/zh
Priority to JP2020549730A priority patent/JP6794592B1/ja
Publication of WO2020241818A1 publication Critical patent/WO2020241818A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber

Definitions

  • the present invention relates to an isotropic conductive adhesive sheet. More specifically, the present invention relates to an isotropic conductive pressure-sensitive adhesive sheet used for a printed wiring board.
  • Conductive adhesives are often used in printed wiring boards.
  • an electromagnetic wave shield film used by adhering to a printed wiring board (hereinafter, may be simply referred to as a "shield film”) is a conductive adhesive provided on a shield layer such as a metal foil and the surface of the shield layer.
  • a shield film such as a metal foil and the surface of the shield layer.
  • the conductive adhesive sheet is formed by, for example, applying a conductive adhesive to the surface of the shield layer in the form of a sheet, and the shield layer is adhered to the surface of the printed wiring board, and the ground pattern of the printed wiring board and the shield layer are formed.
  • Such a conductive adhesive sheet firmly adheres to the insulating film (coverlay) provided on the surface of the printed wiring board, and secures good continuity with the external ground at the opening provided in the shield film. Is required.
  • shield film having a conductive adhesive sheet for example, those disclosed in Patent Documents 1 and 2 are known.
  • the shield film is used by adhering the exposed surface of the conductive adhesive sheet to the surface of the printed wiring board, specifically, the coverlay surface provided on the surface of the printed wiring board.
  • These conductive adhesive sheets are usually thermocompression-bonded under high temperature and high pressure conditions to be bonded and laminated on a printed wiring board.
  • the present invention has been made in view of the above, and an object of the present invention is that it can be easily adhered to an adherend with high adhesion, has excellent electrical connection stability, and has a resistance value after a heat cycle test.
  • An object of the present invention is to provide a conductive pressure-sensitive adhesive sheet having a small change.
  • the present inventors have formed a pressure-sensitive adhesive containing a specific acrylic resin, a specific amount of isocyanate-based curing agent, and a specific amount of dendritic conductive particles.
  • the isocyanate conductive adhesive sheet in which the ratio of the sheet thickness to the median diameter D50 of the dendritic conductive particles is within a specific range can be easily adhered to the adherend with high adhesion and has electrical connection stability. It was found that the change in resistance value after the heat cycle test was small. The present invention has been completed based on these findings.
  • the present invention contains an acrylic resin having a glass transition temperature of 0 ° C. or lower, an isocyanate-based curing agent, and dendritic conductive particles, and the above-mentioned isocyanate-based curing agent is contained in 100 parts by mass of the said acrylic resin.
  • a pressure-sensitive adhesive having an amount of 0.05 to 5.0 parts by mass and a content of the dendritic conductive particles of 120 to 240 parts by mass, the pressure of the pressure-sensitive adhesive sheet and the median diameter D50 of the dendritic conductive particles.
  • isotropic conductive adhesive sheets having a ratio [adhesive sheet thickness / D50] of 1.3 to 5.0.
  • the D50 of the dendritic conductive particles is preferably 6 to 15 ⁇ m.
  • the thickness of the isotropic conductive pressure-sensitive adhesive sheet is preferably 1 to 100 ⁇ m.
  • the acid value of the acrylic resin is preferably 5 mgKOH / g or less.
  • the weight average molecular weight of the acrylic resin is preferably 100,000 to 1,000,000.
  • the glass transition temperature of the acrylic resin is preferably ⁇ 50 ° C. or higher.
  • the isotropic conductive pressure-sensitive adhesive sheet preferably has a 180 ° peeling adhesive force of 4 N / 20 mm or more with respect to the polyimide film when it is attached under the conditions of a temperature of 20 ° C. and a pressure of 1 kg / 10 mm.
  • the isotropic conductive adhesive sheet of the present invention it can be easily adhered to an adherend with high adhesion, has excellent electrical connection stability, and has a small change in resistance value after a heat cycle test. Therefore, the shield-printed wiring board provided with the isotropic conductive adhesive sheet of the present invention can be easily manufactured, and the shield-printed wiring board is excellent in connection stability with the external ground.
  • the isotropic conductive pressure-sensitive adhesive sheet of the present invention is formed of a pressure-sensitive adhesive (pressure-sensitive adhesive composition) containing at least an acrylic resin having a glass transition temperature of 0 ° C. or lower, an isocyanate-based curing agent, and dendritic conductive particles.
  • the ratio of the adhesive sheet thickness to the D50 of the dendritic conductive particles is 1.3 to 5.0, preferably 1.4 to. It is 4.0, more preferably 1.5 to 4.0, still more preferably 2.5 to 4.0.
  • the above ratio is 1.3 or more, it can be easily adhered to the adherend, and the adhesion to the adherend is better.
  • the above ratio is 5.0 or less, the electrical connection stability is excellent. Further, when the above ratio is within the above range, the change in resistance value after the heat cycle test is small.
  • the pressure-sensitive adhesive (adhesive composition) for forming the isotropic conductive pressure-sensitive adhesive sheet of the present invention contains an acrylic resin having a glass transition temperature of 0 ° C. or lower.
  • acrylic resin only one kind may be used, or two or more kinds may be used.
  • the acrylic resin has a glass transition temperature (Tg) of 0 ° C. or lower, preferably ⁇ 5 ° C. or lower, and more preferably ⁇ 10 ° C. or lower.
  • the glass transition temperature is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 30 ° C. or higher.
  • the glass transition temperature is determined by differential scanning calorimetry. When the glass transition temperature exceeds 0 ° C., the adhesion strength to the adherend and the connection resistance value when the glass transition temperature is attached to the adherend under weak pressure and temperature conditions are lowered.
  • the acid value of the acrylic resin is not particularly limited, but is preferably 5 mgKOH / g or less, more preferably 3 mgKOH / g or less, and further preferably 1 mgKOH / g or less.
  • the acid value is, for example, more than 0 mgKOH / g.
  • the curing of the acrylic resin by the curing agent does not proceed excessively, so that the acrylic resin can be easily adhered to the adherend, and the adhesion to the adherend becomes better.
  • the electrical connection stability is excellent, and the change in resistance value after the heat cycle test becomes smaller.
  • the weight average molecular weight of the acrylic resin is not particularly limited, but is preferably 100,000 to 1,000,000, more preferably 200,000 to 600,000. When the weight average molecular weight is within the above range, the adhesion to the adherend is better, the electrical connection stability is better, and the change in resistance value after the heat cycle test is smaller.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC) using polystyrene as a standard substance.
  • the acrylic resin preferably has a functional group capable of reacting with isocyanate, and more preferably has a hydroxyl group.
  • the acrylic resin has improved curability due to the isocyanate-based curing agent, has better adhesion to the adherend, has better electrical connection stability, and has more resistance value change after the heat cycle test. It becomes smaller.
  • the acrylic resin having a hydroxyl group can be produced, for example, by using a hydroxyl group-containing (meth) acrylate described later as a monomer component.
  • the acrylic resin is a polymer composed of a (meth) acrylate compound as an essential monomer component, that is, a polymer (or copolymer) having at least a structural unit derived from the (meth) acrylate compound. ..
  • (meth) acrylate means acrylate and / or methacrylate.
  • the "(meth) acrylate compound” refers to a compound having an acryloyl group and / or a methacryloyl group. The same applies to "(meth) acrylic".
  • As the above (meth) acrylate compound only one kind may be used, or two or more kinds may be used.
  • the content ratio of the structural unit derived from the (meth) acrylate compound in the total amount (100% by mass) of the monomer components constituting the acrylic resin is not particularly limited, but is, for example, 50% by mass or more. It is (50 to 100% by mass), preferably 60% by mass or more (60 to 100% by mass), more preferably 90% by mass or more, and further preferably 95% by mass or more.
  • Examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, and (meth) acrylic.
  • Examples of the (meth) acrylate compound include neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane tetra (meth) acrylate, ethylene glycol di (meth) acrylate, and diethylene glycol di (meth) acrylate.
  • Polyfunctional (meth) acrylates such as acrylates can also be mentioned.
  • 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, phenylglycidyl ether (meth) acrylate hexamethylene diisocyanate urethane prepolymer, bisphenol A diglycidyl ether acrylic acid adduct and the like can also be mentioned.
  • the acrylic resin may have a structural unit derived from a monomer component other than the (meth) acrylate compound.
  • monomer components are not particularly limited, but are, for example, carboxyl group-containing polymerizable unsaturated compounds such as crotonic acid, itaconic acid, fumaric acid, and maleic acid or anhydrides thereof; styrene, vinyltoluene, ⁇ -.
  • Styrene compounds such as methylstyrene; vinyl esters such as vinyl acetate and vinyl propionate; vinyl halides such as vinyl chloride; vinyl ethers such as methylvinyl ether; cyano group-containing vinyl compounds such as (meth) acrylonitrile; ethylene and propylene Etc., ⁇ -olefin and the like.
  • the content ratio of the acrylic resin is not particularly limited, but is preferably 20 to 60% by mass, more preferably 30 to 50% by mass, still more preferably 30% by mass, based on 100% by mass of the total solid content in the pressure-sensitive adhesive. It is 35 to 45% by mass. When the content ratio is 20% by mass or more, the adhesion to the adherend becomes better. When the content ratio is 60% by mass or less, the ratio of the conductive particles is relatively large, and the electrical stability is more excellent.
  • the isocyanate-based curing agent is a compound having two or more isocyanate groups in the molecule, and promotes curing of the acrylic resin.
  • the isocyanate-based curing agent only one kind may be used, or two or more kinds may be used.
  • Examples of the isocyanate-based curing agent include lower aliphatic polyisocyanates such as 1,2-ethylene diisocyanate, 1,4-butylene diisocyanate, and 1,6-hexamethylene diisocyanate; cyclopentylene diisocyanate, cyclohexylene diisocyanate, and isophorone diisocyanate. , Alicyclic polyisocyanates such as hydrogenated tolylene diisocyanate and hydrogenated xylene diisocyanate; aromatics such as 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate and xylylene diisocyanate. Examples include polyisocyanate.
  • the content of the isocyanate-based curing agent is 0.05 to 5.0 parts by mass, preferably 0.1 to 4.0 parts by mass, and more preferably 1. by mass with respect to 100 parts by mass of the acrylic resin. It is 0 to 3.5 parts by mass.
  • the content is 0.05 parts by mass or more, the pressure-sensitive adhesive sheet is prevented from melting during the heat cycle test, and the change in resistance value after the heat cycle test is reduced.
  • the content is 5.0 parts by mass or less, excessive curing of the acrylic resin by the curing agent is suppressed, and the adhesion to the adherend is improved.
  • the isotropic conductive pressure-sensitive adhesive sheet of the present invention contains dendritic (dendrite-shaped) conductive particles.
  • dendritic conductive particles By using dendritic conductive particles, it is possible to easily obtain a conductive adhesive sheet that can be easily adhered to an adherend with high adhesion, has excellent electrical connection stability, and has a small change in resistance value after a heat cycle test. be able to.
  • the dendritic conductive particles only one kind may be used, or two or more kinds may be used.
  • dendritic conductive particles examples include metal particles, metal-coated resin particles, carbon fillers, and the like.
  • Examples of the metal constituting the coating portion of the metal particles and the metal-coated resin particles include gold, silver, copper, nickel, zinc and the like. Only one kind of the above metal may be used, or two or more kinds may be used.
  • the metal particles include copper particles, silver particles, nickel particles, silver-coated copper particles, gold-coated copper particles, silver-coated nickel particles, gold-coated nickel particles, and silver-coated alloy particles.
  • the silver-coated alloy particles include silver-coated copper alloy particles in which alloy particles containing copper (for example, copper alloy particles made of an alloy of copper, nickel, and zinc) are coated with silver.
  • the metal particles can be produced by an electrolysis method, an atomizing method, a reduction method or the like.
  • silver particles silver particles, silver-coated copper particles, and silver-coated copper alloy particles are preferable.
  • Silver-coated copper particles and silver-coated copper alloy particles are particularly preferable from the viewpoints of excellent conductivity, suppression of oxidation and aggregation of metal particles, and reduction of cost of metal particles.
  • the median diameter (D50) of the dendritic conductive particles is not particularly limited, but is preferably 6 to 15 ⁇ m, more preferably 7 to 10 ⁇ m. When the D50 is 6 ⁇ m or more, the adhesion to the adherend becomes better. When the D50 is 15 ⁇ m or less, the change in resistance value after the heat cycle test becomes smaller.
  • the D50 refers to the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.
  • the content of the dendritic conductive particles is 120 to 240 parts by mass, preferably 130 to 200 parts by mass, and more preferably 140 to 180 parts by mass with respect to 100 parts by mass of the acrylic resin.
  • the content is 120 parts by mass or more, the electrical connection stability is excellent, and the change in resistance value after the heat cycle test is small.
  • the content is 240 parts by mass or less, it can be easily adhered to the adherend and the adhesion to the adherend is good.
  • the isotropic conductive pressure-sensitive adhesive sheet of the present invention and the pressure-sensitive adhesive for forming the same may contain other components other than the above-mentioned components as long as the effects of the present invention are not impaired.
  • the other components include components contained in known or commonly used pressure-sensitive adhesive sheets.
  • the other components include flame retardants, plasticizers, defoamers, viscosity modifiers, antioxidants, diluents, antisettling agents, fillers, colorants, leveling agents, coupling agents, and tackifier resins. And so on.
  • the above other components only one kind may be used, or two or more kinds may be used.
  • the total content ratio of the acrylic resin, the isocyanate-based curing agent, and the dendritic conductive particles to 100% by mass of the total solid content in the pressure-sensitive adhesive is preferably 80% by mass or more, more preferably. Is 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 98% by mass or more.
  • the thickness of the isotropic conductive pressure-sensitive adhesive sheet of the present invention can be appropriately selected depending on the intended use, but is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, still more preferably 10 to 40 ⁇ m, and particularly preferably 10 It is ⁇ 30 ⁇ m.
  • the thickness is 1 ⁇ m or more, it can be easily adhered to the adherend, and the adhesion to the adherend becomes better.
  • the thickness is 100 ⁇ m or less, the electrical connection stability becomes better.
  • the thickness is, for example, 10 to 70 ⁇ m, preferably 30 to 65 ⁇ m.
  • the 180 ° peeling adhesive force of the isotropic conductive adhesive sheet of the present invention to the polyimide film when attached under the conditions of a temperature of 20 ° C. and a pressure of 1 kg / 10 mm is not particularly limited, but is preferably 4N / 20 mm or more. , More preferably 5N / 20mm or more.
  • the 180 ° peeling adhesive force is a value measured under the condition of a tensile speed of 300 mm / min at room temperature.
  • the resistance value (initial resistance value) of the isotropic conductive pressure-sensitive adhesive sheet of the present invention obtained by the following conductivity test is not particularly limited, but is preferably 1000 m ⁇ or less, more preferably 100 m ⁇ or less, still more preferably 20 m ⁇ or less. .. When the resistance value is 1000 m ⁇ or less, the conductivity between the external ground and the isotropic conductive adhesive sheet in the through hole becomes good.
  • Two electrodes having a width of 10 mm and a length of 30 mm are arranged on a polyimide film having a thickness of 25 ⁇ m so as to have an interval of 100 mm, and a shield base material (PET film having a thickness of 12 ⁇ m / a silver vapor deposition film having a thickness of 0.1 ⁇ m) is used.
  • the isotropic conductive pressure-sensitive adhesive sheet surface of the laminate in which the silver vapor-deposited film surface and the isotropic conductive pressure-sensitive adhesive sheet are bonded together is bonded so as to connect the two electrodes under the condition of a pressure of 1 kg / 10 mm, and the two electrodes are bonded together. The resistance value between them is measured using a 4-terminal tester.
  • the rate of change (rate of change in resistance value after heat cycle test) of the isotropic conductive pressure-sensitive adhesive sheet of the present invention with respect to the above initial resistance value is the rate of change in resistance value (resistance value after heat cycle test) measured after the following heat cycle test.
  • it is preferably 40% or less, more preferably 30% or less, still more preferably 25% or less.
  • the rate of change in resistance after the heat cycle test is calculated by the following formula.
  • the resistance value after the heat cycle test can be measured by the method described in the conductivity test using the isotropic conductive pressure-sensitive adhesive sheet after the heat cycle test.
  • Rate of change in resistance value after heat cycle test (%) ⁇ (resistance value after heat cycle test ( ⁇ ) / initial resistance value ( ⁇ ))-1 ⁇ ⁇ 100 ⁇ Heat cycle test>
  • the temperature conditions were -40 ° C on the low temperature side, 85 ° C on the high temperature side, each temperature holding time was 30 minutes, the temperature rising rate was 5 ° C./min, and the temperature lowering rate was 5 ° C./min. This is performed on a laminate of anisotropic adhesive sheets.
  • the isotropic conductive pressure-sensitive adhesive sheet of the present invention can be manufactured by a known or conventional manufacturing method.
  • the above-mentioned adhesive can be applied (coated) on a temporary base material such as a separate film or a base material, and if necessary, it can be formed by removing the solvent and / or partially curing it by heating or the like. The heating is performed at, for example, 25 to 100 ° C. for about 1 to 48 hours.
  • the above adhesive may further contain a solvent (solvent).
  • solvent examples include toluene, acetone, methyl ethyl ketone, methanol, ethanol, propanol, dimethylformamide and the like.
  • the solid content concentration of the pressure-sensitive adhesive is appropriately set according to the thickness of the isotropically conductive pressure-sensitive adhesive sheet to be formed and the like.
  • a known coating method may be used for applying the adhesive.
  • a coater such as a gravure roll coater, a reverse roll coater, a kiss roll coater, a lip coater, a dip roll coater, a bar coater, a knife coater, a spray coater, a comma coater, a direct coater, or a slot die coater may be used.
  • the isotropic conductive pressure-sensitive adhesive sheet of the present invention is a B-staged pressure-sensitive adhesive sheet (a pressure-sensitive adhesive sheet in a B-stage state) obtained by reacting a part of the acrylic resin and the isocyanate-based curing agent by heating. It may be.
  • the isotropic conductive adhesive sheet of the present invention is preferably used for a printed wiring board, and particularly preferably for a flexible printed wiring board (FPC).
  • the isotropic conductive pressure-sensitive adhesive sheet of the present invention can be easily adhered to an adherend with a high adhesive force, has excellent electrical connection stability, and has a small change in resistance value after a heat cycle test. Therefore, the isotropic conductive pressure-sensitive adhesive sheet of the present invention can be preferably used as an electromagnetic wave shielding film and a conductive bonding film for printed wiring boards (particularly for FPC).
  • the electromagnetic wave shielding film having the isotropic conductive adhesive sheet of the present invention may be referred to as "the electromagnetic wave shielding film of the present invention".
  • the electromagnetic wave shield film of the present invention preferably includes an electromagnetic wave shield layer containing the isotropic conductive pressure-sensitive adhesive sheet and metal foil of the present invention, and an insulating layer provided on one surface of the electromagnetic wave shield layer.
  • the electromagnetic wave shielding film of the present invention preferably has, for example, an insulating layer (protective layer), a metal layer, and an isotropic conductive pressure-sensitive adhesive sheet of the present invention in this order.
  • the isotropic conductive pressure-sensitive adhesive sheet of the present invention is preferably used by being laminated on a metal layer from the viewpoint of improving the electromagnetic wave shielding performance.
  • Examples of the metal constituting the metal layer include gold, silver, copper, aluminum, nickel, tin, palladium, chromium, titanium, zinc, and alloys thereof.
  • a copper layer and a silver layer are preferable from the viewpoint of being superior in electromagnetic wave shielding performance, and copper is preferable from the viewpoint of economic efficiency.
  • the printed wiring board using the isotropic conductive adhesive sheet of the present invention may be referred to as "the printed wiring board of the present invention”.
  • FIG. 1 shows an embodiment of a shield printed wiring board using the isotropic conductive adhesive sheet of the present invention.
  • the shield printed wiring board X shown in FIG. 1 is a part thereof in a printed wiring board 1, an electromagnetic wave shield laminated body 2 laminated on the printed wiring board 1, and a through hole 24 provided in the electromagnetic wave shield laminated body 2. It is provided with a conductive adhesive layer 31 provided on the electromagnetic wave shield laminate 2 so as to be filled with the above, and a reinforcing plate 32 bonded by the conductive adhesive layer 31.
  • the reinforcing plate 32 can be replaced with an external gland member.
  • the electromagnetic wave shield laminate 2 may be formed of the electromagnetic wave shield film of the present invention. That is, in the electromagnetic wave shield laminate 2, the conductive adhesive layer 21 may be the isotropic conductive pressure-sensitive adhesive sheet of the present invention, or is formed from the isotropic conductive pressure-sensitive adhesive sheet of the present invention (for example,). It may be formed by thermocompression bonding).
  • the printed wiring board 1 includes a base member 11, a circuit pattern 13 partially provided on the surface of the base member 11, an insulating protective layer (coverlay) 14 that covers and protects the circuit pattern 13, and a circuit pattern 13. It has a cover and a circuit pattern 13 and an adhesive layer 12 for adhering the base member 11 and the insulating protective layer 14.
  • the circuit pattern 13 includes a plurality of signal circuits.
  • the electromagnetic wave shield laminate 2 is laminated on the printed wiring board 1, specifically, on the insulating protective layer 14 of the printed wiring board 1, in the order of the conductive adhesive layer 21, the metal foil 22, and the insulating layer 23. ..
  • the electromagnetic wave shield laminate 2 has a through hole 24 that penetrates in the thickness direction (that is, the surface of the printed wiring board 1 is exposed).
  • the adhesive forming the conductive adhesive layer 31 flows into the through holes 24 by pressurization and heating, and can be electrically connected to the conductive adhesive layer 21.
  • the bottom of the through hole 24 is a printed wiring board 1, specifically, an insulating protective layer 14. That is, the through hole 24 is formed from the side surface of the insulating layer 23, the side surface of the electromagnetic wave shield layer composed of the conductive adhesive layer 21 and the metal foil 22, and the surface of the printed wiring board 1 (particularly the insulating protective layer 14).
  • the conductive adhesive layer 31 is arranged on the electromagnetic wave shield laminate 2, a part of which fills the through holes 24, and is electrically connected to the conductive adhesive layer 21 at the through holes 24.
  • the reinforcing plate 32 is fixed to the printed wiring board 1 and the electromagnetic wave shield laminate 2 via the conductive adhesive layer 31.
  • the conductive adhesive layer 31 is formed of a conductive bonding film.
  • the conductive adhesive layer 31 may be formed from the isotropic conductive pressure-sensitive adhesive sheet of the present invention. That is, the conductive bonding film may be the isotropic conductive pressure-sensitive adhesive sheet of the present invention.
  • the conductive adhesive layer 31 is not in contact with the circuit pattern.
  • the height of the adhesive forming the conductive adhesive layer 31 flowing into the through hole is low, it is possible to prevent air bubbles from being mixed due to insufficient inflow into the through hole. Therefore, for example, interfacial peeling in the reflow process can be suppressed, and stable connection reliability can be obtained.
  • the shield printed wiring board X includes a step of laminating an electromagnetic wave shield film on the printed wiring board 1 (shield film laminating step), a reinforcing plate 32 provided with a conductive bonding film on the upper surface of the through hole 24, and the conductive bonding film.
  • thermocompression bonding step of forming and bringing the conductive adhesive layer 21 and the conductive adhesive layer 31 in the electromagnetic wave shield laminate 2 into contact with each other.
  • thermocompression bonding the conductive adhesive layer 31 is thermoset or melted / cooled and solidified to form the conductive adhesive layer 31, and the electromagnetic wave shield laminate 2 is formed from the electromagnetic wave shield film.
  • the electromagnetic wave shielding film is laminated on the printed wiring board 1 so that the insulating protective layer 14 and the conductive adhesive layer 21 are in contact with each other.
  • the through hole 24 may be formed either before or after laminating the electromagnetic wave shielding film.
  • the through hole 24 is formed by, for example, laser processing.
  • an electromagnetic wave shield film having a conductive adhesive layer is laminated and attached on the insulating protective layer 14 so that the conductive adhesive layer surface is on the printed wiring board 1 side.
  • the conductive adhesive layer in the electromagnetic wave shield film may be thermoset or melted / cooled and solidified by thermocompression bonding the printed wiring board in which the electromagnetic wave shield film is laminated. In this way, the conductive adhesive layer 21 is formed, and the electromagnetic wave shield laminate 2 is formed.
  • the electromagnetic wave shielding film of the present invention is used as the electromagnetic wave shielding film, the isotropic conductive adhesive sheet of the present invention can be easily adhered to an adherend with a high adhesive force, and has an adhesive force with the insulating protective layer 14. Therefore, the electromagnetic wave shield laminated body 2 can be formed without performing the thermocompression bonding or by thermocompression bonding under relatively weak conditions. Then, the shield printed wiring board X having a small change in resistance value after the heat cycle test can be formed.
  • the conductive bonding film and the reinforcing plate 32 are bonded together, cut into an arbitrary size, and then the surface of the conductive bonding film is covered with the insulating layer 23 so as to close the opening of the through hole 24. Place on the surface.
  • the conductive bonding film softens and flows by pressurization and heating, and flows into and fills the through hole 24 by the pressure at the time of pressurization. Then, the conductive adhesive layer 31 is formed by curing by subsequent cooling or thermal polymerization. In this way, the conductive bonding film flows by thermocompression bonding and comes into contact with the conductive adhesive layer 21.
  • the isotropic conductive pressure-sensitive adhesive sheet of the present invention When the isotropic conductive pressure-sensitive adhesive sheet of the present invention is used as the conductive bonding film, the isotropic conductive pressure-sensitive adhesive sheet of the present invention can be easily adhered to an adherend with a high adhesive force, and the insulating protective layer 14 Since the adhesive force with the wire is high, it is possible to form a shield-printed wiring board X having excellent electrical connection stability and a small change in resistance value after a heat cycle test by thermocompression bonding under relatively weak conditions.
  • the blending amount shown in Table 1 is the relative blending amount (pure content) of each component when the acrylic resin (pure content) is 100 parts by mass, and is represented by "parts by mass” unless otherwise specified.
  • the pressure-sensitive adhesive composition is applied to the surface of a PET film (thickness 50 ⁇ m) whose surface has been treated with a mold release agent using a wire bar, heated at 100 ° C. for 3 minutes to form a sheet, and then a shield base material.
  • PET film with a thickness of 12 ⁇ m / silver-deposited film with a thickness of 0.1 ⁇ m was thermally laminated on the surface side of the silver-deposited film at a pressure of 40 ° C. and 0.5 MPa at a rate of 1 m / min.
  • a laminate of the conductive pressure-sensitive adhesive sheet and the shield base material was prepared.
  • Acrylic resin A Product name "Hitaroid 5505" (acid value: less than 1 mgKOH / g, weight average molecular weight: 300,000, Tg: -25 ° C), Hitachi Kasei Co., Ltd.
  • Acrylic resin B Product name "Hitaroid 5507” (Acid value: less than 1 mgKOH / g, weight average molecular weight: 500,000, Tg: -15 ° C), Hitachi Kasei Co., Ltd.
  • acrylic resin C trade name "Taisan Resin SG708-6" (acid value: 9 mgKOH / g, Weight average molecular weight: 700,000, Tg: 4 ° C), Nagase ChemteX Corporation acrylic resin D: Trade name "AR2412" (acid value: less than 1 mgKOH / g, weight average molecular weight: 400,000, Tg: -45 ° C ), Made by Big Technos Co., Ltd.
  • Conductive particles A Ag-coated electrolytic dendrite Cu powder (dendritic, D50: 8 ⁇ m)
  • Conductive particles B Ag-coated electrolytic dendrite Cu powder (dendritic, D50: 13 ⁇ m)
  • Conductive particles C Ag-coated atomized Cu powder (spherical, D50: 5 ⁇ m)
  • Conductive particles D Ag-coated electrolytic Cu powder (potato-like, D50: 7 ⁇ m)
  • Isocyanate-based curing agent Trade name "Coronate L", manufactured by Tosoh Corporation
  • Adhesion (polyimide film)
  • the laminates obtained in Examples and Comparative Examples were cut to a width of 20 mm, the rollers were reciprocated once using a 2 kg roller in an environment of a temperature of 20 ° C., and the conductive adhesive sheet surface was attached to a polyimide film.
  • a test piece was prepared. After leaving the test piece in an environment of 20 ° C. and 60% Rh for 12 hours, the polyimide film surface of the test piece was fixed to a reinforcing plate (FR-1, thickness 2 mm) with double-sided tape, and a tensile tester (trade name).
  • a 180 ° peeling test was carried out using "AGS-50NX" (manufactured by Shimadzu Corporation). The 180 ° peeling tension speed was measured under the condition of 300 mm / min.
  • connection resistance value Two electrodes having a width of 10 mm and a length of 30 mm were placed on a polyimide film having a thickness of 25 ⁇ m so as to have an interval of 100 mm. Then, the laminates obtained in Examples and Comparative Examples are punched to a width of 10 mm and a length of 130 mm on the electrode arrangement surface, and the conductive adhesive sheet surface is attached so as to connect the electrodes by reciprocating once with a 2 kg roller. It was. After laminating the conductive adhesive sheets, the resistance value between the two electrodes was measured using a 4-terminal method tester (trade name "RM3542", manufactured by Hioki Electric Co., Ltd.). The resistance value is measured before and after the heat cycle test, respectively.
  • the former is the initial resistance value and the latter is the resistance value after the heat cycle test
  • the rate of change in the resistance value after the heat cycle test is calculated from the following formula. It was.
  • the temperature conditions of the laminate were 200 ° C. on the low temperature side, 85 ° C. on the high temperature side, 30 minutes for each temperature holding time, 5 ° C./min for raising temperature, and 5 ° C./min for lowering temperature. I went to the cycle.
  • Rate of change in resistance value after heat cycle test (%) ⁇ (resistance value after heat cycle test ( ⁇ ) / initial resistance value ( ⁇ ))-1 ⁇ ⁇ 100
  • the isotropic conductive pressure-sensitive adhesive sheet (Example) of the present invention has high adhesion to a polyimide film when attached under weak pressure and temperature conditions, has a low initial connection resistance value, and changes in resistance value after a heat cycle test. Was also small.
  • the [adhesive sheet thickness / D50] was low (Comparative Example 1), the adhesion to the polyimide film when adhered under weak pressure and temperature conditions was inferior.
  • the content of the conductive particles was small (Comparative Examples 2, 4 and 5)
  • the change in resistance value after the heat cycle test was large.
  • the content of the conductive particles was large (Comparative Example 3)
  • the adhesion to the polyimide film when attached under weak pressure and temperature conditions was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

簡易に高い密着力で被着体に接着可能であり、且つ電気的接続安定性に優れ、ヒートサイクル試験後の抵抗値変化が小さい導電性粘着シートを提供する。 本発明の等方導電性粘着シートは、ガラス転移温度が0℃以下のアクリル系樹脂、イソシアネート系硬化剤、及び樹枝状導電性粒子を含有し、前記アクリル系樹脂100質量部に対し、前記イソシアネート系硬化剤の含有量が0.05~5.0質量部、前記樹枝状導電性粒子の含有量が120~240質量部である粘着剤から形成され、粘着シート厚さと前記樹枝状導電性粒子のメディアン径D50の比[粘着シート厚さ/D50]が1.3~5.0である。

Description

等方導電性粘着シート
 本発明は、等方導電性粘着シートに関する。より詳細には、本発明は、プリント配線板に使用される等方導電性粘着シートに関する。
 プリント配線板においては、導電性接着剤が多用される。例えば、プリント配線板に接着して使用される電磁波シールドフィルム(以下、単に「シールドフィルム」と称する場合がある)は、金属箔などのシールド層と当該シールド層の表面に設けられた導電性接着シートとを有する。導電性接着シートは、例えばシールド層の表面に導電性接着剤をシート状に塗工して形成され、シールド層をプリント配線板の表面に接着すると共に、プリント配線板のグランドパターンとシールド層とを導通させる。
 このような導電性接着シートは、プリント配線板の表面に設けられた絶縁フィルム(カバーレイ)と強固に密着すると共に、シールドフィルムに設けられた開口部において外部グランドと良好な導通を確保することが求められる。
 導電性接着シートを有するシールドフィルムとしては、例えば、特許文献1及び2に開示のものが知られている。上記シールドフィルムは、導電性接着シートが露出した表面が、プリント配線板表面、具体的にはプリント配線板の表面に設けられたカバーレイ表面と貼着するように貼り合わせて使用される。これらの導電性接着シートは、通常、高温・高圧条件下で熱圧着してプリント配線板に接着及び積層される。
特開2015-110769号公報 特許2012-28334号公報
 近年、高温・高圧条件下ではなく、比較的緩やかな条件でプリント配線板に接着することができる導電性粘着シートが求められる傾向がある。しかしながら、従来の異方導電性粘着シートは、比較的緩やかな条件でプリント配線板に接着した場合、外部グランドとの電気的接続が不安定であり、ヒートサイクル試験後の抵抗値変化が大きくなるという問題があった。電気的接続の安定性を向上させるべく、従来の異方導電性粘着シートにおける導電性粒子の配合量を増やして等方導電性粘着シートとした場合、プリント配線板との密着力が劣ってしまう。
 本発明は上記に鑑みてなされたものであり、本発明の目的は、簡易に高い密着力で被着体に接着可能であり、且つ電気的接続安定性に優れ、ヒートサイクル試験後の抵抗値変化が小さい導電性粘着シートを提供することにある。
 本発明者らは、上記目的を達成するため鋭意検討した結果、特定のアクリル系樹脂、特定量のイソシアネート系硬化剤、及び特定量の樹枝状導電性粒子を含有する粘着剤から形成され、粘着シート厚さと樹枝状導電性粒子のメディアン径D50の比が特定の範囲内である等方導電性粘着シートは、簡易に高い密着力で被着体に接着可能であり、且つ電気的接続安定性に優れ、ヒートサイクル試験後の抵抗値変化が小さいことを見出した。本発明はこれらの知見に基づいて完成させたものである。
 すなわち、本発明は、ガラス転移温度が0℃以下のアクリル系樹脂、イソシアネート系硬化剤、及び樹枝状導電性粒子を含有し、上記アクリル系樹脂100質量部に対し、上記イソシアネート系硬化剤の含有量が0.05~5.0質量部、上記樹枝状導電性粒子の含有量が120~240質量部である粘着剤から形成され、粘着シート厚さと上記樹枝状導電性粒子のメディアン径D50の比[粘着シート厚さ/D50]が1.3~5.0である、等方導電性粘着シートを提供する。
 上記樹枝状導電性粒子のD50は6~15μmであることが好ましい。
 上記等方導電性粘着シートの厚さは1~100μmであることが好ましい。
 上記アクリル系樹脂の酸価は5mgKOH/g以下であることが好ましい。
 上記アクリル系樹脂の重量平均分子量は10万~100万であることが好ましい。
 上記アクリル系樹脂のガラス転移温度は-50℃以上であることが好ましい。
 上記等方導電性粘着シートは、温度20℃、圧力1kg/10mmの条件下で貼着した際のポリイミドフィルムに対する180°引き剥がし接着力が4N/20mm以上であることが好ましい。
 本発明の等方導電性粘着シートによれば、簡易に高い密着力で被着体に接着可能であり、且つ電気的接続安定性に優れ、ヒートサイクル試験後の抵抗値変化が小さい。このため、本発明の等方導電性粘着シートを備えるシールドプリント配線板を簡易に製造可能であり、当該シールドプリント配線板は外部グランドとの接続安定性に優れる。
本発明の等方導電性粘着シートを用いたシールドプリント配線板の一実施形態を示す模式断面図である。
[等方導電性粘着シート]
 本発明の等方導電性粘着シートは、ガラス転移温度が0℃以下のアクリル系樹脂、イソシアネート系硬化剤、及び樹枝状導電性粒子を少なくとも含む粘着剤(粘着剤組成物)から形成される。
 本発明の等方導電性粘着シートは、粘着シート厚さと樹枝状導電性粒子のD50の比[粘着シート厚さ/D50]が、1.3~5.0であり、好ましくは1.4~4.0、より好ましくは1.5~4.0、さらに好ましくは2.5~4.0である。上記比が1.3以上であることにより、簡易に被着体に接着でき、被着体に対する密着性がより良好である。上記比が5.0以下であることにより、電気的接続安定性に優れる。また、上記比が上記範囲内であることにより、ヒートサイクル試験後の抵抗値変化が小さい。
(アクリル系樹脂)
 本発明の等方導電性粘着シートを形成する粘着剤(粘着剤組成物)は、ガラス転移温度が0℃以下のアクリル系樹脂を含む。上記アクリル系樹脂は、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記アクリル系樹脂は、ガラス転移温度(Tg)が0℃以下であり、好ましくは-5℃以下、より好ましくは-10℃以下である。また、上記ガラス転移温度は、-50℃以上が好ましく、より好ましくは-30℃以上である。上記ガラス転移温度は、示差走査熱量分析により求められる。ガラス転移温度が0℃を超えると、弱い圧力及び温度条件で被着体に貼着した際の、被着体との密着強度や接続抵抗値が低くなる。
 上記アクリル系樹脂の酸価は、特に限定されないが、5mgKOH/g以下が好ましく、より好ましくは3mgKOH/g以下、さらに好ましくは1mgKOH/g以下である。上記酸価は、例えば0mgKOH/g超である。上記酸価が5mgKOH/g以下であると、硬化剤によるアクリル系樹脂の硬化が過剰に進行することが無いため、簡易に被着体に接着でき、被着体に対する密着性がより良好となり、また、電気的接続安定性により優れ、ヒートサイクル試験後の抵抗値変化がより小さくなる。
 上記アクリル系樹脂の重量平均分子量は、特に限定されないが、10万~100万が好ましく、より好ましく20万~60万である。上記重量平均分子量が上記範囲内であると、被着体に対する密着性がより良好となり、また、電気的接続安定性により優れ、ヒートサイクル試験後の抵抗値変化がより小さくなる。上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準物質としてポリスチレンを用いて測定することができる。
 上記アクリル系樹脂は、イソシアネートと反応し得る官能基を有することが好ましく、ヒドロキシル基を有することがより好ましい。これにより、上記アクリル系樹脂はイソシアネート系硬化剤による硬化性が向上し、被着体に対する密着性がより良好となり、また、電気的接続安定性により優れ、ヒートサイクル試験後の抵抗値変化がより小さくなる。上記ヒドロキシル基を有するアクリル系樹脂は、例えば、単量体成分として後述のヒドロキシル基含有(メタ)アクリレートを用いることにより作製できる。
 上記アクリル系樹脂は、(メタ)アクリレート化合物を必須の単量体成分として構成された重合体、すなわち、(メタ)アクリレート化合物に由来する構成単位を少なくとも有する重合体(又は共重合体)である。なお、本明細書において、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。そして「(メタ)アクリレート化合物」とは、アクリロイル基及び/又はメタクリロイル基を有する化合物を示す。「(メタ)アクリル」についても同様である。上記(メタ)アクリレート化合物は、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記アクリル系樹脂は、アクリル系樹脂を構成する単量体成分の総量(100質量%)中の(メタ)アクリレート化合物に由来する構成単位の含有割合が、特に限定されないが、例えば50質量%以上(50~100質量%)であり、好ましくは60質量%以上(60~100質量%)、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
 上記(メタ)アクリレート化合物としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル等の直鎖又は分岐鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸;カルボキシエチルアクリレート等のカルボキシル基含有(メタ)アクリル酸エステル;2-ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート等のヒドロキシル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸シクロアルキルエステル;N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド等の(メタ)アクリル酸アミド誘導体;ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジプロピルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジプロピルアミノプロピル(メタ)アクリレート等の(メタ)アクリル酸ジアルキルアミノアルキルエステルなどが挙げられる。
 また、上記(メタ)アクリレート化合物としては、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート等の多官能(メタ)アクリレートも挙げられる。さらに、2-ヒドロキシ-3-アクリロイロキシプロピル(メタ)アクリレート、フェニルグリシジルエーテル(メタ)アクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ビスフェノールAジグリシジルエーテルアクリル酸付加物なども挙げられる。
 上記アクリル系樹脂は、(メタ)アクリレート化合物以外の単量体成分由来の構成単位を有していてもよい。このような単量体成分としては、特に限定されないが、例えば、クロトン酸、イタコン酸、フマル酸、マレイン酸等のカルボキシル基含有重合性不飽和化合物又はその無水物;スチレン、ビニルトルエン、α-メチルスチレン等のスチレン系化合物;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;塩化ビニル等のハロゲン化ビニル;メチルビニルエーテル等のビニルエーテル類;(メタ)アクリロニトリル等のシアノ基含有ビニル化合物;エチレン、プロピレン等のα-オレフィンなどが挙げられる。
 上記アクリル系樹脂の含有割合は、特に限定されないが、上記粘着剤中の固形分の総量100質量%に対して、20~60質量%が好ましく、より好ましくは30~50質量%、さらに好ましくは35~45質量%である。上記含有割合が20質量%以上であると、被着体に対する密着性がより良好となる。上記含有割合が60質量%以下であると、相対的に導電性粒子の割合が多くなり、電気的安定性により優れる。
(イソシアネート系硬化剤)
 上記イソシアネート系硬化剤は、分子内にイソシアネート基を2以上有する化合物であり、上記アクリル系樹脂の硬化を促進する。上記イソシアネート系硬化剤は、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記イソシアネート系硬化剤としては、例えば、1,2-エチレンジイソシアネート、1,4-ブチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等の低級脂肪族ポリイソシアネート;シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、イソホロンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネート等の脂環族ポリイソシアネート;2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族ポリイソシアネートなどが挙げられる。
 上記イソシアネート系硬化剤の含有量は、上記アクリル系樹脂100質量部に対して、0.05~5.0質量部であり、好ましくは0.1~4.0質量部、より好ましくは1.0~3.5質量部である。上記含有量が0.05質量部以上であることにより、ヒートサイクル試験時の粘着シートの溶解を防止し、ヒートサイクル試験後の抵抗値変化が小さくなる。上記含有量が5.0質量部以下であることにより、硬化剤によるアクリル系樹脂の過剰な硬化を抑制し、被着体に対する密着性が良好となる。
(導電性粒子)
 本発明の等方導電性粘着シートは、樹枝状(デンドライト形状)の導電性粒子を含む。樹枝状導電性粒子を用いることにより、簡易に高い密着力で被着体に接着可能であり、且つ電気的接続安定性に優れ、ヒートサイクル試験後の抵抗値変化が小さい導電性粘着シートを得ることができる。上記樹枝状導電性粒子は、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記樹枝状導電性粒子としては、例えば、金属粒子、金属被覆樹脂粒子、カーボンフィラーなどが挙げられる。
 上記金属粒子及び上記金属被覆樹脂粒子の被覆部を構成する金属としては、例えば、金、銀、銅、ニッケル、亜鉛などが挙げられる。上記金属は一種のみを使用してもよいし、二種以上を使用してもよい。
 上記金属粒子としては、具体的には、例えば、銅粒子、銀粒子、ニッケル粒子、銀被覆銅粒子、金被覆銅粒子、銀被覆ニッケル粒子、金被覆ニッケル粒子、銀被覆合金粒子などが挙げられる。上記銀被覆合金粒子としては、例えば、銅を含む合金粒子(例えば、銅とニッケルと亜鉛との合金からなる銅合金粒子)が銀により被覆された銀被覆銅合金粒子などが挙げられる。上記金属粒子は、電解法、アトマイズ法、還元法などにより作製することができる。
 上記金属粒子としては、中でも、銀粒子、銀被覆銅粒子、銀被覆銅合金粒子が好ましい。導電性に優れ、金属粒子の酸化及び凝集を抑制し、且つ金属粒子のコストを下げることができる観点から、特に、銀被覆銅粒子、銀被覆銅合金粒子が好ましい。
 上記樹枝状導電性粒子のメディアン径(D50)は、特に限定されないが、6~15μmが好ましく、より好ましくは7~10μmである。上記D50が6μm以上であると、被着体に対する密着性がより良好となる。上記D50が15μm以下であると、ヒートサイクル試験後の抵抗値変化がより小さくなる。上記D50は、レーザー回折・散乱法により求めた粒度分布における積算値50%での粒径をいうものとする。
 上記樹枝状導電性粒子の含有量は、上記アクリル系樹脂100質量部に対して、120~240質量部であり、好ましくは130~200質量部、より好ましくは140~180質量部である。上記含有量が120質量部以上であることにより、電気的接続安定性に優れ、また、ヒートサイクル試験後の抵抗値変化が小さい。上記含有量が240質量部以下であることにより、簡易に被着体に接着でき、被着体に対する密着性が良好となる。
 本発明の等方導電性粘着シート及びこれを形成するための粘着剤は、本発明の効果を損なわない範囲内において、上記の各成分以外のその他の成分を含有していてもよい。上記その他の成分としては、公知乃至慣用の粘着シートに含まれる成分が挙げられる。上記その他の成分としては、例えば、難燃剤、可塑剤、消泡剤、粘度調整剤、酸化防止剤、希釈剤、沈降防止剤、充填剤、着色剤、レベリング剤、カップリング剤、粘着付与樹脂などが挙げられる。上記その他の成分は、一種のみを使用してもよいし、二種以上を使用してもよい。なお、上記粘着剤中の固形分の総量100質量%に対する、上記アクリル系樹脂、上記イソシアネート系硬化剤、及び上記樹枝状導電性粒子の合計の含有割合は、80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上、特に好ましくは98質量%以上である。
 本発明の等方導電性粘着シートの厚さは、用途に応じて適宜選択することができるが、1~100μmが好ましく、より好ましくは5~50μm、さらに好ましくは10~40μm、特に好ましくは10~30μmである。上記厚さが1μm以上であると、簡易に被着体に接着でき、被着体に対する密着性がより良好となる。上記厚さが100μm以下であると、電気的接続安定性がより良好となる。また、本発明の等方導電性粘着シートをボンディングフィルム(例えば補強板や外部グランドとプリント配線板との導電性ボンディングフィルム)に用いる場合、例えば10~70μm、好ましくは30~65μmである。
 本発明の等方導電性粘着シートの、温度20℃、圧力1kg/10mmの条件下で貼着した際のポリイミドフィルムに対する180°引き剥がし接着力は、特に限定されないが、4N/20mm以上が好ましく、より好ましくは5N/20mm以上である。上記引き剥がし接着力が4N/20mm以上であると、簡易に被着体に接着でき、被着体に対する密着性がより良好となる。また、これにより、電気的接続安定性により優れ、ヒートサイクル試験後の抵抗値変化もより小さくなる。上記180°引き剥がし接着力は、常温下において引張速度300mm/分の条件で測定される値である。
 本発明の等方導電性粘着シートの、下記導電性試験により求められる抵抗値(初期抵抗値)は、特に限定されないが、1000mΩ以下が好ましく、より好ましくは100mΩ以下、さらに好ましくは20mΩ以下である。上記抵抗値が1000mΩ以下であると、外部グランドと等方導電性粘着シートとの、スルーホールにおける導通性が良好となる。
<導電性試験>
 幅10mm×長さ30mmの電極2つを間隔100mmになるように厚さ25μmのポリイミドフィルム上に配置し、シールド基材(厚さ12μmのPETフィルム/厚さ0.1μmの銀蒸着膜)の銀蒸着膜面と等方導電性粘着シートとを貼り合わせた積層体の等方導電性粘着シート面を、圧力1kg/10mmの条件下で2つの電極間を繋ぐように貼り合わせ、2つの電極間の抵抗値を、4端子法テスターを用いて測定する。
 本発明の等方導電性粘着シートの、上記初期抵抗値に対する、下記ヒートサイクル試験後に測定される抵抗値(ヒートサイクル試験後抵抗値)の変化率(ヒートサイクル試験後抵抗値変化率)は、特に限定されないが、40%以下が好ましく、より好ましくは30%以下、さらに好ましくは25%以下である。上記抵抗値の変化率が40%以下であると、ヒートサイクル試験後においても、外部グランドと等方導電性粘着シートとの、スルーホールにおける導通性が良好となる。なお、上記ヒートサイクル試験後抵抗値変化率は、下記式より求められる。また、上記ヒートサイクル試験後抵抗値は、ヒートサイクル試験後の等方導電性粘着シートを用いて、上記導電性試験に記載の方法により測定することができる。
 ヒートサイクル試験後抵抗値変化率(%)={(ヒートサイクル試験後抵抗値(Ω)/初期抵抗値(Ω))-1}×100
<ヒートサイクル試験>
 温度条件を、低温側-40℃、高温側85℃、各温度保持時間30分、昇温速度5℃/分、降温速度5℃/分とし、200サイクルの条件で、上記シールド基材と等方導電性粘着シートの積層体について行う。
 本発明の等方導電性粘着シートは、公知乃至慣用の製造方法により製造することができる。例えば、セパレートフィルムなどの仮基材又は基材上に、上記粘着剤を塗布(塗工)し、必要に応じて、加熱等により脱溶媒及び/又は一部硬化させて形成することができる。上記加熱は、例えば25~100℃で1~48時間程度行う。
 上記粘着剤は、さらに、溶剤(溶媒)を含んでいてもよい。上記溶剤としては、例えば、トルエン、アセトン、メチルエチルケトン、メタノール、エタノール、プロパノール、ジメチルホルムアミドなどが挙げられる。粘着剤の固形分濃度は、形成する等方導電性粘着シートの厚さなどに応じて適宜設定される。
 上記粘着剤の塗布には、公知のコーティング法が用いられてもよい。例えば、グラビアロールコーター、リバースロールコーター、キスロールコーター、リップコーターディップロールコーター、バーコーター、ナイフコーター、スプレーコーター、コンマコーター、ダイレクトコーター、スロットダイコーターなどのコーターが用いられてもよい。
 なお、本発明の等方導電性粘着シートは、加熱により上記アクリル系樹脂及びイソシアネート系硬化剤の一部を反応させることによって得られる、Bステージ化された粘着シート(Bステージ状態の粘着シート)であってもよい。
 本発明の等方導電性粘着シートは、プリント配線板用途であることが好ましく、フレキシブルプリント配線板(FPC)用途であることが特に好ましい。本発明の等方導電性粘着シートは、簡易に高い密着力で被着体に接着可能であり、且つ電気的接続安定性に優れ、ヒートサイクル試験後の抵抗値変化が小さい。従って、本発明の等方導電性粘着シートは、プリント配線板用(特に、FPC用)の電磁波シールドフィルム、導電性ボンディングフィルムとして好ましく使用することができる。
 本発明の等方導電性粘着シートを有する電磁波シールドフィルムを「本発明の電磁波シールドフィルム」と称する場合がある。本発明の電磁波シールドフィルムは、本発明の等方導電性粘着シート及び金属箔を含む電磁波シールド層と、当該電磁波シールド層の一方の面に設けられた絶縁層とを備えることが好ましい。本発明の電磁波シールドフィルムは、具体的には、例えば、絶縁層(保護層)、金属層、及び本発明の等方導電性粘着シートをこの順に有することが好ましい。本発明の等方導電性粘着シートは、電磁波シールド性能をより良好とする観点から、金属層に積層して用いられることが好ましい。
 上記金属層を構成する金属としては、例えば、金、銀、銅、アルミニウム、ニッケル、スズ、パラジウム、クロム、チタン、亜鉛、又はこれらの合金などが挙げられる。中でも、電磁波シールド性能により優れる観点から、銅層、銀層が好ましく、経済性の観点から、銅であることが好ましい。
[プリント配線板]
 本発明の等方導電性粘着シートを用いたプリント配線板を「本発明のプリント配線板」と称する場合がある。
 図1に、本発明の等方導電性粘着シートを用いたシールドプリント配線板の一実施形態を示す。図1に示すシールドプリント配線板Xは、プリント配線板1と、プリント配線板1上に積層された電磁波シールド積層体2と、電磁波シールド積層体2に設けられたスルーホール24内にその一部が充填されるように電磁波シールド積層体2上に設けられた導電性接着剤層31と、導電性接着剤層31により接着された補強板32とを備える。補強板32は外部グランド部材に置き換えることが可能である。
 電磁波シールド積層体2は、本発明の電磁波シールドフィルムより形成されたものであってもよい。すなわち、電磁波シールド積層体2において、導電性接着剤層21は、本発明の等方導電性粘着シートであってもよいし、本発明の等方導電性粘着シートから形成されたもの(例えば、熱圧着により形成されたもの)であってもよい。
 プリント配線板1は、ベース部材11と、ベース部材11の表面に部分的に設けられた回路パターン13と、回路パターン13を覆い絶縁保護する絶縁保護層(カバーレイ)14と、回路パターン13を覆い且つ回路パターン13及びベース部材11と絶縁保護層14とを接着するための接着剤層12と、を有する。回路パターン13は、複数の信号回路を含む。
 電磁波シールド積層体2は、プリント配線板1上に、具体的にはプリント配線板1における絶縁保護層14上に、導電性接着剤層21、金属箔22、絶縁層23の順に積層されている。電磁波シールド積層体2は、厚さ方向に貫通する(すなわちプリント配線板1表面が露出する)スルーホール24を有する。スルーホール24を有することにより、加圧及び加熱により導電性接着剤層31を形成する接着剤がスルーホール24内に流入し、導電性接着剤層21と電気的に接続することができる。スルーホール24の底はプリント配線板1であり、具体的には絶縁保護層14である。すなわち、スルーホール24は、絶縁層23側面、導電性接着剤層21と金属箔22からなる電磁波シールド層側面、及びプリント配線板1(特に絶縁保護層14)表面より形成されている。
 導電性接着剤層31は、電磁波シールド積層体2上に配置され、その一部はスルーホール24を充填し、スルーホール24において導電性接着剤層21と電気的に接続する。補強板32は、導電性接着剤層31を介してプリント配線板1及び電磁波シールド積層体2に固定される。導電性接着剤層31は、導電性ボンディングフィルムから形成される。導電性接着剤層31は、本発明の等方導電性粘着シートから形成されたものであってもよい。すなわち、上記導電性ボンディングフィルムは、本発明の等方導電性粘着シートであってもよい。
 導電性接着剤層31は回路パターンに当接していない。この場合、導電性接着剤層31を形成する接着剤のスルーホールに流入する高さが低いため、スルーホール内部への流入不足による気泡混入を防止できる。このため、例えば、リフロー工程での界面剥離を抑制でき、安定した接続信頼性を得ることができる。
 シールドプリント配線板Xは、プリント配線板1上に電磁波シールドフィルムを積層する工程(シールドフィルム積層工程)、スルーホール24の上面に、導電性ボンディングフィルムを備える補強板32を、導電性ボンディングフィルムが上記電磁波シールドフィルムに接触するように積層する工程(補強板積層工程)、及び、熱圧着により導電性ボンディングフィルムをスルーホール24内に流入させて、導電性ボンディングフィルムから導電性接着剤層31を形成し、電磁波シールド積層体2中の導電性接着剤層21と導電性接着剤層31とを当接させる工程(熱圧着工程)を備える製造方法により製造することができる。なお、上記熱圧着により、導電性接着剤層31が熱硬化あるいは溶融・冷却固化して導電性接着剤層31を形成し、電磁波シールドフィルムから電磁波シールド積層体2が形成される。
 上記シールドフィルム積層工程では、プリント配線板1上に、絶縁保護層14と導電性接着剤層21とが接触するように電磁波シールドフィルムを積層する。なお、スルーホール24は、電磁波シールドフィルムの積層前及び積層後のどちらで形成してもよい。スルーホール24の形成は、例えばレーザー加工により行う。
 具体的には、例えば、導電性接着剤層を有する電磁波シールドフィルムを、導電性接着剤層面がプリント配線板1側となるように絶縁保護層14上に重ね合わせて貼着する。また、必要に応じて、電磁波シールドフィルムが積層した状態のプリント配線板を熱圧着することにより、電磁波シールドフィルム中の導電性接着剤層を熱硬化あるいは溶融・冷却固化させてもよい。このようにして、導電性接着剤層21が形成され、電磁波シールド積層体2が形成される。上記電磁波シールドフィルムとして本発明の電磁波シールドフィルムを用いた場合、本発明の等方導電性粘着シートは、簡易に高い密着力で被着体に接着可能であり、絶縁保護層14との密着力が高いため、上記熱圧着を行わずに、あるいは比較的弱い条件での熱圧着により、電磁波シールド積層体2を形成することができる。そして、ヒートサイクル試験後の抵抗値変化が小さいシールドプリント配線板Xを形成することができる。
 上記補強板積層工程では、導電性ボンディングフィルムと補強板32とを貼り合わせ、任意のサイズにカットした後、導電性ボンディングフィルムの面を、スルーホール24の開口部を塞ぐように絶縁層23の表面に配置する。
 そして、上記熱圧着工程では、加圧及び加熱により導電性ボンディングフィルムは軟化して流動し、加圧時の圧力によってスルーホール24内に流入充填する。そしてその後の冷却あるいは熱重合により硬化することで導電性接着剤層31を形成する。このように、導電性ボンディングフィルムが熱圧着により流動することで導電性接着剤層21と当接する。上記導電性ボンディングフィルムとして本発明の等方導電性粘着シートを用いた場合、本発明の等方導電性粘着シートは、簡易に高い密着力で被着体に接着可能であり、絶縁保護層14との密着力が高いため、比較的弱い条件での熱圧着により、電気的接続安定性に優れ、ヒートサイクル試験後の抵抗値変化が小さいシールドプリント配線板Xを形成することができる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。なお、表1に記載の配合量はアクリル系樹脂(純分)を100質量部としたときの各成分の相対的な配合量(純分)であり、特記しない限り「質量部」で表す。
 実施例1~5、比較例1~9
 表に示した配合量で、アクリル系樹脂溶液、イソシアネート系硬化剤、及び導電性粒子を配合して混合し、実施例及び比較例の各粘着剤組成物を調製した(固形分45質量%)。使用した各成分の詳細は後述の通りである。 
 表面が離型剤処理されたPETフィルム(厚さ50μm)の表面に、粘着剤組成物を、ワイヤーバーを用いて塗布し、100℃で3分加熱することでシート化した後、シールド基材(厚さ12μmのPETフィルム/厚さ0.1μmの銀蒸着膜)の銀蒸着膜面側に、40℃、0.5MPaの圧力で1m/minの速度で熱ラミネートした。熱ラミネート後のシートを60℃24時間放置することで、導電性粘着シートとシールド基材の積層体を作製した。
<アクリル系樹脂>
 アクリル系樹脂A:商品名「ヒタロイド 5505」(酸価:1mgKOH/g未満、重量平均分子量:30万、Tg:-25℃)、日立化成株式会社製
 アクリル系樹脂B:商品名「ヒタロイド 5507」(酸価:1mgKOH/g未満、重量平均分子量:50万、Tg:-15℃)、日立化成株式会社製
 アクリル系樹脂C:商品名「テイサンレジン SG708-6」(酸価:9mgKOH/g、重量平均分子量:70万、Tg:4℃)、ナガセケムテックス株式会社製
 アクリル系樹脂D:商品名「AR2412」(酸価:1mgKOH/g未満、重量平均分子量:40万、Tg:-45℃)、ビックテクノス株式会社製
<導電性粒子>
 導電性粒子A:Agコート電解デンドライトCu粉(樹枝状、D50:8μm)
 導電性粒子B:Agコート電解デンドライトCu粉(樹枝状、D50:13μm)
 導電性粒子C:AgコートアトマイズCu粉(球状、D50:5μm)
 導電性粒子D:Agコート電解Cu粉(ジャガイモ状、D50:7μm)
<硬化剤>
 イソシアネート系硬化剤:商品名「コロネートL」、東ソー株式会社製 
(評価)
 実施例及び比較例で得られた各導電性粘着シートについて以下の通り評価した。評価結果は表に記載した。
(1)密着性(ポリイミドフィルム)
 実施例及び比較例で得られた積層体を幅20mmに裁断し、温度20℃の環境下、2kgローラーを用いて、ローラーを1往復させ、導電性粘着シート面をポリイミドフィルムに貼着し、試験片を作製した。上記試験片を20℃60%Rhの環境下で12時間放置したのち、試験片のポリイミドフィルム面を補強板(FR-1、厚さ2mm)に両面テープで固定し、引張試験機(商品名「AGS-50NX」、株式会社島津製作所製)を使用して、180°引き剥がし試験を実施した。180°引き剥がし張速度は300mm/分の条件で測定した。
(2)接続抵抗値測定
 幅10mm×長さ30mmの電極2つを間隔100mmになるように厚さ25μmのポリイミドフィルム上に配置した。そして、電極の配置面に、実施例及び比較例で得られた積層体を、幅10mm×長さ130mmに打ち抜き、2kgローラーで1往復させ電極間を繋ぐように導電性粘着シート面を貼り合わせた。導電性粘着シートを貼り合わせた後、2つの電極間の抵抗値を、4端子法テスター(商品名「RM3542」、日置電機株式会社製)を用いて測定した。なお、抵抗値の測定は、ヒートサイクル試験前及びヒートサイクル試験後においてそれぞれ行い、前者を初期抵抗値、後者をヒートサイクル試験後抵抗値とし、下記式よりヒートサイクル試験後抵抗値変化率を求めた。上記ヒートサイクル試験は、上記積層体について、温度条件を、低温側-40℃、高温側85℃、各温度保持時間30分、昇温速度5℃/分、降温速度5℃/分として、200サイクル行った。
 ヒートサイクル試験後抵抗値変化率(%)={(ヒートサイクル試験後抵抗値(Ω)/初期抵抗値(Ω))-1}×100
Figure JPOXMLDOC01-appb-T000001
 本発明の等方導電性粘着シート(実施例)は、弱い圧力及び温度条件で貼着した際のポリイミドフィルムに対する密着性が高く、初期の接続抵抗値が低く、ヒートサイクル試験後の抵抗値変化も小さかった。一方、[粘着シート厚さ/D50]が低い場合(比較例1)、弱い圧力及び温度条件で貼着した際のポリイミドフィルムに対する密着性が劣っていた。導電性粒子の含有量が少ない場合(比較例2,4,5)、ヒートサイクル試験後の抵抗値変化が大きかった。導電性粒子の含有量が多い場合(比較例3)、弱い圧力及び温度条件で貼着した際のポリイミドフィルムに対する密着性が劣っていた。導電性粒子として球状粒子を用いた場合(比較例6)、ヒートサイクル試験後の抵抗値変化が大きかった。導電性粒子としてジャガイモ状粒子を用いた場合(比較例7)、初期の接続抵抗値が高く、ヒートサイクル試験後の抵抗値変化も大きかった。アクリル系樹脂としてTgが高いものを用いた場合(比較例8)、弱い圧力及び温度条件で貼着した際のポリイミドフィルムに対する密着性が劣っており、ヒートサイクル試験後の抵抗値変化も大きかった。
 また、導電性粒子として球状粒子を用いた場合において、アクリル系樹脂としてTgが特に低いものを用いても、弱い圧力及び温度条件で貼着した際のポリイミドフィルムに対する密着性は良好であったものの、ヒートサイクル試験後の抵抗値変化は依然として大きかった(比較例9)。比較例6及び9の結果より、導電性粒子として球状粒子を用いた場合では、アクリル系樹脂の種類を変更してポリイミドフィルムに対する粘着力を向上できるが、ヒートサイクル試験後の抵抗値変化が軽減されるものの許容範囲内とすることは困難であった。
 X シールドプリント配線板
 1 プリント配線板
 11 ベース部材
 12 接着剤層
 13 回路パターン
 14 絶縁保護層(カバーレイ)
 2 電磁波シールド積層体
 21 導電性接着剤層
 22 金属箔
 23 絶縁層
 24 スルーホール
 31 導電性接着剤層
 32 補強板

Claims (7)

  1.  ガラス転移温度が0℃以下のアクリル系樹脂、イソシアネート系硬化剤、及び樹枝状導電性粒子を含有し、前記アクリル系樹脂100質量部に対し、前記イソシアネート系硬化剤の含有量が0.05~5.0質量部、前記樹枝状導電性粒子の含有量が120~240質量部である粘着剤から形成され、
     粘着シート厚さと前記樹枝状導電性粒子のメディアン径D50の比[粘着シート厚さ/D50]が1.3~5.0である、等方導電性粘着シート。
  2.  前記樹枝状導電性粒子のD50が6~15μmである請求項1に記載の等方導電性粘着シート。
  3.  厚さが1~100μmである請求項1又は2に記載の等方導電性粘着シート。
  4.  前記アクリル系樹脂の酸価が5mgKOH/g以下である請求項1~3のいずれか1項に記載の等方導電性粘着シート。
  5.  前記アクリル系樹脂の重量平均分子量が10万~100万である請求項1~4のいずれか1項に記載の等方導電性粘着シート。
  6.  前記アクリル系樹脂のガラス転移温度が-50℃以上である請求項1~5のいずれか1項に記載の等方導電性粘着シート。
  7.  温度20℃、圧力1kg/10mmの条件下で貼着した際のポリイミドフィルムに対する180°引き剥がし接着力が4N/20mm以上である請求項1~6のいずれか1項に記載の等方導電性粘着シート。
PCT/JP2020/021288 2019-05-31 2020-05-29 等方導電性粘着シート WO2020241818A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080038270.5A CN113825815B (zh) 2019-05-31 2020-05-29 各向同性导电性粘着片
JP2020549730A JP6794592B1 (ja) 2019-05-31 2020-05-29 等方導電性粘着シート

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019102659 2019-05-31
JP2019-102659 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020241818A1 true WO2020241818A1 (ja) 2020-12-03

Family

ID=73554095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021288 WO2020241818A1 (ja) 2019-05-31 2020-05-29 等方導電性粘着シート

Country Status (2)

Country Link
TW (1) TWI788670B (ja)
WO (1) WO2020241818A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475213A (en) * 1965-09-13 1969-10-28 Minnesota Mining & Mfg Electrically conductive adhesive tape
JP2015521214A (ja) * 2012-05-04 2015-07-27 テーザ・ソシエタス・ヨーロピア 三次元の導電性接着フィルム
JP2016048746A (ja) * 2014-08-28 2016-04-07 住友電気工業株式会社 シールドテープ
JP2019065142A (ja) * 2017-09-29 2019-04-25 東洋インキScホールディングス株式会社 放熱用接着シート、放熱接着部材用積層体、及び複合部材
JP2019065069A (ja) * 2017-09-28 2019-04-25 タツタ電線株式会社 導電性接着剤シート

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107109161B (zh) * 2014-11-12 2019-07-02 迪睿合株式会社 热固化性粘合组合物
JP6542526B2 (ja) * 2014-11-12 2019-07-10 デクセリアルズ株式会社 熱硬化性接着組成物、及び熱硬化性接着シート

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475213A (en) * 1965-09-13 1969-10-28 Minnesota Mining & Mfg Electrically conductive adhesive tape
JP2015521214A (ja) * 2012-05-04 2015-07-27 テーザ・ソシエタス・ヨーロピア 三次元の導電性接着フィルム
JP2016048746A (ja) * 2014-08-28 2016-04-07 住友電気工業株式会社 シールドテープ
JP2019065069A (ja) * 2017-09-28 2019-04-25 タツタ電線株式会社 導電性接着剤シート
JP2019065142A (ja) * 2017-09-29 2019-04-25 東洋インキScホールディングス株式会社 放熱用接着シート、放熱接着部材用積層体、及び複合部材

Also Published As

Publication number Publication date
TW202104497A (zh) 2021-02-01
TWI788670B (zh) 2023-01-01

Similar Documents

Publication Publication Date Title
JP5833809B2 (ja) 異方性導電フィルム、接合体及び接続方法
US20220363958A1 (en) Adhesive composition
US9723715B2 (en) Anisotropic conductive film, connection method, and assembly
TWI699787B (zh) 導電性黏著劑組成物
JP6594745B2 (ja) 熱硬化性接着組成物
WO2016076356A1 (ja) 熱硬化性接着組成物、及び熱硬化性接着シート
TWI681694B (zh) 各向異性導電薄膜、及其連接方法
WO2011068747A1 (en) Composition, tape, and use thereof
WO2014189028A1 (ja) 導電材料及び接続構造体
US20170310020A1 (en) Electrically conductive material
JP6719036B1 (ja) 導電性接着シート
JP2013152867A (ja) 導電性粒子、異方性導電材料及び接続構造体
US20130040132A1 (en) Conductive adhesive tape
KR100617410B1 (ko) 열경화성 전기전도성 접착 시트, 이를 이용한 연결 구조체및 연결 방법
JP2018092943A (ja) 導電材料及び接続構造体
WO2022034696A1 (ja) 導電性組成物
WO2020241818A1 (ja) 等方導電性粘着シート
JP6794592B1 (ja) 等方導電性粘着シート
WO2022202560A1 (ja) 導電性接着剤層
JP2015135949A (ja) 実装体の製造方法、及び異方性導電フィルム
JP6133069B2 (ja) 加熱硬化型接着フィルム
JP7496949B1 (ja) 導電性接着剤層
WO2024029513A1 (ja) 導電性粘着剤及び電磁波シールドフィルム
JP6307308B2 (ja) 接続構造体の製造方法、及び回路接続材料
JP5966069B2 (ja) 異方性導電フィルム、接合体及び接続方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020549730

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814886

Country of ref document: EP

Kind code of ref document: A1